
Information Barriers for Noisy Lagrangian Tracers in

Filtering Random Incompressible Flows

Nan Chen, Andrew J Majda and Xin T Tong

Department of Mathematics, and Center for Atmosphere Ocean Science, Courant Institute

of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012,

USA

E-mail: chennan@cims.nyu.edu, jonjon@cims.nyu.edu, tong@cims.nyu.edu

Abstract. An important practical problem is the recovery of a turbulent velocity field

from Lagrangian tracers that move with the fluid flow. Here the filtering skill of L moving

Lagrangian tracers in recovering random incompressible flow fields defined through a finite

number of random Fourier modes is studied with full mathematical rigor. Despite the

inherent nonlinearity in measuring noisy Lagrangian tracers, it is shown below that there

are exact closed analytic formulas for the optimal filter for the velocity field involving Riccati

equations with random coefficients for the covariance matrix. This mathematical structure

allows a detailed asymptotic analysis of filter performance both as time goes to infinity and

as the number of noisy Lagrangian tracers, L, increases. In particular, the asymptotic gain

of information from L-tracers grows only like lnL in a precise fashion, i.e., an exponential

increase in the number of tracers is needed to reduce the uncertainty by a fixed amount; in

other words, there is a practical information barrier. The proofs proceed through a rigorous

mean field approximation of the random Ricatti equation. Also, as an intermediate step,

geometric ergodicity with respect to the uniform measure on the period domain is proved

for any fixed number L of noisy Lagrangian tracers. All of the above claims are confirmed

by detailed numerical experiments presented here.
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1. Introduction

Lagrangian tracers are drifters or floaters that follow a parcel of fluid’s movement. Serving as

moving observations, Lagrangian tracers gather real-time information as they travel, which

is of significance especially for data collection in the center of the ocean since Eulerian

measurements are available only near the shores [1, 2]. One key application of these

Lagrangian data, which is also the main concern of this paper, is the inference of the current

state of the velocity field.
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Data assimilation with Lagrangian tracers has attracted considerable attention across

the years. Various filtering approaches have been applied to Lagrangian data in different

modeling contexts. This includes assimilation methods based on Taylor expansion [3],

particle filter methods [4] and the ensemble Kalman filter (EnKF) [5, 6, 7, 8, 9]. These

approximate filters produce satisfactory numerical results in the recovery of the velocity

field. Related numerical experiments also shed light on the dependence of filter performance

over different factors, such as tracers’ trajectories, number of tracers and initial deployment

of the tracers [6, 7].

In spite of the achievements mentioned above, little is known about filters for Lagrangian

tracers in theory, as all the analyses were carried out by numerical experiments. The

nonlinear dynamics of the Lagrangian tracers makes it difficult to establish a theoretical

framework which in turn impedes systematic understanding. One goal of the present work is

to introduce random incompressible flow models which, despite the nonlinearity in measuring

noisy Lagrangian tracers, have mathematical structure with exact closed analytic formulas

for an optimal filter for the velocity field.

The second motivation of this paper lies in understanding the uncertainty reduction

with Lagrangian tracers. Without any observations, the equilibrium distribution of the

underlying dynamics provides the least biased estimation of the current flow. Unfortunately,

the strong turbulent nature brings about a large uncertainty in the equilibrium distribution

among many practical issues. Intuitively, the observations of the tracers’ trajectories helps

to reduce the uncertainty. This uncertainty reduction can be quantified using information

theory, as is well documented in the literature [10, 11, 12, 13].

In principle, adding more tracers is expected to gain more information about the

underlying flow. However, adding more tracers may not be an effective way to reduce the

uncertainty. On one hand, this will inevitably increase the maintenance and computational

cost of the filter. On the other hand, as recently revealed in various scenarios for prediction

with model error [10, 11, 12], there might exist an information barrier for our filter. An

information barrier indicates that a certain level of information is extremely difficult to

acquire in practice, therefore adding tracers produces little effective information return.

Evidently, identifying and understanding a potential information barrier is of importance for

the optimal arrangement of the filter.

In the following, we consider a simplified set-up with a d dimensional incompressible

random flow modeled by a finite number of Fourier modes with random amplitudes:

~v(~x, s) =
∑

k∈K
v̂k(s) exp(i~k · ~x)~rk. (1.1)

Since the whole velocity field ~v is real-valued, we require that the modes v̂k(s) with nonzero

wavenumbers form conjugate pairs. The ~rk are vectors orthogonal to the wavenumber ~k,

due to the incompressibility of the whole velocity, i.e. ∇ · ~v = 0. Each v̂k(s) follows an

Ornstein-Uhlenbeck (O.U.) process,

dv̂k(s) = −dkv̂k(s)ds+ fk(s)ds+ σkdW
v
k(s), (1.2)
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where fk(s) is a prescribed external forcing. The joint dynamics of all these Fourier

coefficients serve as the signal process in our filtering problem. This model can be regarded

as a stochastic version of many canonical deterministic fluid models, cf. [14] and [15] Chapter

5.

On the other hand, the observation process is given by the trajectories of L Lagrangian

tracers involving some noise, i.e. noisy Lagrangian tracers. This observation process is

modeled by the following stochastic differential equations (SDE):

d ~Xl(s) = ~v( ~Xl(s), s)ds+ σxdW
x
l (s)

=
∑

k∈K
v̂k(s) exp(i~k · ~Xl(s))~rkds+ σxdW

x
l (s), l = 1, . . . , L. (1.3)

Here is the key mathematical observation which forms the basis for the analysis

presented in the remainder of the paper. Although the evolution of ~Xl(s) is nonlinear, it

depends linearly on the signal processes v̂k(s). Therefore, our signal-observation system (1.1)

and (1.3) fits into the category of “conditional Gaussian process”, introduced by [16]. Such

signal-observation processes are linear once the observations are given. With this conditional

property, the conditional distribution of the signal with given observations, i.e. the posterior

distribution, is Gaussian, as long as the signal process is initially distributed as Gaussian.

Moreover, the posterior mean and covariance of this distribution follow explicit nonlinear

differential equations with random coefficients, which can be seen as a generalization of those

of a Kalman-Bucy filter.

Two significant advantages over other filters for Lagrangian data are possessed by our

filter produced by this conditional Gaussian theory. First, it is an optimal or exact filter, as

there are no approximation errors appearing as in EnKF for non-Gaussian models. Second,

its evolution involves rather elementary formulas, which enables detailed theoretical analysis

and simple numerical algorithms. These advantages will be exploited to study the filtering

skill and explore the information barriers in the remainder of the paper.

In order to give an asymptotic characterization of the filter for L→ ∞, the assumption

that the tracers are uniformly deployed initially is assumed. This is the most interesting

setting in practice, because intuitively it generates a more complete observation, which is

also numerically verified in [7] under a different setting. Moreover, Theorem 3.1 proved below

establishes ergodicity of the uniform distribution for a finite number of tracer in the periodic

setting, in other words, the uniform distribution is the attracting equilibrium distribution for

the tracers’ projection on the periodic domain. From this, we can establish a formal mean

field dynamics of the random filter and use it to do asymptotic analysis.

Here, we mention qualitatively the main results of this paper. Theorems are proved to

support these points.

• The posterior covariance matrix approaches a deterministic matrix RL, with RL being

a diagonal matrix which scales as L−1/2, cf. Theorem 3.3, part (i);

• The posterior mean, i.e. the maximum likelihood estimator produced by the filter,

converges to the true value of the signal, cf. Theorem 3.3, part (ii) and (iii);
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• The total uncertainty reduction gained by the observations, being measured either in

relative entropy or mutual information, asymptotically increases as 1
4
|K| lnL, where |K|

is the number of modes included; in other words, we gain only 1
4
nat of information for

each mode with each additional order of magnitude of L, cf. Corollary 3.4.

Judging from the last item, the marginal information gained from each additional tracer

increases very slowly with the number of tracer, L. This will form an information barrier in

practice, when only reasonable amount of tracers are available.

The rest of this paper is organized as follows. In Section 2, we set-up the random

incompressible model, establish the filter using conditional Gaussian theory and set-up

the uncertainty quantification with explicit formulas. Section 3 states our theoretical

results. The major lines of proof are in Section 4 with additional verification done in the

appendix. The corresponding numerical experiments, showing the uncertainty reduction and

information barrier, are included in Section 5. We conclude in Section 6.

2. Set-up and terminology

2.1. Random incompressible flow model

To set-up the intuition behind (1.1), consider a two dimensional version of this incompressible

random flow model with ~k = (k1, k2)
T ,

~v(~x, s) = v̂~0,1(s)

[
1

0

]
+ v̂~0,2(s)

[
0

1

]
+

∑

|k1|∨|k2|≤N,~k 6=~0

v̂~k(s) exp(i
~k · ~x) i

~k⊥

|~k|
. (2.1)

where ~k⊥ = (−k2, k1)T and |k1| ∨ |k2| denotes the maximum value of |k1| and |k2|. The first

two real modes represent a random background mean sweep; the remaining complex-valued

modes form conjugate pairs and represent superposition of random plane waves. (2.1) can

be easily generalized to any higher dimension, which has a general simplified form as (1.1):∑
k∈K v̂k(s) exp(i

~k · ~x)~rk, as long as the following properties of (2.1) are preserved:

(i) ~rk is orthogonal to the wavenumber ~k; when there are multiple ks correspond to one same

wavenumber ~k, we assume ~rk are orthogonal with each other without loss of generality;

(ii) The modes with wavenumber ~k = ~0 are real-valued;

(iii) The complex-valued modes come into conjugate pairs, as v̂k = v̂∗−k, r̂k = r̂∗−k, where −k

stands for the conjugate index of k.

For the sake of conciseness, we leave the lengthy but simple model description in

Appendix A.1.

In the following, we group all the signal processes, {v̂k(s)}k∈K, into a |K|-dim vector

process

Us =




...

v̂k(s)
...


 .
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There exists an obvious bijection between ~v( · , s) and Us: the latter can be obtained by

taking Fourier transform of the former while the former can be written as

~v(~x, s) =
∑

k∈K
v̂k(s) exp(i~k · ~x)~rk = PX(~x) ·Us, (2.2)

with PX(~x) = [· · · , exp(i~k · ~x)~rk, · · · ] being a d× |K|-dim matrix.

Since each of its components follows (1.2), Us is the solution to the following linear

SDE:

dUs = −ΓUsds+ Fsds+ ΣudBs, (2.3)

where Γ is a strictly positive diagonal matrix, Fs represents the deterministic forcing, and Bs

is a canonical |K|-dim real-valued Wiener process. In order to preserve the conjugate pairs,

Σu will have σk as (k,k)th term for the real-valued modes, and {k,−k}2 2 × 2 sub-block

being 1√
2
σk

[
1 i
1 −i

]
for the complex conjugate pairs; the other components are 0. Notice that

Σ = ΣuΣ
∗
u is a real diagonal matrix with (k,k)th entry being σ2

k. More explanation of Σu’s

form can be found in Appendix A.1. Here, we assume Fs is periodic with period T .

