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ABSTRACT5

This paper discusses the Sparse Space and Time SuperParameterization (SSTSP) algorithm6

and evaluates its ability to represent interactions between moist convection and the large-7

scale circulation in the context of a Walker cell flow over a planetary scale two-dimensional8

domain. The SSTSP represents convective motions in each column of the large-scale model9

by embedding a cloud-resolving model, and relies on a sparse sampling in both space and10

time to reduce computational cost of explicit simulation of convective processes. Simulations11

are performed varying the spatial compression and/or temporal acceleration, and results are12

compared to the cloud-resolving simulation reported previously. The algorithm is able to13

reproduce broad range of circulation features for all temporal accelerations and spatial com-14

pressions, but significant biases are identified. Precipitation tends to be too intense and too15

localized over warm waters when compared to the cloud-resolving simulations. It is argued16

that this is because coherent propagation of organized convective systems from one large-17

scale model column to another is difficult when superparameterization is used, as noted in18

previous studies. The Walker cell in all simulations exhibits low-frequency variability on19

time scale of about 20 days, characterized by 4 distinctive stages: suppressed, intensifica-20

tion, active, and weakening. The SSTSP algorithm captures spatial structure and temporal21

evolution of the variability. This reinforces the confidence that SSTSP preserves fundamen-22

tal interactions between convection and the large-scale flow, and offers a computationally23

efficient alternative to traditional convective parameterizations.24
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1. Introduction25

The interplay between moist convection and the large-scale flow is the fundamental fea-26

ture of the tropical atmosphere. However, the extreme range of spatial and temporal scales27

involved makes it difficult to resolve all relevant processes in numerical models. In large-scale28

models, this issue has traditionally been addressed through the use of convective parameter-29

izations that account for effects of convective motions on the mean atmospheric temperature30

and humidity profiles. It is well recognized, however, that convective parameterizations fail31

to reproduce many important features of the tropical atmosphere. This is partly because32

many aspects of convection, such as downdrafts, cold pools, and mesoscale organization,33

are either excluded or poorly represented in the parameterizations. Moreover, the param-34

eterizations often do not reproduce the intrinsic intermittency of moist convection. This35

motivates the development of new approaches to improve the representation of convection36

in multi-scale simulations of the tropical atmosphere.37

One way to improve such simulations is to take advantage of cloud-resolving modeling.38

Cloud models emerged in 1970s (e.g., Steiner 1973; Schlesinger 1975; Klemp and Wilhelm-39

son 1978; Clark 1979) to study individual clouds in short simulations (tens of minutes) and40

typically applied idealized forcing techniques (e.g., initiating cloud development via a warm41

bubble). More recently such models have been used in significantly longer simulations (days42

and weeks) and applying large computational domains. Such simulations are often driven by43

observationally-based time-evolving larger-scale forcings and allow better comparisons with44

observations (e.g., Grabowski et al. 1996, 1998; Xue and Randall 1996; Xue et al. 2002,45

Fridlind et al. 2012, among many others). Cloud-resolving models solve non-hydrostatic46

governing equations and allow convective development in conditionally unstable conditions.47

The horizontal resolution of ∼1 km is high enough for the simulation of dynamical evolu-48

tion of individual clouds, with microphysical, turbulent and radiative processes needed to49

be parameterized. Explicit representation of cloud dynamics allows capturing key features50

that convective parameterizations struggle with. During the last 30 years, many studies51
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focused on statistical response of cloud ensembles to the large-scale forcing over a limited52

area (e.g., Soong and Ogura 1980, Soong and Tao 1980, Tao and Soong 1986). So far,53

cloud-resolving models appear superior to any kind of convective parameterization, as found54

by comparing model results to observations. However, the computational cost still severly55

limits global cloud-resolving simulations and alternative approaches need to be explored. An56

important application of cloud-resolving modeling in the context of global simulation is vali-57

dation and improvement of other approaches designed to estimate feedbacks from convective58

to mesoscale, synoptic and global scales.59

Rescaling approaches have also been suggested to extend cloud-resolving modeling to60

global simulations. The underlying idea is to artificially reduce the scale separation between61

convective and planetary scales, and thus to make explicit simulation of convection com-62

putationally feasible in global domains. The Diabatic Acceleration and Rescaling (DARE)63

approach (Kuang et al. 2005) and the hypo-hydrostatic approach (Pauluis et al. 2005, Garner64

et al. 2005) are examples of such techniques. In DARE, the Earth’s diameter is reduced, the65

rotation rate is increased, and diabatic processes are accelerated. In the hypo-hydrostatic66

approach, the vertical acceleration is rescaled. Pauluis et al. (2005) have shown that both67

approaches are mathematically equivalent and they reduce the scale separation between68

convection and the planetary scale without affecting the dynamics at large scales. However,69

changes in the behavior of convection due to the rescaling limit the applicability of these70

methods. Nevertheless, they illustrate how mathematical rescaling can offer a computation-71

ally efficient way to use cloud-resolving models in global simulations.72

The second approach is to take advantage of a cloud-resolving model for global simula-73

tions through the superparameterization methodology (Grabowski and Smolarkiewicz 1999;74

Grabowski 2001, 2004; Randall et al. 2001). In this framework, a two-dimensional cloud-75

resolving model with periodic lateral boundaries is embedded within each column of a global76

model to simulate interactions between convective and global scales. The simulated large-77

scale scale flow includes the convective feedback from small to large scales, and convective78
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scales respond to the forcing from the large-scale dynamics. In the original superparame-79

terization (SP thereafter), convective feedback is calculated using a cloud-resolving model80

applying horizontal domain equal (or approximately equal) to the large-scale model horizon-81

tal gridlength. Grabowski (2001, section 3) simulated a 2D Walker cell of 4000 km horizontal82

extent applying SP approach with different horizontal gridlengths (from 20 to 500 km) and83

thus different extents of the SP model horizontal domain. Results from these simulations84

were compared to the fully-resolved simulations (described in Grabowski et al. 2000) as well85

as between each other. SP seemed reasonably successful in reproducing large-scale conditions86

as simulated by the cloud-resolving model (e.g., dry subsidence and humid ascent regions,87

large-scale flow featuring the first and second baroclinic modes, etc.). However, mesoscale88

organization of convection and the strength of the quasi-two-day oscillations, the prominent89

feature of the fully-resolved simulations, were significantly different between SP simulations.90

