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Abstract. Calculating the statistical linear response of turbulent dynamical systems to the

change in external forcing is a problem of wide contemporary interest. Here the authors apply linear

regression models with memory, AR(p) models, to approximate this statistical linear response by

directly fitting the autocorrelations of the underlying turbulent dynamical system without further

computational experiments. For highly nontrivial energy conserving turbulent dynamical systems like

the Kruskal-Zabusky (KZ) or Truncated Burgers-Hopf (TBH) models, these AR(p) models exactly

recover the mean linear statistical response to the change in external forcing at all response times

with negligible errors. For a forced turbulent dynamical system like the Lorenz-96 (L-96) model,

these approximations have improved skill comparable to the mean response with the quasi-Gaussian

approximation for weakly chaotic turbulent dynamical systems. These AR(p) models also give new

insight into the memory depth of the mean linear response operator for turbulent dynamical systems.
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1. Introduction

One of the cornerstone of the modern statistical physics is the fluctuation-

dissipation theorem (FDT) which roughly states that for systems of identical particles

in statistical equilibrium, the average response to small external perturbations can be

calculated through the knowledge of suitable correlation functions of the unperturbed
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2 Regression Models with Memory for the Linear Response of Turbulence

statistical system. For some of the many practical applications of the FDT, see for

example [23, 6]. The low frequency response to changes in external forcing for various

components of the climate is a central problem of contemporary climate change sci-

ence. Leith [24] suggested that if the climate system satisfied a suitable FDT then the

climate response to small external forcing should be calculated by estimating suitable

statistics in the present climate. The climate system is a forced dissipative chaotic

dynamical system which is physically quite far from the classical physicist’ setting for

FDT. Leith’s suggestion has create a lot of recent activity in generating new theo-

retical formulation [27, 39, 31, 13, 26, 18] and approximate algorithms for FDT with

applications to climate response [16, 17, 14, 15, 1, 2, 3, 4]. FDT combined with em-

pirical information theory leads to new strategies for correcting imperfect models in

a training phase where observations are available to have improved long range low

frequency forecasting skill [28, 29, 30].

The simplest approximate strategies for computing the response of chaotic tur-

bulent dynamical systems use a linear regression model [40, 10] to fit the statistics of

the nonlinear dynamics,

duR

dt
=LRuR +σRẆ +F, (1.1)

where Ẇ is a vector white noise and LR has eigenvalues with negative real part.

Since LR has decaying spectrum, the linear operator in (1.1) has its own linear re-

gression FDT [12] and one strategy [41] is to use the prediction of FDT for this

approximate model as a surrogate for the actual linear response operator, which has

a vastly larger computational overhead [27]. However, there are inherent realizability

issues so that there often is not a linear operator, LR, with negative real eigenval-
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ues which reproduces the lagged covariances [40, 9] so that there are severe model

errors [31] in calculating the linear response. A different linear regression strategy

involving utilizing Ornstein-Uhlenbeck processes was introduced recently [31] called

the Mean Stochastic Model (MSM) which is guaranteed to always be realizable by

matching the variances and the integral of the lagged covariances with data from the

turbulent dynamical system (see Section 2 below); the matching of the integral of the

covariance guarantees the best infinite time response of the linear regression model

in reproducing the actual FDT response to the change in forcing. There are exten-

sive comparisons [31] between MSM and the earlier standard single step regression

strategy [40, 10] demonstrating the clear superiority of MSM for estimating the mean

statistical response operator for changes in mean forcing.

The goal of the present paper is to build linear regression models with memory [5,

7, 21], called AR(p) models, to improve the skill of the finite time mean linear response

to the change in external forcing through such models. Besides the improved skill

in the response at finite times over MSM, this analysis leads to an assessment of the

memory effects in the system without performing detailed simulations of the turbulent

dynamical system to test this. Nevertheless, as pointed out in [31, 29] all linear

regression models including MSM and AR(p) always generate Gaussian statistics and

necessarily always yield a zero variance response to the change in external forcing;

even when the actual variance response in the turbulent dynamical system is large

[27, 1, 3]. Thus, there is an intrinsic information barrier in all linear regression model

approximations for the linear response of the variance of turbulent dynamical systems

[28, 29, 30].

