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Understanding the complexity of anisotropic turbulent processes in
engineering and environmental fluid flows is a formidable challenge
with practical significance since energy often flows intermittently
from the smaller scales to impact the largest scales in these flows.
Conceptual dynamical models for anisotropic turbulence are intro-
duced and developed here which, despite their simplicity, capture
key features of vastly more complicated turbulent systems. These
conceptual models involve a large scale mean flow and turbulent
fluctuations on a variety of spatial scales with energy conserving
wave-mean flow interactions as well as stochastic forcing of the fluc-
tuations. Numerical experiments with a six dimensional conceptual
dynamical model confirm that these models capture key statistical
features of vastly more complex anisotropic turbulent systems in a
qualitative fashion. These features include chaotic statistical be-
havior of the mean flow with a sub-Gaussian probability distribution
function (pdf) for its fluctuations while the turbulent fluctuations
have decreasing energy and correlation times at smaller scales with
nearly Gaussian pdfs for the large scale fluctuations and fat-tailed
non-Gaussian pdfs for the smaller scale fluctuations. This last fea-
ture is a manifestation of intermittency of the small scale fluctuations
where turbulent modes with small variance have relatively frequent
extreme events which directly impact the mean flow. The dynami-
cal modes introduced here potentially provide a useful test bed for
algorithms for prediction, uncertainty quantification, and data as-
similation for anisotropic turbulent systems.
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Uunderstanding the complexity of anisotropic turbulence
processes over a wide range of spatiotemporal scales in

engineering shear turbulence [1, 2, 3] as well as climate atmo-
sphere ocean science [4, 5, 6] is a grand challenge of contem-
porary science. This is especially important from a practi-
cal viewpoint since energy often flows intermittently from the
smaller scales to effect the largest scales in such anisotropic
turbulent flows. The typical features of such anisotropic tur-
bulent flows are the following [2, 3, 4]:

(A) The large scale mean flow is usually chaotic but more pre-
dictable than the smaller scale fluctuations. The overall
single point probability distribution function (pdf) of the
flow field is nearly Gaussian while the mean flow pdf is
sub-Gaussian, in other words, with less extreme variabil-
ity than a Gaussian random variable.

(B) There are nontrivial nonlinear interactions between the
large scale mean flow and the smaller scale fluctuations
which conserve energy.

(C) There is a wide range of spatial scales for the fluctua-
tions with features that the large scale components of the
fluctuations contain more energy than the smaller scale
components. Furthermore, these large scale fluctuating
components decorrelate faster in time than the mean flow
fluctuations on the largest scales while the smaller scale
fluctuating components decorrelate faster in time than
the larger scale fluctuating components.

(D) The pdfs of the larger scale fluctuating components of
the turbulent field are nearly Gaussian while the smaller
scale fluctuating components are intermittent, and have
fat tailed pdfs, in other words, a much higher probability
of extreme events than a Gaussian distribution (see Fig-
ure 8.4 and 8.5 from [3] for such experimental features in
a turbulent jet).

The goal here is to develop the simplest conceptual dy-
namical model for anisotropic turbulence that captures all of
the features in (A)-(D) in a transparent qualitative fashion.
In contrast to deterministic models of turbulence which are
derived by Galerkin truncation of the Navier-Stokes equation
[7] and do not display all the features in (A)-(D), the concep-
tual models developed here are low dimensional stochastic dy-
namical systems; the nonlinear interactions between the large
scale mean flow component and the smaller scale fluctuating
components are completely deterministic but the potential di-
rect nonlinear interactions between the smaller scale fluctuat-
ing components are modeled stochastically by damping and
stochastic forcing [6, 8]. The conceptual models developed
here are not derived quantitatively from the Navier-Stokes
equations but are developed to capture the key features in
anisotropic turbulent flows listed in (A)-(D). by mimicking
key physical processes. Besides aiding the understanding of
anisotropic turbulent flows, such conceptual models are useful
for designing and testing numerical algorithms for prediction
and data assimilation in such complex turbulent systems.

