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Abstract

This is a research expository paper regarding superparameterization, a class of multi-scale numerical methods
designed to cope with the intermittent multi-scale effects of inhomogeneous geophysical turbulence where
energy often inverse-cascades from the unresolved scales to the large scales through the effects of waves,
jets, vortices, and latent heat release from moist processes. Original as well as sparse space time superpa-
rameterization algorithms are discussed for the important case of moist atmospheric convection including
the role of multi-scale asymptotic methods in providing self-consistent constraints on superparameteriza-
tion algorithms and related deterministic and stochastic multi-cloud parameterizations. Test models for
the statistical numerical analysis of superparameterization algorithms are discussed both to elucidate the
performance of the basic algorithms and to test their potential role in efficient multi-scale data assimilation.
The very recent development of grid-free seamless stochastic superparameterization methods for geophysical
turbulence appropriate for “eddy-permitting” mesoscale ocean turbulence is presented here including a gen-
eral formulation and illustrative applications to two-layer quasigeostrophic turbulence, and another difficult
test case involving one-dimensional models of dispersive wave turbulence. This last test case has randomly
generated solitons as coherent structures which collapse and radiate wave energy back to the larger scales,
resulting in strong direct and inverse turbulent energy cascades.
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1. Introduction

One of the foremost challenges of modern applied mathematics is to guide successful strategies for
parameterizing unresolved scales in computational models of multi-scale turbulent systems without scale
separation. Examples of such systems include oceanic and atmospheric fluid dynamics, mantle convection,
turbulent generation of magnetic fields, confined plasmas, and many others. In many of these systems
direct resolution of all relevant scales in numerical simulations is impossible given current computers and
will remain so for the foreseeable future. The difficulty is confounded by the need to run large ensembles of
simulations for state estimation, and to quantify the uncertainty in predictions.

The complexity of anisotropic turbulent processes over a wide range of spatial and temporal scales in
atmospheric and oceanic flows requires novel computational strategies, even with the current and next
generation of supercomputers. This is particularly important since the effects of rotation, stratification, and
moist processes in such anisotropic turbulent flows often cause energy to flow intermittently upscale from
small unresolved or marginally resolved scales to affect the largest observed scales [1]. Atmospheric weather
and climate processes cover about ten decades of spatial scales, from a fraction of a millimeter to planetary
scales. A similarly staggering range of interconnected scales characterizes the oceanic circulation. While the
smaller scales (of order millimeters to tens of meters) are comparatively less complex, as they fall within
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the inertial range of turbulence, scales above this range and up to the planetary scales are dominated by
myriad intermittent and anisotropic turbulent processes that cannot be described by traditional closures.
For example, atmospheric motions on scales between 100 meters and 100 kilometers show an abundance of
processes associated with dry and moist convection, clouds, waves, and boundary layer, topographic, and
frontal circulations. Oceanic scales from tens of meters to hundreds of kilometers display a similar range
of behaviors, albeit with less prominent phase transitions, and with a density that depends nonlinearly on
temperature and salinity.

On the atmospheric side, a major stumbling block in the accurate prediction of weather and short term
climate on the planetary and synoptic scales is the accurate parameterization of moist convection. Moist
convective processes involve intermittency in space and time due to complex evolving chaotic and quiescent
regions, without statistical equilibration and with only moderate scale separation, so that traditional tur-
bulence closure modeling fails [2–4]. Cloud-resolving models (CRMs) realistically represent convective-scale
and mesoscale processes with fine computational grids. However, due to their extremely high computational
cost, they cannot be applied to large ensemble-size weather prediction or climate simulations. This state
of affairs, unfortunately, will remain for the foreseeable future. In ocean models used for coupled climate
simulations, the situation is arguably even worse. Here, the computational grid is typically on order 100
km, near the spectral peak of the oceans’ kinetic energy (which is dominated by baroclinic eddies somewhat
larger than the deformation scale). Eddy-permitting simulations for ocean-only process studies are now
becoming common [5], but even these leave a vast frontier of scales, from order 50 km down to the 10 meter
scale where inertial range turbulence finally takes over, almost completely unaddressed. Furthermore, the
ocean mesoscale contains complex patterns of waves, jets, and vortices which inverse-cascade energy to the
large scales while the submesoscale involves fronts and small regions of intense vertical mixing.

The complexity of these problems motivates the development of novel approaches to directly address
the multi-scale nature of the problem. In atmospheric modeling, superparameterization (SP), called cloud-
resolving convection parameterization (CRCP) in its initial application [6–10], uses a horizontally periodic
two-dimensional cloud-system-resolving model in each column of a large-scale model to explicitly represent
small-scale and mesoscale processes, and interactions among them. In this context, SP blends conventional
parameterization on a coarse mesh with detailed cloud-resolving modeling on a finer mesh. This approach
has been shown to be ideal for parallel computations on supercomputers and has yielded promising new
results regarding tropical intraseasonal behavior [6–8, 11]. However, conventional SP is still too expensive
to use in large ensemble operational settings. The SP approach to convective parameterization in the atmo-
sphere is powerful and invites application of SP to a broader array of problems in climate-atmosphere-ocean
science such as mesoscale and submesoscale eddies in the ocean and gravity wave drag in the atmosphere,
as well as other science and engineering problems. However, the particular approach of CRCP is difficult
to replicate because of the ad hoc nature of its development. Recently however, the authors and collabora-
tors have shown how multi-scale models may be exploited to enable systematic, formal development of SP
schemes [12–18].

Filtering or data assimilation is the process of obtaining the best statistical estimate of a natural system
from partial or noisy observations of the true signal from nature. In many contemporary applications
in science and engineering, real time filtering of a turbulent signal from nature involving many degrees
of freedom is needed to make accurate predictions of the future state. This is obviously a problem with
significant practical impact. Important contemporary examples involve the real time filtering and prediction
of weather and climate as well as the spread of hazardous plumes and pollutants or the prediction of storm
surges in environmental science and engineering. Thus, an important emerging scientific issue is the real
time filtering through models of noisy observational signals of turbulent nonlinear dynamical systems as
well as the statistical accuracy of spatio-temporal discretizations for filtering such systems. See the recent
review article [19], as well as the introductory graduate textbook [20] and the many references therein.
From the practical standpoint, the demand for operationally practical filtering methods escalates as the
model resolution is significantly increased. In the coupled atmosphere-ocean system, the current practical
models for prediction of both weather and climate involve general circulation models where the physical
equations for these extremely complex flows are discretized in space and time and the effects of unresolved
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processes are parameterized according to various recipes; the result of this process involves a model for the
prediction of weather and climate from partial observations of an extremely unstable, chaotic dynamical
system with several billion degrees of freedom. These problems typically have many spatiotemporal scales,
rough turbulent energy spectra in the solutions near the grid scale, and a very large dimensional phase
space yet real time predictions are needed. There is an inherently difficult practical issue of small ensemble
size in filtering statistical solutions of these complex problems due to the large computational overload in
generating individual ensemble realizations through the forward dynamical operator.

The above discussion motivates the need for systematic mathematical ideas in devising algorithms for
SP and multi-scale filtering/data-assimilation for large-dimensional turbulent dynamical systems, as well as
new types of statistical/stochastic numerical analysis to assess the skill of various proposed algorithms. The
general mathematical approach to SP for large-dimensional turbulent dynamical systems advocated here is
a four-stage process [15]:

1. Multi-scale formulation: A multi-scale physical/mathematical formulation into large scale mean and
smaller scale fluctuating components in space-time (for examples, see [12, 13, 21–26] and references
therein).

2. Small-scale model: A mathematical model to represent the behavior of the smaller scales, typically
involving a spatial periodic approximation and an imposed scale-gap (see [10, 14]).