Without any observations, the least biased status of the velocity field, or equivalently

Us, is given by its time-dependent equilibrium distribution, also known as the climatology

in climate science. This statistical attractor of Us can be computed by applying the Fokker-

Planck equation to (2.3). Since (2.3) is linear, the equilibrium distribution is Gaussian

πatt
t = N (~matt

s , ~Ratt), where ~m
att
s has the same period with Fs and satisfies

d~matt
s = −Γ~matt

s ds + Fsds. (2.4)

The covariance has no dependence of the deterministic forcing and is the solution of the

system

0 = −ΓRatt − RattΓ
∗ + ΣuΣ

∗
u. (2.5)

Making use of the fact that Γ is diagonal, one can easily solve

~matt
t =

∫ t

−∞
exp(−Γ(t− s))Fsds, Ratt =

1

2
Γ−1ΣuΣ

∗
u.

Usually the information obtained from the equilibrium distribution is very limited. This

distribution usually serves as the prior knowledge of U0 before observations are taken. We

assume this below for simplicity in explanation.

2.2. Filtering with noisy Lagrangian tracers

Given one realization of the velocity field, ~vs≥0, the trajectory of each one of the L noisy

tracers can be modeled as the solution to the following SDE:

d ~Xl(s) = ~v( ~Xl(s), s)ds+ σxdW
x
l (s)

= PX( ~Xl(s))Usds+ σxdW
x
l (s), l = 1, . . . , L. (2.6)



Information Barriers for Filtering Noisy Lagrangian Tracers 6

The {W x
l (s)}l≤L are 2-dim real-valued independent Wiener processes. They describe the

random instrumental error over the tracers. In the language of filtering, they are called the

observation errors.

We will also group all ~Xl(s) into an observation vector Xs of dimension Ld × 1:

Xs :=




~X1(s)
...

~XL(s)


 .

Based on (2.6) and (2.2), Xs follows

dXs = PX(Xs)Usds + σxdWX(s). (2.7)

where PX(Xs) is a Ld× |K| matrix-valued function of Xs defined as follow with WX :

PX(Xs) =



PX( ~X1(s))

...

PX( ~XL(s))


 =



· · · exp(i~k · ~X1(s))~rk · · ·
...

...
...

· · · exp(i~k · ~XL(s))~rk · · ·


 , WX(s) =



W x

1 (s)
...

W x
L(s)


 . (2.8)

From previous discussion, filtering ~v(~x, t) with ( ~X1(s), . . . , ~XL(s))s≤t is equivalent to filtering

Ut using Xs≤t, which have their joint evolution described by (2.3) and (2.7).

The nonlinearity of this problem comes from the tracers, as the evolution of Xs depends

nonlinearly on itself in (2.7). However, once its realization is fixed, both (2.3) and (2.7) will

be linear in Us. Moreover the initial distribution of U0 is taken as πatt
0 , which is Gaussian.

Therefore our problem fits tightly into the condition of Theorem 12.7 of [16]. Since

this theorem is of pivotal importance, we attach one simplified version of it as Theorem

Appendix A.1. Based on its statement, conditioned on the observation of Xs≤t, Ut is

distributed as πt|t = N (~mt, Rt). The posterior mean, ~mt, and covariance, Rt, are solutions

to the following:

dRt = [−ΓRt −RtΓ
∗ +Σ− σ−2

x RtP(t)Rt]dt, (2.9)

d~mt = −Γ~mtdt + Ftdt + σ−2
x RtPX(Xt)(dXs −PX(Xt)dt), (2.10)

where we denote Σ := ΣvΣ
∗
v and P(t) = P∗

X(Xt)PX(Xt), which has explicit random matrix

entries as

[P(t)]j,k =
L∑

l=1

exp((~k −~j) · ~Xl(t))(r
∗
j rk). (2.11)

It is worth noticing that since PX is a periodic function, it is equivalent to observe either
~Xl(t) or its projection on torus Td = (0, 2π]d.

Without lost of generality, we assume the initial locations of the tracers ~X1(0), . . . , ~XL(0)

are distributed independently. Then conditioned on the realization of ~vs≥0, ~X1(s), . . . , ~XL(s)

are conditionally independent processes. Their joint law conditioned on the realization of

~vs≥0 will be denoted as P~vs≥0
and the expectation taken with it denoted as E~vs≥0

. Regarding
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regularity, P~vs≥0
and other conditional laws in this paper are all regular versions of conditional

probabilities; their existence relies on the fact that the underlying space is Polish, cf.

Theorem 6.3 [17]. In order to differentiate this distribution from the joint law of ~vs≥0

and ( ~Xl(s))0≤s,l≤L, we will call the latter the super ensemble probability as it includes all

realization of ~vs≥0 and denote it as P.

2.3. Uncertainty reduction

Denote by πt|t the posterior distribution of the velocity field with observation from tracers,

which is a Gaussian distribution with mean ~mt and covariance Rt. One practical question

is how much uncertainty is reduced in πt|t compared with the unfiltered velocity field,

meaning the absence of observations. Here the prior distribution is given by the equilibrium

distribution πatt
t , with mean ~matt

t and covariance Ratt. Empirical information theory, as in

[11, 12, 18, 19], is applied to measure this uncertainty reduction.

In the information-theoretic framework, one natural way to measure the lack of

information in one probability density q, when the real distribution is p, is through the

relative entropy

P(p, q) =

∫
p ln

p

q
.

Despite the lack of symmetry in its arguments, the relative entropy, P(p, q) provides an

attractive framework for assessing the uncertainty reduction as well as measuring model

error due to its two “distance-like” properties: (i) P(p, q) is always positive unless p = q,

and (ii) it is invariant under general nonlinear change of variables. These properties make

relative entropy an ideal measurement for uncertainty quantifications purposes.

When both p ∼ N (~mp, Rp) and q ∼ N (~mq, Rq) are Gaussian, the relative entropy has

an explicit formula [20, 21]:

P(p, q) =
[
1
2
(~mp − ~mq)

TR−1
q (~mp − ~mq)

]
+ 1

2

[
tr(RpR

−1
q )−N − ln det(RpR

−1
q )

]
, (2.12)

where N is the dimension of both the distribution. The first term in brackets in (2.12)

is called the “signal”, it measures the lack of information in the mean weighted by model

covariance; whereas the second term in brackets is called the “dispersion” and involves only

the covariance ratio.

For our purposes, of key importance is the so-called Bayesian-update interpretation of

relative entropy. It states that if p = πt|t is a posterior distribution conditioned on the

observation Xs≤t and q is the corresponding prior distribution, which is the case for q = πatt
t ,

then P(πt|t, π
att
t ) measures the additional information beyond πatt

t gained by having observed

Xs≤t, namely, the uncertainty reduction.

The above discussions and formulae also apply to complex-valued random vectors, as

long as their conjugates are integrated properly. The relative entropy of a random variable

X + Y i can be naturally defined as the relative entropy for the real-valued pair (X, Y ).
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More discussion and verifications of formula (2.12) in this setting can be found in Section

Appendix A.2.

Moreover, as the Ut has its complex entries come in as conjugate pairs, we can apply

(2.12) with its mean and covariance under πt|t and π
att
t :

P(πt|t, π
att
t ) =1

2

[
(~mt − ~matt

t )∗R−1
att(~mt − ~matt

t )
]

Signal

+ 1
2

[
tr(RtR

−1
att)− |K| − ln det(RtR

−1
att)] Dispersion. (2.13)

Another important quantity that also characterizes the amount of information of Ut

that Xs≤t can provide is their mutual information. This quantity is also widely used for

other scenarios of uncertainty quantifications, [22, 23, 24, 25]. For two random variable X, Y

with joint density p and marginal density pX , pY , the mutual information is defined as:

I(X ; Y ) :=

∫
p(dx, dy) ln

p(dx, dy)

pX(dx)pY (dy)
.

In our scenario, we can show that I(Ut,Xs≤t) = E(P(πt|t, π
att
t )), i.e. the “super-ensemble”

expectation value of the relative entropy over all the observations [24]. With direct

computation in Lemma Appendix A.3, we also have a concise formula for this quantity:

I(Ut,Xs≤t) =
1

2
ln detRatt −

1

2
E ln detRt. (2.14)

Notice the bijection between Us and ~vs, so (2.14) is also I(~vt, ( ~Xl(s))s≤t,l≤L).

Note that the relative entropy P(πt|t, π
att
t ) is stochastic since it is based on a single

realization of Xs≤t while the mutual information, which averages with respect to all the

realizations, is deterministic.

The final remark is that both the relative entropy and mutual information can be applied

to any marginal parts ofUt. As these marginal parts are also Gaussian distribution, it suffices

to replace the vectors, matrices and dimension in (2.13) and (2.14) with corresponding sub-

vector, sub-matrix and dimension. One can read Corollary 3.5 and its proof for a detailed

explanation of this.

3. Statements of results

Our results consists of three parts.

The first issue we address before analyzing the filter is the locations of the tracers. This

impacts dramatically how the filter performs. Indeed, if all the tracers are clustered in one

location, then intuitively we should have little inference of the flow at a distance away. Then

in this situation, the filter would perform very differently comparing to an ideal situation

when tracers are uniformly distributed in the whole area. Reference such as [5, 7] also address

similar issues in a different setting.

Consider the process for the noisy Lagrangian tracer trajectory given in (1.3), our first

result indicates that the ideal situation is probably the most interesting case:
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Theorem 3.1. For a.s. realization of ~v(~x, s)s≥0 formulated by (1.1) , the uniform

distribution, λ, on the d-dim torus Td := (0, 2π]d, is the unique invariant measure for

process X̃l(t) := ~Xl(t) mod Td, for any fixed l. Moreover, the tracer’s projection on Td

is geometricly ergodic under the conditional distribution for given ~vs≥0, i.e. there exits a

suitable constant q < 0 such that:

lim sup
n→∞

1

n
ln ‖P~vs≥0

(X̃l(n) ∈ · )− λ‖TV ≤ q.

Here, P~vs≥0
(X̃l(n) ∈ · ) is the conditional distribution of X̃l(n) for given ~vs≥0. The choice of

q is independent of ~vs≥0 and the distribution of ~Xl(0).

The notation ‖ · ‖TV stands for total variation distance. Recall the total variation

distance between two measure P and Q is defined as:

‖P−Q‖TV = sup
|f |≤1

EPf − EQf,

with the supremum runs over all measurable functions f , |f | ≤ 1.

Since the tracers are mutually independent, by Theorem 3.1, the distribution of the

configuration of their projection on Td will approach λ⊗L := λ⊗ · · · ⊗ λ in a finite amount

of time. It is therefore more interesting and theoretically convenient to assume the tracers

are distributed at their steady state in the beginning.

On the other hand, in the view of (2.9) and (2.10), our filter process (~mt, Rt) is a Markov

process. Also by Lemma Appendix A.4, (~mt, Rt) are bounded in probability. Therefore even

if the tracers are not distributed as λ⊗L, we can shift the time till the point that λ⊗L is

approximately reached. In other word, assuming the following loses little generality:

Assumption 3.2. The projection of the initial location of each tracer on Td is independently

and uniformly distributed on Td. The prior distribution is chosen as U0 ∼ N (~m0, R0) with

|~m0| ≤M,m
√
L

−1
I ≤ R0 ≤MI for some constants 0 < m < M .

