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1 Proof of Proposition 1

Proposition 1. Assume the prior distribution from the forecast is the blended particle filter conditional
Gaussian distribution

p− (u) =

Q∑
j=1

pj,−δ (u1 − u1,j)N
(
ū−2,j , R

−
2,j

)
, [1.1]

and assume the observations have the structure

v = G (u) + σ0 = G0 (u1) +G1 (u1)u2 + σ0, [1.2]

then the posterior distribution in the analysis step taking into account the observations in [1.2] is also a blended
particle filter conditional Gaussian distribution, i.e. there are explicit formulas for the updated weights, pj,+,
1 ≤ j ≤ Q, and conditional mean, ū+

2,j, and covariance, R+
2,j, so that

p+ (u) =

Q∑
j=1

pj,+δ (u1 − u1,j)N
(
ū+
2,j , R

+
2,j

)
. [1.3]

In fact, the distributions N
(
ū+
2,j , R

+
2,j

)
are updated by suitable Kalman filter formulas with the mean update

for ū2,j depending nonlinearly on u1,j in general.

Proof. Let u = (u1,u2), uj ∈ RNj , N1 +N2 = N , and u1 = {u1,j}Qj=1 are sampled in Q discrete states such
that [1.1] is satisfied. Using discrete representation of u1, the posterior distribution can be written as

p+ (u | v) =

Q∑
j=1

p+ (u,u1,j | v) =

Q∑
j=1

p+ (u | v,u1,j) pj,+, [1.4]

where pj,+ = p+ (u1,j | v) is the posterior probability of the j-th state.
1. First, consider the general likelihood function p (v | u) (not possibly Gaussian). A simply application

of Bayes Theorem gives

p+ (u | v,u1,j) =
p (v | u,u1,j) p− (u,u1,j)

p (v,u1,j)

=
p (v | u,u1,j) p− (u | u1,j)´
p (v | u1,j ,u2) p (u2 | u1,j) du2

=
p (v | u1,j ,u2) Πj,−

Ĩj
, [1.5]
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with Ĩj =
´
p (v | u1,j ,u2)N

(
ū−2,j , R

−
2,j

)
du2, 1 ≤ j ≤ Q, and Πj,− = p− (u | u1,j) = δ (u1 − u1,j)N

(
ū−2,j , R

−
2,j

)
by the conditional Gaussian assumption.

2. Then, to determine the posterior weights pj,+, the formula of conditional probability for posterior gives

p (u,u1,j ,v) = p (u | v,u1,j) p+ (u1,j | v) p (v)

= p (u | v,u1,j) pj,+p (v) , [1.6]

and for prior

p (u,u1,j ,v) = p (v | u,u1,j) p− (u,u1,j)

= p (v | u,u1,j) pj,−Πj,−. [1.7]

Compare [1.6] with [1.7], we get the identity

p (v | u,u1,j) pj,−Πj,− = p (u | v,u1,j) pj,+p (v) . [1.8]

Use the fact
∑Q

j=1

´
p (u | v,u1,j) pj,+du2 = 1 and integrate both sides of [1.8]

p (v) =

Q∑
j=1

ˆ
p (v | u1,j ,u2) pj,−Πj,−du2 =

Q∑
j=1

pj,−Ĩj . [1.9]

Therefore, substitute [1.5] and [1.9] into [1.8],

pj,+ =
pj,−
´
p (v | u1,j ,u2) p (u2 | u1,j) du2

p (v)

=
pj,−Ĩj∑Q

k=1 pk,−Ĩk
. [1.10]

3. Finally with observations in the form of [1.2] and Gaussian likelihood function p (v | u1,j ,u2) =
pG (v −G0 (u1,j)−G1 (u1,j)u2), pG ∼ N (0, R0), the numerator of [1.5] becomes the standard process of
Kalman filter. That is,

p+ (u | v,u1,j) =
δ (u1 − u1,j)N

(
ū−2,j , R

−
2,j

)
pG (v −G0 (u1,j)−G1 (u1,j)u2)