3. Computational strategies to reduce the cost of the small scale models by making judicious model
errors: Mathematical algorithms that allow for computationally efficient but statistically accurate
implementation of the small-scale model as a SP algorithm in a larger scale model [10, 25]. This can be
implemented by replacing more expensive three-dimensional models by much simpler two-dimensional
[6, 27] or even cheaper stochastic models [16–18, 28–33].

4. A posteriori validations of the SP approximations: the accuracy of the approximations made during
steps (ii) and (iii) must be evaluated, with particular attention on the ability of the SP algorithm to
capture multi-scale interactions.

The multi-scale SP methods discussed here can be contrasted with recent complementary ideas in applied
mathematics. In the work of one of the authors and collaborators [12, 13] a theoretical link has been estab-
lished between SP algorithms and heterogeneous multi-scale methods (HMM) [34–36]. However, as noted
in [12, 13], while HMM is proposed as a general method, there are significant differences in the regimes of
nonlinear dynamics being modeled by SP algorithms as compared with the actual implemented applications
of HMM. A key difference between SP and HMM lies in that while reduced HMM time-steppers have been
analyzed and applied for various physical systems with wide scale separation (three or more orders of mag-
nitude), and rapid local statistical equilibration in time, the skill and success of SP algorithms relies on the
intermittency in space and time of physical systems with complex evolving strongly chaotic and quiescent
regions, without conditional statistical equilibration of the small scales, and with only modest values of scale
separation (less than an order of magnitude). Another related mathematical tool is the so-called gaptooth
scheme ([37] and references therein). The gaptooth method has formal similarity with SP but only works
well on problems with an inertial manifold and for systems in which most modes are strongly decaying.
The SP methods discussed here, by contrast, work in the strongly wave-like unstable regimes where there is
intermittency and without local equilibration, let alone an inertial manifold, as shown in Majda and Grote
[14], and more fully in [38]. That work ([14]) introduces a class of mathematical test models for SP that are
simple enough to be analyzed with large confidence, yet reveal essential mechanisms and features of both
SP and HMM numerical algorithms. This non-classical numerical analysis of model test problems provides
firm mathematical underpinnings for the proposed new algorithms. Such test models can be designed in
any physical context following the recipe developed there. The emphasis is on models with intermittent
strongly unstable fluctuations and only moderate scale separation without statistical equilibration, so that
more traditional numerical closure methods such as HMM cannot be applied.

The goal of this paper is to provide a current perspective and overview of recent developments in SP
algorithms and their numerical analysis. We also briefly mention connections with multi-scale filtering/data
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assimilation. In section 2 we discuss current perspectives on SP for moist convection, an important and
difficult contemporary application for climate science and long range weather forecasting [39], as well as
the original and traditional arena for SP ideas. Section 3 presents a new general framework for seamless,
efficient stochastic SP, discusses some idealized mathematical test models for statistical numerical analysis
of stochastic SP and other multiscale algorithms, and reviews very recent formulations and applications
of stochastic SP algorithms for geophysical turbulence [16–18] which are appropriate for mesoscale and
submesoscale ocean turbulence. Section 4 is a brief concluding discussion.

2. Superparameterization and Moist Atmospheric Convection

As mentioned in the introduction, superparameterization was originally developed to improve the rep-
resentation of moist atmospheric convection, one of the most significant deficiencies of operational climate
and long range weather forecasting models [39]. Here we briefly discuss the original superparameterization
(SP) algorithm [6, 7], as well as more recent sparse space time superparameterization (SSTSP) algorithms
[10] that reduce the computational effort of the original SP by solving in smaller embedded domains of
space-time and utilizing space-time periodic extension while retaining statistical accuracy. We also present
an example of using systematic multi-scale modeling [13] to reveal natural algorithmic constraints in SP.
Finally, we briefly discuss recent progress in alternative formulations involving deterministic and stochastic
multi-cloud parameterizations that can be blended with SP.

2.1. Superparameterization and Sparse Space Time Superparameterization Algorithms

Superparameterization was originally developed as a ‘cloud resolving convection parameterization’ (CRCP)
by Grabowski and Smolarkiewicz [6]. The idea is to use a 2D cloud resolving model (CRM) in each col-
umn of a large-scale model to explicitly represent mesoscale and smaller processes and their interactions
with the large-scale model. It blends conventional parameterization on a coarse mesh with detailed CRM
on a finer mesh. This approach is ideal for modern supercomputers because the CRMs embedded in the
large-scale grid are independent of each other and can be run in parallel. The method has yielded promis-
ing new results regarding tropical intraseasonal behavior and has potential for many other applications in
climate-atmosphere-ocean science [7, 8, 11, 27, 40–49].

There is a crucial difference between applying SP in a climate model (grid length of a few hundreds of
km) and in a limited-area mesoscale (LAM) model (grid length of a few tens of km). The key difference
is that in the former case the 2D CRM is representing both convective and mesoscale dynamics, while in
the latter case only convective dynamics have to be treated by the SP model [50]. This has far-reaching
implications. An obvious one is that the outer model time step is much shorter in the case of the LAM
model (a couple minutes) than in the climate model (tens of minutes). This is important because a time
step of a few minutes is significantly shorter than the lifetime of a single convective cell (typically quoted
as 20 minutes [51]). This is not the case for the climate model. A similar argument can be made for the
size of the domain of the SP model. In the climate model case, the fact that SP has to treat mesoscale
dynamics implies that the domain cannot be too small. But for the convective scale only, as in the LAM
case, it might be possible that the domain can be as small as to host just a single chaotic convective cell.
While the original SP was designed for coarse meshes of order a few hundred kilometers, sparse space-time
superparameterization (SSTSP) is designed for operational coarse meshes of order 10 to 50 km.

2.2. The Original Superparameterization Algorithms

The strategy underlying the SP approach on mesoscales is to consider two distinct models coupled in a
particular way. The first is a 3D large-scale flow model (e.g. a LAM or a general circulation model [GCM]).
The large-scale model uses a horizontal grid length of a few hundreds of kilometers in a GCM case and a few
tens of kilometers in a LAM case. The second model is a 2D cloud-scale model formulated on the x-z plane
aligned east-west and embedded in each column of the large-scale model. Cloud-scale and large-scale models
use the same vertical grid. The cloud-scale model is applied on a sufficiently fine horizontal grid (e.g. 1 km)
in order to permit moist convective dynamics. The cloud-scale model is periodic in the horizontal.
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The large-scale model employs moist anelastic equations, for example (see also [10]). The anelastic
system of equations can be written compactly as

DU

Dt
= −∇Π+ kgB + iFU

CS

∇ · (ρ0U) = 0

DΘ

Dt
= FΘ

CS

DQv

Dt
= FQv

CS

DQc

Dt
= FQc

CS

DQp

Dt
= F

Qp

CS . (1)

In (1), U = (U, V,W ) is the large-scale fluid velocity in the east, north, and upwards directions, respectively;
Θ is potential temperature, and Qv, Qc, and Qp are the mixing ratios for water vapor, cloud condensate
(i.e. condensed water carried by the flow), and precipitation (condensed water that falls relative to the air).
Here D/Dt = ∂t+U ·∇; Π is the pressure perturbation with respect to a balanced ambient state, normalized
by the anelastic reference density ρ0. The buoyancy is B = (Θ − Θe)/Θ0 + ǫ(Qv −Qve) −Qc −Qp, where
Θe and Qve are ambient potential temperature and water vapor mixing ratios, Θ0 is the reference potential
temperature profile, ǫ + 1 is the ratio of gas constants of water vapor and dry air. The FCS terms in the
right-hand side of (1) represent the cloud-scale model feedback which involve turbulent eddy flux-divergences
and other nonlinear averages of small scale fluctuations [12, 13, 21].

