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Abstract

In this article we expand and develop the authors’ recent proposed methodology for efficient stochastic
superparameterization algorithms for geophysical turbulence. Geophysical turbulence is characterized by
significant intermittent cascades of energy from the unresolved to the resolved scales resulting in complex
patterns of waves, jets, and vortices. Conventional superparameterization simulates large scale dynamics on
a coarse grid in a physical domain, and couples these dynamics to high-resolution simulations on periodic
domains embedded in the coarse grid. Stochastic superparameterization replaces the nonlinear, deterministic
eddy equations on periodic embedded domains by quasilinear stochastic approximations on formally infinite
embedded domains. The result is a seamless algorithm which never uses a small scale grid and is far cheaper
than conventional SP, but with significant success in difficult test problems.

Various design choices in the algorithm are investigated in detail here, including decoupling the timescale
of evolution on the embedded domains from the length of the time step used on the coarse grid, and
sensitivity to certain assumed properties of the eddies (e.g. the shape of the assumed eddy energy spectrum).
We present four closures based on stochastic superparameterization which elucidate the properties of the
underlying framework: a ‘null hypothesis’ stochastic closure that uncouples the eddies from the mean,
a stochastic closure with nonlinearly coupled eddies and mean, a nonlinear deterministic closure, and a
stochastic closure based on energy conservation. The different algorithms are compared and contrasted on
a stringent test suite for quasigeostrophic turbulence involving two-layer dynamics on a β-plane forced by
an imposed background shear.

The success of the algorithms developed here suggests that they may be fruitfully applied to more
realistic situations. They are expected to be particularly useful in providing accurate and efficient stochastic
parameterizations for use in ensemble-based state estimation and prediction.

Keywords: waves, jets, vortices; stochastic backscatter; efficient subgrid scale closure; multi-scale
algorithms

1. Introduction

Computational physics often faces the challenge of simulating phenomena with complex interactions
across a range of scales too wide to be accessible with existing supercomputers. This is the case, for example,
in simulations of global-scale atmospheric and oceanic dynamics, of solar magnetohydrodynamics, and of
mantle convection, to name a few. In these situations it is of paramount importance to provide accurate
and efficient parameterizations of the effects of unresolved scales. A novel approach combining elements
of superparameterization [1–4] and stochastic parameterization has been recently proposed by Grooms and
Majda [5] (hereafter GM) and [6].

∗Corresponding author
Email addresses: grooms@cims.nyu.edu (Ian Grooms), jonjon@cims.nyu.edu (Andrew J. Majda)

Preprint submitted to J. Comp. Phys. May 16, 2013



Superparameterization (SP) is a multiscale algorithm that was originally developed for the purpose of
parameterizing unresolved cloud process in tropical atmospheric convection [1, 7]. In SP, high resolution
simulations are embedded within the grid cells of a low resolution, large-scale model, to which they are cou-
pled. In the atmospheric context, the high resolution embedded domains share the vertical coordinate with
the low resolution physical domain while the horizontal coordinates of the embedded domains are periodic
so that the embedded domains in different coarse-grid cells are not directly coupled (some alternatives are
discussed by [8, 9]). To reduce the computational expense of running an array of high resolution simulations,
the embedded domains are usually made two-dimensional, with one horizontal and one vertical coordinate.
The computational expense can be further reduced by making the embedded domains smaller than the spa-
tiotemporal grid of the coarse model [10], or by embedding domains in a reduced number of coarse-grid cells
[11]. Despite these innovations the computational cost of SP remains high compared to most alternative
parameterizations.

Majda and Grote [12] proposed test models for SP, not as models of any particular process, but as a
simplified setting for analyzing the mathematical structure of SP algorithms. In these test models the small-
scale dynamics on the embedded domains obey quasilinear stochastic partial differential equations with
coefficients that are functions of the local large-scale variables. It is possible to compute the eddy feedback
to the large scales very efficiently in these models without the need to directly simulate the small-scale
dynamics on periodic embedded domains. This idea of quasilinear stochastic eddies, coupled with the success
of the above-mentioned SP algorithms that radically simplify the small-scale dynamics by making them two-
dimensional, suggests that SP might be made still more efficient by replacing the nonlinear dynamics on the
embedded domains with a quasilinear stochastic approximation.

This avenue was first proposed and implemented in a one-dimensional turbulent test problem in [6],
where the algorithm met with resounding success in a complex situation with coherent solitons, dispersive
waves, and an inverse cascade of energy from the unresolved small scales, punctuated by strong intermittent
bursts of downscale cascade and dissipation associated with collapsing unstable solitons. Although the
small-scale dynamics in [6] are stochastic, only the mean value of the eddy feedback to the large scales is
used, so the eddy feedback terms are in fact non-stochastic. In GM the authors further developed stochastic
SP in a paradigm model of geophysical turbulence, namely two-layer quasigeostrophic (QG) turbulence
on a β-plane forced by imposed zonal baroclinic shear. GM expands the foundation of the SP algorithm
in [6] by developing a closure based on randomly oriented plane waves, making the feedback to the large
scale stochastic, in contrast to [6]; the initial results presented in GM show significant promise with skill
in reproducing the inverse cascade of QG turbulence, and the jets and heat flux on the large scales in a
variety of different regimes. This paper develops the framework of GM in greater detail, and explores the
parameter dependence of the method. We also provide results for three new closures not presented in GM: a
‘null hypothesis’ in which the eddy dynamics are decoupled from the large scales, a nonlinear deterministic
closure not based on random plane waves, and a closure that predicts the key tunable parameter from GM
based on energy conservation ideas.

The outline of the paper is as follows. In section 2 the test problem is described in more detail, including
the results of high-resolution reference simulations in three different parameter regimes. In section 3.1
we develop a multiscale framework, the ‘point approximation,’ that allows us to move from a single set
of equations governing the dynamics at all scales, to a set of coupled equations describing the large-scale
dynamics on the physical domain and the small-scale dynamics on the embedded domains. The stochastic
approximation of the eddy equations is developed in section 3.2, and the four closures are presented in
sections 3.3 and 3.4. Results of the numerical experiments are presented in section 4, and discussed in
section 5. Section 6 concludes.

2. Reference Simulations

As in GM, we test stochastic SP for two-equal-layer, rigid-lid, quasigeostrophic turbulence forced by an
imposed, baroclinically unstable, horizontally uniform, vertically sheared zonal (east-west; x-direction) flow.
In this section we summarize the relevant properties of high-resolution direct numerical simulations (DNS)
to serve as a reference.
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Figure 1: Snapshots of barotropic potential vorticity qt from the high resolution reference simulations at weak (left), moderate
(center), and strong supercriticalities (right).

The governing equations are

∂tq1 = −∇ · (u1q1)− ∂xq1 − (k2β + k2d)v1 − ν∇8q1,

∂tq2 = −∇ · (u2q2) + ∂xq2 − (k2β − k2d)v2 − r∇2ψ2 − ν∇8q2

q1 = ∇2ψ1 +
k2d
2
(ψ2 − ψ1),

q2 = ∇2ψ2 −
k2d
2
(ψ2 − ψ1), (1)

where qj is the potential vorticity in the upper (j = 1) and lower (j = 2) layers, ∇2ψj = ωj is the relative
vorticity, the velocity-streamfunction relation is uj = −∂yψj , vj = ∂xψj , kd is the deformation wavenumber
(k−1

d is the deformation radius), the coefficient r specifies the strength of linear bottom friction (Ekman
drag) and ν is the hyperviscous Reynolds number. The terms (k2β +k

2
d)v1 in the upper layer and (k2β −k2d)v2

in the lower layer represent advection acting against an imposed large-scale meridional (north-south, y-
direction) potential vorticity gradient; the k2β terms result from the variation of the vertical projection of

Coriolis frequency with latitude, and the k2d terms result from the imposed vertical shear. The dynamics
can also be described in terms of barotropic and baroclinic modes, the former being given by the vertical
average qt = (q1 + q2)/2 = ∇2ψt and the latter by the vertical difference qc = (q1 − q2)/2 = (∇2 − k2d)ψc.
Subscripts t and c are used throughout to denote barotropic and baroclinic components, respectively.

Our reference solutions use kd = 50 and 512 points in each direction of a square periodic domain of
nondimensional width 2π, which equals the highest resolution used in Thompson and Young [13, 14] and
minimally resolves the deformation scale with ten points per deformation wavelength. In all three simulations
the hyperviscous coefficient is ν = 1.5 × 10−16; the nonlinear advection terms are dealiased using the 3/2-
rule, which means that they are equivalent to simulations at 7682 using the 2/3-rule [15]. Time integration
is via the adaptive, fourth-order, semi-implicit Runge-Kutta time integration scheme ARK4(3)6[L]2SA of
Kennedy and Carpenter [16], treating the hyperviscous terms implicitly, with PI.3.4 adaptive stepsize control
based on error-per-step in the infinity norm on qj with a tolerance of 0.1 [17].