Ĩj

= δ (u1 − u1,j)N
(
ū+
2,j , R

+
2,j

)
, [1.11]

where
(
ū+
2,j , R

+
2,j

)
, depending nonlinearly on u1,j in general, are the posterior mean and covariance through

suitable Kalman filtering process. Also the weight updating factor Ĩj can be calculated explicitly by inte-
grating the multiplication of two Gaussian distributions

Ĩj =

ˆ
exp

(
−1

2
(v −G (u))

T
R−10 (v −G (u))

)
exp

(
−1

2

(
u2 − ū−2,j

)T
R−2,j

(
u2 − ū−2,j

))
du2

= det
(
R+

2,j

)− 1
2 exp

[
1

2

(
ū+T
2,j R

+−1
2,j ū+2,j − ū

−T
2,j R

−−1
2,j ū−2,j −

(
v −GEu−1,j

)T
R−10

(
v −GEu−1,j

))]
. [1.12]

Therefore, the expression for the posterior distribution [1.4] is derived explicitly in the form [1.10], [1.11],
and [1.12].

2 Details of Blended Filter Algorithms

Here we describe the details about the blended filter algorithms. After the forecast step, we get the predicted
values for the mean states ū and covariance matrix R, together with the particle presentation under DO
basis E (t) = {e1 (t) , ..., es (t)},

u (t) = ū (t) +

s∑
i=1

Yi (t;ω) ei (t) ,
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where {ei (t)}si=1 is the subdimensional dynamical basis, and {Yi} is the corresponding stochastic coefficients
achieved through Monte-Carlo simulations. The particle statistics presented by Yi must be consistent with
the covariance matrix R, and Yi , Yj are normalized to be independent with each other, that is〈

YiY
∗
j

〉
= ei ·Rejδij , 1 ≤ i, j ≤ s.

For the analysis step, filtering is implemented in two separate subspaces. The projection operator is
calculated by completing the dynamical basis P =

[
E,E⊥

]
. The orthogonal complement E⊥ are chosen

freely here. Initially each particle is uniformly weighted as (Yi, pi) =
(
Yi,

1
Q

)
. Following is the analysis step

algorithm for the blended methods.

Algorithm. Blended filtering (analysis step)

• Project the mean and covariance matrix to the two subspaces(
ū1

ū2

)
= PTū, Rt = PTRP =

(
R1 R12

RT
12 R2

)
. [2.1]

• Solve the following linear system to find the conditional mean ū2 (u1,j) = ū−2,j (denote u′1 = u1−〈u1〉,
ū′2 (u1) = ū2 (u1)− 〈u2〉 as the fluctuations about the mean)

p1u
′1
1,1 · · · pQu

′Q
1,1

...
. . .

...
p1u
′1
1,N1

· · · pQu
′Q
1,N1

p1 · · · pQ


(N1+1)×Q


u′12,1 · · · u′12,N2

u′22,1 · · · u′22,N2

...
. . .

...
u′Q2,1 · · · u′Q2,N2


Q×N2

=

[
R12

0

]
. [2.2]

Note that this is an underdetermined system for a sufficiently large number of particles, Q � N1 + 1,
and ‘–’ notation is suppressed here.

• Calculate the conditional covariance R−2 in u2 subspace by

R−2 = R2 + 〈u2〉 ⊗ 〈u2〉 −
ˆ
ū2 (u1)⊗ ū2 (u1) p (u1) du1

= R2 −
ˆ
ū′2 (u1)⊗ ū′2 (u1) p (u1) du1

= R2 −
∑
j

ū′2,j ⊗ ū′2,jpj,−. [2.3]

• Use Kalman filter updates in the u2 subspace

ū+
2,j = ū−2,j +K

(
v −GEu−1,j −GE

⊥ū−2,j
)
, [2.4a]

R̃+
2 =

(
I −KGE⊥

)
R−2 , [2.4b]

K = R−2
(
GE⊥

)T (
GE⊥R−2

(
GE⊥

)T
+R0

)−1
, [2.4c]

with the (linear) observation operator G (u1,u2) = GEu1 +GE⊥u2, where R0 is the covariance matrix
for the observation noise.