With this background, the outline of the present paper is the following. Sec-

tion 2 contains a brief summary of FDT and the MSM and AR(p) linear regression
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algorithms. Section 3 contains the application of MSM and AR(p) linear regression

algorithms to the finite time linear response of three energy conserving turbulent

dynamical systems, the Kruskal-Zabusky (KZ), truncated Burgers-Hopf (TBH), and

inviscid-unforced Lorenz-96 (IL96) models [27]; the improved skill of AR(p) over MSM

in the finite time statistical mean response to external forcing is especially significant

for the KZ model with highly oscillatory multi-scale correlation functions. For these

energy conserving turbulent dynamical systems, AR(p), essentially recovers the mean

linear response to external forcing at all times exactly with negligible errors. In Sec-

tion 4, the AR(p) regression models are applied to the forced dissipative L-96 model

[25, 27]. Here the skill of the AR(p) models for linear response of weakly chaotic turbu-

lent dynamical systems (with forcing strengths F =5,6) at moderate times is superior

to MSM and comparable to the quasi-Gaussian FDT approximation at vastly cheaper

computational cost. Section 5 is a brief concluding discussion.

2. Fluctuation-Dissipation Theory and Linear Regression Models

In this section, we provide a brief informal summary of FDT. See [27] for more

details. Our discussion emphasizes on how to compute the response operator to a con-

stant change in forcing with Gaussian invariant probability measure. We also discuss

two linear regression models (one with memory) for speeding up the computation of

the linear response operator.

2.1. Fluctuation-Dissipation Theory

Consider a chaotic nonlinear dynamical system of ordinary differential equations

for a state vector u∈R
N , given by

du

dt
= f(u). (2.1)
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Let A(u) be a linear or nonlinear functional of interests; in the present paper A(u)=u

is the mean state response. The average value 〈A〉 of A(u) for the dynamics in (2.1)

is computed as a time average along a single long-term trajectory of (2.1):

〈A〉= lim
r→∞

1

r

∫ r

0

A[u(t)]dt.

We assume that the dynamical system in (2.1) is perturbed by small external forcing

as

dv

dt
= f(v)+δf(t). (2.2)

In our framework, the external forcing represents the collection of altered parameters

(such as solar radiative forcing) that cause external change. Apparently, the solution

v(t) will cause 〈A〉 to deviate from its original value, which represents the average

response to the change in the external parameters:

δ〈A〉= lim
r→∞

1

r

∫ r

0

{

A[v(t)]−A[u(t)]
}

dt. (2.3)

The formula in (2.3) provides a straightforward estimate for the average response,

based on the distance between two different numerically simulated long-term trajec-

tories of the perturbed and unperturbed models, respectively. However, it requires

separate long-term numerical simulation with the turbulent dynamical system for each

perturbation, which can be numerically expensive. Also, it computes the average re-

sponse at infinite time, and provides no information about transient time-dependent

behavior of average response when the changes in external forcing are applied to the

dynamics.
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Provided that the change in external forcing is small, the fluctuation-dissipation

theorem [27] offers a more versatile way to construct an approximation to δ〈A〉:

δ〈A〉(t)=

∫ t

0

R(s)δf(t−s)ds, (2.4)

where t=0 is the initial time when the forcing change is introduced into the dynamical

system. Here, R(t) is the response operator, which directly relates the changes in ex-

ternal parameters δf to the average response δ〈A〉. Note that R(t) does not depend on

the magnitude and direction of δf and, once computed, provides the response for wide

range of magnitudes and directions δf . Also, one can study the singular directions

of R to determine which changes in δf will result in a most catastrophic response of