The Conceptual Model
The model has a mean scalar variable u, representing the
largest scales and a family of small scale variables, ~u′ =
(u′1, u

′
2, ..., u

′
K)T ∈ RK so that there are RK+1 variables in

the system ~u =

(
u
~u′

)
. The variables u′k, 1 ≤ k ≤ K represent

contributions to the turbulent fluctuations from increasingly
smaller scales as k increases with

u′ =

K∑
k=1

u′k, [1]

the turbulent fluctuations. One can think of u as the large
scale spatial average of the turbulent dynamics at a single
grid point in a more complex system and u′ as the turbulent
fluctuations at the grid point with

u(t) = u(t) +

K∑
k=1

u′k(t) [2]

the total turbulent field. Note that the large scale mean u
can have fluctuating, chaotic dynamics in time through inter-
actions with turbulence and its own intrinsic dynamics. The
nonlinear interactions in turbulence conserve the total energy
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of the mean and fluctuations and a key feature of the concep-
tual model is to utilize nonlinear interactions which conserve
the energy E, which we take as given by

E(u, ~u′) =
1

2
(u2 +

K∑
k=1

(u′k)2). [3]

A hallmark of turbulence is that the large scales can desta-
bilize the smaller scales in the turbulent fluctuations inter-
mittently and this increased small scale energy can impact
the large scales; this key feature is captured in the conceptual
models. With the above discussion, here are the simplest mod-
els with all these features, the conceptual dynamical models
for turbulence

du

dt
= −d u+ γ

K∑
k=1

(u′k)2 − α u3 + F ,

du′k
dt

= −dku′k − γuu′k + σkẆk, 1 ≤ k ≤ K.

[4]

The reader can think of u′k as the amplitude of the k-th Fourier
cosine mode to aid the interpretation of the model but this is
not necessary here. The system of K + 1 SDEs in [4] is writ-

ten in physicist’s notation with Ẇk independent white noises
for each k but the system in [4] is always interpreted in the
Ito sense below. The reader easily verifies that the nonlin-
ear interactions in [4] conserve the energy, E, in [3] which

can be modified by the linear terms, the external forcing, F ,
nonlinearity of the large scales, and the random forcing of
the small scales. The turbulence dissipation coefficient dk for
k = 1, 2, ...,K are positive, dk > 0, in order for the turbulence
to have a statistical steady state but the coefficient d, for the
large scales can be either positive or negative reflecting large
scale instability; when d is negative so there is instability on
the large scales we add the stabilizing cubic term with α > 0
while for positive d, we assume α = 0 and both cases are stud-
ied below. The external force, F is a constant which is varied
below to mimic fully turbulent regimes with (A)-(D). For a
fixed coefficient of nonlinear interaction, γ > 0, there is local
growth and instability in time for the k−th turbulent scale
provided that

−dk − γu > 0, i.e. u <
−dk
γ

[5]

and chaotic fluctuations of u will create intermittency in u′k
through this mechanism. Thus, the overall system can have a
statistical steady state while there is intermittent instability
on the small scales which increases their energy and impacts
the large scales creating non-Gaussian intermittent behavior
in the system. With u ≡ 0, the equation for the k-th turbulent
scale, u′k, is a simple Langevin process with Gaussian statis-

tical steady state with zero mean and variance
σ2
k

2dk
= Ek; it

is natural to pick these energy densities to have power law
behavior for this energy spectrum, i.e.,

σ2
k

2dk
= Ek = E0|k|−α, [6]

with E0 > 0 and α ≥ 0 fixed constants [8]. For example,
α = 5

3
corresponds to the Kolmogorov spectrum [3, 8]. Note

that we could allow coefficient γ in [4] to vary with k for
k = 1, 2, ...,K but we refrain from discussing this general-
ization here. On the other hand, it is natural to have the
damping dk vary with k to represent various dissipative pro-
cesses such as viscosity or Ekman friction [8]. This completes
the description of the conceptual models.

Mathematical Properties
Note that the equation for the large scale mean, u, is deter-
ministic and without any direct stochastic forcing; this deter-
ministic structure mimics that at the large scales for realistic
turbulent flows. Nevertheless, the large scale mean u inter-
acts with the fluctuations u′k which are stochastically forced.
We claim that even with the above degenerate noise, the con-
ceptual models in [4] are geometrically ergodic [9]; in other

words, for any value of F , a unique smooth ergodic invari-
ant measure exists with exponential convergence of suitable
statistics from time averages in the long time limit. To prove
this, we apply the main theorem in [9] with the Lyapunov
function given by the total energy in [3]. Two things need to
be checked; the first is the coercivity of the generator applied
to the Lyapunov function which is immediately satisfied given
our hypotheses; the second condition is the hypoellipticity of
the generator of [4]. To check hypoellipticity we consider the
K-vector fields

Xk = (σkδik), 0 ≤ i ≤ k, 1 ≤ k ≤ K,Xk ∈ RK+1, 1 ≤ k ≤ K

and

Y =

−d u+ γ

K∑
k

(u′k)2 − α u3 + F

−dku′k − γuu′k

 , Y ∈ RK+1.