The anelastic equations of the cloud-scale model are

du

dt
= −∇′π + kgb+ i(su + fu

LS)

∇′ · (ρ0u) = 0

dθ

dt
=
θe
Te

[

Lv

cp
(CON +DEP ) + r

]

+ sθ + fθ
LS

dqv
dt

= −CON −DEP + sqv + f qv
LS

dqc
dt

= CON −ACC −AUT + f qc
LS

dqp
dt

=
1

ρ0
∂z(ρ0vtqp) +ACC +AUT +DEP + f

qp
LS , (2)

where the lowercase symbols have the same meaning as their uppercase counterparts in equation (1). We
denote two-dimensionality by ∇′ = (∂x, ∂z) with d/dt = ∂t+u ·∇′. The terms fLS represent the large-scale
forcing for the cloud-scale model; Lv and cp are the latent heat of condensation and the specific heat at
constant pressure; and θe and Te are the environmental potential temperature and temperature profiles. The
sources on the right-hand side of (2) describe the formation of cloud condensate from water vapor (CON),
autoconversion of cloud condensate into precipitation (AUT ), accretion of cloud condensate by precipitation
(ACC), and source/sink of precipitation due to deposition/evaporation of water vapor on/from precipitation
particles (DEP ). These sources are represented using the simple scheme of Grabowski [52].

We denote the large scale variables by Q (representing a collection of U , Θ, Qv, etc), and small scale

variables by q. The coupling formalism of the large-scale and cloud-scale models is through the terms FQ
CS

and f q
LS. In the original superparameterization implementation, the large scale models are solved from time

T to T +∆T in the following way [8]

Q|n+1 = Q|n +∆T (AQ + SQ)|
n+1
n +∆TFQ

CS |
n, (3)
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where AQ ≡ −U · ∇Q denotes the large-scale advection term, SQ denotes the large-scale source terms

(e.g. pressure gradient, Coriolis acceleration, etc.), FQ
CS denotes the forcing due to small scale processes,

referred to as small-scale feedback, and the notation |n+1
n denotes the numerical time average of these terms.

The large scale forcing to the small scale models is defined as

f q
LS|

n =
Q|n+1 − 〈q|n〉

∆T
, (4)

where 〈·〉 represents the spatial average over the small scale domain. The small scale models are solved from
T to T +N∆t (∆T = N∆t is assumed) by

q|n+1 = q|n +∆t

N
∑

i=1

[

(aq + sq)|
i+1
i + f q

LS|
n
]

, (5)

where aq ≡ −u · ∇′q, sq represents small-scale sources (e.g. the surface drag for velocity or latent heating
due to phase changes, etc). Note that although the small scale models are solved for N steps within the big
time step ∆T , the same large scale forcing f q

LS|
n is employed at all small time steps inside a single big time

step. Finally, the small scale feedback is defined by

FQ
CS |

n+1 =
〈q|n+1〉 −Q|n+1

∆T
. (6)

2.3. The Sparse Space Time Superparameterization Algorithms

Given the large scale time step ∆T and large scale spatial mesh ∆X , the original SP algorithm solves a
small scale model on a 2D embedded, horizontally-periodic domain with width ∆X for N small time steps
with ∆t = ∆T/N where ∆t is the time step of the small scale model. Savings are achieved by the dimensional
reduction to 2D in the small scale models and the massively parallel nature of the algorithm. In the SSTSP
algorithms, the small-scale model is solved on a spatially periodic domain of reduced size ∆X/p for a reduced
number of small-scale time steps N/p where N = ∆T/∆t; here p can be any integer divisor of N . Thus,
the SSTSP-p algorithms are on the order of p−2 more efficient for the small-scale models than the original
SP algorithm. For example, for ensemble prediction or data assimilation, p2 ensemble members of SSTSP-p
can be generated for roughly the same cost of one SP ensemble member – a significant increase in ensemble
size. This assumes that the computational cost associated with the small scale models dominates the cost
associated with the large scale model, which is the typical situation.

Following the formulation of the original SP in the foregoing section, we summarize and present the
efficient sparse space-time algorithms for superparameterization (SSTSP) below:

• The large scale models are first updated by

Q|n+1 = Q|n +∆T (AQ + SQ)|
n+1
n +∆TFQ

CS|
n. (7)

• Define the new large scale forcing, with the spatial average over a ∆X/p periodic domain

f q
LS|

n = p
Q|n+1 − 〈q|n〉

∆T
. (8)

• The small scale models are next updated by

q|n+
1

p = q|n +∆t

N/p
∑

i=1

[

(aq + sq)|
i+1
i + f q

LS|
n
]

. (9)
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Figure 1: Contours of the surface precipitation from different simulations for the forced propagating squall lines. Clockwise
from top left: CRM, SP, SSTSP-3, and SSTSP-6.

• The eddy state at T + (N/p)∆t is used to define the eddy feedback

FQ
CS |

n+1 =
〈q|n+

1

p 〉 −Q|n+1

∆T
(10)

and the eddies at T +N∆t are re-initialized using q|n+1 = q|n+
1

p .

Note that the same parameter p is used here to reduce the spatial and temporal size of the embedded
domains, but this is not essential. As shown in detail in Xing et al. [10], this SSTSP-p algorithm can be
interpreted as solving the small scale model on a periodic spatial domain of length ∆X/p for a time ∆T/p
and performing a space-time periodic extension.

In [10] a stringent test bed was used to evaluate the computational performance of the SSTSP algo-
rithms. Four different initial large scale background shears are used to generate squall lines. Squall lines are
important organized mesoscale convective systems which convert moist available potential energy to kinetic
energy via interactions of moisture and shear on at least two scales ([21] and references therein). In [10] the
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Figure 2: Contours of the surface precipitation from different simulations for the dying scattered convection a = 0.3. Clockwise
from top left: CRM, SP, SSTSP-3, and SSTSP-6.

ambient shears are given by

Ū(z) =

{

10a
(

cos
(

πz
12

)

− cos
(

πz
6

))

, if z < 12,
−20a, otherwise,

(11)

for a fixed coefficient a. Xing et al. [10] ran a non-parameterized squall line experiment with full CRM
resolution with grid spacing of 1 km for four different values of a = 1 (strong background shear), 0.8, 0.5,
and 0.3 (weak background shear). As a decreases the Richardson number increases [ref. 53, chapter 3]. It is
shown that a propagating squall line always emerges in the first three cases with the same speed [21] while
the weakest shear, a = 0.3, results in dying scattered convection.

Xing et al. [10] run the SSTSP-p algorithms with a small scale grid spacing of 1 km in the stringent test
suite above, where the large scale model has a grid scale ∆X = 32 km and a time step 6 times longer than
the high resolution reference simulations; the results are compared with the CRM and with the original
SP algorithm. (Running the large scale model on this coarsened mesh but completely ignoring the eddy
feedbacks gives no organized behavior in all cases [10].) It is shown in [10] that for all the regimes of
propagation and dying scattered convection, the large scale variables such as horizontal velocity and specific
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humidity are captured in a statistically accurate way (pattern correlations above 0.75) based on space-time
reduction of the small-scale models by a factor of 1/3; thus, the efficient SSTSP algorithms result in a gain
of roughly a factor of 10 in the efficiency of the small-scale component while retaining statistical accuracy on
the large scale variables. Even models with 1/6 reduction in space and time with a gain of 36 in efficiency
are able to distinguish between propagating squall lines and dying scattered convection with a pattern
correlation above 0.6 for horizontal velocity and specific humidity. Examples comparing the performance of
SSTSP-p with the CRM and original SP are presented in figure 1 for the precipitation in the propagating
squall line with a = 1 and in figure 2 for dying scattered convection with a = 0.3; both figures show
excellent performance of SSTSP-3 and SSTSP-6. These encouraging results suggest the possibility of using
these efficient new algorithms for mesoscale ensemble forecasting and data assimilation with coarse meshes
of order ∆X = 30 km. Slawinska et al. [54] have developed an interesting test bed involving a high resolution
CRM simulation of a Walker cell with intraseasonal multi-scale variability. An excellent topic for further
research is to check the SSTSP algorithms in these and other three-dimensional prototype simulations.