δ〈A〉 [27, 39]. Additionally, the formula in (2.4) provides the time-dependent climate

response for finite values of t, which allows the study of transient response effects. In

the situation when the forcing δf is a constant (which is “turned on” at time t=0)

and does not depend on space and time, a simplified version of (2.4) is used:

δ〈A〉(t)=R(t)δf , R(t)=

∫ t

0

R(s)ds. (2.5)

In the numerical experiments throughout the paper, a constant change in forcing

δf is used. Evaluating the response operator R(t) or its constant change in forcing

counterpart R(t) is a nontrivial problem.

If the invariant measure of the unperturbed dynamical system in (2.1) is Gaussian

with mean state ū and covariance matrix C, the response operator R(t) is evaluated

as a correlation function [8, 42, 27]:

RG(t)= lim
r→∞

∫ r

0

A[u(t+s)]C−1(u(s)− ū)ds. (2.6)
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Notice that although the formula in (2.6) is defined for Gaussian invariant measure,

the actual average is computed using solutions of the nonlinear dynamical system in

(2.1) assuming it is a strongly mixing dissipative dynamics. When the unperturbed

dynamical system in (2.1) has an invariant measure that is not Gaussian, then the

response operator in (2.6) is understood as the “quasi-Gaussian approximation for

FDT” [24] and we call it the qG-FDT response operator in this article.

As we discussed in the introduction, if we apply (2.6) to compute the variance

response operator to the change in external forcing with quadratic functional A(u)=

(u− ū)T Q(u− ū) for any constant Q, we obtain zero variance response since the

Gaussian statistics has zero third moment even if the true variance response may be

large [27, 1, 3]. As we mentioned earlier, we only consider the mean response to the

change in external forcing with functional A(u)=u; in this case, evaluation of RG(t)

in (2.6) is simply an autocorrelation function.

The goal of this paper is to show that we can approximate the mean response

operator in (2.6) with significantly reduced computational cost by averaging it with

respect to solutions of much simpler linear stochastic models relative to solutions of

(2.1) provided that the two systems are statistically consistent. In the remaining

parts of this section, we discuss two linear stochastic regression models with Gaussian

equilibrium measures (one of them with memory) that are fitted to the equilibrium

statistics of the nonlinear dynamics in (2.1). Then, we use solutions of these regression

models to compute the mean response operator RG(t).

2.2. Mean Stochastic Models

The Mean Stochastic Model (MSM) [31] is an alternative regression fitting to the

linear stochastic model in (1.1). Consider a projection of u on a spectral coordinate

u through linear transformation F . For example, linear operator F could involve the
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empirical orthogonal functions (EOF) basis or even the spherical harmonics basis if

components of u represent variables that are appropriately distributed in spherical

geometry. In our application below, we consider components of u∈R
N as scalar

quantities at equally distributed points on a unit circle; in this simple setup, operator

F is simply a discrete Fourier transform.

The MSM involves statistical solutions of a constantly forced Ornstein-Uhlenbeck

process on each Fourier coefficient:

dûk =(−γk +iωk)ûkdt+fkdt+σkdWk(t), |k|≤N/2. (2.7)

In (2.7), complex valued noise is defined as Wk(t)= (W1(t)+iW2(t))/
√

2, where each

component Wi(t) is a standard Wiener process with variance t/2. There are four

parameters to be specified for each wavenumber k, including: the damping coefficient

dk >0, the frequency ωk, the constant forcing strength fk, and the noise strength σk.

The differential equation in (2.7) has a Gaussian equilibrium probability measure

with mean, covariance (or energy spectrum), and autocorrelation times [12, 33, 31]:

〈ûk〉=
fk

γk− iωk
,

Ck ≡ lim
t→∞

〈

(

ûk(t)−〈ûk〉
)(

ûk(t)−〈ûk〉
)∗

〉

=
σ2

k

2γk
, (2.8)

Tcorr(k)≡ lim
t→∞

∫ ∞

0

〈

(

ûk(t+τ)−〈ûk〉
)

C−1

k

(

ûk(t)−〈ûk〉
)∗

〉

dτ =
1

γk +iωk
.