Over the last ten years, SP has been tested in many studies of tropical dynamics.91

Khairoutdinov et al. (2005) and DeMott et al. (2007) found that while Madden Julian92

Oscillation (MJO) is missing from the standard Community Atmosphere Model (CAM),93

it is simulated reasonably well with SP-CAM (i.e., the superparameterized CAM). They94

report several important improvements in simulating tropical climatology, such as a more95

realistic distribution of cirrus cloudiness or intense precipitation. However, some impor-96

tant biases persist, for instance, too heavy precipitation over the western tropical Pacific97

associated with the Indian monsoon or too low shallow-convection cloud fraction and light98

rain across parts of the tropics and subtropics. Studies attempting to explain the reason99

of excessive precipitation in western Pacific during monsoon periods typically find signifi-100

cant correlation between moisture content in the column and precipitation. Thayer-Calder101

and Randall (2009) suggest that the difference comes from contrasting profiles of convective102

heating that excite different large-scale circulation (and thus affect surface wind and evap-103

orative feedback) and subsequently differently moisten the troposphere. Luo and Stephens104

(2006) argue that convection-evaporation feedback is the main culprit of excessive rain and105
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suggest that this may be due to the periodicity of SP’s cloud-resolving models leading to the106

prolonged presence of precipitating convection at a given location.107

The mathematical aspects of the SP implementation are important as illustrated by the108

above examples and other studies (e.g., Grabowski 2004). Over the years, several algorithms109

have been proposed to implement the SP framework. Here, we evaluate the ability of the110

Sparse Space and Time SuperParameterization (SSTSP) to accurately reproduce the inter-111

actions between convection and the large-scale flow. In the SSTSP framework, described112

in more detail in the next section, the embedded cloud-resolving model applies horizontal113

domain that is small in comparison to the horizontal gridlength of the large-scale model,114

and for the time period that is short when compared to the time step of the large-scale115

model. SSTSP combines the spatial compression used in the previous SP implementation116

(Xing et al. 2009) with a temporal acceleration similar to the DARE and hypo-hydrostatic117

rescaling, thus significantly increasing computational efficiency of the approach. As with the118

original SP, the goal of SSTSP algorithm is to obtain statistically correct representation of119

the convective impact on the large-scale flow at reduced computational cost.120

Preliminary SSTSP testing reported in Xing et al. (2009) applied two-dimensional sim-121

ulations of an idealized squall line propagating in a periodic horizontal domain of 1024 km.122

Performance of SSTSP algorithm was examined for a range of environmental conditions that123

differed in the prescribed vertical shear of the large-scale horizontal wind. SSTSP algorithm124

seemed to capture propagation of the squall line and its speed. In particular, propagation125

speed appeared to be strongly controlled by vertical profile of the large-scale shear, with no126

significant drawbacks of the SSTSP algorithm. Contrasting convective organizations were127

simulated for different shears, from squall line to decaying convection. This provided hope128

for the SSTSP algorithm in simulations of different convective regimes for various large-scale129

conditions. Furthermore, structural agreement was found for large-scale features of simu-130

lated convective systems since pattern correlation was high for horizontal velocity or specific131

humidity. However, the impact of SSTSP algorithm on large-scale features (e.g., the mean132
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temperature and moisture profiles) was severely limited because of the short simulation time133

(36 hours) and relatively small computational domain.134

Here, we investigate the accuracy of the SSTSP algorithm in reproducing interactions135

between convection and the large-scale flow in an idealized Walker cell circulation. We136

compare SSTSP results against the benchmark solution obtained with the cloud-resolving137

model. The latter is described in more detail in Slawinska et al. (2014; SPMG hereinafter)138

focusing on the intra-seasonal variability of the Walker cell with the time-scale of about 20139

days. The low-frequency oscillation features four phases: the suppressed, intensification,140

active, and weakening. Intensification of the circulation is associated with the broadening141

of the large-scale ascent region, which in turn is strongly coupled to propagating synoptic-142

scale systems. Details of the SSTSP framework and its implementation are given in section143

2. Results of simulations applying the SSTSP framework are discussed in section 3 and144

compared to the results from SPMG’s cloud-resolving model. Section 4 provides a discussion145

of model results and concludes the paper.146

2. Model and experimental setup147

In this study, we use the anelastic nonhydrostatic atmospheric model EULAG (Smo-148

larkiewicz and Margolin 1997; see Prusa et al. 2008 for a comprehensive review) applying149

the SP methodology (Grabowski 2001; 2004) and implement the SSTSP framework as de-150

scribed briefly below (see also Xing et al. 2009).151
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a. SP and SSTSP frameworks152

1) Large-scale and cloud-resolving model equations153

The large-scale and cloud-resolving models calculate evolution of the large-scale Φ and

small-scale ϕ variables:

Φ = [U,W,Θ, Qv, Qc, Qp], (1)

ϕ = [u,w, θ, qv, qc, qp]. (2)

The variables are the horizontal (U and u) and vertical (W and w) velocities, potential

temperature (Θ and θ), water vapor (Qv and qv), condensed water/ice (Qc and qc), and

precipitating water/ice (Qp and qp) mixing ratios, the latter two following representation

of moist thermodynamics of Grabowski (1998). Evolution of Φ and ϕ can be symbolically

written as:

∂Φ

∂t
+ AΦ = SΦ + FCS

Φ (3)