• Update the particle weights in the u1 subspace by pj,+ ∝ pj,−Ij, with

Ij = exp

[
1

2

(
ū+T
2,j

(
R̃+

2

)−1
ū+
2,j − ū

−T
2,j

(
R−2
)−1

ū−2,j − (v −GEu1,j)
T
R−10 (v −GEu1,j)

)]
. [2.5]

• Normalize the weights pj,+ =
pj,−Ij∑
j pj,−Ij

and use residual resampling.
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• Get the posterior mean and covariance matrix from the posterior particle presentation

ū+
1 =

∑
j

u1,jpj,+, ū
+
2 =

∑
j

ū+
2,jpj,+, [2.6a]

and
R+

1,ij =
∑
k

Yi,kY
∗
j,kpk,+, 1 ≤ i, j ≤ s, [2.6b]

R+
12,ij =

∑
k

Yi,kū
′+∗
j,k pk,+, 1 ≤ i ≤ s, s+ 1 ≤ j ≤ N, [2.6c]

R+
2 = R̃+

2 +
∑
j

ū′+2,j ⊗ ū
′+
2,jpj,+. [2.6d]

• Rotate the stochastic coefficients and basis to principal directions in the s-dimensional dynamical sub-
space.

Remark. 1. As derived in [1.12] of Proposition 1, the weight updating factor Ĩj has an additional component

det
(
R+

2,j

)− 1
2 , which is expensive to compute given the high dimensionality of the orthogonal subspace u2.

For the blended algorithms in the main text, R−2 is independent of the choice of particles j, so R+
2 is

also independent of j by [2.4b]. Therefore the expensive determinant term can be neglected in [2.5] as a
normalization factor for the updated weights pj,+.

2. By the blended forecast model, the dynamical basis ej (t) keeps tracking the principal directions of
the system (that is, the direction with the largest eigenvalues of the covariance matrix R (t)). However, after
the analysis step, the principal directions are changed according to the observation data. Therefore, it is
necessary to rotate the basis according to the posterior covariance after every analysis step as described in
the last step above. Although numerical tests show reasonable results without the rotation, corrections at
every step can make sure that the scheme is robust and more accurate.

2.1 The conditional covariance R2 (u1) given particles in u1 subspace
The forecast model gives the particle representation u1,j in the low dimensional subspace. And the conditional
Gaussian mixture (ū2,j , R2,j) in the orthogonal subspace is achieved by solving the least squares solution of
the linear system [2.2] with minimum weighted L2-norm,

∑Q
j=1

∣∣ū′2,j∣∣2 pj . Such idea comes from the maximum
entropy principle. Another advantage of this max-entropy solution is that it concludes that the conditional
covariance R2 (u1) = R−2 is independent of the particles in u1 subspace.

One important point to note is that the prior covariance R2 from [2.1] is different from the conditional
covariance R2 (u1) = R−2 given the particle values in the u1 subspace. This can be seen clearly from their
definitions

R2 =

¨
(u2 − 〈u2〉)⊗ (u2 − 〈u2〉) p (u2 | u1) p (u1) du2du1, [2.7]

R2 (u1) =

ˆ
(u2 − ū2 (u1))⊗ (u2 − ū2 (u1)) p (u2 | u1) du2. [2.8]

with 〈u2〉 =
´
ū2 (u1) p (u1) du1. By a simple calculation combining [2.7] and [2.8] we haveˆ

R2 (u1) p (u1) du1 = R2 + 〈u2〉 ⊗ 〈u2〉 −
ˆ
ū2 (u1)⊗ ū2 (u1) p (u1) du1

= R2 −
ˆ
ū′2 (u1)⊗ ū′2 (u1) p (u1) du1,

with ū′2 (u1) = ū2 (u1) − 〈u2〉. Noting that R2 (u1) = R−2 is independent of the variable u1, we get the
approximation for the conditional covariance

R−2 = R2 −
ˆ
ū′2 (u1)⊗ ū′2 (u1) p (u1) du1

= R2 −
∑
j

ū′2,j ⊗ ū′2,jpj . [2.9]
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This conditional covariance formula is theoretically consistent, while it will introduce the problem of
realizability. Then as discussed in the main text, we may need introduce a realizability check and correction
method for R−2 after each analysis step, or simply inflate the matrix as R−2 = R2 (labeled as ‘inflated R2’ in
the figures below). Both strategies work well for MQG-DO method while QG-DO method requires the larger
inflation approach in practical implementations as shown in the results below.