The MSM regression fitting is to solve the four equations in (2.8) (notice that Tcorr has

real and imaginary parts) with empirical statistics 〈ûk〉,Ck, and Tcorr, obtained from

averaging (temporally) solutions of the nonlinear dynamics in (2.1). Notice that the

MSM regression fitting in (2.8) always guarantees realizable solutions with γk >0 as
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pointed out in the introductory section and in [31]; this realizability is not guaranteed

for standard linear regression strategy that typically parameterizes ωk with linearized

frequency [40, 10].

Since this stochastic model perfectly matches the equilibrium autocorrelation time

in (2.8), then by design it should be obvious to the reader that the infinite time mean

response operator to a constant change in forcing, R(∞), in (2.5) computed with

solutions of this linear regression model exactly equals to the infinite time qG-FDT

response operator. In the present article, we denote the mean response operator

computed using the formula in (2.6) with solutions of the MSM as RLR(t) or RLR(t)

for its constant change in forcing counterpart.

2.3. AR(p) Models

The autoregressive representation of a stationary time series has been widely

used [7, 21]. In our context, we consider fitting solutions of the nonlinear differential

equations in (2.1) to the following constantly forced complex valued autoregressive

model of order p (we refer to it as AR(p) model in this article) on each Fourier

coefficient:

ûk,m =φ1ûk,m−1 +φ2ûk,m−2 + · · ·+φpûk,m−p +fk +ηk,m, |k|≤N/2. (2.9)

In (2.9), index k denotes wavenumber, index m denotes discrete time tm+1 = tm +

∆t, and parameter p∈Z is called the order of this autoregressive model. Larger p

corresponds to longer memory depth in the timeseries that we are fitting. We shall see

in the next two sections that p can be significantly different for various wavenumbers

depending on the correlation functions and also for various strength of forcing in a

forced dissipative chaotic dynamical system.
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In (2.9), ηk,m is a complex valued i.i.d. Gaussian noise with mean zero and variance

Ck. For each wavenumber, we have p+3 parameters to be specified, including the

constant forcing term that can be fitted directly to the empirical mean state, fk = 〈ûk〉,

coefficients {φj ,j =1, . . .,p}, the noise covariance Ck, and the autoregressive model

order p. In the present article, we fit parameters {φj ,j =1, . . .,p} and Ck with the

Yule-Walker estimators [7] and choose p based on the FPE criterion [5]. We refer to

the Appendix in [21] for detailed discussion of this regression fitting.

Note that the AR(p) model has a Gaussian invariant probability measure and

therefore the autocorrelation function of the solutions of this model is essentially the

mean response operator as described in (2.6) with functional A(u)=u. We denote

the mean response operator computed using the formula in (2.6) with solutions of

AR(p) model as the RAR(t) or RAR(t) for its constant change in forcing counterpart.

3. Calculating the Linear Response of Energy Conserving Turbulent

Dynamical Systems through AR(p) Memory Models

In this section, we compute the mean linear response operator to a constant

change in external forcing δf on three prototype energy conserving nonlinear chaotic

dynamical systems. These three models, the Kruskal-Zabusky, the truncated Burgers-

Hopf, and the inviscid-unforced Lorenz-96, have Gaussian invariant measures with

zero mean and equipartition energy [27] but they have very different response char-

acteristics with multiple timescales. In particular, we compare the response operator

computed with solutions of the original dynamics R(t) with those computed with

solutions of the MSM and AR(p) models, RLR(t) and RAR(t), respectively.