When k2β < k2d the imposed background shear is linearly unstable to Rossby waves of the form qj =
q̂jexp{i(kxx+ kyy− ct)} [see, e.g. ref. 18, ch. 6]. The most unstable modes occur for ky = 0; when kβ ≪ kd
the unstable range is approximately |kx| ∈ (kβ/

√
2, kd), though modes with |kx| ≥ kd are slightly destabilized

by bottom friction, with peak instability at |kx| ≈ 0.6kd. In the absence of bottom friction the system is
marginally stable when k2β = k2d. We consider three parameter settings: weakly supercritical (k2β = k2d/2,

r = 1), moderately supercritical (k2β = k2d/4, r = 4) and strongly supercritical (kβ = 0, r = 16); in GM
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these parameter regimes are referred to as ‘low latitude’ (weakly supercritical), ‘mid latitude’ (moderately
supercritical), and ‘high latitude’ (strongly supercritical) because kβ decreases as latitude increases. The
value of the bottom friction coefficient r is increased with supercriticality in order to keep the inverse energy
cascade from reaching the size of the box. Growth rates of the unstable modes with ky = 0 for the three
model configurations are shown as functions of kx in Fig. 2a. Although the maximum growth rate is similar
in each of the three parameter settings, the range of unstable wavenumbers grows from the weakly unstable
regime to the strongly unstable one.

Figure 1 shows snapshots of the barotropic potential vorticity qt from the three reference simulations.
The weakly and moderately supercritical dynamics organize into seven and four zonal jets, respectively,
with vortical eddies, filaments, and waves superimposed, and the strongly supercritical dynamics organize
into a sea of vortices and filaments of various sizes. Figure 2b-d shows time-series and a time-average of the
zonally-averaged barotropic zonal velocity for the weakly and moderately supercritical cases. The jets in
both the weakly and moderately supercritical cases are asymmetric with stronger eastward velocity. The jets
in the moderately supercritical case are less pronounced than in the weakly supercritical case, in the sense
that their signature in the barotropic vorticity is weaker, and they are more difficult to correctly reproduce
in a coarse-resolution simulation. The four jets in figure 2c have maximum velocity approximately 30; for
comparison, the RMS barotropic velocity for this simulation is 160, so the jets are an important, but not
dominant feature.

The emergence of jets at the large scales of quasigeostrophic turbulence is a well-studied subject, reviewed
recently by Dritschel and McIntyre [19]. Although the jets affect and are affected by the small scales,
their formation and maintenance is largely independent of the details of this interaction: jets form on the
large scales as long as the small scales provide an upscale cascade of energy. This is emphasized by our
experiments, described below, using coarse-resolution models that represent the small scales by stochastic
terms completely uncorrelated from the large scales (the ‘uncorrelated closure’ in section 3.3). The emergence
of jets at the large scales is only one of the statistics used here to measure the performance of stochastic
superparameterization.

The dynamics generate a meridional heat flux proportional to the domain-integral of vtψc which acts to
erode the background temperature gradient associated with the imposed mean shear. This heat flux depends
strongly on the strength of bottom friction r and on kβ ; thorough investigations of the parameter space are
provided by Thompson and Young [13, 14]. The zonal jets that appear in the weakly and moderately
supercritical simulations act as barriers to the meridional transport of heat so that the heat flux varies by
over two orders of magnitude between the three test cases: the time-averaged, domain-integrated values of
vtψc are 1.03, 23.3, and 207 for the weakly, moderately, and strongly supercritical cases, respectively. The
heat flux for all simulations is reported in table 1. Figure 3d shows the one-dimensional heat flux cross-
spectrum from each experiment, i.e. the time- and angle-averaged value of v̂∗t ψ̂c where the hat represents
the Fourier transform and ∗ represents the complex conjugate. The values are scaled to unit amplitude and
offset such that the spectrum for the weakly supercritical case occupies the interval [0, 1] on the ordinate
axis, moderately supercritical occupies [1, 2], and strongly supercritical occupies [2, 3]. The heat flux in the
moderately and strongly supercritical simulations is generated primarily by wavenumbers with k ≤ 10, but
in the weakly supercritical simulation the peak of the heat flux spectrum is at k > 10. This shows that the
heat flux is a difficult statistic to correctly predict in a coarse resolution simulation at weak supercriticality.

The energy flow for this paradigm model of geophysical turbulence is discussed by Salmon [20]. Kinetic
energy cascades upscale from the unstable modes near the deformation scale to a halting scale determined by
bottom friction and kβ , where it becomes primarily barotropic and is dissipated through bottom friction. At
the large scales, the barotropic meridional velocity interacts with the imposed baroclinic potential vorticity
gradient (the terms k2dvi in equation (1)) to generate large-scale baroclinic potential vorticity and associated
potential energy k2d(ψ1−ψ2)

2/2. The potential energy generated at large scales cascades downscale towards
the deformation radius, where it is converted to barotropic kinetic energy by baroclinic instability.

In the following section we develop a parameterization for coarse-resolution simulations where the coarse
grid Nyquist wavenumber is smaller than the deformation wavenumber. In such simulations, any successful
parameterization must both absorb the downscale cascade of potential energy, and more importantly produce
an inverse cascade of kinetic energy. We develop four eddy closures of increasing sophistication based on a
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Figure 2: a) Growth rates of the most unstable waves as functions of kx for linear baroclinic instability about the imposed
background shear. Weakly supercritical (solid), moderately supercritical (long dash), and strongly supercritical (short dash).
The deformation wavenumber is kd = 50. b) and c) Time- and zonally-averaged zonal barotropic velocities from the weakly
and moderately supercritical reference simulations, respectively; d) and e) time series of the zonally-averaged zonal barotropic
velocity for the weakly and moderately supercritical cases, respectively.

stochastic multiscale model of the eddies. Three of the closures are stochastic, and are based on a random-
orientation, reduced-dimensional approximation of the unresolved eddies, while the fourth uses the expected
value of one of the stochastic closures and is therefore deterministic rather than stochastic. All four closures
are able to absorb the downscale potential energy cascade and generate the inverse energy cascade.

3. Formulation of Stochastic Superparameterization

In this section we develop the mathematical framework underpinning stochastic superparameterization,
and formulate four closures, where the eddy terms are either deterministic or stochastic and either nonlinearly
dependent on the local mean flow or independent of it. The stochastic closures are based on reduced
dimensional embedded domains with random directions. In the first three closures the eddy energy level is a
tunable constant in space and time. In the fourth closure the eddy terms are nonlinear and stochastic, and
the eddy energy level varies in space and time as the solution of a heuristically-motivated energy equation.
The stochastic, nonlinear closures are the main focus, with the uncorrelated closure included as a ‘null
hypothesis’ and the deterministic closure included primarily for completeness. Results of simulations using
the four closures are presented in section 4.
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3.1. Point Approximation

Following GM we develop a multiscale equation set as follows. First, apply a Reynolds average (·) to the
governing equations (1) to generate ‘mean’ equations

∂tq1 = −∇ · (u1q1)− ∂xq1 − (k2β + k2d)v1 − ν∇8q1,

∂tq2 = −∇ · (u2q2) + ∂xq2 − (k2β − k2d)v2 − r∇2ψ2 − ν∇8q2

q1 = ∇2ψ1 +
k2d
2
(ψ2 − ψ1),

q2 = ∇2ψ2 −
k2d
2
(ψ2 − ψ1). (2)

Subtracting from the original gives equations for the ‘eddy’ part of the flow

∂tq
′

1 = −∇ · (u1q1)
′ − ∂xq

′

1 − (k2β + k2d)v
′

1 − ν∇8q′1,

∂tq
′

2 = −∇ · (u2q2)
′ + ∂xq

′

2 − (k2β − k2d)v
′

2 − r∇2ψ′

2 − ν∇8q′2

q′1 = ∇2ψ′

1 +
k2d
2
(ψ′

2 − ψ′

1),

q′2 = ∇2ψ′

2 −
k2d
2
(ψ′

2 − ψ′

1). (3)

The mean and eddies are coupled through the potential vorticity flux

ujqj = ujqj + u′

jq
′

j

(ujqj)
′ = ujqj − ujqj .

We write the eddy potential vorticity flux without approximation as

∇ · (u′

jq
′

j) =
k2d(−1)j

2
∇ · (u′

j(ψ
′

1 − ψ′

2)) +
(

∂2x − ∂2y
)

u′jv
′

j + ∂xy

(

(v′j)
2 − (u′j)

2
)

(4)

where the first term is a ‘heat’ or ‘buoyancy’ flux divergence and the remaining terms are the curl of the
divergence of the Reynolds stress. This expansion of the potential vorticity flux is sometimes called the
‘Taylor identity’ after Taylor [21]; for further discussion see [19].

We develop a multiscale formulation by applying the ‘point approximation’ which imposes a dynamical
scale separation through the use of embedded domains. Specifically, we introduce new coordinates q′j =
q′j(x̃, ỹ, τ ;x, y, t) and interpret all derivatives acting on eddy variables in the eddy equation as derivatives in
the new coordinates, e.g.

∂tq
′

j → ∂τ q
′

j , ∂xψ
′

j → ∂x̃ψ
′

j .