∂ϕ

∂t
+ Aϕ = Sϕ + FLS

ϕ (4)

where AΦ ≡ 1
ρo

∂
∂Xj

(ρoUjΦ) and Aϕ ≡ 1
ρo

∂
∂xj

(ρoujϕ) represent the large-scale and small-scale154

advection terms, respectively; SΦ and Sϕ represent various source terms in the large-scale155

and small-scale models (such as the buoyancy, pressure gradient, radiative cooling, surface156

fluxes, phase changes of the water substance, precipitation formation and fallout, gravity157

wave absorber, etc.); FCS
Φ is the small-scale feedback; and FLS

ϕ stands for the large-scale158

forcing. The latter two terms represent the coupling between the two models. The source159

terms SΦ and Sϕ need to be appropriately designed between the two models. For instance,160

the pressure gradient terms are independently formulated between the models (e.g., via the161

anelastic continuity equation). The horizontally-averaged vertical velocity at each level of162

the small-scale model has to vanish because of the periodic lateral boundary conditions,163

and the vertical velocity field cannot be coupled between the two models. Surface fluxes,164

radiative transfer, phase changes and precipitation formation/fallout are typically considered165
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in the small-scale model only and they affect the large-scale fields through the small-scale166

feedback. In general, one needs to ensure that a given source is included only once between167

the two models, that is, no double-counting takes place.168

2) Coupling procedure in SP169

The original implementation of the SP is as follows (cf. Grabowski 2004). Every large-

scale grid, ∆X ×∆Z, contains a cloud-resolving (small-scale) model that has Nx ×Nz grid

points of grid size ∆x×∆z, for which

∆X = Nx∆x; ∆Z = ∆z, (5)

that is, the horizontal extent of the small-scale model domain is equal to the horizontal

gridlength of the large-scale model, and the two models share the same vertical grid. For

a given large-scale time step, ∆T , the evolution from time T to T + ∆T of the large-scale

variable is calculated first:

Φ|T+∆T = Φ|T + ∆T (AΦ + SΦ)|T+∆T
T + ∆TFCS

Φ |T , (6)

with ∆T (AΦ + SΦ)|T+∆T
T standing for the transport and large-scale sources over the period170

(T : T + ∆T ) and FCS
Φ |T representing the small-scale feedback calculated at previous time,171

T , as given by Equation (10).172

With the large-scale variables already known at (T + ∆T ) the vertical profiles of large-

scale forcing for the small-scale variables, FLS
ϕ |T , are formulated as follows:

FLS
ϕ |T =

Φ|T+∆T− < ϕ|T > |Nx
1

∆T
, (7)

where < . > |Nx
1 stands for the horizontal averaging over the Nx points of the small-scale

model. With the large-scale forcing formulated as above and assumed constant for the

large-scale time step, the small-scale model equations are advanced from T to T + ∆T :

ϕ|T+∆T = ϕ|T +
Nt∑
i=1

∆t(Aϕ + Sϕ)|T+i∆t
T+(i−1)∆t +

Nt∑
i=1

∆tFLS
ϕ |T , (8)

8



over Nt time steps for which:

∆T = Nt∆t. (9)

Finally, at the end of the large-scale model time step, average profiles of the small-scale

feedback are formulated as:

FCS
Φ |T+∆T =

< ϕ|T+∆T > |Nx
1 − Φ|T+∆T

∆T
. (10)

Repeating (8), (9), (10), and (12) allows stepping forward in time of the combined small-scale173

and large-scale system.174

3) Sparse space-time algorithm175

The sparse space-time algorithm (Xing et al. 2009) reduces the computational cost of

the SP by decreasing the horizontal extent of small-scale domain by a factor of px (i.e., px

smaller number of model columns; reduced space strategy) and the number of small-scale

time steps by a factor of pt (reduced time strategy). In such a case, the number of small-scale

time steps in every large-scale time step and the number of columns in every large-scale grid,

Npt and Npx , are given by:

Npt =
Nt

pt
, (11)

Npx =
Nx

px
. (12)

As in the original SP, the evolution of the large-scale variables is calculated first according

to (6). Then, profiles of the large-scale forcings are calculated for the small-scale domain of

Npx horizontal columns similarly to (9):

FLS
ϕ |T = pt

Φ|T+∆T− < ϕ|T > |Npx
1

∆T
, (13)

but including pt (i.e., adding the time rescaling of the large-scale forcing), and applying

horizontal averaging over the rescaled small-scale domain (marked < . > |Npx
1 ). Subsequently,

accelerated evolution of the small-scale variables over Npt time steps are calculated similarly
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to (10):

ϕ|T+∆T
pt = ϕ|T +

Npt∑
i=1

∆t(Aϕ + Sϕ)|T+i∆t
T+(i−1)∆t +

Npt∑
i=1

∆tFLS
ϕ |T . (14)

The small-scale variables at the end of the large-scale time step, ϕ|T+∆T , are assumed equal

to the solution of (17) with accelerated forcing, that is,:

ϕ|T+∆T = ϕ|T+∆T
pt . (15)

Finally, profiles of the small-scale feedback are computed as:

FCS
ϕ |T+∆T =

ϕ|T+∆T
pt − Φ|T+∆T

∆T
. (16)

Elementary considerations (similar to those involving Eqs. 10 and 11 in Grabowski 2004)176

document that the SSTSP algorithm outlined above ensures appropriate transfer of infor-177

mation between the small-scale and large-scale models despite spatial compression and tem-178

poral acceleration. For instance, if either SΦ in (3) or Sϕ in (4) is assumed constant, then179

the tendency due to this source is correctly passed from one model to another (i.e., from the180

large-scale to small-scale model for SΦ and vice-versa for Sϕ) when spatial compression and181

temporal acceleration are applied.182

Beyond mathematical consistency, one should be also aware of physical limitations of the183

SSTSP methodology. For the spatial compression, small horizontal domain of the small-scale184

model may affect not only the statistical sampling of small-scale features, but their evolution185

as well, evolution of convective cells in particular. Since the mean vertical velocity within186