We only need to show that Xk, [Xk, Y ], [Xk, [Xk, Y ]] span all
of RK+1 where [X,Y ] = X · ∇Y − Y · ∇X is the Lie bracket.

Since [Xk[Xk, Y ]] =

(
2γσ2

k

0

)
and the Xk, 1 ≤ k′ ≤ K span

the orthogonal complement, hypoellipticity is satisfied.

Phase Plane Analysis
Here we develop intuition regarding the parameters of the con-
ceptual models which provide important guidelines to demon-
strate below that these models with K ≥ 2 can capture all
the features of anisotropic turbulence listed in (A)-(D) above.
For such intuition, there is a revealing phase plane analysis
of the two dimensional system for (u, u′) which is the special
case of the model in [4] which K = 1 and without noise. This
system is given by

du

dt
= −d u+ γ(u′)2 − α u3 + F ,

du′k
dt

= −(d+ γu)u′.

[7]

The linear subspace, (u, 0), is invariant for the dynamics which
reduces on this subspace to the scalar equation

du

dt
= −d u− α u3 + F [8]

while the general dynamics of [7] is invariant under the flip
symmetry, (u, u′) → (u,−u′). Thus, there are between one

and three critical points of [7] with the form (uCR, 0) as F

varies provided that d < 0 and α > 0 and only a single critical

point of the form (uCR, 0) with uCR = F

d
for d > 0, α = 0;

regardless of these stability properties along the u-axis, such
critical points are unstable to u′ perturbations if and only if
d+ γuCR < 0, i.e., the instability condition in [5] is satisfied.

For suitable values of F , there is another family of critical
points for [7] with the form (u∗,±u′CR) where

u∗ = − d
γ

γu′2CR = d u+ α u3 − F
[9]
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Note that u∗ is exactly the critical value of neutral stability
from [5] for the conceptual model. The linear stability matrix
at these critical points for [7] has the form(

−d− 3α u2
∗ 2ω

−ω 0

)
[10]

so these critical points are stable (unstable) if and only if

−d− 3α u2
∗ < 0 (> 0).

To develop guidelines in choosing parameters for the nu-
merical experiments for K ≥ 2 with the conceptual model in
[4], we consider the phase plane analysis in two scenarios with
positive and negative large scale damping. In both cases, the
parameter γ = 1.5 and d = d1 ≡ 1 are fixed below while for

positive large scale damping, d = 0.01 and α = 0

negative large scale damping, d = −0.1 and α = 0.05.
[11]

First consider positive large scale damping; the two critical

points (u∗,±u′CR) occur for F < FCR =
−dd
γ

= −0.0067

and are both stable by the criterion in [10] while the crit-

ical point (
F

d
, 0) along the u-axis is unstable to u′ pertur-

bation provided F < FCR. Since the energy is a Lyapunov
function for [7], trajectories off the u-axis converge to ei-
ther of the critical points (u∗,±u′CR) with u∗ the marginally
stable value; thus we can expect more turbulent behavior in
the conceptual stochastic models with K ≥ 2 as the forcing
F increases in magnitude through negative values, F with
F ≤ FCR = −0.0067. A similar scenario occurs for the case
with negative damping in [7] for F ≤ −0.0545 with a single
critical point along the u-axis which is unstable to pertur-
bations in u′ with two critical points (u∗,±u′CR), u′CR 6= 0,

which are also unstable because −d− 3α u2 > 0; in this case
with all three equilibrium points unstable, trajectories off the
u-axis necessarily converge to periodic orbits encircling the
critical points (u∗,±u′CR) and frequently visit values of u with
instability in the u′ dynamics. We also anticipate different be-
havior for F > −0.0545 since a stable critical point appears
at u = 0.8329 for this and larger values of F . See the tables
in the supplementary material.