Under Assumption 3.2, our second result discusses the limiting behavior of the posterior

mean and covariance ~mt and Rt for large L. Recall that a sequence of random variables XL

converges to a in probability, written as XL → a in P, if for any ǫ > 0, P(|Xn−a| ≥ ǫ) → 0 as

L→ ∞. We will say XL approaches YL in P if XL−YL → 0 in P. We will say a deterministic

sequence xL grows asymptotically as f(L) if their ratio goes to 1 as L → ∞. We will use

‖ · ‖ to denote the L2 norm of a matrix.

Theorem 3.3. When filtering a random incompressible flow ~v(~x, s) described by (1.1) using

L Lagrangian tracers under Assumption 3.2, the following hold as L→ ∞:

(i) For any fixed t > 0 and a.s. realization of ~vs≥0, the posterior covariance Rt approaches

RL in the conditional distribution with given ~vs≥0:

‖R−1
L ‖‖Rt −RL‖ → 0 in P~vs≥0

.
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The sequence RL are deterministic diagonal matrices with

[RL]k,k =
σ2
k

dk +
√
d2k + Lσ−2

x σ2
k|~rk|2

. (3.1)

(ii) For any fixed t > 0, the difference between the posterior mean and the signal, ~mt −Ut,

converges to 0 in P, the super ensemble probability that integrates all realization of ~vs≥0.

(iii) There exists a constant time s0, such that for a.s. fixed realization of ~vs≥0, t > s0,

~mt −Ut converges to 0 in P~vs≥0
.

In other words, asymptotically πt|t can be approximated by N (Ut, RL). We only need

to plug in the formulas for relative entropy, (2.13), and mutual information, (2.14) to have

formally the following corollary on the asymptotic behavior of uncertainty reduction:

Corollary 3.4. Under the condition of Theorem 3.3, the following hold as L→ ∞:

(i) The dispersion part of the relative entropy in (2.13) approaches the following in P~vs≥0
:

1

2

∑

k∈K

(
ln

(
1
2
(1 +

√
1 + Lσ−2

x d−2
k σ2

k|~rk|2
)
− 1

)
. (3.2)

(ii) The signal part in (2.13) will converge to 1
2
(Ut − ~matt

t )∗R−1
att(Ut − ~matt

t ) in P for t > 0

and P~vs≥0
for a.s. ~vs≥0 when t > s0, with s0 defined by Theorem 3.3 part (iii).

(iii) The mutual information between the velocity field ~vt and the observations ( ~Xl(s))s≤t,l≤L

grows asymptocally as 1
4
|K| lnL.

Notice that under N (Ut, RL), each component is independent as RL is diagonal, so

there is the following version of Corollary 3.4 for marginal processes:

Corollary 3.5. Under the condition of Theorem 3.3, let K̃ ⊂ K be a subset that does not

separate any conjugate pairs. Denote Ũt = [· · · , v̂k(t), · · · ]T
k∈K̃, then the following holds as

L→ ∞:

(i) The dispersion part of the relative entropy of Ũt approaches the following in P~vs≥0
:

1

2

∑

k∈K̃

(
ln

(
1
2
(1 +

√
1 + Lσ−2

x d−2
k σ2

k|~rk|2
)
− 1

)
. (3.3)

(ii) The signal part of the relative entropy of Ũt will converge to
1
2
(Ũt−m̃att

t )∗R̃−1
att(Ũt−m̃att

t )

in P for t > 0 and P~vs≥0
for a.s. ~vs≥0 when t > s0, with s0 defined by Theorem 3.3 part

(iii). m̃att
t is a sub-vector of ~matt

t and R̃att is a diagonal subblock of Ratt, with indexes

in K̃.

(iii) The mutual information between the velocity field ~vt and the observations ( ~Xl(s))s≤t,l≤L

grows asymptocally as 1
4
|K̃| lnL.
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4. Proof of theorems

4.1. Conditional geometric ergodicity of tracers

In this section we will prove Theorem 3.1. We will use the following notation:

Px
~v,n( · ) := P~vs≥0

(X̃l(n) ∈ · |X̃l(0) = x), ∀x ∈ Td.

Recall that X̃l(n) is the process associated with the noisy Lagrangian tracer equation’s

projection on Td:

X̃l(t) = X̃l(0) +

∫ t

0

~v(X̃s, s)ds+

∫ t

0

σxdW
x
l (s) mod Td.

We also denote the supremum velocity in a velocity field as:

|~vs|∞ := sup
~x

|~v(~x, s)|.

We write p : Rd → Td as the canonical covering map and we denote p−1x as the unique

inverse image of x in (0, 2π]d.

Also recall that a coupling of two measures is a joint measure with its marginal

distributions being the two measures respectively. The essence of the following proof is

constructing a coupling between the trajectories of two tracers X̃l(s) starting from two

different locations but transported by the same realization of ~vs≥0. By the Goldstein’s

theorem, Section 14 [26], we have

‖Px
~v,n − P

y
~v,n‖TV ≤ 2P~vs≥0

(two tracers are coupled into one trajectory from time n),

so if there exist a coupling such that two tracers are eventually coupled, we will have our

claim. In a rough sense, we will construct this coupling one time step by one time step. The

key argument in (4.2) below implies two tracers can be coupled at the end of one time step

with a probability bounded away from 0 no matter where they start. Hence the probability

that the tracers are not coupled will decay geometrically in time. And in order to show (4.2),

we will show it is measure theoretically equivalent to the case when ~vs is trivial using the

Girsanov theorem as long as ~vs is bounded in L2.

Proof. To show the invariance for the measure λ, notice that ~v(~x, s) is spatially periodic,

it suffices for us to verify that locally the density f ≡ 1 is a solution to the Fokker-Plank

equation for (2.6). Using the Fokker-Plank equation on Td, see [27] Section 8.1, the evolution

of a density under P~vs≥0
is

∂f

∂t
= −

2∑

i=1

∂

∂xi
[~vi(~x, t)f(~x, t)] +

σ2
x

2

2∑

i=1

2∑

j=1

∂2

∂xi∂xj
[δijf(~x, t)].



Information Barriers for Filtering Noisy Lagrangian Tracers 12

When f ≡ 1, due to ∇ · ~vt ≡ 0, the right hand side above is 0, hence f ≡ 1 is a time

independent invariant solution of the equation above. The uniqueness of invariant measure

is proved by the geometric ergodicity argument below.

To get the geometric ergodicity of tracer, notice that ~v(~x, s) is formulated as in (2.2),

and Us is an O.U. process with strictly positive damping, so ~vs is ergodic. By the Birkhoff’s

ergodic theorem, if we denote the periodicity of πatt
s as T , then

lim
t→∞

1

t

∫ t

0

|~vs|2∞ds→ 1

T

∫ T

0

Eπatt
s
|PX(~x) ·Us|∞ds P-a.s.

Let N be the value twice of the right hand side, and denote

k(~v, n) := #

{
k : 0 ≤ k ≤ n− 1,

∫ k+1

k

|~v(s)|2∞ds < N

}
.

Then using
∫ n

0
|~vs|2∞ ≥ 2N(n− k(~v, n)), we can conclude

lim inf
n→∞

k(~v, n)

n
≥ 1

2
P-a.s. (4.1)

We fix a ~vs≥0 such the event of (4.1) takes place. We will first prove the following claim:

there exists a uniform c > 0 such that for any x and y in Td,

‖Px
v,1 − P

y
v,1‖TV ≤ 2− c1∫ 1

0
|~v(s)|2∞ds<N . (4.2)

This claim is trivial for {
∫ 1

0
|~v(s)|2∞ds ≥ N}, so we assume the opposite holds. Consider the

following joint processes on Rd,

~Xs = p−1x+ σxWs, ~Ys = p−1y + σxW
′
s

where Ws and W
′
s are two d-dim canonical Wiener processes. Denote their laws respectively

as Qx and Qy. Since p
−1x and p−1y lie in (0, 2π]d, so |p−1x− p−1y| ≤ 2

√
dπ. Then since X1

and Y1 are distributed as N (p−1x, σ2
xId),N (p−1y, σ2

xId), with |p−1x− p−1y| ≤ 2
√
dπ we can

find an universal a > 0 such that

‖N (p−1x, σ2
xId)−N (p−1y, σ2

xId)‖TV ≤ 2− a, ∀x, y ∈ T2.

Due to the relation between coupling and total variation, cf. Theorem (I.5.2) in [26], we

can find a maximal coupling Qx,y of the random variables ~X1, ~Y1: Qx,y( ~X1 = ~Y1) ≥ a.

Then conditioned on the value of ~X1, ~Y1, we can extend it to a coupling, Qx,y
1 , of processes

( ~Xs)s≤1, (~Ys)s≤1, explicitly defined as:

Q
x,y
1 ( ~Xs≤1 ∈ du, ~Ys≤1 ∈ dv)

:=

∫

w,z

Qx,y( ~X1 ∈ dw, ~Y1 ∈ dz)Qx( ~Xs≤1 ∈ du| ~X1 = w)Qy(~Ys≤1 ∈ dv|~Y1 = z).
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Then as Qx,y is the marginal distribution of ( ~X1, ~Y1) for Q
x,y
1 :

Q
x,y
1 ( ~X1 = ~Y1) = Qx,y( ~X1 = ~Y1) ≥ a, ∀x, y ∈ Td. (4.3)

Now denote

z~v(t) := exp(Mt − 1
2
〈M〉t), Mt = σ−1

x

∫ t

0

~v( ~Xs, s)dWs + ~v(~Ys, s)dW
′
s. (4.4)

Since
∫ 1

0
(|~v( ~Xs, s)|2 + |~v(~Ys, s)|2)ds ≤ 2

∫ 1

0
|~vs|2∞ds < 2N , the Novikov condition, Corollary

3.5.13 [28], holds for zv(t), meaning zv(t) is a martingale. By the Girsanov theorem, under

measure µ defined by dµ := z~v(1)dQ
x,y
1 , the processes

W̃t = Wt − σ−1
x

∫ t

0

~v( ~Xs, s)ds, W̃ ′
t = W ′

t − σ−1
x

∫ t

0

~v(~Ys, s)ds

are canonical Wiener processes. The ~Xs, ~Ys on the other hands are solutions to the equations:

~Xt = p−1x+

∫ t

0

~v( ~Xs, s)ds+ σxW̃t, ~Yt = p−1y +

∫ t

0

~v(~Ys, s)ds+ σxW̃
′
t .

So ~Xs and ~Ys can be seen as lifts of the processes described by (2.6) starting from point x

and y. In other words, the joint law of (p ~X1, p~Y1) is a coupling of Px
~v,1 and P

y
~v,1. Therefore

‖Px
~v,1 − P

y
~v,1‖TV = sup

|f |≤1

Px
~v,1f − P

y
~v,1f = sup

|f |≤1

Eµ(f( ~X1)− f(~Y1)) ≤ 2µ( ~X1 6= ~Y1). (4.5)

On the other hand, let M = 2σ−1
x

√
N/a, since under Qx,y

1 for t ≤ 1,

〈M〉t = EQM2
t = σ−2

x EQ

∫ t

0

(|~v( ~Xs, s)|2 + |~v(~Ys, s)|2)ds ≤ 2σ−2
x

∫ t

0

|~vs|2∞ds ≤ 2σ−2
x N.