3.1. Kruskal-Zabusky (KZ) Model

The Kruzkal-Zabusky (KZ) model was introduced to numerically study soliton

interactions with additional dispersion terms [43]. When these dispersion terms are
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removed, the governing equation is given by

duj

dt
=− 1

∆x
(Fj+1/2−Fj−1/2), j =1, . . .,N, (3.1)

where Fj+1/2 =(u2
j +ujuj+1 +u2

j+1)/6 and periodic boundary conditions uj+N =uj.

In the present context, we set N =40 following the study in [35, 27] to ensure the

dynamical system is ergodic and strongly mixing with decaying correlations. We nu-

merically integrate the KZ model with the fourth order Runge-Kutta time integrator

with small enough time step δt=5×10−4 to ensure the energy is conserved [35] and

randomly drawn initial condition from uniform distribution on a constant energy sur-

face E =1. We parameterize both the MSM and AR(p) models with solutions of the

KZ model in (3.1) for total time 105 as the training dataset. Specifically, the param-

eters in the MSM model in (2.7) are estimated by solving (2.8), with empirical mean

and correlation times computed from the training dataset. For the AR(p) model, we

estimate the parameters with the same data set with discrete time step ∆t=0.02 (we

found worse solutions with smaller ∆t). More details on this regression fitting can be

found in the Appendix in [21].

First, we report how the MSM and AR(p) models reproduce the climatological

statistics in (2.8), including the energy spectrum, Ck, the correlation time, Tcorr, the

autocorrelation functions,

Corr(τ ;k)=
〈

(

ûk(t+τ)−〈ûk〉
)

C−1
k

(

ûk(t)−〈ûk〉
)∗

〉

, (3.2)

and the absolute correlation time

Tabs(k)=

∫ ∞

0

|Corr(τ ;k)|dτ, (3.3)
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where the infinite time integrals in (2.8), (3.3) are approximated by long time solutions

up to a finite time T =105.

Both MSM and AR(p) models reproduce the energy spectrum Ck well (results are

not shown). The autocorrelation functions for various wavenumbers in the KZ model

are shown in Figure 3.1. Notice that the autocorrelation functions evolve slowly and

are highly oscillatory for lower wavenumbers. This oscillatory correlation behavior is

absent on higher wavenumbers (k≥17). As shown in Figure 3.1, the AR(p) model

accurately reproduces the autocorrelation function on every wave number. On the

other hand, the MSM models cannot reproduce the oscillatory decaying correlation

function for low wavenumbers (we show k=1,5,9, and 13 in Figure 3.1). In Figure 3.2,

notice that the AR(p) model also reproduces the correlation time, Tcorr, as well as

the absolute correlation time, Tabs, with negligible errors. The MSM model, which

by design matches the Tcorr, fails to capture Tabs for low wavenumbers since there is

a strong oscillation in the autocorrelation function with negative portion that almost

cancels out the positive portions (see Figure 3.1).

In Figure 3.3, we show the corresponding order p as a function of wavenumber

in the AR(p) model used to reproduce the climatological statistics in (2.8), (3.2),

(3.3). Notice that there is almost (not exactly) one-to-one relation between p and

Tabs (compare Figure 3.2 with 3.3); Tabs and p of wavenumber 1 are roughly three

times of those of wavenumbers 2 and 3, and so on. This observation suggests that the

memory depth in wavenumbers with oscillatory and slowly decaying autocorrelation

function (such as the lowest wavenumber of the KZ model) is implicitly inferred with

a large value of p in the autoregressive modeling. This implicit memory assessment by

knowing only the order p in the autoregressive model is advantageous to the standard

assessment with Tcorr or Tabs in (2.8) or (3.3) that requires more simulations.
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Using the solutions from the MSM and AR(p) models, we compute the mean linear

response operators to a constant change in forcing, RLR(t) and RAR(t), respectively.