Numerical Experiments for K=5 in the Conceptual

Model
Here we use simple numerical experiments to demonstrate
that the six dimensional conceptual model in [4] with K = 5
has all the statistical features listed in (A)-(D) including in-

termittency of the small scales. The parameters, d, α, and
γ = 1.5 have already been discussed in [11]. The damping
coefficients dk are a mixture of uniform and scale selective
damping with dk = 1 + 0.02k2 for k = 1, 2, ..., 5 so that the
smaller scales are damped more rapidly; the noise level set by
σk for the k-th mode is determined by

σ2
k

dk
=

0.004

(1 + k)5/3
, k = 1, 2, ..., 5 [12]

so that a -5/3 spectrum is calibrated to occur for these modes
provided u ≡ 0 in the equations for u′k [8]. This specifies
all parameters in the conceptual model for turbulence used
here. For all numerical simulations below and in the supple-
mentary material, the Euler-Maruyama method is used with
a time step ∆t = 5 × 10−3 and the system is integrated for
a long time T = 2 × 105 with the first t = 2 × 103 time data
ignored for post processing the climatological statistics. In

all simulations the initial value is u = 1.5 with u′k = 0 for
k = 1, 2, ..., 5.
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Fig. 1. Negative large scale damping : time series (left column) and pdfs (right

column) of the turbulent signal u, u and u′k, k = 1, 2, ..., 5 with F = −0.055.

Note the logarithmic scale of pdfs in the y-axis. Dashed lines are Gaussian distribu-

tions with the same mean and variance.

First we consider the case with large scale instability for
u with negative damping, d = −0.1 and α = 0.05 with the
forcing value F = −0.055 motivated by the phase portrait
analysis above. Fig. 1 depicts the pdfs for the total turbulent
field u, the large-scale mean u, and the turbulent fluctuations
u′k, k = 1, 2, ..., 5 as well as a sample of the time series of each
variable in the conceptual model; the pdfs are plotted with a
logarithmic vertical coordinate in order to highlight fat tails of
intermittency while the Gaussian distribution with the same
variance is the parabola in the figure. The pdf for the over-
all turbulent field u in [2] is nearly Gaussian while the pdfs
for the mean u and the largest scale fluctuating mode, u′1,
are both slightly sub-Gaussian. The variable u′2 has a Gaus-
sian tail while the variables u′3, u

′
4, u
′
5 all have significant fat

tails which are a hallmark of intermittency; the time series
for u′3, u

′
4, u
′
5 in Fig. 1 clearly display highly intermittent be-

havior of extreme values with the amplitude of u′3 occasionally
spiking to the typical amplitude of u′1 even through the clima-
tological variance of u′3 is nearly eight times smaller than that
for u′1 (see Table 2 of supplementary material). The climato-
logical mean value for u is −0.6733 = 〈u〉 and 〈u〉 is very close

to the marginal stability value u∗ = −0.6667 = − d
γ

motivated

from [7] while the standard deviation of u is 0.1993 indicating
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that the instability mechanism elucidated in [5] is operating
on all modes and creating intermittency. The total energy of
the mean flow u exceeds that of the fluctuations, u′k. The
variables u′k, k = 1, 2, ..., 5 have essentially zero means with
variances 0.0446, 0.0174, 0.0049, 0.0014, and 0.0005 respec-
tively with the correlation time for u approximately 34 while
those for u′k, k = 1, 2, ..., 5 are decreasing with k and approxi-
mately 29,16,6,4, and 3 respectively. These are all the features
of anisotropic turbulence required from (A)-(D) and demon-
strated in the conceptual dynamical models; furthermore all
of these conditions occur in a robust fashion for F increasing
in magnitude with F ≤ −0.055 and 0.055 ≤ |F | ≤ 0.1. All
of the detailed data discussed above can be found in Tables
1-3 of the supplementary material. There is an evident role
for the unstable damping of the large scales, d = −0.1 to in-
crease the variance of u with its mean near the marginally
critical value u∗ so that the instability mechanism from [5]
operates vigorously in the model and creates more variance
in u′k, k = 1, 2, ..., 5. Thus, we expect the system with stable
damping and the same values of F with F = −0.055 to have
less variance.
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Fig. 2. Positive large scale damping : time series (left column) and pdfs (right

column) of the turbulent signal u, u and u′k, k = 1, 2, ..., 5 with F = −0.080.

Note the logarithmic scale of pdfs in the y-axis. Dashed lines are Gaussian distribu-

tions with the same mean and variance.