SP models at any level has to vanish (because of periodic lateral boundary conditions),187

the upward convective mass flux has to be balanced by the environmental subsidence. The188

key point is that the vertical development of convective clouds may be affected when the189

computational domain is reduced to a small number columns. The temporal acceleration is190

perhaps more difficult to interpret. The approach taken in Xing et al. (2009) and followed191

here (cf. Eq. 16) implies that the large-scale forcing is increased in proportion to the temporal192

acceleration factor pt. The idea is that the original large-scale forcing has to be increased so193
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the small-scale processes can appropriately respond over the pt-shorter time. An alternative194

approach might be to keep the large-scale forcing unchanged, but instead increase the small-195

scale feedback by pt. In other words, the small-scale response to the original feedback would196

be calculated only for the pt-fraction of ∆T and linearly extrapolated (i.e., increased by a197

factor of pt) before applied to the large-scale model. Such a procedure would lead to the198

same evolution in time of Ψ and ϕ for the case of a constant source. However, considering199

fundamental differences between time scales involved in small-scale and large-scale processes,200

extrapolation of the small-scale response seems more problematic than scaling up the large-201

scale forcing.202

b. Experimental design203

Developments presented in the previous section are tested applying the Walker cell cir-204

culation in the two-dimensional domain following SPMG. As in SPMG, the environmental205

profiles come from a simulation of radiative-convective equilibrium applying a cloud-resolving206

model SAM with NCAR CAM3 interactive radiation scheme (Khairoutdinov and Randall207

2003). The planetary-scale circulation is driven by the surface fluxes and radiative cooling.208

The sea surface temperature (SST) distribution is given by a cosine squared function, with209

303.15 K in the center and 299.15 K at the periodic lateral boundaries. Radiative cooling210

is given by the average profile of radiative tendency in the radiative-convective simulation211

and by the relaxation term towards the equilibrium value of potential temperature with the212

20-day timescale. More detailed description of the modeling setup can be found in SPMG213

which discusses results from the cloud-resolving simulation that provide the reference for SP214

simulations.215

In SP simulations, the large-scale domain spans 40,000 km with horizontal and verti-216

cal gridlengths of 48 km and 500 m, respectively. The large-scale time step is 180 s. The217

cloud-resolving domain has horizontal and vertical gridlengths of 2 km and 500 m, respec-218

tively, and the small-scale time step of 15 s. The simulations are run for 340 days, and219
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the last 290 days are analyzed. Because of the simulation length, no other SP setups (i.e.,220

either larger or smaller large-scale model gridlength, cf. section 3 of Grabowski 2001) were221

considered. Simulations with various time accelerations and space compressions are com-222

pared. Horizontal domain of the cloud-resolving model is equal to the large-scale horizontal223

gridlength (i.e., px = 1) or is reduced by a factor of 2 (px = 2) or 3 (px = 3). Also, for224

every large-scale time step, time integration in cloud-resolving domains is performed for the225

period either equal (pt = 1) or two (pt = 2), three (pt = 3) and four (pt = 4) times shorter226

than the large-scale model time step. A simulation with a given spatial compression (px)227

and temporal acceleration (pt) will be referred to as ”SSTSPpxpt simulation”. For instance,228

a simulation with px = 2 and pt = 3 will be called ”SSTSP23 simulation”. In total, 12229

simulations are performed with different time accelerations and space compressions. We will230

refer to them as ”SSTSP simulations”. SSTSP simulations are compared to the benchmark231

case obtained with the cloud-resolving model and analyzed in SPMG, and refereed to as the232

”CRM simulation” thereafter.233

3. Results234

SSTSP simulations reproduce the key characteristics of the CRM simulation. In par-235

ticular, large-scale overturning circulation is simulated in the large-scale domain, with the236

large-scale ascent over warm pool and subsidence over cold SSTs. Similarly to the CRM237

simulation, variability across wide range of scales is simulated. We start with a discussion238

of the mean state. Subsequently, we present analysis of high- and low-frequency variability,239

with the latter analyzed in more detail. The emphasis is on comparing the SP and CRM240

simulations (the latter one documented in details in Slawinska et. al. (2014)) and evaluating241

the impact of the spatial and temporal scaling factors px and pt.242
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a. The mean Walker cell circulation243

Figure 1 shows the time-averaged horizontal velocity field for the CRM and SSTSP sim-244

ulations (the former already shown in Fig. 2a in SPMG) as well as the difference between245

them. The CRM large-scale circulation features surface and mid-tropospheric mean hori-246

zontal flows towards the highest SST in the center of the domain. The horizontal velocity247

maxima are around 10 and 5 m s−1 at the surface and around 6-km altitude, respectively.248

The upper-tropospheric outflow from the center of the domain features maximum velocities249

of over 20 m s−1. SSTSP simulations exhibit similar large-scale circulations, with low- and250

mid-level convergence accompanied by the upper-tropospheric divergence over warm SSTs,251

that is, with the first and second baroclinic modes. The most apparent difference between252

CRM and SSTSP simulations is the narrower ascending region in the center of the domain253

in SSTSP cases. Although the patterns and amplitudes of the horizontal flow are similar in254

all simulations, the difference plots between CRM and SSTSP show significant deviations255

that seem to increase with the spatial compression and temporal acceleration, with the SP256

simulation without compression and acceleration (i.e., SSTSP11) being the closest to CRM257

as one might expect. Although not shown in the figure, the differences depend primarily258

on the horizontal extent of the SP domains (i.e., they increase with the increase of px), and259

there seems to be no systematic impact of the temporal acceleration (i.e., increasing the pt260

parameter).261

Figure 2 and 3 document the impact of spatial compression and time acceleration on the262

mean (i.e., horizontal- and time-averaged) profiles of the potential temperature and water263

vapor mixing ratio. Figure 2 shows the difference between profiles from SSTSP with various264

spatial compressions and CRM. Mean profiles for the SSTSP11 simulation are close to CRM,265

and the differences increase with the spatial compression. The SSTSP31 simulation features266

up 8 K colder upper troposphere and up to 2 g/kg lower moisture in the lower troposphere267

when compared to CRM. The relative humidity profiles (not shown) agree relatively well268

below 8 km for all simulations and differ significantly above 10 km, with no obvious sensitivity269
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to the spatial compression. The differences between the temperature profiles are consistent270

with a heuristic argument that reducing the horizontal extent of SP computational domains271