We compare them with the response operator R(t) computed with the true solutions

of the KZ model. To quantify the performance, we compute the ℓ2 relative error,

E2 =2
‖RM (t)−R(T )‖
‖RM(t)‖+‖R(t)‖ ,

and the pattern correlation,

C(RM (t),R(t))=
〈RM (t),R(t)〉

‖RM (t)‖·‖R(t)‖ ,

between the true FDT response, R(t), and the approximate response RM (t) which can

be RLR(t) and RAR(t); the norm above, ‖·‖= 〈·,·〉1/2, is defined with the standard ℓ2

inner product 〈g,h〉=∑N
j=1

gjh
∗
j for N -dimensional complex valued vectors g and h.

Smaller ℓ2-error and larger pattern correlation indicate better estimate of the linear

response operator in terms of amplitude and pattern, respectively.

In Figure 3.4, we show the translationally averaged (about the perturbation loca-

tion) linear response operators in physical space for various times. The linear response

in physical space is concentrated at the gridpoint of perturbation with oscillations

around it. We find that there is almost no visual difference between response from

the AR(p) model, RAR(t), and that from the KZ model, R(t). Notice in Table 3.1

that the ℓ2-errors between RAR(t) and R(t) are negligible and the corresponding pat-

tern correlations are close to 1. The response operator RLR(t), on the other hand,

is not accurate at all for shorter times t=0.12, 0.24 (see the much larger errors in

Table 3.1 and the response operator mismatches in Figure 3.4). The response oper-

ator reproduced from the MSM model only performs well at infinite time, which is
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expected by the regression fitting in (2.8).

Table 3.1. ℓ2-errors and correlations between the response operators from the KZ model and
those from the AR(p) and the MSM models at different times.

T ime
ℓ2-errors Correlations

AR(p) MSM AR(p) MSM
0.12 0.0026 0.5664 1.0000 0.8874
0.24 0.0085 0.6528 1.0000 0.8324
0.72 0.0411 0.2299 0.9993 0.9737
∞ 0.0408 0.0453 0.9994 0.9995

3.2. Truncated Burgers-Hopf (TBH) and Inviscid-unforced Lorenz-96

(IL96) Models

The truncated Burgers-Hopf model (TBH) is a Fourier Galerkin approximation

to the inviscid Burgers equation which has intrinsic stochastic dynamics with strong

numerical evidence of ergodic and mixing for large enough degrees of freedom (we’ll

set N =40 as in the KZ model and in [27]). The governing equations of its Fourier

coefficients are as follows

dûk

dt
=− ik

2

∑

k+p+q=0

|p|,|q|<N/2

û∗
pû

∗
q , û−k = û∗

k, |k|≤N/2. (3.4)

Following [35], we numerically integrate the TBH model with a pseudo-spectral

method combined with the fourth order Runge-Kutta time integrator with small

enough time step δt=2.5×10−4 to conserve the energy with small enough relative

error. Initial conditions are randomly drawn from the uniform distribution on a con-

stant energy surface E =0.1. We parameterize the MSM model with solutions of the

TBH model in (3.4) for total time 105 as the training dataset. For the AR(p) model,

we estimate the parameters with the same data set with discrete time step ∆t=0.1

(we found worse solutions with smaller ∆t).
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For the TBH case, both MSM and AR(p) models reproduce the energy spectrum

Ck perfectly (results are not shown). In Figure 3.5, we show the autocorrelation

functions of wavenumbers 1 and 5. Notice that the autocorrelation functions evolve

slowly for wavenumber 1 and faster for wavenumber 5. Meanwhile, although there is a

wide range of timescales of mixing in the TBH model, all the autocorrelation functions

have similar patterns with little oscillation, which has been discussed as self-similarity

of correlations in [34]. Here, the AR(p) model, again, reproduces the autocorrelation

functions much more accurately compared to the MSM model (Figure 3.5). In this

case, both MSM and AR(p) models reproduce Tcorr and Tabs accurately (results are

not shown); here, both correlation times, Tcorr and Tabs, are almost identical since

the autocorrelation function has little oscillation with negligible negative portion.