2.4. Algorithmic Constraints in SP Revealed Through Multi-Scale Analysis

In the introduction we advocated the use of multi-scale asymptotic analysis to guide the design of multi-
scale superparameterization algorithms. Such multi-scale models on scales appropriate for the original SP
or SSTSP have been developed in [12, 13] and provide a framework for solving two separate models on
different scales. For applications of multi-scale models to understand phenomena in the tropical atmosphere
see [22, 26]. Here we follow [13] and give a simple formal illustration of the use of multi-scale asymptotics
to constrain SP algorithms.

The multi-scale models in [13] for SP utilize the two natural spatial scales, the convective scale for (x, y)
with units of 10 km, and the mesoscale for (X,Y ) = ǫ(x, y) with units of order 100 km so ǫ ≈ 0.1 is a small
parameter. Consider the conservation of mass equation from equation (1),

1

ρ0
∂z(ρ0w) + ∂xu+ ∂yv = 0 (12)

in nondimensional units appropriate to the (x, y) convective scale where all three velocity components have
the same units of 10m/s in equation (12). With the two length scales described above it is natural to expand
the velocity field in two spatial scales (notation for dependence on time is suppressed)

uǫ(x, y, z) = u(ǫx, ǫy, z) + u′(x, y, ǫx, ǫy, z) +O(ǫ)

vǫ(x, y, z) = v(ǫx, ǫy, z) + v′(x, y, ǫx, ǫy, z) +O(ǫ)

wǫ(x, y, z) = w(ǫx, ǫy, z) + w′(x, y, ǫx, ǫy, z) +O(ǫ) (13)

where u varies only on the mesoscales (X,Y ) = ǫ(x, y) and · denotes a restriction to the large scales by
averaging over small scales. The fluctuations u′ are defined such that u′ = 0. Inserting the expansion (13)
into the mass conservation equation (12) and taking the average · yields

1

ρ0
∂z(ρ0w) + ǫ (∂Xu+ ∂Y v) + (∂xu′ + ∂yv′) = O(ǫ). (14)

In the multi-scale formalism (e.g. [13]) the fluctuations are assumed to grow sublinearly so that the average
of their derivative is smaller than order one. As a result, at leading order the multi-scale expansion becomes
the constraint on the vertical velocity

1

ρ0
∂z(ρ0w) = 0 or equivalently w ≡ 0 for all z. (15)

This means that vertical velocities w that vary only on the spatial mesoscales should be of the order 1 m/s,
i.e. a factor of ǫ smaller than the horizontal velocities of 10 m/s, which is consistent with observations.

For SP algorithms, the above multi-scale derivation imposes the constraint (15) on the large scales; this
condition is imposed on an ad hoc basis in the original SP of Grabowski [8] and multi-scale asymptotic
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analysis provides a systematic justification. More generally, multi-scale asymptotic analysis also improves
the coupling of large and small scales compared to the original ad hoc framework since it allows horizontal
derivatives of large scale variables to appear in the small scale equations; terms of this sort are absent
from the original formulation but are essential to certain types of eddy instability, including, for example,
baroclinic instability (e.g. [23, 24]). For more systematic uses of multi-scale asymptotics expanding the
formal treatment above to many other applications see [12, 13, 21–24, 26, 55] and references therein.

2.5. Deterministic and Stochastic Multi-Cloud Models

The SP and SSTSP algorithms discussed above are novel ways to improve operational coarse resolution
models (GCM parameterizations) for the interaction of clouds in the tropics. The encouraging results
described in section 2.3 for SSTSP-6 and shown in figures 1 and 2 where the horizontal direction of the
small scale embedded domains is discretized with only six grid points and where the small scale variables
are only evolved for one sixth of the coarse grid time step point toward an obvious fact that at that stage the
small scale models in SSTSP are acting as coherent random models to trigger and intermittently influence
the large scales. This suggests that the small scale models in SP or SSTSP might be replaced by much
cheaper systematic chaotic deterministic or stochastic models to capture the missing variability in tropical
convection. One of the central issues is how to restore the coherent variability of mesoscale systems on
coarse meshes. One way to do this is through deterministic [26, 56–58] and stochastic [30, 31, 59] multi-
cloud models which respect the potential organization of the three cloud types above the boundary layer,
congestus, deep, and stratiform. Indeed the deterministic multi-cloud model coupled to NCAR’s current
operational (HOMME) dry dynamical core already yields very realistic tropical variability with a coarse
mesh at the equator of 167 km in an idealized setting [58].

The stochastic multi-cloud model for tropical convection introduced by Khouider et al. [59] is a novel
approach to the problem of missing tropical variability in GCMs. The stochastic parameterization is based
on a Markov chain lattice model where each lattice site is either occupied by a cloud of a certain type
(congestus, deep, or stratiform) or it is a clear sky site. The convective elements interact with the large
scale environment and with each other through convectively available potential energy (CAPE) and middle
troposphere dryness. When local interactions between the lattice sites are ignored, a coarse grained stochastic
process that is intermediate between the microscopic dynamics and the mean field equations [29, 60, 61]
is derived for the dynamical evolution of the cloud area fractions. Besides deep convection, the stochastic
multi-cloud model includes both low-level moisture preconditioning through congestus clouds and the direct
effect of stratiform clouds including downdrafts which cool and dry the boundary layer. The design principles
of the multi-cloud parameterization framework are extensively explored in the deterministic version of the
model developed by Khouider and Majda [56, 57].

The stochastic multi-cloud convective parameterization introduced by Khouider et al. [59] in the context
of a single column model has been used recently to study flows above the equator without rotation effects
[30, 31]. The stochastic model dramatically improves the variability of tropical convection compared to the
conventional moderate and coarse resolution paradigm GCM parameterizations. This increase in variability
comes from intermittent coherent structures such as synoptic and mesoscale convective systems, analogs
of squall lines and convectively coupled waves seen in nature whose representation is improved by the
stochastic parameterization. Furthermore, the statistics of extreme precipitation events as observed in
nature are captured by the stochastic multi-cloud model [31]. Simulations with sea surface temperature
(SST) gradient yield a realistic mean Walker-cell circulation with plausible high variability. An additional
new feature of the new stochastic parameterization is a natural scaling of the model from moderate to coarse
grids which preserves the variability and statistical structure of the coherent features [30, 31]. These results
systematically illustrate, in a paradigm model, the benefits of using the stochastic multi-cloud framework
to improve deterministic parameterizations with clear deficiencies. In figure 3 we compare qualitatively the
precipitation patterns generated by the stochastic multi-cloud model and high resolution CRM simulations.

Finally, there is interesting and successful modeling of orogenic propagating precipitation generated by
methods which embed explicit convection [46, 63] in a multi-scale fashion; these models embed explicit
dipole heating in the vertical and this can mimic some features of organized convection in a fashion similar
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Figure 3: Surface precipitation patterns from simulations using the stochastic multi-cloud model [30] (left), and using a cloud-
resolving model (CRM) in a similar setup on a smaller domain [62] (right; figure reproduced with permission from [62]). Time
runs from top to bottom in both figures; vertical axes are labeled in units of days and horizontal axes in units of 1000 kilometers
(left) and kilometers (right).

to but more crudely than the multi-cloud models discussed earlier [26, 56–58]. There are also interesting
multi-scale stochastic models for incorporating convective momentum transport [64].