Thus, at each point (x, y, t) of the physical domain there is an embedded domain with coordinates (x̃, ỹ, τ).
The mean variables do not depend on the new coordinates. The eddy equations become

∂τ q
′

1 = −∇̃ · (u′

1q
′

1)−U1 · ∇̃q′1 − u
′

1 · ∇Q1 − ν∇̃8q′1,

∂τ q
′

2 = −∇̃ · (u′

2q
′

2)−U2 · ∇̃q′2 − u
′

2 · ∇Q2 − r∇̃2ψ′

2 − ν∇̃8q′2

q′1 = ∇̃2ψ′

1 +
k2d
2
(ψ′

2 − ψ′

1),

q′2 = ∇̃2ψ′

2 −
k2d
2
(ψ′

2 − ψ′

1) (5)

where ∇̃ = (∂x̃, ∂ỹ), U j = uj − (−1)jx̂ and Qj = qj + (k2β − (−1)jk2d)y. Consistent with this introduction
of new coordinates we re-interpret the Reynolds average as an average over the new coordinates.

6



The point approximation is similar to multiple-scales asymptotics (e.g. [22, 23]) in that the eddies evolve
on new independent coordinates where the mean variables are constant. The primary difference is that
multiple-scales asymptotics assumes that the large-scale derivatives are asymptotically small compared to
the small-scale derivatives; loosely, ∂x ≪ ∂x̃. If the mean variables evolve only on scales much larger than
the eddies, then the point approximation will recover ∂x ≪ ∂x̃, similar to the asymptotic method. If, on
the other hand, the mean variables and the eddies both display variation on scales close to the coarse grid
scale then the assumption of scale separation will be false, casting doubt on the results of the asymptotic
analysis.

The point approximation is fairly severe from the perspective of scales immediately above and below the
scale of the large-scale computational grid: the approximation causes the scales immediately above the grid
scale to appear constant in comparison with those immediately below the grid scale. But for scales well
separated from the coarse grid scale the approximation improves, and becomes more similar to a multiple-
scales asymptotic approximation. Note that it is possible to make the point approximation in one coordinate
at a time by allowing, for example, the mean and eddies to share the t coordinate, or the y coordinate. In
the present situation the mean and eddies share the vertical coordinate, which is discretized into two layers.

There is some ambiguity in applying the point approximation to the mean equation, since the interpre-
tation of the eddy terms is not unique. For example, one might choose to interpret the divergence of the
eddy potential vorticity flux as

u′

1q
′

1 = ∇̃⊥ψ′

1∇̃2ψ′

1 +
k2d
2
u′

1(ψ
′

2 − ψ′

1) =
k2d
2
u′

1ψ
′

2 (6)

thus ignoring the Reynolds stresses. In cases that allow such ambiguity, guidance can be provided by physical
intuition and mathematical analysis. As an example of the former, in the phenomenology of turbulence
described above ([20]) the inverse cascade of kinetic energy operates primarily in the barotropic mode,
whereas, if the Reynolds stresses were ignored there would be no eddy terms in the barotropic equation.
As an example of the latter, the asymptotic analysis of Grooms et al. [22] demonstrates that the Reynolds
stresses should not be neglected.

The point approximation provides a means of formally deriving equations governing the large and small
scales (and their coupling) that is different from the framework of Grabowski [24]. A particular benefit of
the point approximation is that it allows the horizontal gradient of mean variables to appear in the eddy
equations, e.g. via the term u

′

j ·∇Qj in equation (5). Terms of this sort are of fundamental importance; they
allow, for example, the growth rate of baroclinic instability to vary depending on latitude (through kβ).

Although the point approximation provides a basis for a conventional SP simulation, where the eddy
equations are solved on horizontally periodic domains embedded in the coarse computational grid, such
simulations in this context would be as expensive or even more costly than direct simulation. In other
settings [e.g. 1, 4, 10] computational savings have been achieved by reducing the dimensionality of the
embedded domains, for example by making the eddy variables depend only on x̃ and τ but not ỹ. In
the current context this strategy causes the eddy equations to linearize since the nonlinear term has the
form ∇̃ · (u′

iq
′

i) = ∂x̃ψ
′

i∂ỹq
′

i − ∂ỹψ
′

i∂x̃q
′

i, which reduces to zero when the eddy variables vary in only one
spatial coordinate; this effect is desirable from the standpoint of computational efficiency, but not from the
standpoint of realism since in reality the small-scale eddies are strongly nonlinear and turbulent.

Furthermore, in conventional SP simulations the embedded domains are usually given a size smaller than
or equal to the large-scale grid; the result is that there is a scale gap of at least a factor of two between the
Nyquist wavenumber of the large-scale grid and the smallest wavenumber of the embedded domains. This
can cause an SP simulation to completely miss an important range of unstable wavenumbers. For example,
in the weakly supercritical reference case the band of unstable wavenumbers is approximately kx ∈ [25, 50]
(see figure 2a). For an SP simulation with a coarse grid Nyquist wavenumber of 25, and embedded domains
that completely fill the grid, the baroclinic instability that drives the system would be completely unresolved
because the smallest wavenumber on the embedded domains would be 50. The scale gap can be lessened by
increasing the size of the embedded domains, but this further increases the computational expense and does
not robustly solve the problem of limited-wavenumber instabilities: if the embedded domains in the above
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example are made twice the size of the coarse grid then they resolve wavenumbers 25, 50, 75, etc. and still
miss the instability.

3.2. Conditional Gaussian Closure

To alleviate the aforementioned difficulties associated with conventional SP we apply a Gaussian closure
for the eddies wherein we approximate the nonlinearity in the eddy equations by additive stochastic forcing
and linear deterministic damping

∂τ q
′

1 = F ′

1 − Γq′1 −U1 · ∇̃q′1 − u
′

1 · ∇Q1 − ν∇̃8q′1,

∂τq
′

2 = F ′

2 − Γq′2 −U2 · ∇̃q′2 − u
′

2 · ∇Q2 − r∇̃2ψ′

2 − ν∇̃8q′2. (7)

The forcing terms F ′

i are spatially correlated and white in time and Γ is a positive-definite pseudo-differential
operator representing turbulent damping (further details below). We emphasize that the stochastic approx-
imation adopted above is an approximation of strongly nonlinear, turbulent dynamics; weakly nonlinear,
temporally chaotic but non-turbulent eddy behavior of the type seen in transition-to-turbulence scenarios
would require a different kind of stochastic model.

Similar approximations, wherein the eddy-eddy nonlinearity is replaced by a Gaussian stochastic forcing
and damping, have often been made in the context of quasigeostrophic turbulence (see, e.g. [25, 26] and
references therein). The CE2 (second order cumulant expansion) method used by Tobias and Marston
[27] and Srinivasan and Young [28] drops the eddy-eddy nonlinearity altogether, without replacing it by a
stochastic approximation. Sapsis and Majda [29] develop a modified quasilinear Gaussian approximation
that includes a more sophisticated, energy-conserving approximation of the eddy-eddy nonlinearity; they
also show that the CE2 closure necessarily evolves to an incorrect marginally-stable statistical equilibrium
regardless of the external forcing in the Lorenz-96 model [30, 31]. A key difference of the current approach,
motivated by Majda and Grote [12], is that the Gaussian stochastic model is developed here only for the
small scales in a multiscale framework based on the point approximation above.

Following GM and [6] we model the eddy variables as spatially-homogeneous random functions in a
formally infinite domain x̃ = (x̃, ỹ) ∈ R

2 with the following spectral representation

q′j =

∫∫

q̂je
ik·x̃dWk (8)

whereWk is a complex Weiner process and q̂j depends on k = (kx, ky). The use of formally infinite embedded
domains instead of periodic ones is convenient since it allows a continuum of possible eddy scales, thereby
avoiding the difficulty associated with conventional SP of missing instabilities that occur on a limited range
of wavenumbers.

The Fourier transform of the eddy equations is

d

dτ
q̂1 = −i(U1 · k)q̂1 − (ik ×∇Q1)ψ̂1 +A1,kẆ1,k − (γk + νk8)q̂1,

d

dτ
q̂2 = −i(U2 · k)q̂2 − (ik ×∇Q2)ψ̂2 +A2,kẆ2,k + rk2ψ̂2 − (γk + νk8)q̂2,

q̂1 = −k2ψ̂1 +
k2d
2
(ψ̂2 − ψ̂1),

q̂2 = −k2ψ̂2 +
k2d
2
(ψ̂1 − ψ̂2) (9)

where k = |k|,Wj,k are independent complex Weiner processes E[Wj,kWi,k′ ] = δijδkk′ , and Aj,k are complex

constants. We write this as a system for ψ̂1 and ψ̂2

d

(

ψ̂1

ψ̂2

)

= Lk

(

ψ̂1

ψ̂2

)

dτ + σkdWk (10)
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where σk is a complex-valued matrix, Wk is a vector of independent complex Weiner processes, and

Lk = −(γk + νk8)I+Q−1
k

(

−i
[

U1 · k 0
0 U2 · k

]

Qk +

[

−ik×∇Q1 0
0 rk2 − ik×∇Q2

])

, (11)

Qk =





−
(

k2

d

2 + k2
)

k2

d

2

k2

d

2 −
(

k2

d

2 + k2
)



 . (12)

At this point note that the eddy terms that appear in the mean equation, e.g. u′

1ψ
′

2, all consist of the
average over x̃ and τ of quadratic products of eddy variables. The spatial average of a quadratic product is
related to an integral over the Fourier coefficients by the Plancherel theorem

∫∫

fgdx̃ =

∫∫

f̂∗ĝdk (13)

where ∗ denotes the complex conjugate (and conjugate transpose for vectors and matrices). Furthermore,
because the eddies are spatially homogeneous, the spatial average is equal to an ensemble average. Thus
terms in the eddy potential vorticity flux can be calculated as, e.g.

u′1(ψ
′

2 − ψ′

1) = u′1ψ
′

2 = i

∫∫

(

ǫ

∫ ǫ−1

0

E

[

kyψ̂
∗

1 ψ̂2

]

dτ

)

dk

=

∫∫

ky

(

ǫ

∫ ǫ−1

0

E

[

I{ψ̂1ψ̂
∗

2}
]

dτ

)

dk (14)

u′iv
′

i =

∫∫

kxky

(

ǫ

∫ ǫ−1

0

E

[

|ψ̂i|2
]

dτ

)

dk (15)

where E denotes an ensemble average, I{·} denotes the imaginary part of a complex number, and the average
over τ has length ǫ−1. The formulas of the remaining terms are found in Appendix A. This suggests that,
rather than simulate solutions of the linear stochastic eddy PDE directly, we instead solve for the evolution
of the quadratic products involved in the eddy potential vorticity flux.