In Figure 3.6, we show the autoregressive model order p obtained through autore-

gressive fitting. The value of p suggests that the memory depth for the lowest wave

number is nearly two times longer than that of the next wavenumber. This memory

assessment indeed matches the well-known fact that the correlation times of the first

two modes differ by a scale factor of two [34, 35, 27].

In Table 3.2, we show the ℓ2-error and pattern correlation of the linear response

estimate for the TBH case. For short time periods (t=0.5, 1.5, and 3), the associated

ℓ2-errors for the response operator reproduced from the AR(p) model are much smaller

than those from the MSM model. The pattern correlations for both RAR(t) and

RLR(t) are close to 1, indicating that the response operators produced from both the

AR(p) and MSM models are nearly collinear with R(t), irrespective of differences in

amplitudes. The infinite time linear response operator estimate with the AR(p) model

has slightly larger ℓ2-error compared to that of the MSM model. Again, the skillful

estimate for infinite time response operator with the MSM model is attributed to the
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correlation time fitting in (2.8) whereas the skillful estimate for finite time response

with the AR(p) model is attributed to accurate fitting of the autocorrelation functions

at finite time.

Table 3.2. ℓ2-errors and pattern correlations between the response from the TBH model and
those from the AR(p) and MSM models at different times.

T ime
ℓ2-errors Correlations

AR(p) MSM AR(p) MSM
0.5 0.0035 0.1881 1.0000 0.9974
1.5 0.0092 0.1638 1.0000 0.9978
3 0.0136 0.1579 0.9999 0.9970
∞ 0.0688 0.0327 0.9985 0.9998

We also consider the inviscid-unforced Lorenz-96 model (IL96) [27] which govern-

ing equation is given by

uj

dt
=(uj+1−uj−2)uj−1, j =1, . . .,N, (3.5)

with periodic boundary uj+N =uj and N =40. Following [27], we numerically inte-

grate the IL96 model with the fourth order Runge-Kutta time integrator with small

enough timestep δt=2−10 to ensure the energy is conserved. Initial conditions are

randomly drawn from uniform distribution on a constant energy surface E =1. As in

the KZ and TBH models, we parameterize the MSM model with solutions of the IL96

model in (3.5) for total time 105 as the training dataset. For the AR(p) model, we

estimate the parameters with the same data set with discrete time step ∆t=8/64.

In this setup, the autoregressive model fitting chooses p between 20-22 for each

wavenumber (based on FPE criterion [5]); this indicates that the IL96 model has

almost equal memory depth on every wavenumber. This conjecture is in accordance

to the fact that the IL96 model has identical non-oscillatory autocorrelation functions

for all wavenumbers [27]. We found that both the MSM and AR(p) models reproduce
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the energy spectra Ck, correlation times Tcorr(t), and Tabs(t) well, but the AR(p)

model performs better in reproducing the autocorrelation functions than the MSM

model (results are not shown). Similar to what we found for the TBH model, for short

time periods (t=1, 2, and 5), the associated ℓ2-errors for RAR(t) are much smaller

than those for RLR(t) (see Table 3.3). The pattern correlations for both RAR(t)

and RM (t) are close to 1, indicating that they are both nearly collinear with R(t),

irrespective of differences in amplitudes. Notice that at t=∞, the ℓ2-error of the

response estimate from the AR(p) model is comparable to that from the MSM, which

confirms again the high skill of the MSM model in describing the infinite time integral

of the autocorrelation function, by design.

Table 3.3. ℓ2-errors and correlations between the response from the IL96 model and those from
from AR(p) and MSM at different times.