3. Seamless Stochastic Superparameterization Algorithms for Geophysical Turbulence

In this section we introduce a new and general mathematical framework for stochastic superparameteri-
zation, review idealized mathematical models for statistical numerical analysis of multi-scale algorithms, and
review recent applications of stochastic superparameterization to two multi-scale turbulent test problems.
The new framework is built on the intuition gained through the results of simulations using SP, SSTSP, and
the multi-cloud models, through multi-scale asymptotic analysis of SP, and through the mathematical test
model formulated by Majda and Grote [14]; the latter acts as a simplified setting in which to analyze the
mathematical structure of the new formulation, and of numerical methods used for its approximation.

In both SSTSP and the multi-cloud models, the details of the small-scale nonlinear dynamics are rep-
resented using very cheap, and very loose approximations. The example of SSTSP especially demonstrates
that in some cases it is not important to accurately resolve the details of the small-scale nonlinear eddy-eddy

11



interactions; nevertheless, since the small-scale dynamics are strongly nonlinear and turbulent, the eddy-
eddy nonlinearity cannot be ignored. The test model of Majda and Grote [14] (discussed in more detail
below) replaces the eddy-eddy nonlinearity by an additive Gaussian stochastic process conditional on the
local mean, which results in a computationally cheap small-scale model. Furthermore, [14] shows that the
periodic domains used in conventional SP can lead to poor representation of small scale instabilities, and
therefore poor representation of the coupling between the large and small scales, and demonstrates how this
can be avoided through the computationally efficient use of formally infinite embedded domains. But the
test model of [14] is only a test model and leaves open the question of how the ideas could be used to model
a real system.

One option for applying the ideas of [14] is to replace the nonlinear small-scale models of conventional SP
by quasilinear stochastic models. Multi-scale asymptotics (e.g. [13]) provides a mathematical framework for
developing coupled sets of equations for use in conventional SP, and the small scale equations derived from
this framework can be replaced by quasilinear stochastic approximations. This is a reasonable application
of the ideas of [14]. However, multi-scale asymptotics is not clearly applicable to turbulent physical systems
without scale separation. Thus, while multi-scale asymptotics may correctly describe the interaction between
very large and very small scales, it cannot describe the interaction between scales immediately above and
below the coarse grid scale, since these are not well separated, by definition. It is useful therefore to develop
a more flexible multi-scale mathematical framework for formally deriving equations to govern the large and
small scales in an SP algorithm.

In the next section we present just such a framework, based on the so-called point approximation, and
subsequently approximate the nonlinear eddy dynamics by a stochastic process using a Gaussian closure
[14, 15]; together these approximations form the basis of the stochastic SP algorithms described in recent
work by the authors [16–18]. We then show how the test model of [14] acts as an essential simplification of
stochastic SP that allows the mathematical and computational issues involved to be addressed directly, and
we close with some examples of stochastic SP applied to two different turbulent test problems [16–18].

3.1. A General Formulation of Stochastic Superparameterization

Following [15] we begin with a system of PDEs that governs the dynamics on all scales

∂tu = Lu+B(u,u) + S(u,u,u) + F (16)

where u(x, t) ∈ R
N , L is a linear operator (e.g. the Coriolis term), B(u,u) is a quadratic nonlinearity

(e.g. incompressible advection), S(u,u,u) is a cubic nonlinearity (e.g. compressible advection or moisture
terms), and F is external forcing.

We next separate into mean and eddies by applying a Reynolds average, denoted (·). Thus, the equation
for the mean u is

∂tu = Lu+B(u,u) + S(u,u,u) + F +T. (17)

The mean equation (17) is not closed because it depends on the eddies through

T = B(u′,u′) + [S2(u)](u′,u′) + S(u′,u′,u′). (18)

The above makes use of an ‘eddy’ variable defined by

u
′ = u− u (19)

and of the notation

[S2(u)](u
′) = S(u′,u′,u) + S(u′,u,u′) + S(u,u′,u′). (20)

The eddy equation is derived by subtracting the mean equation from the original equation

∂tu
′ = Lu′ +B(u′,u′) + [S2(u)](u

′,u′) + S(u′,u′,u′)−T+ F
′ (21)
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where

Lu′ = Lu′ +B(u,u′) +B(u′,u) + [S1(u)](u
′), (22)

[S1(u)](u
′) = S(u,u,u′) + S(u,u′,u) + S(u′,u,u).

The mean and eddy equations derived so far are exact, but are no more amenable to efficient numerical
solution than the original equation. To develop a multi-scale formulation similar to conventional SP and to
multi-scale asymptotic methods we apply the point approximation.

The point approximation is a formalism for introducing embedded pseudo-physical domains, as is done
in SP and multi-scale asymptotics. To apply the point approximation in an independent variable (e.g.x, y,
or t) eddy derivatives with respect to that variable in the eddy equation (21) are re-interpreted as derivatives
in a new independent coordinate ∂xu

′ → ∂x̃u
′ and the overbar is re-interpreted as an average over the new

coordinate. Note though, that derivatives acting on the mean variables are not re-interpreted; in this regard
the point approximation is similar to multi-scale asymptotics, but not to the original SP framework [8]. As
an example, in SP for atmospheric convection the physical independent coordinates are x, y, z, and t, and the
pseudo-physical embedded domains have new independent horizontal coordinates x̃ and ỹ. Thus the eddies
and the mean share the vertical z and time t coordinates. However, in the point approximation derivatives
of mean variables with respect to x and y can still appear in the eddy equations, whereas in the framework
of original SP such derivatives are absent. In the context of tropical atmospheric moist convection there is
likely little impact from the presence or absence of these terms since the primary eddy instability depends
on the vertical rather than the horizontal structure of the mean. However, in extra-tropical latitudes, and
in other physical settings, important small-scale instabilities like baroclinic instability are precluded by the
original framework but are allowed by the point approximation.

In general the point approximation can be made in one or more spatiotemporal coordinates, and the
framework does not itself specify how it should be used. Thus, use of the point approximation should be
guided by physical intuition, asymptotic analysis, and computational expediency.

The point approximation acts as a systematic framework for the derivation of coupled large and small
scale equations for use in SP. If the equations produced by the point approximation are solved directly it
is convenient to make the new spatial coordinates periodic, as is common practice in conventional SP. This
approach is computationally intensive however, and as pointed out by [14], eddy instabilities may not be
well represented on periodic embedded domains. Thus, generalizing the ideas of [14, 15] we replace the
eddy-eddy nonlinearities in the eddy equation (21) by an additive Gaussian stochastic forcing and linear
deterministic damping

B(u′,u′) + [S2(u)](u
′,u′) + S(u′,u′,u′)−T → σẆ − Γu′. (23)

The term σẆ represents spatially correlated temporally white Gaussian stochastic forcing, whose properties
are further discussed below. Since the eddy equations are linear and Gaussian, under the assumption of a
Gaussian prior, the eddy statistics will remain Gaussian for all time. This implies that the third and higher
odd moments of the eddies are zero, and that the fourth and higher even moments can be expressed in terms
of the second order moments. In particular this implies that the third order moment is zero S(u′,u′,u′) = 0
in T (equation (18)).