The covariance of the Fourier coefficients of the eddy streamfunction

Ck = E

[

|ψ̂1|2 ψ̂1ψ̂
∗
2

ψ̂∗

1ψ̂2 |ψ̂2|2
]

(16)

evolves according to the linear, autonomous ordinary differential equation

d

dτ
Ck = LkCk + CkL

∗

k + σkσ
∗

k (17)

which is obtained from the Itō formula. Note that Lk depends on the mean variables and their derivatives
and thus provides coupling to the large scales. To evolve Ck according to this equation one must specify
an initial condition, γk, and σkσ

∗

k
; that is, one must specify Ck(τ = 0) and the forcing and damping that

model the nonlinear eddy-eddy interaction.
We deal first with the details of the forcing and damping. Following GM we specify γk and σkσ

∗

k
by

requiring the solution Ck to relax towards a stable equilibrium with phenomenological properties in the
absence of mean variables, i.e. when U j = ∇Qj = 0. In the following we (i) detail the properties of the
equilibrium covariance (equations (20) and (21)), (ii) specify under what conditions the system should
approach this equilibrium (equation (22)), and finally (iii) provide remaining assumptions to complete the
specification of γk and σkσ

∗

k
(equation (23)). We specify the equilibrium covariance such that

1. it is isotropic (a function only of k = |k|)
9



2. the energy spectrum is proportional to k−5/3 for k < kd and to k−3 for k ≥ kd
3. the barotropic kinetic energy equals the baroclinic energy at every k

4. αE[|ψ̂1|2] = E[|ψ̂2|2] with α > 0

5. E

[

I{ψ̂1ψ̂
∗

2}
]

= 0.

The first property guarantees that the equilibrium spectrum, and hence the stochastic approximation of
the nonlinear term, does not bias the Reynolds stresses since an isotropic spectrum produces u′iv

′

i = 0 and

(u′i)
2 = (v′i)

2. Quasigeostrophic turbulence on a β-plane (i.e. kβ 6= 0) is known to develop an anisotropic
‘dumbell’ spectrum, but this affects primarily the large scales, so isotropy remains an appropriate assumption
for the small scales.

The second property, the slope of the energy spectrum, is well known from the phenomenology of quasi-
geostrophic turbulence. In figure 3a we plot the time- and angle-averaged energy spectra from the three
reference simulations compensated by the energy spectrum of the equilibrium covariance. Each compensated
spectrum is approximately flat (indicating approximately correct spectral slope) for k > 10, and falls off
due to viscosity at small scales. Although GM included an exponential decrease in the equilibrium energy
spectrum at small scales, we leave the small-scale spectrum at k−3 to demonstrate that the results are not
sensitive to the small-scale properties of the equilibrium spectrum.

GM specified that the total kinetic energy in the equilibrium equals twice the available potential energy
at each k < kd

k2(|ψ̂1|2 + |ψ̂2|2) = k2d(|ψ̂1|2 + |ψ̂2|2 − 2R{ψ̂1ψ̂
∗

2}). (18)

We instead specify the equilibrium to have barotropic kinetic energy equal to baroclinic energy (potential
energy plus baroclinic kinetic energy) at every k,

k2(|ψ̂1|2 + |ψ̂2|2 + 2R{ψ̂1ψ̂
∗

2}) = (k2 + k2d)(|ψ̂1|2 + |ψ̂2|2 − 2R{ψ̂1ψ̂
∗

2}). (19)

The former option implies that R{ψ̂1ψ̂
∗

2} → 0 as k → kd, which is not consistent with the reference
simulations. For comparison, Larichev and Held [32] suggest that the barotropic kinetic energy should be
approximately five times larger than the total baroclinic energy at each wavenumber. Figure 3b shows the
time- and angle-averaged value of R{ψ̂1ψ̂

∗

2} for each of the three reference simulations compensated by the
equilibrium spectrum that assumes equipartition of barotropic and baroclinic energies. The compensated
spectra are approximately flat in each case, but only to a very loose approximation. Rather than tune the
properties of the equilibrium spectrum to match the reference simulations more closely, we use the simpler
assumption of equipartition of barotropic and baroclinic energies (the third property above) to underscore
the success of the method even with an imperfect equilibrium.

The fourth property specifies the partition of kinetic energy between layers. For α = 1, which was
used by GM, the layers have equal energy. Figure 3c shows the ratio of the time- and angle-averaged |ψ̂2|2
and |ψ̂1|2 for each of the three reference simulations. While the layers have approximately equal energy
for large scales, at smaller scales the lower layer has less energy in all of the reference simulations. This
accords with standard quasigeostrophic turbulence theory (which predicts barotropic large scales) and with
the expectation of having lower energy in the lower layer due to bottom friction. We set α = 1/4 for the
weakly supercritical case and α = 1/2 for the moderately and strongly supercritical cases; some results with
α = 1 are also provided for comparison in section 4. The differences in the results between α < 1 and α = 1
are notable, but small; this, and the fact that we do not further tune α or make it a function of k underscore
the robustness of the method.

The fifth property guarantees that the equilibrium has no associated eddy buoyancy flux (see equation
(14)), so that the stochastic approximation to the nonlinear terms does not bias the eddy buoyancy flux.

This is also consistent with data in the sense that the time- and angle-average of I{ψ̂1ψ̂
∗

2} is zero in the
reference simulations (not shown). The reference simulations are able to generate nonzero net heat flux

because they do not have isotropic I{ψ̂1ψ̂
∗

2}.
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Figure 3: a) Time- and angle-averaged energy spectra from the reference simulations compensated by k−5/3 for k < kd and by

k = k
4/3
d k−3 for k ≥ kd; in a), b) and d) the uppermost line is the strongly supercritical case, the middle line is the moderately

supercritical case, and the lower line is the weakly supercritical case. b) Time and angle averaged R{ψ̂1ψ̂∗

2
} compensated by

the value from the equilibrium covariance. c) Time- and angle-averaged kinetic energy spectrum in the lower layer divided by

the upper layer spectrum; the legend is to the right of the plot. d) Time- and angle-averaged heat flux cross-spectrum v̂∗t ψ̂c

normalized to unit amplitude and offset; the goal is primarily to show that the peak of the heat flux spectrum lies at k > 10 for
the weakly supercritical case, at k = 6 for the moderately supercritical case, and at k = 4 for the strongly supercritical case.
The deformation wavenumber kd = 50 is shown as a vertical line in each panel.
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The five properties listed above are sufficient to specify the equilibrium covariance as

Ck,eq = Ck,eq = A(x, y, t)nk

[

2(2k2+k2

d
)

1+α k2d

k2d
2α(2k2+k2

d
)

1+α

]

, (20)

where

nk =







0 for k < k0 and k > kmax,
(4k14/3(k2 + k2d))

−1 for k0 ≤ k < kd,

k
4/3
d (4k6(k2 + k2d))

−1 for kd ≤ k ≤ kmax.

(21)

Large- and small-scale cutoffs k0 and kmax are introduced to prevent the eddies from including unrealistically
large or small scales; k0 is set equal to the Nyquist wavenumber of the coarse grid and kmax = 256 to
the Nyquist wavenumber of the reference simulations. Note that the equilibrium covariance is symmetric
positive definite (and thus a covariance matrix) only for a range of k that depends on α; for the values
of α chosen here the the equilibriumm covariance matrix is well-defined for all k in the eddy wavenumber
range k0 ≤ k ≤ kmax. The amplitude of the eddies, A, is considered to be tunable and constant across the
large-scale spatiotemporal domain except as described in section 3.4 (with simulation results in section 4.4).

Having thus specified the equilibrium covariance, it remains to specify γk and σkσ
∗

k
, and the initial

condition for the covariance evolution equation (17). In GM these were specified by requiring the covariance
evolution equation (17) to relax to the equilibrium covariance when the mean variables are zero, i.e. when
U i = ∇Qi = 0. We take the simpler approach here of requiring the covariance evolution equation (17) to
relax to the equilibrium covariance when the mean variables and the viscous and Ekman dissipation are
zero, i.e.