Using the definition of zv(1), (4.4), and the Chebyshev’s inequality,

Q
x,y
1

(
zv(1) ≤ exp(−M − σ−2

x N)
)
≤ Q

x,y
1 (M1 ≤ −M) ≤ 〈M〉1

M2
=

1

2
a

From this and (4.3) we derive

µ( ~X1 = ~Y1) =

∫
1 ~X1=~Y1

zv(1) · dQx,y
1

≥ Q
x,y
1 ( ~X1 = ~Y1, zv(1) ≥ exp(−M − σ−2

x N)) exp(−M − σ−2
x N)

≥
(
Q

x,y
1 ( ~X1 = ~Y1)−Q

x,y
1 (zv(1) ≤ exp(−M − σ−2

x N))
)
exp(−M − σ−2

x N)

≥ 1

2
a exp(−M − σ−2

x N)

Based on (4.5), c = a exp(−M − σ−2
x N) > 0 satisfies our claim (4.2).
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The next step is applying (4.2) at each time step and use the Markov property to form

an induction. Denote

Qx
~v,n−1 = Px

~v,n−1 ∧ λ, P̃x
~v,n−1 = Px

~v,n−1 −Qx
~v,n−1, λ̃n−1 = λ−Qx

~v,n−1.

In other words, the density of Qx
~v,n−1 is the minimum of the ones of Px

~v,n−1 and λ; it represents

the maximum volume of measure that Px
~v,n−1 and λ can be coupled with. Notice that,

P̃x
~v,n−1(T

d) = λ̃n−1(T
d) =

1

2
‖Px

~v,n−1 − λ‖TV . (4.6)

Then by letting

R̃x
~v,n−1(dx, dy) :=

{
1

λ̃n−1(Td)
P̃x
~v,n−1(dx)λ̃n−1(dy) λ̃n−1(Ω) > 0;

0 λ̃n−1(Ω) = 0.

one can verify that R̃x
~v,n−1 is a coupling of P̃x

~v,n−1 and λ̃n−1, that is, its marginal distribution

is P̃x
~v,n−1 and λ̃n−1 in x and y direction.

Notice that by the Markov property, using the shift operator θ : (θn~v)(s) = ~v(s + n),

the following equation holds by conditioning on the value of ~Xl(n− 1),

Px
~v,nf =

∫
Px
~v,n−1(dy)P

y
θn~v,1f.

Therefore for any measurable f , |f | ≤ 1, making use of that λ is invariant under Px
~v,n−1

Px
~v,nf − λf =

∫
Px
~v,n−1(dy)P

y
θn−1~v,1f − λ(dy)Py

θn−1~v,1f

=

∫
P̃x
~v,n−1(dy)P

y
θn−1~v,1f − λ̃n−1(dz)P

z
θn−1~v,1f

=

∫
R̃x

~v,n−1(dy, dz)(P
y
θn−1~v,1f − Pz

θn−1~v,1f)

≤ 1

2
‖Px

~v,n−1 − λ‖TV (2− c1∫ n

n−1
|~v(s)|2∞ds<N).

We apply (4.6) at the last step. By taking the supreme over all measurable f , |f | ≤ 1, we

have

‖Px
~v,n − λ‖TV ≤ (1− c

2
1∫ n

n−1
|~v(s)|2∞ds<N)‖Px

~v,n−1 − λ‖TV .

Using induction, ‖Px
~v,n − λ‖TV ≤ 2(1 − c

2
)k(~v,n). Due to the Markov property on the initial

condition,

P~vs≤n
(X̃l(n) ∈ A) =

∫
P(X̃l(0) ∈ dx)Px

~v,n(A)dx.

So apply the Jason’s inequality,

‖P~vs≤n
(X̃l(n) ∈ · )− λ‖TV ≤

∫
P(X̃l(0) ∈ dx)‖Px

~v,n − λ‖TV ≤ 2(1− c
2
)k(~v,n).
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Recalling (4.1), we have

lim sup
n→∞

1

n
ln ‖P~vs≤n

(X̃l(n) ∈ · )− λ‖TV ≤ −1

2
ln(1− c

2
) < 0.

4.2. The mean field dynamics of the filter

In this section we will prove Theorem 3.3. Let us first briefly explain the intuition. Since the

posterior covariance Rt follows its own dynamics (2.9) but enters in evolution of ~mt through

(2.10), it is intuitive to study Rt first. Recall from (2.9) that Rt is the solution to a Riccati

equation with random coefficients:

dRt = [−ΓRt −RtΓ
∗ +Σ− σ−2

x RtP(t)Rt]dt.

The randomness comes from the tracers Xt, which enters the evolution by the second order

coefficient

P(t) = P∗
X(Xt)PX(Xt) =

L∑

l=1

PX( ~Xl(t))PX( ~Xl(t)). (4.7)

The second equality above comes from the fact that PX(Xt) is a concatenation of PX( ~Xl(t))

as in (2.8). The randomness of P(t) makes Rt also a random process. However, under

Assumption 3.2, by Theorem 3.1, X̃1(t), . . . , X̃L(t) are i.i.d. samples from the uniform

distribution λ under P~vs≥0
. Therefore the value of P(t) as a sum of i.i.d. random variables

will not deviate too far from its mean in P~vs≥0
when L is large. So intuitively, Rt will stay

close to the solution of the formal meal field average of (2.9) as

dRt = [−ΓRt −RtΓ +Σ− σ−2
x LRtMRt]dt, M := EλP

∗
X(X)PX(X). (4.8)

On the other hand, matrix Riccati equations are known to be a contraction for Hermitian

matrices. Therefore, Rt will also converge to RL in time, which is the stable point of (4.8); it

will also be shown in the proof of Theorem 3.3 part i) that this convergence is exponentially

fast with a rate which scales as
√
L. Using this accelerating convergence, Rt approaches RL

very rapidly.

Since we will deal with variables that depend on L, we will say some sequence xL is of

order f(L), written as xL ∼ f(L), if Mf(L) ≥ xL ≥ mf(L) for some constants M,m > 0 as

L→ ∞.

The next lemma computes explicitly the value ofM and RL, and also give a probabilistic

control over the deviation of P(t) from LM.

Lemma 4.1. i) M in (4.8) is a diagonal matrix with k-k th entry |rk|2.
ii) The stable point of (4.8), RL, is a diagonal matrix with k-k th entry being

[RL]k,k =
σ2
k

dk +
√
d2k + Lσ−2

x σ2
k|~rk|2

.



Information Barriers for Filtering Noisy Lagrangian Tracers 16

iii) Define P̃s = P(s) − LM, qL := L−1 sups≤t ‖P̃s‖, then for any q > 1/2, L1−qqL → 0 in

P~vs≥0
for a.s. ~vs≥0.

Proof. It suffices for us to prove each part with a fixed realization of ~vs≥0 so that the claim

of Theorem 3.1 holds.

Part i) Recall that by (2.11), P(t) has each of its matrix entries explicitly as:

(P(t))j,k =
L∑

l=1

exp(i(~k −~j) · ~Xl(t))(~r
∗
j ~rk).

When j = k, the quantity above is a constant, L|~rk|2. Hence M has the described diagonal

terms.

When ~j = ~k, j 6= k, the quantity above is 0 as ~rj⊥~rk. (This is why we require ~rk to be

orthogonal to each other if they share the same wavenumber as in Section 2.)

When ~j 6= ~k, notice that if we let Yl = exp(i(~k −~j) · ~Xl(t)), then using X̃l(t) ∼ λ under

P~vs≥0
, we have

E~vs≥0
Yl =

1
|Td|

∫

Td

exp(i(~k −~j) · x)dx = 0.

In summary, M is diagonal.

Part ii) Since (4.8) has all matrices being diagonal, we can solve the equation in each

diagonal entry, which is solving 0 = −2dkx + σ2
k − Lσ−2

x |~rk|2x2. Directly solving these

equations gives ii).

Part iii) Notice that P̃s := P(s)−LM has its diagonal terms being 0, its off diagonal terms

the same as P(s). In order to show our claim of qL, it suffices to show L−q([P̃s]j,k)s≤t converge

to the constant 0 process in P~vs≥0
, because by the following we have our claim proved:

L1−qqL = sups≤tL
−q‖P̃s‖ ≤ |K|max

j 6=k
supt≤TL

−q|[P̃s]j,k| L→∞−→ 0 in P~vs≥0
.

Since zLs := L−q[P̃s]j,k are continuous in s, so it suffices to verify the conditions of Theorem

7.5 of [29]. This verification is done by Lemma Appendix A.5.

Proof of Theorem 3.3, part (i). Fix any 0 < c0 ≤ 1
2
mink |~rk|2. In the following, if we say

some constant is uniform, then that constant works for all c0 ≤ 1
2
mink |~rk|2 because only a

bounded set of c0 is considered. We introduce this technicality because we may decrease c0
to a smaller value which depends on these constants in part (iii) of this theorem. For part

(i) and (ii), any fixed c0 ≤ 1
2
mink |~rk|2 will be suffice.

Recall that

qL := L−1 sup
s≤t

‖P(s)− LM‖,

one has

L(M− qLI) ≤ P(s) ≤ L(M+ qLI), s ≤ t.
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We will focus on the event {qL ≤ c0}, which by Lemma 4.1 (iii) has P~vs≥0
probability goes

to 1.

By the comparison theorem of Riccati equations, Theorem 4.1.4 of [30], if we let R±,t

be the solution of

dR±,t = [−ΓR±,t −R±,tΓ +Σ− Lσ−2
x R±,t(M∓ qLI)R±,t]dt, R±,0 = R0; (4.9)

then Rs is bounded by the two: R−,s ≤ Rs ≤ R+,s, s ≤ t.

On the other hand, since R±,t follows (4.9), according to Theorem 8.5 [31], they will

converge in time to the stable points of (4.9) respectly, denoted by R±, which are the solutions

to the algebraic Riccati equations:

0 = −ΓR± −R±Γ +Σ− Lσ−2
x R±(M∓ qLI)R±,

or explicitly:

R± =




. . .
σ2

k

dk+
√

d2
k
+Lσ−2

x σ2

k
(|~rk|2∓qL)

. . .


 .

By Theorem 8.5 of [31], when qL ≤ c0 the rate that R±,t converges to R± in the

Thompson’s metric is at least

‖Lσ−2
x (M− c0I)

1/2Σ(M− c0I)
1/2‖ ≥ 1

2
Lσ−2

x min
k

|~rk|2σ2
k =: µ2

L.

In other words: p(R±,t, R±) ≤ exp(−2µLt)p(R0, R±). According to [31], for two positive

semidefinite Hermitian matrices A,B, the Thompson’s metric is defined as:

p(A,B) := ln inf{t : A ≤ tB,B ≤ tA}.