(i.e., increasing px) makes convective overturning more difficult and leads to a colder upper272

troposphere. The water vapor difference profiles can be explained by a narrower ascending273

region in the center of the domain as illustrated in Fig. 1 and further quantified below. As274

shown in Fig. 3, time acceleration leads to the mean temperature/moisture profiles that are275

warmer/more humid, but the effects are significantly smaller than for the spatial compression,276

especially for the moisture.277

Figure 4 and 5 show spatial distributions of the difference between the SSTSP and CRM278

simulations for the mean temperature and water vapor mixing ratio, respectively. The279

differences are averaged over days 50 to 340. For the temperature, the patterns are dominated280

by the differences in the mean profiles (cf. Fig. 2), with small gradients between regions with281

high and low SST (i.e., mean ascent and mean subsidence). In the CRM simulation, the282

temperature field at a given level is homogenized by convectively-generated gravity waves283

that maintain small horizontal temperature gradient. Such a mechanism is also efficient in284

SP simulations, including SSTSP, as documented by relatively small horizontal temperature285

gradients in Fig. 4. Water vapor field, on the other hand, can only be homogenized by the286

physical advection and the differences between SSTSP and CRM simulations are larger, as287

shown in Fig. 5. The largest differences (in the absolute sense) are near the center of the288

domain, likely because of the different width of the central ascending region and differences289

in the large-scale circulation (cf. Fig. 1). The differences increase with the increase of the290

spatial compression and temporal acceleration. The lower troposphere above 1 km is drier291

in SSTSP than in the CRM, and in both the ascent and subsidence regions, perhaps with292

the exception of the narrow zone over the coldest SSTs. The level of maximum difference293

outside the central region at heights between 2 and 3 km corresponds to the low level cloud294

tops (see below). Upper troposphere is drier at the warm pool edges, likely because of the295

narrower region of deep convection in the SSTSP simulations.296
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Figure 6 and 7 show time-averaged mean fields and profiles of the cloud condensate mixing297

ratio, respectively. Fig. 6 shows that shallow convection occurs over the entire domain, while298

deep convection is confined to the warm pool. The region with deep convection narrows299

when the spatial compression and temporal acceleration increase. There are also systematic300

changes of the mean cloud condensate profiles as documented in Fig. 7. The figure documents301

the classical trimodal characteristics of the tropical moist convection: shallow, congestus,302

and deep (cf. Johnson et al. 1999), with the lower-tropospheric maximum associated with303

shallow convective clouds, and middle- and upper-troposheric maxima marking detrainment304

levels from congestus and deep convection, respectively. Temporal acceleration results in305

a significant shift of the profiles towards higher values (factor of approximately 2 between306

panels a and d). Spatial compression for a given temporal acceleration has relatively smaller307

effect, with systematic decrease of cloud condensate above 5 km.308

Figure 8 shows mass flux profiles for CRM and SSTSP simulations with various spa-309

tial compressions and temporal accelerations. Since these profiles are derived by averaging310

the cloud-model data, they represent the impact of the SSTSP methodology on convective311

transport. The SP simulation with neither spatial compression nor temporal acceleration312

(i.e., SSTSP11) gives the mean mass flux close to the one from the CRM simulation. Spatial313

compression (i.e., SSTSP31) leads to significantly reduced mass flux, arguably because of314

the impact of a reduced extent of the cloud-model computational domain on the convec-315

tive transport as argued at the end of section 2a. In contrast, temporal acceleration (i.e.,316

SSTSP13) leads to a significant increase of the mass flux, arguably because of the increase317

of the large-scale forcing (cf. Eqs. 7 and 13). Combining spatial compression and temporal318

acceleration (i.e., SSTSP33) results in the convective mass flux in between simulations with319

either spatial compression or temporal acceleration.320

The differences in the convective mass flux affect the mean (domain and time aver-321

aged) profiles of the precipitation water mixing ratio as shown in Fig. 9. The simple micro-322

physics parameterization used in the simulations assumes precipitation to be in the form of323
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snow/rain in the upper/lower troposphere, with snow sedimenting with significantly smaller324

vertical velocity. This explains the difference between lower- and upper-tropospheric val-325

ues of each profile. However, the magnitude of the profiles (i.e., the largest/smallest for326

SSTSP13/SSTSP31) is in direct response of the convective mass flux shown in Fig. 8. The327

difference between precipitation water profiles might have a significant impact on model re-328

sults once an interactive radiation scheme is used in place of a prescribed radiative cooling329

applied in current simulations.330

SSTSP framework significantly modifies the spatial distribution of convection and related331

statistics. The differences in cloudiness are associated with different spatial distributions of332

the time-averaged precipitable water content, cloud top temperature and precipitation rate,333

as shown in Figure 10, respectively, with their mean values given in Table 1. As the figures334

document, SSTSP simulations are characterized by significantly narrower distributions of all335

the quantities. In the CRM simulation, central 10,000 km is characterized by the mean cloud336

top temperature around 288 K, precipitable water around 75 kg m−2, and surface precipita-337

tion around 0.45 mm hr−1. All distributions are relatively flat and feature steep gradients338

at the edges of the warm pool with the mean precipitation dropping below 0.1 mm hr−1 and339

mean cloud top temperature increasing to around 300 K. SSSTP simulations, on the other340

hand, are characterized by narrow distributions, with peaks at the center and steep gradi-341

ents of the mean cloud top temperature and precipitation. These differences also occur in342