2.2 Resampling strategies
Here we add some details about the resampling process. In the resampling step, particles with small weights
are abandoned, while the other particles are duplicated according to their weights to keep the ensemble size
unchanged. One useful and popular resample approach is the residual resampling method. The idea is,
replicating the j-th particle to have bpjQc copies according to its weight in the first step; and for the rest
Q−

∑
j bpjQc members particle values are assigned randomly with probability proportional to their residual

weights pjQ− bpjQc.
An additional issue arises in the process of duplicating particles. After resampling, we will get several

particles with the same value. For stochastic systems, this will not be a problem since the random external
forcing term will add uncertainty to each particle and produce different prediction results even though the
initial values are the same. However for deterministic systems with internal instability (for example, the
L-96 system), such resampling would be of no real value, since no external randomness is introduced to the
particles to generate different outputs in the next step. One possible strategy to avoid this problem is to
add small perturbations to the duplicated particles. Due to the internal instability inside the system, small
perturbations in the initial time can end up with large deviations in the forecasts before next analysis step
so that the duplicated particles can get separated. The amplitude of the perturbation is added according
to the uncertainties of the variables. This can be approximated by the filtered results before the resampling
step. After updating the weights, we get the set of particles together with their new weights

{
u′j , pj

}
,

then a perturbation is added to each particle as a white noise with variance σ2 =
∑

j u
′2
j pj . Note that

this perturbation can be viewed as an inflation to the particles. We will calculate the posterior covariance
matrix according to the resampled particles, therefore the covariance will also get inflated accordingly. From
numerical simulations it is shown that this strategy is effective to avoid filter divergence.

3 Blended Filter Performance on L-96 model

Here we present the additional results for the blended filter methods compared with the MQG filter as well
as EAKF with inflation and localization. The L-96 model is used as the test model

dui
dt

= ui−1 (ui+1 − ui−2)− ui + F, i = 0, · · · , J − 1 [3.1]

with J = 40 and F the deterministic forcing parameter. We will test the filter performances in both weakly
chaotic regime (F = 5) and strongly chaotic regime (F = 8) as described in the main text. The statistics
for these two cases are shown in Figure 3.1. Strong non-Gaussian statistics can be seen from the weakly
chaotic regime F = 5 while near Gaussian distribution is shown in strongly chaotic regime F = 8. Figure
3.2 shows the RMS errors and pattern correlations for various filtering methods in regime F = 5 with
moderate observational error and observation frequency r0 = 2,∆t = 1, p = 4. And Figure 3.3 gives the joint
distributions of the first two principal Fourier modes û7 and û8 in this regime by scatter plots to further
visualize the non-Gaussian statistics captured through different schemes. Finally Figure 3.4 gives additional
examples for the performance of the filters in regimes with sparse infrequent high quality observations with
slightly larger observation noise r0 = 0.25. In addition, we compare the performances of the QG-DO method
with crude covariance inflation R−2 = R2. Incorrect energy transfers in the QG forecast model for the long
forecast time using the original covariance approximation as in [2.9] in this case end up with serious filter
divergence.
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Fig. 3.1: Statistics for the L-96 model: energy spectra in Fourier space (first row); the pdfs for the first two
principal Fourier modes (second row); and the autocorrelation functions of the state variable (third
row). Regimes for weakly chaotic (F = 5, left) and strongly chaotic (F = 8, right) dynamics are
shown.
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Fig. 3.2: RMS errors and pattern correlations in the weakly chaotic regime (F = 5) with parameters r0 =
2,∆t = 1, p = 4. Results by different filtering methods are compared.
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Fig. 3.3: Joint distributions of the first two principal Fourier modes û7 and û8 shown by scatter plots with
different filter schemes in regime F = 5.
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Fig. 3.4: RMS errors and pattern correlations in the strongly chaotic regime (F = 8) with parameters r0 =
0.25,∆t = 0.15, p = 4. Results by different filtering methods are compared, and in addition the last
row gives the comparison of the RMSEs for QG-DO method with inflated (blue) and original (red)
conditional covariance R−2 .