Consistent with the stochastic approximation we model the eddies as random functions homogeneous in
the new spatial coordinates of the point approximation with the following spectral representation

u
′ =

∫

û
′

k
eik·x̃dWk. (24)

The use of infinite embedded domains allows a continuum of scales to participate in the eddy dynamics,
thereby alleviating the difficulties posed by periodic embedded domains. We note though that for a homo-
geneous random function the spatial average is equal to the ensemble average, and the eddy term in the
mean equations T is therefore not stochastic since it contains only averaged quantities. This is an important
difference compared to the structure of conventional SP: in conventional SP the eddies at a given location
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can be viewed as a single realization of a stochastic process (actually a realization of chaotic deterministic
dynamics) generating a feedback to the mean, whereas here the expected value over an infinite ensemble of
eddy realizations (all of whose dynamics are sensitive to the local mean) is used to feedback to the mean.
Nevertheless, in the following we show how to develop stochastic eddy closures for T whose expected value
is equal to the ensemble average over the eddy realizations.

The eddy equations in stochastic superparameterization (point approximation plus Gaussian closure)
are quasilinear stochastic PDEs whose linear term has coefficients that depend on the local value of the
large scale mean. The term “quasilinear” is applied to this stochastic approximation because the resulting
equations are nonlinear if one considers the small and large scales variables as unknown even though the
small scale equations are linear given the large scales. Since the coefficients of the eddy SPDEs do not
depend on the new independent coordinates, the equations are diagonalized by Fourier transformation in
those directions. The eddy equation for a single Fourier mode is therefore

dû′

k
= (Lk − γk)û

′

k
dτ + σkdWk + F ′

k
(25)

where we have made the point approximation in time so that ∂tu
′ → ∂τu

′. If the eddies and the mean share
a spatial coordinate, as the vertical coordinate z is shared in conventional SP of atmospheric convection,
then (25) remains a system of SPDEs. These can then be discretized by any of a variety of methods including
Galerkin truncation, finite differences, etc., and we point out that the discretization of the eddy equations
need not be the same as of the mean equations; however, for simplicity we will assume here that the eddies
and mean do not share a coordinate so that equation (25) is a finite-dimensional system of Itō stochastic
differential equations.

Since the eddies have Gaussian statistics, the components of T can all be related to quadratic moments
of eddy variables. The Plancherel theorem relates the spatial average of quadratic moments to an integral
over quadratic products of the Fourier coefficients

u′(u′)T = ǫ

∫ ǫ−1

0

∫

E

[

û
′

k
û

′
∗

k

]

dkdτ (26)

where ∗ is the complex conjugate transpose, T denotes the transpose, E denotes ensemble average, ǫ−1 is the
length of the time average associated with the point approximation in time, and the eddy Fourier covariance
is

Ck ≡ E

[

û
′

k
û

′
∗

k

]

. (27)

The Itō formula allows the derivation of a deterministic system of ordinary differential equations for the
eddy Fourier covariance from the eddy Fourier differential equation (25)

d

dτ
Ck = (Lk − γk)Ck + Ck(Lk − γk)

∗ + σkσ
∗

k
. (28)

Stochastic superparameterization consists in evolving the eddy Fourier covariance according to (28) and
using the results to calculate T using (26). The properties of the stochastic forcing and damping σk and γk
are design choices for the algorithm, but can be informed by studies of the phenomenology of the eddies.
In addition, stochastic closures for T can be developed based on random quadratures in (26); an example
based on random-direction plane waves is developed in [16, 18], and reviewed below.

3.2. Mathematical Test Models

Application of the above framework for stochastic superparameterization to real multi-scale turbulent
physical systems involves many details which distract from the properties of the framework itself, for example,
choices in the design of the stochastic eddy approximation, and in the numerical modeling of the nonlinear
mean equations, etc. The test model of Majda and Grote [14], which provides much of the inspiration for
the above framework, focuses attention on the framework and its properties by refraining from modeling
a specific multi-scale system, and by linearizing the mean equation except for the nonlinear eddy feedback
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term. The properties of the mean-eddy coupling can be posited as desired to investigate properties of the
framework.

The test model of Majda and Grote [14] has the form

∂tu+ P (∂x)u = (u′)2 + F (29)

∂τu
′ + P ′(∂x̃;u)u

′ = −Γu′ + σ(x)Ẇ (τ) (30)

where the mean equation is posed in a periodic domain, P (∂x) is a linear differential operator including
linear dispersion and dissipation, and P ′(∂x̃;u) is a quasilinear pseudo-differential operator that depends on
the local mean u. This is clearly similar to the form of the mean and eddy equations in stochastic SP, but
with a linear mean equation, and the numerical methods used for this system have the same structure as for
stochastic SP. Majda and Grote [14] used this system to explore the effect of using a periodic domain in SP,
and to emphasize the effects of lack of conditional equilibration. To do so, they specified P ′(∂x̃;u) in such
a way that for certain values of u there is a small range of eddy wavenumbers that is linearly unstable, and
does not equilibrate in the limit τ → ∞. The lack of conditional equilibration of the eddies is a feature of
turbulent systems with weak or no time scale separation, and requires a short time average ǫ−1 in equation
(26). On a periodic embedded domain the discrete spectrum of wavenumbers may miss this small unstable
band and as a result severely underestimate the eddy feedback term (u′)2.

In Harlim and Majda [38] the potential use of superparameterization for multi-scale filtering and data
assimilation is developed in the simplest setting where only the mean variable u is observed in the context
of the above test model (in reality observations at a single location alias behavior from both large and small
scales). While details are not presented here, we summarize some remarkable facts learned from the test
model about multi-scale data assimilation and refer the reader to [38] for the details. There is robust high
filtering and statistical prediction skill when periodic embedded domains with width L are used, provided
that the domain width L is not too small. The high filtering skill with periodic embedded domains is robust
even when the large-scale observation network is very sparse, as long as the filter models satisfy a control-
lability condition with nonzero system noise. When the system is deterministically forced and the perfect
model is used for filtering, the filtering algorithm fails spectacularly; in contrast, when the deterministically-
forced system is filtered by a model with additional noise, restoring controllability through judicious model
errors [20], the filtering skill is restored. Two alternative closures for the eddy feedback term, based on
either assuming conditional equilibration of the eddies or on ignoring the eddies altogether, have much lower
filtering and prediction skill even when the true signal is very smooth, with a k−6 spectrum, and when
controllability is satisfied. These two alternative closures cause the mean to equilibrate to a steady state
without turbulence, because the eddy terms are either ignored or improperly estimated. Furthermore, in
the absence of controllability these models ‘collapse’ and relax to the equilibrium solution ignoring the ob-
servations. This is a counter-example to naive thinking that the small-scale processes are not so important
in multi-scale turbulent dynamics with steep energy spectra.

Another idealized test model for superparameterization is provided by the Lorenz-96 model [65, 66] which
consists of a system of ODEs of the form

Ẋk = −(Xk−2 −Xk+1)Xk−1 −Xk + F +
hx
J

J
∑

j=1

Yj,k, k = 1, . . . ,K (31)

Ẏj,k =
1

ǫ
[−(Yj+2,k − Yj−1,k)Yj+1,k − Yj,k + hyXk] , j = 1, . . . , J (32)

where the indices k and j are periodic (the model obtained by setting Yj,k = 0 is also known as the Lorenz-96
model). If the k index is viewed as denoting a large-scale spatial coordinate and the j index as denoting
a small-scale spatial coordinate, the system of ODEs has a form similar to the original SP algorithm of
[8], where the X variables are the large-scale mean, and the Y variables are the eddies. In the multi-
scale asymptotic and point approximation frameworks of SP the eddies have no spatial mean, so in these
frameworks the Y variables minus their local mean would correspond to the eddies. While this system offers
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a valuable test-bed for analysis of multi-scale algorithms, we caution that real multiscale turbulent systems
often have weak or nonexistent time scale separation so ǫ should not be taken too small. Furthermore,
to guarantee a strongly mixing turbulent dynamical system the number of large-scale modes K should be
roughly forty with strong forcing [20], while the number of small-scale modes J should also be relatively large.
Fatkullin and Vanden-Eijnden [67] applied HMM to this system with strong scale separation, Crommelin
and Vanden-Eijnden [68] used it as a test-bed for the development of stochastic parameterizations based
on Markov chains, and Kang and Harlim [69] and Wilks [70] used the system to investigate aspects of
multi-scale data assimilation.