SSTSP11, that is, the SP simulation with neither time acceleration nor spatial compression,343

and thus are a general feature of the SP simulation.344

Because of the complicated impact of the time acceleration on diabatic processes, an in-345

trinsic feature of the SSTSP framework, it is impossible to rescale the cloud top temperature346

between CRM and SSTSP simulations. Increasing temporal acceleration leads more intense347

convective activity (c.f., Fig. 8), increased cloudiness and precipitable water, and decreased348

mean cloud top temperature (c.f., Table 1). These aspects of temporal acceleration have349

been pointed out by Pauluis et al. (2005) and they seem related to the way microphysical350
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processes (in particular fallout of rain) are handled. No acceleration of microphysical pro-351

cesses is applied here, potentially impacting the balance between processes responsible for352

moistening and drying the troposphere.353

In summary, SSTSP framework appears to simulate 2D Walker circulation qualitatively354

well. In particular, mean large-scale flow consists of deep overturning circulation (first baro-355

clinic mode) and mid-tropospheric jet (second baroclinic mode). Deep convection occurs356

primarily over the warm pool, and subsidence regions are dominated by shallow convection.357

However, detailed comparison reveals systematic differences in the model mean state. These358

differences are mainly artifacts of the original implementation of SP, without significant359

drawbacks of the SSTSP framework. The artificial scale separation between large-scale and360

small-scale models and periodicity of small-scale models impose significant limitations on361

the flow field in the small-scale domain (e.g., vanishing mean mass flux) and subsequently362

on the simulated convection and its organization. Convective feedback to large-scales and363

mean large conditions are modified accordingly.364

b. Transients365

SPMG document several transient features occurring in CRM simulation. The large-366

scale flow is characterized by low-frequency variability featuring 20-day oscillations with367

alternating periods of strong and weak overturning circulation. The strong circulation phase368

is associated with intense convection and expansion of the large-scale convergence region369

over the warmest SSTs. The weak circulation phase, on the other hand, features reduced370

convective activity and narrower convergence region. The expansion/compression of the371

convergence region coincides with synoptic-scale convective activity propagating from/to372

the centre of the domain with the average speed between 5 and 10 m s−1.373

Here, we investigate if SSTSP framework is capable of capturing these oscillations. Fig-374

ure 11 shows Hovmoeller diagrams of cloud top temperature for SSTSP12, SSTSP22 and375

SSTSP32 simulations, with the CRM simulation also included for the reference. The figure376
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shows that the variability in SP simulations is of similar character to that in the CRM sim-377

ulation. However, the zigzag pattern formed by very cold tops of convective cloud systems378

propagating toward and then away from the convergence region apparent in the CRM simu-379

lation is less coherent in the SP model. The coherency decreases with the increase of spatial380

compression and temporal acceleration. Less coherent propagation of convective systems (in381

comparison to the CRM simulation) happens even for the SP simulations with no spatial382

compression and temporal acceleration (not shown). This is consistent with the fact that383

coherent propagation of convective-scale features across the SP model grid is more difficult384

than in the CRM model because cloud-scale models communicate only through the large-385

scale model dynamics. Another feature apparent in Fig. 11 is that convection seems to be386

more localized in the center of the domain as already documented in Figs. 10 to 11.387

c. Low-frequency variability388

Low-frequency variability in the CRM simulation has been analysed in detail in SPMG.389

There, we apply the Empirical Orthogonal Function (EOF) analysis and develop an index of390

the low-frequency variability. Subsequently, we construct composite of low-frequency vari-391

ability with lag-regression analysis applying the index. We analyse reconstructed fields of dif-392

ferent dynamical variables and describe the low-frequency oscillation. We find low-frequency393

variability of 20 days period, triggered by anomalously intense deep convection over warm394

pool. This, in turn, is the consequence of large-scale horizontal advection of anomalously395

moist air from the subsidence region after the period of moisture buildup through anoma-396

lously intense shallow convection.397

Here, we investigate if the low-frequency variability is captured applying the SSTSP398

framework by applying the same methodology as for the CRM simulation in SPMG. First,399

we perform EOF analysis for the last 290 days of large-scale surface wind data with 1-400

hour temporal resolution. Subsequently, for every SSTSP simulation, we analyze the low-401

frequency variability applying the principal component of the leading EOF (see section 4402
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in SPMG). Table 2 presents main characteristics of the leading EOF for various SSTSP403

simulations and for the CRM simulations from SPMG. All SSTSP simulations exhibit a404

dominant mode of low-frequency variability corresponding to a strengthening/weakening of405

the low level flow as identified previously for the CRM simulation in SPMG. Power spectrum406

peaks for the period in between 23-26 days and compares reasonably well with the 20-407

day period of the CRM simulation. It thus appears that SSTSP framework captures the408

variability corresponding to intra-seasonal frequency band, with the variability responsible409

for a significant percent of the total variance as in the CRM simulation. Overall, SSTSP410

simulations with larger spatial compression or temporal acceleration tend to exhibit lower411

total variance. SSTSP23 and SSTSP24 simulations feature the closest variance to the CRM412

simulation.413

In order to characterize low-frequency oscillation in more detail, composites of low-414

frequency variability were constructed by regressing various variables on the leading EOF415

principal component as described in SPMG. All SSTSP simulations reproduce phases of416

the low-frequency oscillation, with the exemplary composite of the horizontal velocity for417