2γkCk,eq = σkσ
∗

k
. (22)

In general, one must take care to specify the entries of σkσ
∗

k
in such a way that it is symmetric and positive

definite; the above approach guarantees this provided that the equilibrium covariance is a covariance matrix.
As in GM, we close the system by requiring γk to be isotropic and proportional to the nonlinear eddy
timescale at each k

γk = γk =

{

γ0(k/kd)
2/3 for k < kd,

γ0 for k ≥ kd.
(23)

As in GM, we set γ0 = 30 so that it is slightly more than sufficient to damp the linear instability of the
imposed shear. We emphasize that this choice doesn’t guarantee saturation of the eddy statistics, because
mean shear (and associated eddy instability) can become much larger than the imposed shear in the course
of a simulation. Note that the choice of γk only specifies σkσ

∗

k
and not σk so the properties of the stochastic

approximation to the nonlinear terms in the eddy PDE (7) are not completely defined.
The initial condition for the covariance evolution equation (17) is naturally taken to be the equilibrium

covariance. One might alternatively set the initial condition to zero, but we have not explored this option.
In conventional SP, the initial condition of the eddies is tracked from one large-scale time step to the next;
this could be done in the present context provided that Ck is tracked at a finite number of points in k. As
an alternative to tracking Ck one might reset the shape of Ck to the equilibrium at each time step, but
change the coefficient A to account for local changes in eddy energy. This alternative is discussed further in
section 3.4.

The covariance evolution equation (17) can be written as a linear vector equation in the form

d

dτ
ck = Mkck +Σk (24)

where

ck = E

[

(|ψ̂1|2,R{ψ̂1ψ̂
∗

2}, I{ψ̂1ψ̂
∗

2}, |ψ̂2|2)
]

,

Σk is a vector containing the real and imaginary components of the elements of σkσ
∗

k, and Mk is the linear
coefficient matrix. The form of the linear propagator Mk is listed in Appendix A. The time-average of
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the covariance evolution, assuming that the equilibrium covariance is used as the initial condition, can be
evaluated via

ǫ

∫ ǫ−1

0

ck(τ)dτ =

[

φ1(Mk/ǫ) +
2γk
ǫ
φ2(Mk/ǫ)

]

ck,eq (25)

φ1(A) = A−1
[

eA − I
]

,

φ2(A) = A−2
[

eA − I−A
]

= A−1 [φ1(A)− I] .

Note that the above formula for the time average is only valid when Mk is nonsingular. However, Mk is
singular only on a set of measure zero in k, which does not affect the eddy terms integrated over k.

The closure for the eddy terms in the mean equations (2) can be calculated from their definitions by
evaluating the time average from (25) and the Plancherel integral over k by a quadrature. It is convenient
to record the integrals defining the eddy terms in polar form with (kx, ky) = k(cos(θ), sin(θ)); for example,

u′1(ψ
′

2 − ψ′

1) =

∫ 2π

0

∫ kmax

k0

k2 sin(θ)

(

ǫ

∫ ǫ−1

0

E

[

I{ψ̂1ψ̂
∗

2}
]

dτ

)

dkdθ. (26)

u′iv
′

i =
1

2

∫ 2π

0

∫ kmax

k0

k3 sin(2θ)

(

ǫ

∫ ǫ−1

0

E

[

|ψ̂i|2
]

dτ

)

dkdθ. (27)

The polar-form integrals defining the remaining eddy terms are listed in Appendix A.
We note finally that the length of the time average ǫ−1 is tied to the length of the coarse grid time step

in conventional SP. This is natural since the state of the eddies is tracked from one coarse grid time step
to the next. In the current formulation the eddies are re-set to the equilibrium covariance at every time
step, and the length of a coarse-grid time step is generally too short to allow meaningful evolution of the
eddies away from their artificial initial condition. We therefore allow ǫ−1 to be larger than the coarse grid
step size to give the eddies a longer time to react. Decoupling ǫ from the coarse-grid time step introduces a
new tunable parameter, which is not ideal. It would be less arbitrary to set ǫ such that the eddy evolution
timescale is shorter than or comparable to the shortest decorrelation time of the mean variables that appear
in the eddy equation; however, lacking that information ǫ is left here as a tunable parameter.

3.3. Three Closures: Deterministic, Stochastic, and Uncorrelated

The eddy closure is thus far completely specified up to the choice of the eddy amplitude A and the length
of time average ǫ−1. In this section we develop three closures where A and ǫ are tunable constants. In each
of the closures the radial part of the integrals (26)-(27) is approximated using a trapezoid-rule quadrature
with kmax−k0+1 equispaced nodes in k. The implementation of each of the closures relies on pre-computing
the integrals in the radial direction (k) as functions of the large-scale variables k̂ ·U c, k̂×∇ωc and k̂×∇ωt

where k̂ is a unit vector in the direction of k (these variables are equivalent to k̂ ·U c, k̂×∇Q1 and k̂×∇Q2,
but are better conditioned for interpolation). The ranges of large-scale variables over which the eddy terms
are pre-computed depend on the test case; for the moderately supercritical case we use |k̂ · U c| ≤ 3.5,
|k̂×∇ωc| ≤ 103 and |k̂×∇ωt| ≤ 1.5× 104. These values are a posteriori verified to cover closely the ranges
observed in the actual simulations of the moderately supercritical system (limits for other cases are specified
in section 4). In every case, the eddy terms are pre-computed on a grid of 101 equispaced points in each of
the three large-scale variables, and linear interpolation is used to evaluate the radial part of the integral.

The first closure (which we call ‘deterministic’) consists in approximating the integrals defining the eddy
terms (26)-(27) and (A.1)-(A.4) by a trapezoid-rule quadrature with 40 equispaced nodes in θ, and using
linear interpolation from the 1013 precomputed values of the radial part of the integrals. Precomputing only
the radial direction saves considerable computational effort compared to precomputing both directions of
the integral, or neither.

To illustrate the nonlinear behavior of the deterministic closure we display in figure 4 the response of
the eddy terms to a range of zonal shears with amplitude |uc| ≤ 3.5 and meridional barotropic vorticity
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Figure 4: Eddy response to baroclinic shear and barotropic vorticity gradient computed using ǫ = 25 and γ0 = 30. a)

(k2d/2)v
′

1
ψ′

2
, b) (v′

1
)2 − (u′

1
)2, and c) (v′

2
)2 − (u′

2
)2.

gradients with amplitude |k̂×∇ωt| ≤ 1.5× 104 (this range is much greater than the background ‘planetary’
vorticity gradient at moderate supercriticality, k2β = 1250, but fits the observed range of barotropic vorticity
gradients in the simulations); results are displayed for drag coefficient r = 4, which is the value chosen for the
moderately supercritical experiments, and ǫ = 25. The zonal eddy heat flux and the off-diagonal Reynolds
stress u′jv

′

j are zero, so figure 4 shows the meridional heat flux (k2d/2)v
′

1ψ
′

2 in panel (a), (v′1)
2− (u′1)

2 in panel

(b), and (v′2)
2 − (u′2)

2 in panel (c). The nonlinearity of the closure as a function of the local mean is clearly
apparent; even in the absence of a mean meridional vorticity gradient (a horizontal line through the middle
of each panel) the eddy terms are not linear functions of the mean zonal baroclinic shear.

However, the inverse cascade of QG turbulence is not well approximated by a deterministic process,
since the unresolved scales are only correlated with, and not completely determined by the large scales.
Furthermore, modeling the unresolved eddies as homogeneous random functions in formally infinite embed-
ded domains belies the fact that the subgrid scales at a given location are generally quite inhomogeneous,
and consist not of an infinite population of eddies but of a few non-axisymmetric vortices, vortex dipoles,
filaments, etc.

This small-scale inhomogeneity can be incorporated into the existing framework by approximating the
integrals over k that define the eddy terms by a ‘random’ quadrature where the quadrature nodes are
randomly chosen. Motivated by the common practice of using reduced-dimensional embedded domains in
conventional SP, and by the success of algorithms based on random plane waves in modelling turbulent
diffusion [33–35], we develop a stochastic closure based on approximating the integrals defining the eddy
terms (26)-(27) and (A.1)-(A.4) by integrating along one randomly-chosen value of θ. Specifically, the closure
is defined by using a two-point (θ and −θ) trapezoid-rule quadrature of (26)-(27) and (A.1)-(A.4) where a
different value of θ is chosen at each coarse grid point and at each time step from a uniform distribution
in [0, π). The integral in the radial direction is evaluated using linear interpolation from the pre-computed
values. By choosing the direction θ from a uniform distribution we guarantee that the expected value of
the random integral equals the full integral that defines the deterministic closure. We refer to this second
closure as the ‘correlated stochastic plane wave’ closure.

Finally, for comparison, we evaluate the closure based on the random quadrature above, but only sampling
the un-evolved equilibrium covariance, i.e. the limit ǫ → ∞. In this limit the eddies become completely
uncoupled from the mean and have zero buoyancy flux, and therefore amount to a sophisticated form of
structured random-noise forcing. This closure is included for the sake of demonstrating that, for the weakly
and strongly supercritical cases, the large-scale dynamics are fairly insensitive to the precise structure of the
small-scale forcing that generates the inverse cascade of kinetic energy. This third closure is referred to as
the ‘uncorrelated stochastic plane wave’ closure.