3.3. Tests of Stochastic Superparameterization in the MMT Equation

In this section we review the development of stochastic SP for a difficult but idealized one-dimensional
test problem [17], which is a member of a family of equations that was originally proposed as a model
for testing the predictions of wave turbulence theory [71]. These equations are called the MMT models
which Zakharov et al. [72] named after their inventors [71]. The system is marked by a wide range of
interacting scales, a shallow k−5/6 energy spectrum, unstable collapsing solitons, dispersive waves, and an
inverse cascade of energy from small scales punctuated by strong intermittent bursts of downscale energy
cascade and dissipation. The MMT equation used here which governs the dynamics at all scales is

i∂tψ = |∂x|
1/2ψ − |ψ|2ψ + iF0 sin(4πx/L) + iDψ (33)

where F0 = 0.0163, L = 400, and D is damping applied to Fourier modes with |k| = 2π/L and |k| ≥ 5200π/L
in a periodic domain of length L. The fractional derivative is defined by |∂x|e

ikx = |k|1/2eikx. A high-
resolution reference simulation is performed on a uniform grid of 213 = 8192 points using a fourth-order
exponential Runge-Kutta method [73]. Further details on the numerical method can be found in [17].

Properties of the system are described by [71, 72, 74–76]. The reference simulation exhibits complex
turbulent behavior consisting of non-traveling solitons that become unstable and collapse self-similarly to a
high-amplitude sharp peak, and of weakly interacting dispersive waves. The collapsing solitons carry energy
to small scales in an intermittent forward cascade, while weak wave interactions cascade energy to large
scales in a background inverse cascade. Solutions exhibit time-averaged energy spectra with a shallow −5/6

spectral slope |ψ̂k|
2 ∝ k−5/6 over a large inertial range of scales.

The mean and eddy equations are

i∂tψ = |∂x|
1/2ψ − |ψ|2ψ + λ

[

2|ψ′|2 ψ + (ψ′)2 ψ
∗
]

+ i(Dψ + F0 sin(4πx/L)), (34)

i∂τψ
′ = |∂x̃|

1/2ψ′ −
[

2|ψ|2ψ′ + ψ
2
ψ

′
∗

]

+ i
[

(Γ +D)ψ′ + σ(x̃)Ẇ
]

, (35)

where the additional damping operator Γ is a constant set to −10−5. The autocorrelation of the forcing
is defined such that the eddy Fourier covariance relaxes to an equilibrium with energy spectrum equal to
A(|k|5/6+exp{|k| − 2600(2π/L)})−1 in the absence of a mean (i.e. when ψ = 0) and with no correlation
between the real and imaginary parts of ψ′. The initial condition for the eddy Fourier covariance equation,
which always has the form (25) in stochastic SP, is set equal to the equilibrium covariance that defines the
forcing.

The Plancherel integrals defining the eddy terms in the mean equation are approximated using adaptive
Simpson’s rule quadrature over the intervals |k| ∈ [k0, 4096] where k0 is the Nyquist wavenumber of the
coarse grid – there is thus no scale gap between the smallest resolvable scale on the coarse grid and the
largest scale on the eddy domains. Grooms and Majda [17] saved significant computational effort by pre-
computing the eddy terms as functions of ψ, rather than computing the required Plancherel integrals every
time the eddy terms are evaluated.

We present results using the same algorithm described in [17] on a coarse grid of 256 points using ǫ = 2,
A = 0.0044, and damping in the mean equations (34) defined such that Dexp{ikx} = −dxexp{ikx} with
dk = 1 for |k| = 2π/L, dk = 0.5 for |k| ≥ 84π/L, and dk = 0 otherwise. For comparison we plot results
obtained using the same numerical method and parameters but with no eddy terms. The time-averaged
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Figure 4: (a) Time averaged energy spectra |ψ̂k|
2 from the high resolution reference simulation (solid), the stochastic SP simu-

lation (dashed), and the unparameterized coarse resolution simulation (dotted). Time series of the solution amplitude |ψ(x, t)|
from the reference simulation (b), the stochastic SP simulation (c), and the unparameterized coarse resolution simulation (d).
The abscissa is normalized by 2π/L so that the smallest wavenumber is k = 1.

energy spectra of the solutions of the reference solution, the mean equation, and the unparameterized mean
equation are shown in figure 4. Clearly, the stochastic SP eddy terms are able to improve the energy spectrum
of the mean equations from being two orders of magnitude too weak in the case of the unparameterized
simulation to being comparable to the reference solution. This indicates that the stochastic SP algorithm
is able to correctly account for the inverse cascade of energy from unresolved small scales despite being a
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purely deterministic closure. In addition, the stochastic SP model is able to generate collapsing solitons with
approximately the same spatiotemporal statistics as the true model (see figure 4b-c and [17]). A variety of
values of A and ǫ, and the effect of using periodic embedded domains are discussed further in [17].

3.4. Tests of Stochastic Superparameterization in Quasigeostrophic Turbulence

In [16, 18] the authors develop stochastic superparameterization for two-layer quasigeostrophic (QG)
turbulence – a paradigm model of geophysical turbulence. The governing equations are

∂tq1 +∇ · (u1q1) + ν∇8q1 = −∂xq1 − k2dv1, (36)

∂tq2 +∇ · (u2q2) + r∇2ψ2 + ν∇8q2 = +∂xq2 + k2dv2 (37)

q1 = ∇2ψ1 +
k2d
2
(ψ2 − ψ1),

q2 = ∇2ψ2 −
k2d
2
(ψ2 − ψ1),

where qj is the potential vorticity in the upper (j = 1) and lower (j = 2) layers, ∇2ψj = ωj is the
relative vorticity, the velocity-streamfunction relation is uj = −∂yψj , vj = ∂xψj , kd = 50 is the deformation
wavenumber (k−1

d is the deformation radius), the coefficient r = 4 specifies the strength of linear bottom
friction (Ekman drag) and ν = 1.5 × 10−16 is the hyperviscous Reynolds number. The terms on the
right hand sides of (36) and (36) result from an imposed background baroclinic shear that drives the
system. The dynamics can also be described in terms of barotropic and baroclinic modes, the former
being given by the vertical average qt = (q1 + q2)/2 = ∇2ψt and the latter by the vertical difference
qc = (q1 − q2)/2 = (∇2 − k2d)ψc. Subscripts t and c are used throughout to denote barotropic and baroclinic
components, respectively.

Our reference solution uses 512 points in each direction of a square periodic domain of nondimensional
width 2π, which resolves the deformation scale with ten points per deformation wavelength. The nonlinear
advection terms are dealiased using the 3/2-rule, which means that they are equivalent to simulations at
7682 using the 2/3-rule. Time integration is via the adaptive, fourth-order, semi-implicit Runge-Kutta
time integration scheme ARK4(3)6[L]2SA of Kennedy and Carpenter [77], treating the hyperviscous terms
implicitly, with PI.3.4 adaptive stepsize control based on error-per-step in the infinity norm on qj with a
tolerance of 0.1 [78]. Further details can be found in [18].