Since mL−1/2I ≤ R±,0 ≤ MI, when qL ≤ c0 there is a uniform constant D0 such

that p(R0, R±) ≤ | ln(D0

√
L)|. Therefore p(R±,t, R±) ≤ | ln(D0

√
L)| exp(−2µLt). Note

that if p(A,B) ≤ a for two Hermitian matrices, then by definition of the Thompson’s

metric,(e−a − 1)B ≤ A − B ≤ (ea − 1)B, which implies ‖A − B‖ ≤ (ea − 1)‖B‖. Hence,
‖R±,t − R±‖ ≤ ‖R±‖[exp(ln(D0

√
L) exp(−2tµL))− 1].

Notice the following bound holds for all 0 ≤ x ≤ 1, a > 0,

exp(ax)− 1 = ax+
1

2
(ax)2 +

1

3!
(ax)3 + . . .

≤ x[a +
1

2
a2 +

1

3
a3 + . . .] ≤ eax.

Assuming qL ≤ c0, as ‖R±‖ ∼ 1/
√
L we have for a uniform constant D1,

‖R±,t −R±‖ ≤ D0‖R±‖
√
L exp(−2µLt) = D1 exp(−2tµL).
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On the other hand, according to the formulation of R±, which is C1 in qL, there is a uniform

constant C1 such that ‖R± −RL‖ ≤ C1

√
L

−1
qL when qL ≤ c0. Then from R−,t ≤ Rt ≤ R+,t,

we can verify that when qL ≤ c0,

‖Rt − RL‖ ≤ ‖R+,t − RL‖ ∨ ‖R−,t − RL‖ ≤ C1

√
L
−1
qL +D1 exp(−2µLt). (4.10)

On the other hand, as ‖R−1
L ‖ ∼

√
L, there are some constants C̃1, D̃1 so that for any ξ > 0,

P~vs≥0
(‖R−1

L ‖‖Rt −RL‖ ≥ ξ) ≤ P~vs≥0
(qL ≤ c0) + P~vs≥0

(C̃1qL + D̃1

√
L exp(−2µLt) ≤ ξ),

both probabilities on the right go to 0 by Lemma 4.1 and µL ∼
√
L as L→ ∞, therefore we

conclude our claim.

Since Rt := E((Ut−~mt)·(Ut−~mt)
∗|Xs≤t), so using its convergence in the super ensemble

probability P easily leads to the following proof of Theorem 3.3, part (ii).

Proof of Theorem 3.3, part (ii). Because E(|Ut − ~mt|2|Xs≤t) = tr(Rt). By part (i) of

Theorem 3.3 , the law of total probability, i.e. EY = EE~vs≥0
Y , and the dominated

convergence theorem, for any ξ > 0,

P(‖Rt‖ > ξ4) = EP~vs≥0
(‖Rt‖ > ξ4) → 0, as L→ ∞.

So for any fixed ξ > 0 apply first the law of total probability then the Chebyshev’s inequality,

P(|Ut − ~mt| ≥ ξ) ≤ P(tr(Rt) ≥ ξ4) + P(tr(Rt) ≤ ξ4, |Ut − ~mt| ≥ ξ)

= P(tr(Rt) ≥ ξ4) + E[E(1tr(Rt)≤ξ41|Ut−~mt|≥ξ|Xs≤t)]

≤ P(tr(Rt) ≥ ξ4) + E[P(|Ut − ~mt| ≥ ξ|Xs≤t, tr(Rt) ≤ ξ4)]

≤ P(tr(Rt) ≥ ξ4) + ξ2. (4.11)

By letting L→ ∞ then ξ → 0, we have shown the claim.

4.3. Convergence of posterior mean

In order to show the convergence of ~mt towardsUt in P~vs≥0
, we need to do some computations.

The intuition can be revealed by replacing dXt in (2.10) by its formulation (2.7), so we rewrite

(2.10) as

d~mt = [−Γ~mt + Ft + σ−2
x RtP(t)(Ut − ~mt)]dt + σ−1

x RtP
∗
X(Xt)dWx(t). (4.12)

This can be seen as a linear process with random perturbation. Its damping coefficient is

Γ + σ−2
x RtP(t), which by part (i) of Theorem 3.3 can be seen as Γ + σ−2

x LRLM plus some

deviations. As L increases, Γ + σ−2
x LRLM is of order

√
L, which is also the order of force

that will apply to ~mt if it deviates from Ut.
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Proof of Theorem 3.3, part (iii). First fix a realization of ~vs≥0 such that part (i) holds. We

simplify the notation of (4.12) by defining a new d-dim vector process wt:

dwt :=
1√
L
P ∗
XdWX(t) =

1√
L




...∑L
l=1 e

i~k· ~Xl(t)(~r ∗
kdW

x
l (t))

...


 .

The quadratic covariation of wt is

〈dwt, dwt〉 =
1

L

[ L∑

l=1

ei(
~j−~k)· ~Xl(t)~r ∗

j ~rk

]

j,k

dt =
1

L
P(t)dt. (4.13)

Notice that L−1P(t) has each matrix entry of norm at most 1,

〈dw∗
s , dw

∗
s〉 ≤ L−1tr(P(t)) ≤ |K|.

Subtracting the equation for dUt in (2.3) from d~mt in (4.12), we have the evolution of the

difference ~nt = Ut − ~mt:

d~nt = −[Γ + σ−2
x RtP(t)~nt]dt− ΣvdBt + σ−1

x

√
LRtdwt.

Let Ψ(s, t) be the fundamental matrix group generated by Dt := −d0I − σ−2
x RtP(t), that is

if ẋt = Dtxt then xt = Ψ(s, t)xs, ∀s ≤ t. Then by the Duhamel formula,

~nt = Ψ(0, t)~n0 −
∫ t

0

Ψ(s, t)ΣvdBs + σ−1
x

√
L

∫ t

0

Ψ(s, t)Rsdws. (4.14)

Recall that all of the derivation of the proof for part (i) holds as long as

qL = L−1 sup
s≤t

‖P(t)− LM‖ ≤ c0,

where c0 is any small fixed number. Define the stopping time τ := inf{s ≥ 0, L−1‖P̃s‖ ≥ c0}.
Then the event B := {τ ≤ t} indicates qL ≤ c0. By (4.14) and the union bound,

P~vs≥0
(|~nt| ≥ 3ǫ) ≤P~vs≥0

(Bc) + P~vs≥0
(|Ψ(0, t)~n0| ≥ ǫ, B) + P~vs≥0

(∣∣∣∣
∫ t

0

Ψ(s, t)ΣvdBs

∣∣∣∣ ≥ ǫ, B

)

+ P~vs≥0

(∣∣∣∣σ
−1
x

√
L

∫ t

0

Ψ(s, t)Rsdws

∣∣∣∣ ≥ ǫ, B

)
. (4.15)

In order to show ~nt → 0 in P~vs≥0
, it suffices to show for any ǫ > 0, each of the four probabilities

on the right above goes to 0. Using Lemma 4.1, we know P~vs≥0
(Bc) → 0 as L → ∞.

In order to bound the remaining terms, let us bound ‖Ψ(s, t)‖ when the event {τ ≥ t}
holds first. Let xt = Ψ(s, t)xs, then ẋt = −(d0 + σ−2

x RtP(t))xt. Recall that based on the
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derivation in the proof of part (i), (4.10) holds when {t ≤ τ}. Notice this implies the

following hold for s ≤ t and some uniform constants D1, C1 and C̃1:

‖R̃s‖ ≤ D1 exp(−2µLs) + c0C1

√
L

−1
, ‖RL‖ ≤ C̃1

√
L

−1
, ‖P̃s‖ ≤ c0.

Hence there are uniform constants C2, D2 such that when s ≤ t ≤ τ ,

d

ds
|xs|2 = Re(2x∗sẋs) = −2x∗s(Γ + σ−2

x LRLM+ σ−2
x LRe(R̃sM+ (RL + R̃s)P̃s))xs

≤ −2x∗s(Γ + σ−2
x LRLM)xs + 2σ−2

x L

[
[D1 exp(−2µLs) + c0C1

√
L

−1
]‖M‖

+ c0(C̃1

√
L
−1

+ c0C1

√
L
−1

+D1 exp(−2µLs))

]
|xs|2

≤ −2x∗s(σ
−2
x LRLM)xs + 2[c0C2

√
L+ LD2 exp(−2µLs)]|xs|2.

Since RLM is a diagonal matrix with all real positive entries, the following holds for an

a > 0:

σ−2
x x∗sLRLMxs ≥ |xs|2min

k

σ−2
x Lσ2

k|~rk|2
dk +

√
d2k + σ−2

x Lσ2
k|~rk|2

≥ |xs|2a
√
Lσx|~rk|.

If we let dL = 1
2
a
√
Lσx|~rk|, choose a c0 ≤ 1

4
C−1

2 a, then we can simplify the inequality of
d
ds
|xs|2 above by another bound:

d

ds
|xs|2 ≤ −2(dL − LD2 exp(−2µLs))|xs|2. (4.16)

This choice of c0 is legitimate, since recall that in the first line of the proof of part (i), c0
can be any fixed positive small number.

Using the Gronwall’s inequality and µL ∼
√
L, one has with some D3

|xt| ≤ exp

(
− dL(t− s) + LD2

∫ t

s

exp(−2µLr)dr

)
|xs|

≤ exp(−dL(t− s) +D3

√
L exp(−2µLs))|xs|,

in other words up to t ≤ τ ,

‖Ψ(s, t)‖ ≤ exp(−dL(t− s) +D3

√
L exp(−2µLs)) =: ψ(s, t).

Let s0 be a constant larger than lim sup 2D3

√
L/dL <∞, then if s > 1

2
s0,

dLs ≥ D3

√
L,

√
L exp(−2µLs) ≤ 1.

So when t > s0, the second probability in (4.15) is bounded by an indicator

P~vs≥0
(Ψ(0, t)~n0 ≥ ǫ, τ ≤ t) ≤ 1{exp(−D3

√
L)≥ǫ},
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which goes to 0 as L→ ∞. For the third probability in (4.15), observe that with integration

by parts

∫ t

0

Ψ(s, t)Σvd(Bs − Bt) = Ψ(0, t)ΣvBt +

∫ t

0

Ψ(s, t)DsΣv[Bs − Bt]ds.

It suffices for us to show
∫ t

0
ψ(s, t)‖Ds‖|Bs − Bt|ds → 0 when τ ≤ t. This computational

verification will be done in Lemma Appendix A.6, part (i) using

‖Ds‖ = ‖Γ + σ−2
x RtP(t)‖

≤ ‖Γ‖+ σ−2
x ‖RL‖‖LM+ P̃t‖

≤ ‖Γ‖+ σ−2
x (‖R̃s‖+ ‖RL‖)(‖LM‖+ c0)

≤ AL exp(−µLs) +
√
LB

for some constants A,B.