We find that the stochastic closures developed in this section are made more stable (and make more
sense from the standpoint of numerical analysis) by holding the randomly-chosen angle θ constant through
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all stages of a single Runge-Kutta time step, instead of changing it at each substage. It is possible to
incorporate a finite decorrelation time into the angle by modeling it as a random walk, which keeps the
expected value of the stochastic closures equal to the deterministic closure, but we have not pursued this
option. However, tying the decorrelation time of the angle directly to the coarse-grid time step, as we have
chosen here, makes the algorithm sensitive to the size of that time step. In all the tests of the stochastic
closures reported in section 4 we keep the time step fixed at 2×10−4, which is more than adequate to resolve
the deterministic part of the dynamics.

3.4. A Fourth Closure Based on Energy Conservation

The foregoing closures use the equilibrium covariance as an initial condition for the eddies at every time
step, and keep the eddy energy density (proportional to A) constant in space and time. In reality, eddy
energy is continually exchanged with the large scales in such a way that the total energy is conserved (absent
forcing and dissipation). The energy equation for the mean is obtained by multiplying the mean equation
for layer j by −ψj , summing the layers, and integrating over x; the result is

1

2

d

dt

∫∫

|u1|2 + |u2|2 +
k2d
2
(ψ1 − ψ2)

2dx = −k2d
∫∫

(

v1ψ2 + u′

1ψ
′

2 · ∇ψc

)

dx

−D +

∫∫

∑

i

[

u′iv
′

i(∂
2
x − ∂2y)ψi +

(

(v′i)
2 − (u′i)

2
)

∂xyψi

]

dx (28)

where −D denotes frictional dissipation and −k2dv1ψ2 represents energy gained through interaction with the
imposed background shear.

The energy in the initial condition for the eddies is

1

2

∫∫

|u′

1|2 + |u′

2|2 +
k2d
2
(ψ′

1 − ψ′

2)
2dx̃ = πA

(

∫ kd

k0

k−5/3dk +

∫ kmax

kd

k
4/3
d k−3dk

)

= E0A (29)

We may specify A by requiring the sum of the energy on the coarse grid plus the energy in the eddy initial
condition to be conserved in the absence of forcing and dissipation. In addition, it is natural to include
the energy input to the eddies through their interaction with the imposed background shear. One might
also include eddy energy loss to frictional dissipation; however, classical quasigeostrophic turbulence theory
suggests that eddy energy loss to friction is negligible so we ignore that effect here. The above conditions
may be satisfied by requiring

E0
1

2

d

dt

∫∫

Adx = k2d

∫∫

(

u′

1ψ
′

2 · ∇ψc − v′1ψ
′

2

)

dx

−
∫∫

∑

i

[

−k
2
d

2
∇ψi · (u′

iψ
′

j) + u′iv
′

i(∂
2
x − ∂2y)ψi +

(

(v′i)
2 − (u′i)

2
)

∂xyψi

]

dx. (30)

If A were spatially constant but time-varying the above would constrain its evolution. However, intuition,
multiple-scales asymptotics [22], and simulations [36] suggest that the eddy energy budget can include a
great deal of spatial variability. We therefore adapt the prognostic eddy energy equations proposed by
Marshall and Adcroft [37] and Grooms et al. [22] to our situation by requiring A to obey

E0
1

2

(

∂t + ut · ∇ − νA∇2
)

A = k2d

(

u′

1ψ
′

2 · ∇ψc − v′1ψ
′

2

)

−
∑

i

[

u′iv
′

i(∂
2
x − ∂2y)ψi −

(

(v′i)
2 − (u′i)

2
)

∂xyψi

]

. (31)

In moving from equation (30) to (31), note that u′

1ψ
′

2 = −u′

2ψ
′

1, which may be derived by the velocity-
streamfunction relation u′i = −∂ỹψ′

i, v
′

i = ∂x̃ψ
′

i and integration-by-parts on the eddy domains. We illustrate
the performance of this closure in section 4.4 but much more work remains to explore its properties.
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Table 1: Time averaged heat flux from all experiments.

Supercriticality Closure Time-Averaged
∫∫

vtψcdx

Strong DNS 207
Strong Uncorrelated 221
Strong Deterministic 176
Moderate DNS 23.3
Moderate Uncorrelated 20.1
Moderate Correlated, ǫ = 12.5 18.9
Moderate Correlated, ǫ = 25 19.8
Moderate Correlated, ǫ = 25, α = 1 20.9
Moderate Correlated, ǫ = 50 21.4
Moderate Deterministic 15.9
Moderate Prognostic A 12.6
Weak DNS 1.03
Weak Uncorrelated 1.09
Weak Deterministic 2.1

4. Tests of Stochastic Superparameterization

In this section we report the results of low-resolution simulations using the four closures described in
sections 3.3 and 3.4, investigating primarily the effects of changing the eddy amplitude A and the cutoff
time for eddy evolution ǫ−1. Since we have chosen the smallest eddy wavenumber k0 to equal the coarse-grid
Nyquist wavenumber, and since the strongest eddy instability (and hence the strongest coupling between
large and small scales) is limited to k < kd we do not consider coarse grids with 100 or more points in each
direction. (We also note that one can obtain adequate results on grids with 100 or more points per direction
by omitting the eddy terms from the mean equations entirely and tuning the hyperviscosity coefficient ν.)
With the rule-of-thumb that wavenumbers with ten gridpoints per wavelength are well-resolved we also
restrict our attention to coarse grids with more than 30 points in each direction since the most interesting
dynamics in our test cases occur for wavenumbers with k > 3. Given these constraints we focus on a coarse-
grid with 64 points in each direction; the Nyquist wavenumber for the 642 grid is nearly coincident with the
most unstable wavenumber of the linear instability that drives the system (figure 2a), which makes this a
particularly difficult test case.

4.1. The Uncorrelated Stochastic Plane Wave Closure

In this section we describe the results of simulations of the mean equations where the eddy terms are
approximated using the uncorrelated stochastic plane wave closure described in section 3.3, i.e. sampling
the equilibrium covariance without allowing it to evolve in response to the local mean. The coarse grid
hyperviscous coefficient ν and eddy amplitude A are tuned by hand to produce optimal results: the weakly
supercritical simulation uses A = 1000 and ν = 10−10; the moderately supercritical simulation uses A = 3500
and ν = 2 × 10−10; the strongly supercritical simulation uses A = 1.8 × 104 and ν = 4 × 10−10. These
simulations provide a baseline with which to compare the more sophisticated closures.

Figures 5d and 5e show time series of the zonally-averaged zonal barotropic velocity from the weakly
and moderately supercritical simulations, and figures 5a and 5b show the time- and zonally-averaged zonal
barotropic velocity. The time series of the meridional heat flux generated by the strongly supercritical
simulation is shown in figure 5c. Figure 6 shows the time-averaged energy spectra resulting from the
uncorrelated closure; the spectra from the high-resolution reference simulations are shown as dashed lines,
while the coarse-resolution spectra are shown as solid lines, with kinetic energy in red, potential in blue,
and total in black.
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Figure 5: Results from the uncorrelated stochastic closure. a) Time- and zonally-averaged zonal barotropic velocity, weakly
supercritical case. b) as in a), moderately supercritical case. c) Time series of heat flux in the strongly supercritical case. d)
Time series of zonally-averaged zonal barotropic velocity, weakly supercritical case. e) as in d), moderately supercritical case.

The time-averaged spectra and heat flux for the weakly and strongly supercritical simulations (figure 6a
and 6c, figure 5c and table 1) are very similar to the reference simulations; in particular, differences in the
precise structure of the spectrum for the weakly supercritical case are within the bounds of variability that
result from running the reference simulation with different initial conditions, resulting in jets with slightly
different shape (not shown). The heat flux produced in these simulations matches the high-resolution
reference simulations to about 7%. The heat flux in the weakly supercritical experiment in particular is
difficult to match because, as shown in figure 3d, the heat flux in the weakly supercritical case is generated
primarily by wavenumbers with k > 10, which are poorly resolved on the coarse grid of 642 points.

Both the high-resolution reference simulation and the uncorrelated closure in the weakly supercritical
case have seven jets (figure 2b and 2d, and figure 5a and 5d). This is a striking success since the wavelength
of the jets is at the limit of acceptable resolution on the coarse grid. The jets in the reference simulation
are asymmetric with stronger eastward flow with peak amplitude greater than 15, while the jets from the
uncorrelated closure are nearly east/west symmetric with amplitude 10. Given the difficulty in representing
structures at the limit of acceptable resolution, it is not reasonable to expect the jets in the coarse resolution
simulations to exhibit the correct asymmetric east/west structure and amplitude of the high-resolution
reference simulation (see figure 1). We note also that the amplitude of the jets can be increased by tuning
ν and A, but only at the expense of changing from seven to six or fewer jets.

In contrast, the four jets in the moderately supercritical simulation are well within the resolving capability
of the coarse grid, but are poorly represented by the uncorrelated closure. The results shown here are the
best obtained from a suite of simulations with 2 × 10−10 ≤ ν ≤ 6 × 10−10 and 3000 ≤ A ≤ 6500 (with
poor results on the edges of that range), which suggests that better results could not be obtained by further
varying the tunable parameters.
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Figure 6: Time and angle averaged energy spectra from the uncorrelated stochastic closure.
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Figure 7: Time series of zonally averaged zonal barotropic velocity from the correlated stochastic closure for the moderately
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18



−20 0 20
0

1

2

3

4

5

6

a) ǫ = 12.5

y

−20 0 20
0

1

2

3

4

5

6

b) ǫ = 25

−20 0 20
0

1

2

3

4

5

6

c) ǫ = 25, Barotropic Eddies

u
t

y

−20 0 20
0

1

2

3

4

5

6

d) ǫ = 50

u
t

Figure 8: Time and zonally averaged zonal barotropic velocity from the correlated stochastic closure in the moderately super-
critical case; a)-d) as in figure 7.