SSTSP22 simulation shown in Figs. 12 and 13. Fig. 12 can be compared to Fig. 8 in SPMG,418

whereas Fig. 15 can be compared to panels (a) in Figs. 9 to 12 in SPMG. As in SPMG, the419

low-frequency oscillation consists of 4 phases, namely suppressed, strengthening, active and420

decaying. The mechanism behind low-frequency oscillation is robust and it is reproduced421

in all SSTSP simulations. As in the CRM simulation, large-scale advection of moisture is422

correlated with oscillations of convective activity and large-scale circulation. Suppressed423

phase is characterized by weak large-scale overturning circulation and decreasing deep con-424

vective activity in the central part of the domain. This, in turn, is associated with drier425

troposphere due to anomalously strong mid-tropospheric advection of dry air from the sub-426

sidence region and anomalously weak advection of moist surface air to the central part of427

the domain. At the same time, anomalously weak subsidence allows for moisture buildup428

over the subsidence region, as shallow convective activity intensifies. Circulation strength-429
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ens as low-tropospheric anomalously-moist air is advected to the central part of the domain430

and deep convection intensifies. As deep convective activity reaches its peak, troposphere431

warms and dries due to the latent heat release and intense precipitation. The decaying432

phase follows when the central region dries out because of the intense precipitation, and it433

is accompanied by a strong mid-tropospheric jet bringing dry air from the subsidence region434

and advection of anomalously dry low-tropospheric air as shallow convection weakens due435

to strong subsidence.436

4. Discussion and conclusions437

The primary purpose of this paper is to evaluate sparse space-time superparameterization438

(SSTSP) introduced in Xing et al. (2009). SSTSP extends the original superparameteriza-439

tion (SP) approach, where convective processes are simulated explicitly by a cloud-resolving440

model embedded in every large-scale model column. The motivation behind SSTSP comes441

from the quest for computationally effordable and statistically accurate simulations of large-442

scale scale circulations that crucially depend on convective activity. SSTSP addresses this443

issue by significantly reducing cloud-resolving calculations and at the same time assuring its444

statistically accurate small-scale (convective) feedback. The feedback is obtained by rescal-445

ing statistics from cloud-resolving calcuations over time- and horizontal-domain spans that446

are reduced relatively to the large-scale time and space resolutions.447

Xing et al. (2009) perfomed initial tests of the SSTSP methodology. They conducted448

idealized simulations of a squall line within 1000-km horizontal domain for a 6-hour period.449

It was shown that SSTSP captures propagation of a squall line across the domain, with the450

propagation speed controlled by the prescribed shear. Here, we evaluate SSTSP framework451

for idealized Walker cell setup. This is a more complex case than in Xing et al. (2009)452

because it features a wider range of spatio-temporal scales, up to planetary scales and time453

periods up to several tens of days. In contrast to Xing et al. (2009), larger-scale flow can454
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evolve in response to feedbacks from moist convection, and in turn it can affect subsequent455

convective development. We evaluate the performance of the SSTSP algorithm by comparing456

solutions to those obtained applying the cloud-resolving model (CRM) described in Slawinska457

et al. (2013; SPMG).458

We find that SSTSP is capable in reproducing key characteristics of the cloud-resolving459

Walker cell simulation. In agreement with CRM results, the mean state features the first460

and second baroclinic modes with deep convection over high SST organized into propagat-461

ing systems. The properties of these convective systems (e.g., structure, propagation) are462

affected by the horizontal extent of SP cloud-resolving domains. This is an artifact of the463

periodicity of embedded cloud-resolving models that cannot be avoided. SSTSP captures464

intra-seasonal variability predicted by the CRM model that consists of 4 distinctive stages465

- suppressed, intensification, active and weakening phase - along with the mechanisms driv-466

ing them. Differences in convective evolution and propagation result in some differences467

between SSTSP and CRM simulations, such as in the mean sounding, spatial distribution468

of the cloudiness and surface precipitation, or in the spatio-temporal characteristics of the469

low-frequency oscillation. Differences in the mean cloudiness (cf. Fig. 9) will most likely be470

accentuated when interactive radiation transfer scheme is used, an aspect not addressed in471

the current study.472

Numerical simulations discussed here can be put in the context of those discussed in473

Grabowski (2001; G01 hereafter). Section 3 of G01 presented SP simulations of a 2D flow474

driven by large-scale SST gradients, although of a significantly smaller horizontal extent475

(computational domain of 4,000 km in G01 rather than 40,000 km here and in SPMG). SP476

simulations in section 3 of G01 were compared to CRM simulations discussed in Grabowski et477

al. (2000). G01’s SP simulations used various horizontal gridlengths of the large-scale model478

(from 20 to 500 km; referred to as P20 and P500, respectively) with the horizontal extent of479

the embedded periodic-horizontal-domain CRM model matching the large-scale model gri-480

dlength. G01 results documented a significant impact of the specific setup of the SP model481
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configuration (i.e., from P20 to P500), especially for the mesoscale convective organization482

(cf. Fig. 8 therein). In contrast, SP simulations presented here feature just a single 48-km483

horizontal gridlength of the large-scale model and explore the impact of SSTSP methodol-484

ogy. Such a gridlength can be argued to follow a recommendation of Grabowski (2006a)485

who suggested that the SP approach is better suited for large-scale models with horizontal486

gridlengths in the mesoscale range (i.e., a few tens of km). This is because, in the mesoscale487

gridlength case, the embedded SP models represent effects of small-scale convective motions488

only, and the convective mesoscale organization (e.g., into squall lines) can be simulated by489

the large-scale model. Both convective and mesoscale circulations have to be represented490

by the SP model when the large-scale model gridlength is hundreds of km, as in typical491

global climate applications (e.g., Khairoutdinov et al. 2005, DeMott et al. 2007, among oth-492

ers). Section 4 of G01 applies the SP methodology to the problem of large-scale convective493

organization on an idealized constant-SST (”tropics everywhere”) aquaplanet. Although494

not emphasized there, the SP aquaplanet simulations (as well as subsequent studies, e.g.,495

Grabowski 2006b) already apply the spatial compression methodology because of the dis-496

parity between large-scale model gridlength and the horizontal domain size of the embedded497