Properties of the system can be found in a variety of references, e.g. [79, 80]. The solutions are forced
by an imposed, horizonally uniform zonal baroclinic shear which is associated with a meridional density
gradient. The dynamics flux heat (hence density) meridionally to erode the imposed background density
gradient and associated zonal shear, and feature prominent small-scale vortices that are visible in figure 5c.
Potential energy, proportional to |ψ1 − ψ2|

2, cascades downscale towards the deformation radius where it is
converted to kinetic energy that cascades upscale. In this setting the inverse cascade from small scales is
the primary energy source for the large scales, so this constitutes a stringent test of stochastic SP.

The mean equations are

∂tq1 = −∇ · (u1q1)− ∂xq1 − k2dv1 − ν∇8q1,

∂tq2 = −∇ · (u2q2) + ∂xq2 + k2dv2 − r∇2ψ2 − ν∇8q2

q1 = ∇2ψ1 +
k2d
2
(ψ2 − ψ1),

q2 = ∇2ψ2 −
k2d
2
(ψ2 − ψ1) (38)
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Figure 5: Time series of the heat flux
∫
vtψcdA from the reference simulation (a) the stochastic SP simulation (b), and an

unparameterized simulation (c), and snapshots of the upper layer potential vorticity q1 from the reference simulation (d)
stochastic SP simulation (e), and an unparameterized simulation (f). The grayscale is the same in all snapshots.

and the eddy equations are

∂τ q
′

1 = F ′

1 − Γq′1 −U1 · ∇̃q
′

1 − u
′

1 · ∇Q1 − ν∇̃8q′1,

∂τ q
′

2 = F ′

2 − Γq′2 −U2 · ∇̃q
′

2 − u
′

2 · ∇Q2

−r∇̃2ψ′

2 − ν∇̃8q′2,
(39)

q′1 = ∇2ψ′

1 +
k2d
2
(ψ′

2 − ψ′

1),

q′2 = ∇2ψ′

2 −
k2d
2
(ψ′

2 − ψ′

1)

where ∇̃ = (∂x̃, ∂ỹ), U j = uj − (−1)jx̂ and Qj = qj − (−1)jk2dy. The mean and eddies are coupled through
the potential vorticity flux

ujqj = ujqj + u′

jq
′

j

(ujqj)
′ = ujqj − ujqj
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the eddy part of which is written without approximation as

∇ · (u′

jq
′

j) =
k2d(−1)j

2
∇ · (u′

j(ψ
′

1 − ψ′

2))

+
(

∂2x − ∂2y
)

u′jv
′

j + ∂xy

(

(v′j)
2 − (u′j)

2

)

(40)

where the first term is a ‘heat’ or ‘buoyancy’ flux and the remaining terms are the curl of the divergence of
the Reynolds stress.

The autocorrelation of the forcing is defined such that in the absence of all other influences (i.e. when
U c = ∇Qj = r = ν = 0) the eddy Fourier covariance relaxes to an isotropic equilibrium with a continuous

energy spectrum equal to Ak−5/3 for k ≤ kd and to Ak
4/3
d k−3 for k ≥ kd, with no net heat flux, with

barotropic energy equal to baroclinic energy at each k, and with half as much kinetic energy in the lower
layer as in the upper layer. The extra damping operator Γ is chosen such that it damps modes with k > kd
uniformly at rate γ0 = 30, and modes with k ≤ kd at rate γ0(k/kd)

2/3. The eddy Fourier covariance
equation, which always has the form (28) in stochastic SP, requires an initial condition which is set equal
to the equilibrium covariance that defines the forcing.

The Plancherel integrals defining the eddy terms in the mean equation are written in polar form (i.e. with
k = |k| and θ = tan−1(ky/kx)) and the radial part is approximated using trapezoid rule quadrature over
the intervals |k| ∈ [k0, 256] where k0 is the Nyquist wavenumber of the coarse grid. Grooms and Majda [17]
saved significant computational effort for the MMT model by pre-computing the eddy terms as functions of
the mean, rather than computing the required Plancherel integrals every time the eddy terms are evaluated.
Such an approach is not practical in this case since the eddy integrals depend on six mean parameters;
however, an intermediate approach was taken in [16] where the radial part of the integrals, which depends
on only three mean parameters, is precomputed while the azimuthal part of the integral is directly computed
during integration of the mean equations using trapezoid rule quadrature with equispaced nodes.

However, the inverse cascade of QG turbulence is not well modeled by a deterministic process, but
rather by stochastic backscatter. Thus, while the deterministic closure does succeed in generating an inverse
cascade, the results are otherwise poor. As noted earlier, this can be attributed to the fact that the
deterministic closure uses the expected value of an infinite number of realizations of the eddy dynamics
on formally infinite domains, whereas in reality the eddies consist of a single inhomogeneous realization.
To incorporate this randomness of the eddies, and following the success of similar algorithms in modelling
turbulent diffusion [81–84], we approximate the azimuthal direction of the Plancherel integrals using a two-
point trapezoid rule quadrature (θ and −θ) where the angle θ is chosen randomly from a uniform distribution.
The value of the eddy terms in the mean equations is therefore a random variable dependent on θ, and the
expected value of the eddy terms in the mean equations equals the value of the deterministic closure. For
more details on the algorithm see [18].

Figure 5 compares the meridional heat flux (the domain integral of vtψc) and upper layer potential
vorticity q1 from the reference simulation, a simulation using the stochastic closure with A = 2.2 × 104,
ν = 4×10−10, and ǫ = 200, and a simulation where the eddy terms are ignored and the value of ν = 3×10−10

is tuned to produce the best results. The stochastic SP and unparameterized simulations are run on a coarse
grid of 64 × 64 points. The reference simulation results are shown in figures 5a and 5d, the stochastic SP
simulation results are shown in figures 5b and 5e, and the unparameterized simulation results are shown
in figures 5c and 5f. The heat flux generated by the stochastic SP simulation is nearly identical to the
reference simulation despite having a factor of 8 fewer points in each horizontal dimension in the stochastic
SP simulation, and despite the complete inability of the coarse grid to resolve the prominent coherent vortices
that populate the high resolution reference simulation. The unparameterized simulation has less small-scale
variation than the SP simulation, and the heat flux is too low by a factor of approximately 4.

Tests of the algorithm in scenarios with large-scale jets, as well as sensitivity of the algorithm to ν, ǫ and
A, and alternative closures are discussed in detail in [16, 18].

20



4. Concluding Discussion

This research expository paper discussed superparameterization, a class of multi-scale numerical methods
designed to cope with the intermittent multi-scale effects of inhomogeneous geophysical turbulence which
often inverse cascades energy from the unresolved scales to the large scales through waves, jets, vortices, and
for example the effect of latent heat release through moist processes. Original as well as sparse space time
superparameterization algorithms were discussed for the important case of moist atmospheric convection
including the role of multi-scale asymptotic methods in providing self-consistent constraints on superparam-
eterization algorithms. The very recent development of grid-free seamless stochastic superparameterization
methods for geophysical turbulence appropriate for “eddy permitting” mesoscale ocean turbulence was
presented here including a general formulation and illustrative applications to two-layer quasigeostrophic
turbulence and the difficult test case involving the MMT models of dispersive wave turbulence. Test models
for the statistical numerical analysis of superparameterization algorithms were also discussed both to un-
derscore their utility for analyzing the performance of multi-scale simulation and filtering/data assimilation
algorithm. Future research directions include the development of multi-scale data assimilation algorithms
utilizing a suitable version of superparameterization for the forecast model as well as the development of
algorithms for submesoscale ocean turbulence.
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