We consider the case with positive large scale damping,
d = 0.01, for F = −0.080 and in Fig. 2 we show the pdfs
of all variables as well as a piece of the time series of the
turbulent signal u, u, and u′k, k = 1, 2, ..., 5. The intermit-
tency of the small scale modes with less variance is evident

in Fig. 2. The mean flow variable, u, has the largest to-
tal energy with climatological mean 〈u〉 = −0.6853 which is
very close to the marginal critical values u∗ = −0.6667 so the
intermittent instability mechanism in [5] is operating once
again. Both the variances and correlation times behave in a
similar fashion as for the negative large scale damping case
discussed above and as required in (A)-(D) so the conceptual
model with positive large scale damping also is a qualitative
dynamical model for anisotropic turbulence with all the fea-
tures in (A)-(D). Furthermore, all of these features persist for

F with −0.055 ≤ F ≤ −0.1; the pdfs are all Gaussian with
no fat tails for F with sufficiently small absolute value such
as F = −0.01 as shown in the supplementary material. As
expected from our discussion of the unstable case; for fixed
forcing with F ≤ −0.055, there is between a factor of two and
three less variance in all variables in the positive large scale
damping case compared with the negative large scale damping
case. Documentation for all of the above claims is found in ex-
tensive tables in the supplementary material. For both cases
cross correlation among the variables u, u′k, k = 1, 2, ..., 5 are
negligible in the climatological mean state with values roughly
less than the 5% level.

In the above paragraphs, we emphasized models with K =
5 to mimic the many degrees of freedom in real anisotropic
turbulence and their interaction with the mean flow. From
a mathematical viewpoint, it is interesting to address the fol-
lowing: what is the lowest dimensional conceptual model with
intermittency and satisfying all the requirements in (A)-(D)?
Versions of the conceptual model with K = 2 already exhibit
intermittency in u′2 as well as all the other features required in
(A)-(D) for both positive and negative damping as shown in
the supplementary material. However, the two mode models
with K = 1 always exhibit either sub-Gaussian or at most
Gaussian behavior in u′1 without intermittency as the noise
level is varied in all of our numerical experiments.

Concluding Discussion
Conceptual dynamical models for anisotropic turbulence have
been introduced here which, despite their simplicity, capture
key features of vastly more complicated systems. The concep-
tual dynamical models introduced here in [4] involve a large
scale mean flow u and turbulent fluctuations, u′k, 1 ≤ k ≤ K,
on variety of spatial scales and involve energy conserving
wave-mean flow interactions as well as suitable degenerate
stochastic forcing of the fluctuations u′k. The models have
a transparent mechanism where the mean flow, u, can desta-
bilize the k-th mode whenever dk + γu < 0; a phase plane
analysis yields parameters and robust regimes of sufficiently
strong large scale external forcing, F , where the models have
a climatological mean state 〈u〉 which is nearly neutrally sta-
ble in the sense that d1 + γ〈u〉 ∼= 0 so that fluctuations in
the mean u often introduce intermittent instability. Numer-
ical experiments with a six-dimensional version of the model
summarized here and in the supplementary material confirm
that it captures key statistical features of vastly more complex
anisotropic turbulent systems. These include chaotic statisti-
cal behavior of the mean flow, u, with a sub-Gaussian pdf for
its fluctuations while the turbulent fluctuations, u′k, 1 ≤ k ≤ 5,
have decreasing energy and correlation times as k increases
with nearly Gaussian pdfs for the large scale fluctuations and
fat-tailed non-Gaussian pdfs for the smaller scale fluctuations;
this last feature allows for intermittency of the small scale fluc-
tuations where turbulent modes with small variance can have
relatively frequent large amplitude extreme events which di-
rectly impact the mean flow, u. Remarkably, vastly more com-
plex realistic turbulent systems often exhibit such marginal
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critical behavior on average [4]. As mentioned above [1, 2],
we can regard u, u′k for 1 ≤ k ≤ K as defining turbulent fluc-
tuations at a grid point in a vastly more complex spatially
extended system. There are straightforward generalization
of the conceptual model to allow for many large scale grid
points, uj , j = 1, 2, ..., J with associated turbulent fluctua-
tions u′j,k, 1 ≤ k ≤ K satisfying a coupled system of equations
on the large scales,

duj
dt

= Luj + γ

K∑
k=1

(u′j,k)2 − d uj − α u3 + F j

du′j,k
dt

= −(dk + γuj,k)u′j,k + σkẆj,k

[13]

where L can be a linear or nonlinear operator coupling the uj .
The conceptual models in [13] are nonlinear generalizations
with transparent physical mechanisms of those introduced to
study stochastic superparameterization in anisotropic turbu-
lence [10, 6]. Besides their role as qualitative analogue models
of vastly more complicated anisotropic turbulence, the concep-
tual dynamical models introduced here are potentially useful
as a simplified test bed for algorithms and strategies for pre-
diction, uncertainty quantification [11], and data assimilation
[8] in vastly more complex anisotropic turbulent systems.
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