To bound the last probability in (4.15), we define yt := σ−1
x

∫ t

0
Ψ(s, t)

√
LRsdws. Due

to the Chebyshev’s inequality, it suffices for us to show E~vs≥0
(|yt|21τ≤t) → 0. Notice that yt

follows:

dyt = −(Γ + σ−2
x RtP(t))ytdt + σ−1

x

√
LRtdwt.

Following the derivation of (4.16), we have the same bound for Re(y∗t (Γ + σ−2
x RtP(t))yt)

when τ ≥ t; apply it and the bound for the quadratic variation in (4.13) in the following

application of Itô formula:

d|yt|2 =− 2Re[y∗t (Γ + σ−2
x RtP(t))ytdt +Rt〈dw∗

t , dw
∗
t 〉Rt + 2y∗tRtdwt]

≤− 2[dL − LD3 exp(−2µLt)]|yt|2dt+ |K|‖Rt‖2dt + 2Re(y∗tRtdwt).

If we let zt be the solution with z0 = 0 and

dzt = −2[dL − LD3 exp(−2µLt)]ztdt + |K|‖Rt‖2dt + 2Re(y∗tRtdwt).

This is well defined as one can easily verify that ys is a L
2-integrable process, and by Lemma

Appendix A.4 Rt is uniformly bounded from above. Then by the comparison principle,

zt ≥ |ys|21{t≤τ}, P~vs≥0
-a.s. Moreover, notice that wt is a martingale, using

zt =

∫ t

0

Ψ(s, t)|K|‖Rs‖2ds+ 2

∫ t

0

Ψ(s, t)Re(y∗sRsdws),

we have:

E~vs≥0
(|yt|21τ≥t) ≤ Ezt ≤ |K|

∫ t

0

ψ(s, t)‖Rs‖2ds.

It remains to show the quantity above converges to 0; this is rather elementary since

‖Rs‖2 = ‖RL + R̃s‖2 ≤ B, then apply Lemma Appendix A.6 (ii) to verify this.
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4.4. Asymptotic uncertainty reduction

Proof of Corollary 3.4. With the clear knowledge of the asymptotic behavior Rt and mt, the

information theory part is quite elementary.

Part (i) Recall that in (2.13), the dispersion part is

−1

2
ln(detRt) +

1

2
ln(detRatt)−

|K|
2

+
1

2
tr(RtR

−1
att).

Since the climatological covariance Ratt is a constant matrix, ‖Rt‖ → 0 in P~vs≥0
by Theorem

3.3 (i), so asymptotically the trace part vanishes. Apply the result of Theorem 3.3 (i) on the

following decomposition:

ln det(Rt) = ln det(I +R−1
L (Rt − RL)) + ln det(RL)

the first term goes to 0 in P~vs≥0
. Hence the dispersion part asymptotically converges to

−1

2
ln(detRL) +

1

2
ln(detRatt)−

|K|
2

=
1

2

∑

k∈K

(
ln

(
1
2
(1 +

√
1 + Lσ−2

x d−2
k σ2

k|~rk|2)
)
− 1

)

Part (ii) The signal part of the relative entropy is 1
2
(~mt − ~matt

t )R−1
att(~mt − ~matt

t ), by our

results in (ii) and (iii), ~mt −Ut converges to 0 in two different manners. Hence it is straight

forward to have our claim.

Part (iii) Since the mutual information is

I(Ut,Xs≤t) =
1

2
ln detRatt −

1

2
E ln detRt.

Again we decompose ln detRt = ln det(R−1
L Rt) + ln det(RL). On one hand by Theorem 3.3

part (i), | ln det(R−1
L Rt)| → 0 in P, and notice that according to Lemma Appendix A.4, there

is some constant U so that | det(R−1
L Rt)| ≤ U lnL a.s. Then for any fixed ξ > 0,

E| ln det(R−1
L Rt)| ≤ ξ + P(| ln det(R−1

L Rt)| ≥ ξ)U lnL

The right hand side is of order less than lnL. On the other hand,

−1
2
ln detRL

|K|
4
lnL

L→∞−→ 1.

Putting the two parts together we see our claim holds.

Proof of Corollary 3.5. For marginal processes, it suffices to redo the previous derivation but

using sub-matrices. Let us add tilde to symbols to indicate sub-vectors of indexes in K̃ or

sub-matrices of indexes in K̃ × K̃. We shift the indexes so the ones in K̃ come ahead. As

the mean and covariance of Ũt are these sub-vectors and sub-matrices, the relative entropy

is

P(πt|t|K̃, πatt
t |

K̃
) =1

2

[
(m̃t − m̃att

t )∗R̃−1
att(m̃t − m̃att

t )
]

Signal

+ 1
2

[
tr(R̃tR̃

−1
att)− |K̃| − ln det(R̃tR̃

−1
att)] Dispersion.
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The mutual information is

I(Ũt,Xs≤t) =
1

2
ln det R̃att −

1

2
E ln det R̃t.

The results of Theorem 3.3 indicates their marginal version hold as well, because

evidently

‖Rt − RL‖ ≥ ‖R̃t − R̃L‖;
as Ratt is diagonal:

(m̃t−m̃att
t )∗R̃−1

att(m̃t−m̃att
t ) =

[
m̃t − m̃att

t

0

]∗

R−1
att

[
m̃t − m̃att

t

0

]
≤ (m̃t−m̃att

t )∗R̃−1
att(m̃t−m̃att

t );

if R̃t has uni-norm eigenvector ũ for its least eigenvalue, then

‖R̃−1
t ‖ = |R̃tũ|−1 =

∣∣∣∣Rt

[
ũ

0

] ∣∣∣∣
−1

≤ [ inf
|u|≤1

|Rtu|]−1 = ‖R−1
t ‖.

Using these marginal version of results, the proof of this corollary is identical to the one of

Corollary 3.4.

5. Numerical experiments

In this section we numerically validate the theoretical results in Section 3. We consider a

d = 2 dimensional set-up, like (2.1) with wavenumbers in [−2, 2]2, the total dimension of the

signal process Us is |K| = 26.

For system parameters in (1.2), all the damping dk are set as 0.05, which corresponds

to a moderately long decorrelation time τcorr = 20 units as occurs in many geophysical

flows. The system is assumed to have no deterministic forcing for simplicity and therefore

the climatological mean is zero. Equipartition energy is assumed with all σv
k = 0.3 to mimic

turbulence at large scale [15].

The observation noise of the tracers is set to be σx = 0.5 as the observation noise level

is roughly one-half of the system noise of each mode. In the following, we study the filtering

skill with different number of tracers L, ranging from 2 to 500. One standard measurement of

filtering skill is the root-mean-squared (RMS) error between the true signal ~ut and maximum

likely hood filter estimate ~mt,

RMSE =

√
1
t

∫ t

0

|~ms −Us|2ds. (5.1)

Comparison of the streamlines in physical space is illustrated in Figure 5.1. The top

row displays streamlines associated with the true velocity field at T = 5, 15 and 25, followed

by the three rows showing the recovered flow field using L = 2, 10 and 50 tracers. In all the
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panels, the solid and dashed curves represent the counterclockwise and clockwise motion of

the flows, respectively. Clearly, the flow field with only 2 tracers succeeds in recovering the

general profile of the flow field. Yet, a low recovering skill is observed in certain areas, such

as the flipped sign in left top part at T = 5. As expected, the recovered flow field approaches

the true one with the increase of L. However, despite the significant error reduction in the

recovered flow with L = 50, some visible difference still exists. Even with L increasing to

500 as shown in Figure 5.1, the recovered streamlines are not perfectly matching the truth,

which implies the potential information barriers.

The intuition in Figure 5.1 and 5.2 motivates us to look at the error in the mean state

of the estimated flow field. Recall the second and third part of Theorem 3.3, we illustrated

the difference between posterior mean and the true signal ~mt −Ut converges to 0, which is

validated by Figure 5.3 and 5.4 for the real part of mode [1, 1]. Yet, the decay rate of the

error becomes slower with increasing L. It is worth mentioning that this difference is much

smaller than the standard deviation of the climatological distribution even filtering with

only 2 tracers, implying that filtering leads to a significant improvement. Furthermore, the

RMS error in the filtered velocity field with 10 tracers is only less than 20% of the standard

deviation at climatology.

The information barriers are well reflected in the uncertainty reduction, which is included

in Figures 5.5 and 5.6. The reduced uncertainty in the signal part converges to its limit value

as L increases. On the other hand, although the uncertainty reduction in the dispersion part

has a sustained growth, the growth is only at rate 1
4
|K| lnL. With |K| = 26, reducing

every 15 nats of uncertainty from the dispersion part requires a tenfold increase of tracers.

This is illustrated in panel (i) of Figure 5.6. This uncertainty reduction approaches the

asymptotic value (3.3) from Corollary 3.4, as indicated by the overlapped solid and dashed

lines. In addition, the length of the transient period for the dispersion part to arrive at the

equilibrium value goes down with the increase of L.

Finally, Figure 5.7 shows the time evolution of posterior covariance Rt with different

L. Based on panels (a)–(h), both the covariance of individual modes and the norm of the

full covariance go to zero with increased tracers employed in the flow. As L increases, the

posterior covariance Rt converges to RL as defined in (3.1). RL scales as L−1/2 asymptotically,

this is shown by panel (i). Besides, the rescaled deviation,

‖R−1
L ‖‖Rt −RL‖ (5.2)

shown in Figure 5.8, goes to zero with L as expected. These two figures are consistent with

Theorem 3.3, part (i).
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Figure 5.1: Streamlines recovered with different number of tracers L. The first row shows the

streamlines of the true realization. The second, third and fourth rows show the recovered

streamlines using L = 2, 10 and 50 tracers, respectively. The three columns show the

comparison of streamlines at time T = 5, 15 and 25. Streamlines with positive and negative

values representing the counterclockwise and clockwise direction of the velocity field. The

circles represent the location of the tracers at current time.
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Figure 5.2: Streamlines recovered with different number of tracers L. The first row shows

the streamlines of the true realization. The second, third and fourth rows show the recovered

streamlines using L = 50, 200 and 500 tracers, respectively. The three columns show the

comparison of streamlines at time T = 5, 15 and 25. Streamlines with positive and negative

values representing the counterclockwise and clockwise direction of the velocity field.
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Figure 5.3: Posterior mean (solid line) for the real part of mode [1, 1] as a function of time

with different number of tracers L, compared with the true realization (dashed line).
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Figure 5.4: Error between posterior mean and the true realization for the real part of mode

[1, 1]. Panels (a)–(h) show the error as a function of time for each fixed L. The two dot lines

indicate the standard deviation of the unfiltered climatological distribution. Panel (i) shows

the RMS error across time interval T ∈ [0, 50] as a function of L.
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Figure 5.5: Uncertainty reduction in the signal part with different number of tracers L.

Panels (a)–(h) show the uncertainty reduction as a function of time (thick solid line)

compared with its limit (thick dashed line) for each fixed L. In panel (i), the solid line

with circles shows the averaged value of the absolute error in the signal part compared with

its limit across time interval T ∈ [0, 50] as a function of L.
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Figure 5.6: Uncertainty reduction in the dispersion part with different number of tracers L.