4.2. The Correlated Stochastic Plane Wave Closure

Given the success of the uncorrelated stochastic plane wave closure in the weakly and strongly super-
critical simulations, we focus in this section on seeking improvements in the moderately supercritical case
through the use of the correlated stochastic plane wave closure. From a suite of simulations varying A, ν,
and ǫ, we find that the optimal values of A and ν are largely independent of ǫ; to focus attention on the
effect of varying ǫ we therefore keep the optimal values of A = 5000 and ν = 4 × 10−10 fixed and present
results at ǫ = 12.5, 25, and 50 using an equilibrium covariance with α = 1/2 (see section 3.2) and at ǫ = 25
using α = 1.
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Figure 7 shows time series of the zonally-averaged zonal barotropic velocity from the four simulations
varying ǫ and α; plots of the time-averaged jet structure are shown in figure 8. Table 1 presents the heat
flux for each experiment, and figure 9 shows the time-averaged energy spectra. We begin by noting that
the jet structure is clearly improved at smaller ǫ, with little difference between α = 1/2 and α = 1. The
jet structure at ǫ = 12.5 is better than at ǫ = 25 or 50, and far better than using the uncorrelated closure,
with amplitude of approximately 20 and some indication of east/west asymmetry. The clear improvement
in the jet structure as ǫ decreases suggests that further improvements might be had by further decreasing
ǫ, but there is a tradeoff between improved jet structure and worsened heat flux as ǫ decreases: as shown
in table 1, the heat flux is optimal at ǫ = 50 and decreases with ǫ. Nevertheless, the heat flux is correct
to within 20% in all cases, whereas the jet amplitude is too low by about 33%. Figure 9, which shows the
time-averaged energy spectra from the four experiments, also indicates that the potential energy spectrum,
which is too low in all simulations, is best at ǫ = 50. We note though, that there is much less potential
energy than kinetic energy, so the degradation of the potential energy spectrum is less important than the
improvement in the peak of the kinetic energy spectrum. Note also that the potential energy spectrum is
slightly better at small scales with α = 1/2 than with α = 1. This is because the Reynolds stress terms
with α = 1/2 are more baroclinic than with α = 1, and therefore backscatter more energy into the potential
energy spectrum, slightly decreasing the efficiency of the already too-efficient downscale cascade of potential
energy.

4.3. The Deterministic Closure

In this section we report results of the deterministic closure described in section 3.3. We emphasize that
the deterministic closure should not be expected to work well in this situation with an inverse cascade me-
diated by stochastic backscatter. Since the closure has a significantly different character than the stochastic
closures we present results from all three parameter regimes. We begin by noting that the deterministic
closure does not require the relatively large values of ν needed to stabilize the stochastic closures; all ex-
periments reported in this section use ν = 10−12, and the results are not very sensitive to variations of ν.
Also, because the deterministic closure is decoupled from the length of the coarse grid time step, we use
the same adaptive time step algorithm as in the reference simulations rather than a fixed time step as used
for the stochastic closures. While we have run tests with ǫ = 12.5, 25, 50 and 100, the results obtained at
ǫ = 25 are representative of the general behavior, and only the latter are presented at weak and moderate
supercriticalities.

In the strongly supercritical case the simulations at ǫ ≤ 25 are numerically unstable for all values of A
and ν tested. We propose the following explanation. At strong supercriticality the range of baroclinic mean
shear observed on the coarse grid is much broader than at weak and moderate supercriticality. At small ǫ
the eddies have a long time to respond to the strongly unstable mean shear, even when those values of mean
shear exist only briefly on the coarse grid, and the eddies produce an unrealistically large response. These
large eddy terms then require an extremely small time step to accommodate them, and the use of moderate
time steps results in instability. The numerical conditioning of stochastic SP was improved in the toy model
of Majda and Grote [12] by truncating the growth of overly-unstable eddy modes during the quadrature used
to compute the eddy terms. As an alternative, the conditioning could be improved by truncating the values
of the mean shear used to generate the eddy terms, so that anomalously large values of local mean shear
are reduced before being used to calculate the eddy response. Again, the conditioning could be improved by
increasing the damping rate γ0 so that the instabilities do not develop as quickly. Since the deterministic
closure is included here primarily for illustration we do not pursue these options further, but simply present
the best stable results for the strongly supercritical case at ǫ = 50.

The interpolant used to compute the eddy terms at moderate supercriticality is the same as used in
the simulations with the correlated stochastic closure. For the weakly supercritical case the interpolant is
computed in the range |k̂ · U c| ≤ 3.5, |k̂ × ∇ωc| ≤ 103, and |k̂ × ∇ωt| ≤ 7 × 103 with α = 0.25, and for
the strongly supercritical case the interpolant is computed in the range |k̂ · U c| ≤ 7.5, |k̂ × ∇ωc| ≤ 104,
and |k̂ × ∇ωt| ≤ 5 × 104 with α = 0.5. We note that the range of baroclinic shear used to compute the
interpolant at strong supercriticality is slightly less than the range of observed values; as suggested above,
this truncation improves the numerical conditioning.
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Figure 9: Time and angle averaged energy spectra from the correlated stochastic closure in the moderately supercritical case;
a)-d) as in figure 7 and legend as in figure 6.

For each scenario, the value of A is hand tuned to produce optimal results; the weakly supercritical
case uses A = 104, the moderately supercritical case uses A = 2 × 104, and the strongly supercritical case
uses A = 103. Figure 10a and 10c show time series of the zonally-averaged zonal barotropic velocity in the
weakly and strongly supercritical experiments, respectively. The jets in both cases are far too weak, with
amplitude approximately 4 and 8, respectively, and both exhibit unrealistic temporal variation. Figure 10b
shows a snapshot of the upper layer potential vorticity q1 from the strongly supercritical simulation. A
strong mode-one Rossby wave is clearly evident; this strong mode-one behavior is typical of the simulations
at strong supercriticality and is entirely spurious since it is not evident in the reference simulations.
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The time-averaged energy spectra from the deterministic closure experiments are shown in figure 11.
Although the spectra are largely incorrect in all cases, it is worth noting that, unlike negative viscosity,
the closure is able to inject energy to the large scales and remain computationally stable despite being
completely deterministic. Second, the extremely steep kinetic energy spectra in the weakly and moderately
supercritical experiments suggest that the closure is also smoothing the small scales, since the steepness of
the spectrum is clearly not due to the weak effect of hyperviscosity. Finally, table 1 shows that the heat flux
generated by the deterministic closure is significantly incorrect.

4.4. Closure with Prognostic Eddy Energy Density

In this section we briefly report on results obtained using the closure described in section 3.4. This closure
is similar to the correlated stochastic closure, except that the eddy amplitude A obeys the heuristically-
motivated prognostic partial differential equation (31) instead of being a tunable constant. We again focus
on the moderately supercritical scenario since the uncorrelated stochastic closure leaves little room for
improvement in the other two scenarios. Recall that in the equation for A, equation (31), the net eddy
energy equilibrates by balancing energy input from interaction with the imposed background shear and
from absorption of the downscale potential energy cascade with energy output to the inverse kinetic energy
cascade on the coarse grid.

Results are shown here using ǫ = 25 and γ0 = 1 where γ0 is the damping coefficient in (23). The results
at ǫ = 12.5 and γ0 = 30 are similar, but have lower overall energy and weaker jets. We hypothesize that
this results from insufficient energy injection to the eddies from the imposed background, since γ0 = 30 is
sufficient to stabilize the linear instability of the imposed background shear. To counter this effect we used
ǫ = 12.5 and γ0 = 15, but the algorithm was numerically unstable and developed negative values of A. As a
compromise we ended with ǫ = 25 and γ0 = 1, which increases the overall energy compared to γ0 = 30. We
also set ν = 6 × 10−10, which improves the results slightly. The parameters νA and E0 used in specifying
the evolution equation (31) have the values νA = 1 with E0 defined in (29). Results are shown for νA = 1;
for much smaller values of νA < 0.1 the simulations can develop negative A, which is clearly unrealistic, and
become unstable.

Figure 12 shows the time-averaged energy spectra (12a), the time- and zonally-averaged zonal barotropic
velocity (12b), a time series of the zonally-averaged zonal barotropic velocity (12c), and a snapshot of A
(12d). The spatial-average value of A equilibrates to approximately 4000. Recalling that the optimal results
for the correlated stochastic closure were obtained for A = 5000, the prognostic closure is generating too
little eddy energy. As a result, the jets are too weak, and the meridional flow on the large scales is too weak
to generate sufficient heat flux (see table 1). The potential energy spectrum is also much too low, similar to
the results from the correlated stochastic closure with constant A. Although the results are not perfect, we
are hopeful that further development of this closure will enable A to be computed as part of the solution
instead of being an externally tuned parameter.