CRM model.498

The obvious main drawback of the SP approach is that every cloud-resolving model is in-499

dependent of each other and communicating solely by the large-scale model dynamics (i.e.,500

through the large-scale forcings). The key point is that cloud systems cannot propagate501

directly from one large-scale gridbox to the other, but they remain locked in a single large-502

scale gridbox because of the periodic lateral boundary conditions. As discussed by Jung and503

Arakawa (2005), periodic lateral boundary conditions require the mean mass flux to vanish.504

As a result, updrafts get weaker as the horizontal extent of the cloud-resolving domain de-505

creases. Large-scale thermodynamical fields are also modified, for instance, the lower/upper506

troposphere becomes moister/drier. This key drawback of the SP (and thus SSTSP) ap-507

proach was also noted in other studies (e.g., G01) and it is evident in our simulations.508
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To overcome these limitations, Jung and Arakawa (2005) suggest an alternative approach509

where periodic boundary conditions are abandoned and the adjacent cloud-resolving mod-510

els are linked allowing propagation of small-scale perturbations from one large-scale model511

gridbox to another. Such an approach is relatively straightforward in a 2D large-scale model512

framework, but it requires more complicated parallel-processing methods as opposed to “em-513

barassingly parallel” logic of the original SP. Perhaps more importantly, this simple idea514

leads to a significantly more complex methodology when implemented into a 3D large-scale515

model (cf. Jung and Arakawa 2010). Considering these factors, we feel that the traditional516

SP/SSTSP methodology can still serve as a valuable technique in large-scale models featur-517

ing mesoscale horizontal gridlengths and variable orientation of SP cloud-resolving models518

(cf. Grabowski 2004). We hope to report on such numerical experiments in forthcoming519

publications.520
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Table 1. Mean precipitable water content (prw; in kg m−2)), cloud top temperature (cltop;
in K) and precipitation (precip; in mm hr−1).
px pt prw cltop precip
11 53.8 297.3 0.128
12 54.2 294.4 0.130
13 54.6 291.9 0.133
14 54.8 290.0 0.133
21 51.0 297.3 0.122
22 51.1 294.5 0.123
23 51.4 292.4 0.125
24 51.1 290.5 0.125
31 47.0 297.5 0.108
32 47.2 295.2 0.110
33 47.3 293.0 0.111
34 47.6 291.3 0.111

CRM 55.9 296.5 0.157
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Table 2. Eigenvalue periods of the first EOF for the surface wind time series and standard
deviation of its principal component. Simulations with SSTSP algorithm (with px and pt as
given in the first column). CRM results are included in the bottom row.
px pt eigenvalue period (days) standard deviation
11 0.51 24 157
12 0.53 26 154
13 0.54 24 159
14 0.42 24 133
21 0.41 26 117
22 0.29 24 85
23 0.39 26 108
24 0.33 26 95
31 0.29 24 86
32 0.22 23 71
33 0.18 23 62
34 0.18 26 63

CRM 0.36 20 88
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Fig. 1. a) Time averaged horizontal velocity field (m s−1) for CRM. b-g) Time averaged
horizontal velocity field (m s−1) for SSTSP11/SSTSP22/SSTSP33 (top/middle/bottom left)
simulations and their difference from the CRM simulation (top/middle/bottom right).
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Fig. 2. Difference in the mean profiles of the potential temperature (K, left) and
the water vapour mixing ratio (kg kg−1, right) between SSTPS11/SSTSP21/SSTSP31
(red/green/black line) and the CRM simulation.
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Fig. 3. Difference in mean profiles of the potential temperature (K, top) and the
water vapour mixing ratio (kg kg−1, bottom) between SSTSP11/SSTSP21/SSTSP31
(left/middle/right) and SSTSP simulation with the same spatial acceleration px and tempo-
ral acceleration pt=2/3/4 (dotted/dashed/dashed-dotted lines), respectively.
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Fig. 4. Spatial distribution of the difference in the time averaged potential temperature
field (K) for the SSTSP11/SSTSP22/SSTSP33 (top/middle/bottom) simulation and the
CRM simulation.
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Fig. 5. Spatial distribution of the difference in the time averaged field of the water vapor
mixing ratio (kg kg−1) for the SSTSP11/SSTSP22/SSTSP33 (top/middle/bottom) simula-
tion and the CRM simulation.

36



Fig. 6. Spatial distribution of the time averaged cloud water mixing ratio (kg kg−1) for
SSTSP11/SSTSP22/SSTSP33 (top/middle/bottom) simulations.
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Fig. 7. Mean (time and space averaged) profiles of the cloud water mixing ratio (kg
kg−1). Red/green/black lines are for simulations with spatial compression px=1/2/3, re-
spectively. Solid/dotted/dashed/dashed-dotted lines are for simulations with temporal ac-
celeration pt=1/2/3/4, respectively.
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Fig. 8. Mean (time and space averaged) mass flux profiles for simulation with spatial
compression 1 or 3 (red or black line) and temporal acceleration 1 or 3 (solid or dashed line).
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Fig. 9. As Fig. 8, but for the precipitation water water mixing ratio (kg kg1).
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Fig. 10. Time averaged horizontal distribution of precipitable water (kg m−2, top), cloud
top temperature (K middle) and precipitation (mmh−1, bottom), for CRM (solid magenda
line), SSTSP11 (solid red line), SSTSP22 (dotted green line) and SSTSP33 (dashed black
line). Mean values for all simulations are given in Table 1.
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Fig. 11. Hovmoller diagrams of the cloud top temperature for CRM (top left), SSTSP12
(top right), SSTSP22 (bottom left) and SSTSP32 (bottom right) simulations.
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Fig. 12. Hovmoller diagrams of the lag regression of the surface wind (m s−1; upper panel),
surface precipitation rate (mm h−1; middle panel)x), and precipitable water (kg m−2; bottom
panel) for SSTSP22 simulation.
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Fig. 13. Lag-regressed structure of the horizontal velocity anomaly for (a) suppressed phase,
(b) strengthening phase, (c) active phase, and (d) decaying phase for SSTSP22 simulation.
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