Panels (a)–(h) show the uncertainty reduction as a function of time in the dispersion part

for each fixed L. In panel (i), the solid line with circles shows the averaged dispersion part

across time interval T ∈ [5, 50] as a function of L and the dotted line represents the function
1
4
|K| lnL. The magnifying blocks show the evolution in the initial one time unit.
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Figure 5.7: Posterior covariance with different number of tracers L. Panels (a)–(h) show the

posterior covariance of mode [1, 1] (thin solid line), [1,−1] (thin dashed line) and the norm

of the full posterior covariance matrix (thick solid line) as a function of time for each fixed

L. The asymptotical limit value RL is plotted as reference in each panel with dotted line.

In panel (i), the solid line with circles shows the averaged posterior covariance’s norm across

time interval T ∈ [5, 50] as a function of L .
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Figure 5.8: Rescaled deviation with different number of tracers L. Panels (a)–(h) show the

rescaled deviation (5.2) as a function of time for each fixed L. Panel (i) shows the averaged

rescaled deviation across time interval T ∈ [5, 50] as a function of L. The magnifying blocks

show the evolution in the initial one time unit.
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6. Conclusion and discussion

In this paper, we set-up an optimal filter of a random incompressible flow using observations

from Lagrangian tracers. The derivation of this filter is based on the conditional Gaussian

theory in [16]. Despite the nonlinearity of the tracers, the posterior distribution is

Gaussian with mean and covariance following elementary differential equations with random

coefficients. This may bring insight in building other simple filters for nonlinear systems

[15].

We prove the geometric ergodicity of the tracers’ projection on Td. We then analyze

the asymptotical behavior of the filter assuming each tracer is distributed uniformly on Td

when L→ ∞. We show the posterior covariance, will approach RL a deterministic diagonal

matrix and the posterior mean will converge to the signal process.

With clear asymptotic characterization of the filter, we can characterize the uncertainty

reduction by the observations from L tracers as L → ∞. In terms of both relative entropy

and mutual information, the uncertainty reduction grows asymptotically as 1
4
|K| lnL. In

other words, in order to gain the same amount of additional information, one would need

exponentially more tracers. This certainly is an information barrier in practice when only a

reasonable amount of tracers are available. As seen in the numerical experiments, Section 5,

50 tracers produce roughly the same result as with 500 tracers. It is worth noticing that [6]

has a similar claim, as their result indicates that 36 tracers without any analysis, instead of

64, is optimal under their setting.

Apart from the direct conclusions listed above, we also have the following remarks on

our results:

(i) The requirement that the flow is incompressible is not necessary for the derivation of

the filter. Indeed, incompressibility does not show up in the filter set-up part, Section

2.2; it is only required in Theorem 3.1 to make the uniform distribution invariant. It is

possible to generalize the ideas in this paper to flows that are not incompressible, e.g.

a shallow water model. This lies beyond the scope of this paper, and will be addressed

by a following up paper of the authors.

(ii) It is worth mentioning that all theoretical results, Theorem 3.1, 3.3 and Corollary 3.4,

are stated in the conditional distribution P~vs≤t
. Generally speaking, proving results in

P~vs≥0
for a.s. realization of ~vs≥0 is more difficult than proving the same results in the

super ensemble probability P. However, in actual practical applications, often one is only

observing noisy tracers in a single realization of a random flow field, so we emphasize

this here. Such a.s. results in the random flow field also allow us to study the filter

behavior for rare extreme realization of the flow field.

(iii) As discussed in Section 3, the configuration of the tracers’ locations impacts the

performance of the filter. Non-ideal situations, e.g. clustering all tracers initially, are

ruled out by the Assumption 3.2. As shown in [5, 7, 8], different starting locations of

tracers and their trajectories result in very different filter results at least in short period
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of time. However, as second part of this paper addresses mainly the asymptotic behavior

of the tracers, it is preferable to work under Assumption 3.2.

(iv) Although Theorem 3.1 indicates the distribution of tracers will converge to the

equilibrium in a finite amount of time, the length of this transient regime could be

decades if all the tracers are disposed initially at the same location and σx is insignificant

compared to the scale of ~v. In practice, in order for filter to behave as Theorem 3.3

describes, the initial location of tracers should be chosen uniformly in the area.

(v) Theorem 3.3 part (i) indicates the posterior covariance is close to a deterministic matrix

RL when L is large. This fact would be used to deploy an efficient imperfect filter with

great increase of efficiency: we can simply set Rt to be RL after a period of time. This

resolves a large computational burden when |K| and L are large, because updating the

Riccati equation (2.9) is very stiff while RL is diagonal. Similar efficient cheap diagonal

filters have been developed in the context of turbulent dynamical systems [15].
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Appendix

Appendix A.1. A detailed formulation of the random incompressible flow model

We consider a random periodic incompressible d-dim flow as a superposition of random plane

waves, formulated by (1.1):

~v(~x, s) =
∑

k∈K
v̂k(s) exp(i~k · ~x)~rk,

where K is some finite set and k associates with a wavenumber ~k. The incompressible

condition for a constant density flow gives ∇ · ~v = 0, which implies ~k · exp(i~k · ~x)~rk = 0

for each Fourier mode ~k. Therefore, the eigenvector ~rk is perpendicular to the wavenumber
~k. There can be multiple ks sharing the same wavenumber ~k, we require that their ~rk to

be orthogonal to each other so the contribution of each ~vk to ~vs is identifiable. We model

{v̂k(s)}k∈K as a group of independent O.U. processes with damping dk > 0:

dv̂k(s) = −dkv̂k(s)ds+ fk(s)ds+ σkdW
v
k(s).

When the wavenumbers ~k = ~0, the corresponding modes represent a random background

mean sweep, with the corresponding v̂k(s), ~rk being real-valued.

For nonzero wavenumbers, in order to keep ~v(~x, s) being real-valued, we assume the

components of (1.1) come with their conjugate pairs. We denote −k as the conjugate index
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of k with corresponding wavenumber being −~k, ~r−k, v̂−k(s), f−k(s),W
v
−k(s) being conjugates

for the ones of index k and dk = d−k, σk = σ−k. One way to ensure this is formulating the

complex Wiener processes as follow:

W v
k(s) =

1√
2
(Bk(s) + iB−k(s)), W v

−k(s) =
1√
2
(Bk(s)− iB−k(s)),

where {Bk(s)} are independent 1-dim real-valued Wiener processes. It is usually convenient

to discuss these modes in terms of conjugate pairs. This is the reason why the matrix Σu in

(2.2) holds a particular form as illustrated after (2.2).

Filtering formula for conditional Gaussian process

The following is a simplified version of Theorem 12.7 [16] in our context:

Theorem Appendix A.1. Let (ut, xt) be a continuous diffusion type process with

dut = [−Γtut + Ft]dt+ ΣudW1(t),

dxt = [Ptut +Qt]dt+ ΣxdW2(t),

with bounded Γt, Ft, Pt, Qt processes being functions of xt. If P(u0 ∈ · |x0) is N (m0, R0),

then conditioned on xs≤t, P(ut ∈ · |xs≤t) is N (mt, Rt), with mt, Rt being solutions to the

following with initial value m0, R0:

dmt = [−Γtmt + Ft]dt +RtP
∗
t (ΣxΣ

∗
x)

−1[dxt − (Ptmt +Qt)dt],

dRt = [−ΓtRt −RtΓ
∗
t + ΣuΣ

∗
u −RtP

∗
t (ΣxΣ

∗
x)

−1PtRt]dt.

Appendix A.2. Information theory formulae for complex Gaussian random vectors

We say a complex-valued random vector X + Y i is Gaussian distributed, if (X, Y ) as a real-

valued vector is Gaussian distributed. The relative entropy of X + Y i between probability

density p and q can be naturally defined as relative entropy of (X, Y ) under these two

probabilities.

One caveat in dealing with complex random vector X+Y i is its covariance matrix does

not contain sufficient second moments to induce the density of (X, Y ). For example X and
1√
2
(X + Y i) have the same mean and covariance if X, Y are independent N (0, 1) random

variables. Of course one can look for the covariance matrix for the joint vector (X, Y ), but

in many cases that will be very inconvenient. For instance in our filtering model, we will

need additional formulas other than (2.10) and (2.9).

The common practice in engineering community, e.g. [32], to overcome this setback is

consider the pair (X + Y i, X − Y i), since one can show its covariance matrix is sufficient

to induce the law of (X, Y ). Moreover, if one has the (X + Y i, X − Y i) ∼ N (~mp, Rp) and

N (~mq, Rq), the relative entropy of (X, Y ) under two measures can also be computed by

(2.12). As the authors cannot find a reference clearly stating this fact, we prove it using

elementary algebra.
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Lemma Appendix A.2. Suppose under measures P and Q, X, Y, Z are real-valued

joint Gaussian vectors with Y and Z being of the same dimension, suppose also that

[X, Y +Zi, Y −Zi]′ has mean ~mp, ~mq and covariance Rp, Rq under each measure respectively,

then the relative entropy between P and Q of [X, Y, Z]′ is given by

P(P,Q) =
[
1
2
(~mp − ~mq)

TR−1
q (~mp − ~mq)

]
+ 1

2

[
tr(RpR

−1
q )−N − ln det(RpR

−1
q )

]
.

where N = dimX + dimY + dimZ.

Proof. Simply notice that


X

Y

Z


 =



I 0 0

0 1
2
I 1

2
I

0 − i
2
I i

2
I







X

Y + Zi

Y − Zi


 .

Denote M as the matrix on the right hand side. Then [X, Y, Z]′ are distributed as

N (M~mp,MRpM
∗),N (M~mq,MRqM

∗) respectively under P,Q. So applying the formula

for the real-valued Gaussian vector [X, Y, Z]′ and cancel out the appearance of M , one can

show our claim elementarily.

As application to our filtering purpose, X consists of the real modes. Pick one complex

mode out of each conjugate pairs, and use their real parts to form Y and imaginary part to

form Z. The conjugate counterpart of these modes are naturally represented by Y − Zi.

This is the first reason why we prefer to talk of the complex modes in conjugate pairs like

the statement of Corollary 3.4: their joint mean and covariance is necessary and sufficient

to induce the law of them. On the other hand, in the sense of uncertainty reduction, the

information regarding v̂k, or v̂−k, or both of them as a pair, are the same: v̂k’s value determine

v̂−k and vice versa. So it is more reasonable to think of complex modes in pairs.