5. Discussion

In this section we discuss the stochastic SP algorithms the results of the foregoing experiments, and
compare briefly with other stochastic parameterization methods. More information on non-stochastic SP
can be found in Majda and Grooms [38].

Stochastic SP begins by formally separating the master equations that govern the dynamics at all scales
into mean and eddy equations by means of a Reynolds average. The point approximation is then applied,
which re-interprets the eddy equation as evolving in subdomains embedded at each point of the physical
domain, and re-interprets the Reynolds average as an average over the embedded domains. This imposes a
scale separation between the mean and the eddies and produces a set of multiscale equations amenable to
solution by SP. The point approximation is reminiscent of multiple-scales asymptotics (e.g. [22]) in that it
produces eddy equations that evolve in pseudo-physical domains embedded in the physical domain, but the
point approximation differs from multiple-scales asymptotic methods primarily in that it does not assume
extreme/asymptotic scale separation.
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Figure 12: Results from the prognostic-A closure. a) Time and angle averaged energy spectra; legend as in figure 6. b) Time
and zonally averaged zonal barotropic velocity. c) Time series of zonally averaged zonal barotropic velocity. d) Snapshot of A.

Stochastic SP then replaces the nonlinear eddy equations that result from the application of the point
approximation by quasi-linear stochastic partial differential equations. The eddies are modeled as spatially
homogeneous Gaussian random functions in the embedded domains (although they are not homogeneous
across the physical domain). The properties of the Gaussian closure of the eddies are set by basic phe-
nomenological considerations. Although these properties are compared to the results of high-resolution
reference simulations, they are not tuned to match those simulations, nor are they especially good approx-
imations of those simulations, as evidenced by the fact that the curves in figure 3a-c are not flat. Despite
the inexactness of the match between the details adopted for the Gaussian closure and the properties of
the reference simulations, it is clear that some a priori knowledge of the structure of the eddy spectra
and cross-spectra is required. In cases where such knowledge is lacking, the simple Gaussian closure model
adopted here could be replaced by more sophisticated models, based for example on the modified quasilinear
Gaussian approach of Sapsis and Majda [29], or the more complicated EDQNM (eddy damped quasi-normal
Markovian) turbulence models [39]; while this would significantly increase the cost and complexity it would
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diminish the required amount of a priori information about the small scales, and could potentially improve
the accuracy of the eddy model.

The feedback from the eddies to the mean appears as the average of products of eddy variables over the
embedded domains. Since the eddies are homogeneous on the embedded domains, the spatial average is
equivalent to an ensemble average and the feedback terms are not stochastic. Such a closure was used in [6];
in the present approach, following GM, we alter the eddy model by introducing random anisotropy to the
eddy model: the eddies are made to consist entirely of a sum of Fourier modes in a single direction that is a
random function over the large-scale physical domain. This element of random anisotropy is a minimalistic
model corresponding to the simple fact that in reality the small scale eddies in a given location are typically
not isotropic, but consist of a few randomly oriented vortices, waves, and filaments. The details of the
random eddy orientation algorithm adopted here leave room for improvement, for example by incorporating
realistic spatiotemporal correlations into the local eddy direction. This is a potential topic of future research.

The foregoing tests show that the stochastic SP algorithms developed here can reproduce the energy
spectra, heat flux, and jet structure of the reference simulations reasonably well. The main difficulties are
in producing accurate potential energy spectra since the algorithms drain too much large-scale potential
energy. A particular concern is the fact that the eddy amplitude A is tuned to reproduce the results of the
reference simulations; section 3.4 provides a model for A based on energy conservation, but the results of
section 4.4 show that further work is needed.

The results are also sensitive to the value of the coarse-grid viscosity ν, though sensitivity to ν is less
than to A: changing the viscosity by a factor of two from 2 × 10−10 to 4 × 10−10 has less impact than
changing A by twenty percent from 5000 to 4000. This sensitivity is related to the fact that the eddy angle
is uncorrelated in space and time, which leads to extremely rough eddy fluxes. As mentioned above, adding
spatial and temporal correlations to the eddy angle is a clear avenue of possible improvement for future
research, and adding such correlations will likely decrease the sensitivity to the coarse-grid viscosity ν. The
results are sensitive to the time over which the eddies are allowed to respond to the local mean conditions,
ǫ−1. Again, sensitivity to ǫ is lower than sensitivity to A: changing ǫ by a factor of two from 12.5 to 25 has
less impact than changing A by twenty percent (see figures 7, 8, and 9). As noted above, if some information
on the decorrelation time of the large scales is available, then it would seem reasonable to choose ǫ such that
ǫ−1 is comparable to or shorter than the decorrelation time of the large scales.

6. Conclusions

In this article we expand and develop the work of Grooms and Majda [5] in applying stochastic super-
parameterization to quasigeostrophic turbulence. Stochastic parameterization techniques can be broadly
classified into two categories: those that rely on stochastic models of the unresolved eddy dynamics, and
those that develop stochastic models only of the effects of the unresolved eddies on the resolved large scales.
The current work and the work of Frederiksen et al. [40] (and citations therein) and Khouider et al. [41]
are examples of the former category, while the work of Leith [42], Berner et al. [43], and Brankart [44] are
examples of the latter. The stochastic parameterization algorithms developed here are successful in gener-
ating robust inverse cascades of kinetic energy and simultaneous downscale cascades of potential energy on
coarse computational grids that do not resolve the deformation scale. The test scenario considered here is
particularly difficult since the unresolved small scales act as the primary source of kinetic energy for the
large scales, unlike typical scenarios where the largest scales are directly forced by buoyancy and momentum
fluxes. The use of random-direction reduced-dimensional embedded domains, together with the stochastic
superparameterization framework (point approximation and Gaussian closure) results in extremely efficient
seamless stochastic SP algorithms that do not require simulation of nonlinear eddy PDEs on small scale
grids as in conventional superparameterization.

For stochastic superparameterization in general, our results show that the multiscale formulation can still
be effective in situations without scale separation, although the algorithm is naturally expected to work even
better in situations with scale separation. We find that when the eddies have no memory of their previous
state, but are instead re-set to an equilibrium initial condition at the beginning of each large-scale time step
(more precisely, the eddies are re-set to an initial condition each time the eddy terms are evaluated) the
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evolution timescale for the eddies ǫ−1 should be decoupled from the size of the coarse-grid time step to allow
the eddies sufficient time to respond to the properties of the local mean. An experimental closure based on
energy conservation ideas is developed to show how some memory may be retained by the eddies even when
they are continually being re-set to an initial condition.

Future directions include coupling the QG eddy model to a coarse-grid ocean general circulation model
(GCM), which will require a more sophisticated treatment of the vertical direction and some care in setting
up the eddy equations using the point approximation. Other issues not addressed here include the effects of
bottom topography and lateral boundaries; the latter having never been addressed in a superparameteriza-
tion context, to our knowledge. The framework of stochastic superparameterization used here may also be
applicable in other geophysical settings, including thermal convection in the ocean mixed layer. A general
formulation of the framework of stochastic superparameterization can be found in Majda and Grooms [38].

Another direction for future research is the development of statistical prediction and state estimation
algorithms using superparameterization. Stochastic parameterization in general and stochastic SP in partic-
ular are well suited to improving the efficiency of ensemble-based prediction and state-estimation algorithms
[45]. In geophysical applications the state of the unresolved scales is typically unconstrained by observa-
tion, and prediction systems attempt to solve for the most probable evolution of the large scales. High
resolution simulations are often too costly to use with a sufficiently large ensemble size, but low resolution
simulations often display insufficient variability, which can lead to filter divergence (i.e. observations are
ignored). Stochastic SP offers a strategy for developing efficient low resolution simulations with increased
variability due to the stochastic eddy forcing. These properties suggest that it will improve the performance
of ensemble-based prediction systems.
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Appendix A. Miscellaneous Formulas

The formulas for the remaining eddy terms as integrals over k are
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In polar form these are
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The linear propagator in equation 24 has the form

Mk =
1

4k2(k2 + k2d)
M̃k − r

2(k2 + k2d)
Rk − 2(γk + νk8)I (A.5)

where I is the identity matrix,

R̃k =
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0 0 0 2(2k2 + k2d)









(A.6)

and M̃k has the following nonzero entries
{

M̃k

}

3,1
= k2d(−2k ×∇Q1 + 2(2k2 + k2d)U c · k) (A.7)

{

M̃k

}

1,3
= 2k2d(2k ×∇Q2 + 2(2k2 + k2d)U c · k) (A.8)

{

M̃k

}

3,2
= 4(2k2 + k2d)k ×∇Qc − 4(2k4 + 2k2k2d + k4d)U c · k (A.9)

{

M̃k

}

2,3
= −4(2k2 + k2d)k ×∇Qc + 4(2k4 + 2k2k2d + k4d)U c · k (A.10)

{

M̃k

}

4,3
= 2k2d(−2k×∇Q1 + 2(2k2 + k2d)U c · k) (A.11)

{

M̃k

}

3,4
= k2d(2k ×∇Q2 + 2(2k2 + k2d)U c · k) (A.12)

The linear propagator Mk depends only on the baroclinic part of the velocity Uc = (u1 −u2)/2+ x̂; this is
not surprising since the barotropic velocity amounts to a uniform translation and does not affect the eddy
covariance.
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