Lemma Appendix A.3. Under the set-up of Section 2, the mutual information is given by

I(Ut,Xs≤t) = E(P(πt|t, πatt))

=
1

2
ln detRatt −

1

2
E ln detRt

Proof. The first line come from an equivalent definition of mutual information, cf. [23] and

[33] equation (3.2). That is if we write the law of X conditioned on Y = y as pX|Y=y, then

by disintegration p(dx, dy) = pX|Y=y(dx)pY (dy), hence

I(Ut,Xs≤t) =

∫
p(dx, dy) ln

pX|Y=y(dx)pY (dy)

pX(dx)pY (dy)

=

∫
pY (dy)

∫
pX|Y=y(dx) ln

pX|Y=y(dx)

pX(dx)

=

∫
pY (dy)P(pX|Y=y, pX).
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Let X = Ut, Y = Xs≤t, notice πt|t is the law of Ut conditioned on Xs≤t and Ut ∼ πatt under

P, we have I(Ut,Xs≤t) = E(P(πt|t, πatt)). Next, plug in the formula (2.13):

I(Ut,Xs≤t) =
1
2
ln detRatt − 1

2
E ln detRt +

1
2
tr(ERtR

−1
att)− |K|

2

+ 1
2
tr
(
(E(~mt − ~matt

t )(~mt − ~matt
t )∗)R−1

att

)

Using that ~mt is the posterior mean, so by EXs≤t
Ut = ~mt and ~mt, ~m

att
t is σ(Xs≤t)-adapted:

EXs≤t
(~mt −Ut)(~mt − ~matt

t )∗ = [EXs≤t
(~mt −Ut)](~mt − ~matt

t )∗ = 0.

Hence

Ratt = E(Ut − ~matt
t )(Ut − ~matt

t )∗

= E(Ut − ~mt + ~mt − ~matt
t )(Ut − ~mt + ~mt − ~matt

t )∗

= E(Ut − ~mt)(Ut − ~mt)
∗ + E(~mt − ~mt)(~mt − ~mt)

∗

= ERt + E(~mt − ~mt)(~mt − ~mt)
∗

In other word, E(~mt − ~mt)(~mt − ~mt)
∗ = Ratt − ERt, so

tr
(
(E(~mt − ~matt

t )(~mt − ~matt
t )∗)R−1

att

)
= tr

(
I|K|)− tr

(
ERtR

−1
att

)
.

Put this back to the equation of I(Ut,Xs≤t), we have shown the identity.

Appendix A.3. Verifications of various claims

Lemma Appendix A.4. There exists two diagonal matrices R−
L , R

+, R−
L ≥ mL−1/2I for

some constant m > 0, such that if R−
L ≤ R0 ≤MI, M ≥ ‖R+‖ then the solution to (2.9) is

uniformly bounded in time by R−
L ≤ Rt ≤ MI a.s. Hence E|~mt|2 <∞.

Proof. Consider the following deterministic processes. Let R+,t be the solution to the

following:

Ṙ+,t = −ΓR+,t − R+,tΓ
∗ +Σ, R+,0 =MI

and let R+ be the stable point of the dynamics above. Therefore if R+,0 = MI ≥ R+, R+,t

will be decreasing in time, so R+,t ≤MI.

Next let R−,t = RL be the stable point of following

Ṙ−,t = −ΓR−,t − R−,tΓ
∗ +Σ− σ−2

x L|K|R2
−,t

Since this is a diagonalizable matrix equation, one can easily verify that each entry of RL is

of order
√
L
−1/2

.

Using the comparison theorem of differential Riccati equation, Theorem 4.1.4 of [30],

because 0 ≤ P(t) ≤ |K|I, we have R−,t ≤ R(t) ≤ R+,t a.s. This concludes our claim of Rt.

Then notice that by Young’s inequality

E|~mt|2 ≤ 2E|~mt −Ut|2 + 2E|Ut|2 = 2Etr(Rt) + 2tr(Ratt) <∞.
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Lemma Appendix A.5. For any fixed j 6= k, t > 0, q > 1
2
, zLs := L−q([P̃s]j,k) is family of

process that converges to 0 in the uniform norm of C([0, t]) under P~vs≥0
when L→ ∞.

Proof. Recall that if ~j = ~k, then zLs ≡ 0, this Lemma trivially holds. So we assume ~j 6= ~k in

the following.

By theorem 7.5 of [29], it suffices for us to check zLs → 0 in P~vs≥0
for each s, and also

show the modulus of continuity condition for the family {zLs }.
Fix s, as {Yl = exp(i(~k−~j) · ~Xl(s))} is a sequence of i.i.d. random complex variables in

P~vs≥0
with

E~vs≥0
Yi = 0, Var~vs≥0

Yi = 1, E~vs≥0
Y 2
l =

1

|T2|

∫

T2

exp(2i(~j − ~k) · x)dx = 0.

By the central limit theorem for complex random variables,

1√
L
[P̃s]j,k = (~r ∗

j ~rk)
1√
L

L∑

l=1

Yl →p (~r
∗
j ~rk) · N (0, 1, 0) for a.s. ~vs≤t.

Where X + Y i ∼ N (0, 1, 0) iff X⊥Y,X, Y ∼ N (0, 1
2
), see [32] for more details of complex

Gaussian distribution. So for any q > 1/2, L−q[P̃s]j,k → 0 in P~vs≥0
for any fixed s ≤ t.

Next we check the modulus continuity condition for the processes {zLs }. By the corollary

following Theorem 7.4 of [29], it suffices for us to show for any ǫ, η > 0, there are δ > 0 and

L0 such that for any 0 ≤ r ≤ t− δ, and L ≥ L0

1

δ
P~vs≥0

(
sup

r≤s≤r+δ
|zLs − zLr | ≥ 2ǫ

)
≤ η.

Applying the Itô’s formula we have

zLs − zLr =

∫ s

r

L−q
L∑

l=1

exp(i(~k −~j) · ~Xl(u))[i(~k −~j) · ~v( ~Xl(u), u) + σ2
x|~k −~j|2]du

+ σx

∫ s

r

L−q

L∑

l=1

exp(i(~k −~j) · ~Xl(u))i(~k −~j) · dW x
l (u)

=

∫ s

r

L−q
L∑

l=1

[fu( ~Xl(u))du+ gu( ~Xl(u))dW
x
l (u)]

with fu, gu representing the corresponding functions. So it suffices to show

1

δ
P~vs≥0

(
sup
s≤r+δ

∣∣∣∣
∫ s

r

L−q
L∑

l=1

gu( ~Xl(u))dW
x
l (u)

∣∣∣∣+ sup
s≤r+δ

∣∣∣∣
∫ s

r

L−q
L∑

l=1

fu( ~Xl(u))du

∣∣∣∣ ≥ 2ǫ

)
≤ η.

(A.1)
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Apply Doob’s inequality and Itô’s isometry to the martingale part of (A.1):

1

δ
P~vs≥0

(
sup
s≤r+δ

∣∣∣∣
∫ s

r

L−q

L∑

l=1

gu( ~Xl(u))dW
x
l (u)

∣∣∣∣ ≥ ǫ

)

≤ L−2q

ǫ2
E~vs≥0

∫ r+δ

r

L∑

l=1

|gu( ~Xl(t))|2du ≤ L1−2qσ2
x|~k −~j|2
ǫ2

.

We can find L0 so the right hand side is sufficiently small when L ≥ L0.

Apply the Cauchy Schwarz inequality to the Riemann integral part in (A.1):

sup
s≤r+δ

∣∣∣∣
∫ s

r

L−q
L∑

l=1

fu( ~Xl(u))du

∣∣∣∣
2

≤ δ2L−2q

∫ r+δ

r

∣∣∣∣
L∑

l=1

fu( ~Xl(u))

∣∣∣∣
2

du.

Using the Chebychev’s inequality,

1

δ
P~vs≥0

(
sup
s≤r+δ

|
∫ s

r

L−q
L∑

l=1

fu( ~Xl(u))du

∣∣∣∣ ≥ ǫ

)
≤ δ

ǫ2
L−2q

∫ r+δ

r

E~vs≥0

∣∣∣∣
L∑

l=1

fu( ~Xl(u))

∣∣∣∣
2

du.

(A.2)

Next notice that

E~vs≥0
fu( ~Xl(u)) =

1

|Td|

∫

Td

exp(i(~k −~j) · x)[i(~k −~j) · ~v(x, u) + σ2
x|~k −~j|2]dx

= i
∑

~n=~j−~k

(~k −~j) · ~rnv̂n(u) = 0,

the second equality invokes the decomposition (1.1) where all modes with wavenumbers not

being ~j−~k vanishes in the periodic integral; the third equality holds because (~k−~j) ·~rn = 0

by definition of ~rn.

Since ~Xl(u) are conditionally independent,

E~vs≥0

∣∣∣∣
L∑

l=1

fu( ~Xl(u))

∣∣∣∣
2

= LE~vs≥0
|fu( ~Xl(u))|2 ≤ LC(|~vu|2∞ + 1).

Using this inequality, the right hand side of (A.2) is bounded by

δ

ǫ2
L1−2qC

(
δ +

∫ r+δ

r

|~vu|2∞du

)

which goes to 0 for large L and small δ. Hence we complete the verification of continuous

modulus condition.

Lemma Appendix A.6. If |ψ(s, t)| ≤ C exp(−dL(t− s) +D
√
L exp(−µLs)), suppose s0 is

a constant such that dLs ≥ D
√
L,D

√
L exp(−µLs) ≤ 1 for s ≥ 1

2
s0 and L sufficiently large,

then for any t > s0,
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(i) With any fixed continuous process vs, if vt = 0 and |d(s)| ≤ AL exp(−µLs) +
√
LB,

then as L→ ∞, ∫ t

0

ψ(s, t)d(s)vsds→ 0.

(ii) With |d(s)| ≤ B,
∫ t

0
ψ(s, t)d(s)ds→ 0 as L→ ∞.

Proof. For the claim (i), note

AL

∫ t

0

ψ(s, t) exp(−µLs)vsds ≤ ACL sup
s≤t

|vs|t exp(−dLt +D
√
L)

If t ≥ s0, when L→ ∞, the right hand side tends to 0.

And for
√
L
∫ t

0
φ(s, t)vs, because vt = 0 and vs is continuous, for any fixed ξ > 0, there

exists a constant δ > 0 such that |vs| ≤ ξ for s ≥ t− δ. Hence we can break the integration

into three parts and bound each using dLs ≥ D
√
L,D

√
L exp(−µLs) ≤ 1, ∀s ≥ 1

2
s0:

√
L

∫ t

t−δ

ψ(s, t)vsds ≤ C
√
Lξ

∫ t

t−δ

exp(−dL(t− s) + 1)ds ≤ Cd−1
L

√
Leξ.

√
L

∫ t−δ

1
2
s0

ψ(s, t)vsds ≤
√
L sup

s≤t
|vs|

∫ t−δ

1
2
s0

exp(−dL(t− s) + 1)ds ≤ ed−1
L

√
L sup

s≤t
|vs| exp(−dLδ)

√
L

∫ 1
2
s0

0

ψ(s, t)vsds ≤
√
L sup

s≤t
|vs|

∫ 1
2
s0

0

exp(−dL(t− s) +D
√
L)ds

≤
√
Ld−1

L sup
s≤t

|vs| exp(−dL(t− s0))ds.

Recall dL is of order
√
L, the last two terms go to 0 when L → ∞ if t > s0 . The first is of

order ξ. Since ξ is an arbitrary number, our claim is true.

For (ii), just notice

∫ t

0

ψ(s, t)ds =

∫ t

1
2
s0

ψ(s, t)ds+

∫ 1
2
s0

0

ψ(s, t)ds ≤ ed−1
L +

√
Ld−1

L exp(−dL(t− s0)),

the right hand side goes to 0 as L increases.
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