T ime
ℓ2-errors Correlations

AR(p) MSM1 AR(p) MSM1
1 0.0021 0.1647 1.0000 0.9998
2 0.0036 0.0715 1.0000 0.9996
5 0.0165 0.0463 0.9999 0.9990
∞ 0.0837 0.0953 0.9974 0.9975

4. AR(p) Memory Models and the Linear Response of the forced dis-

sipative L-96 model

In Section 3, we estimate the FDT-based linear operator on three energy con-

serving nonlinear systems with Gaussian invariant measure. In this section, we apply

the same FDT-based linear response approximation on a forced-dissipative nonlinear

dynamical system, the 40-mode Lorenz 96 (L-96) model, with almost Gaussian in-

variant measure (see Figure 11.2 of [32]). The governing equation of the L-96 model
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is as follows

duj

dt
=(uj+1−uj−1)uj−1−uj +F, j =1, . . .,N, (4.1)

where the right hand side consists of an energy conserving quadratic nonlinear

advective-like term, a linear dissipation, and a forcing parameter F , respectively.

Following [1, 2, 27], we resolve the L96 model at N =40 equal spaced grid points with

periodic boundary to mimic weather wave patterns on a midlatitude belt. Below, we

will test the skill of the AR(p) strategy for computing the response operators on vari-

ous dynamical regimes ranging from weakly chaotic with F =5,6, to strongly chaotic

with F =8, to fully turbulent regime with F =16 (see [1, 32] for the detailed chaotic

measures including the Lyapunov exponent and Kolmogorov-Sinai entropy).

In our numerical experiment, we parameterize the AR(p) model with solutions

at every discrete time step ∆t=4/64 (see [21] for larger ∆t). Figure 4.1 displays the

values of p chosen for the AR(p) model for various forcing strengths, F =5,6,8 and

16. Notice that p decreases as the system becomes more chaotic or turbulent (or

as F increases); this is not so surprising because the correlation time decreases as F

increases (see [27, 1, 32]). Moreover, the distribution of p as a function of wavenumber

is highly correlated to the standard memory depth measure, absolute correlation time

Tabs, which are large on wavenumbers 8-15 for F =5,6 and almost flat when F =16

(see [27]).

Since the invariant measure of the L-96 is not Gaussian, then the linear response

operator computed with (2.6) with the true timeseries only produces a quasi-Gaussian

approximate FDT linear response. For objective diagnostic, we need to compare our

approximate linear response operator with an ideal response operator that reflects
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the actual change of δ〈A〉 in (2.3). Different than the FDT-based algorithm which

relies on the statistics of the unperturbed system in (2.1), the computation of the ideal

response involves integration of the perturbed system in (2.2) which is non-trivial and

expensive [16]. In Sections 3.1 and 3.2, we ignored reporting the ideal responses for the

three energy conserving systems, KZ, TBH, and IL96, since they are nearly identical

to the FDT responses, R(t), obtained with (2.6) (see [27]).

In Figure 4.2, we show the translationally averaged infinite time linear response

operators from the AR(p) model, RAR(∞), for various forcing strengths. It can be

seen that as F increases, the approximate response operator from the AR(p) model

becomes closer to the ideal response operator. In weakly chaotic regime, F=5 and 6,

the AR(p) response recovers the oscillations but with wrong amplitude that overshoots

the ideal response. Such errors are also observed with the computationally more

expensive qG-FDT response operator (see Fig 2.48 in [27]).

In Table 4.1, we summarize the results with pattern correlations between the ideal

response and various FDT responses, including the AR(p), MSM, quasi-Gaussian re-

sponse operators discussed in Section 2 and the blended response algorithm [1]. The

pattern correlation of the blended response is from a version that combines a very

accurate short time FDT with the qG-FDT response [1]. Note that this blended

response operator is also computationally more expensive than the AR(p) response

because it involves evaluating a linear tangent map at short time beyond integrating

the nonlinear dynamics in (2.1) for quasi-Gaussian approximation. Generally speak-

ing, the blended response has the highest skill among all the methods. The skill of

the response with the MSM model is the lowest among all methods. In weakly chaotic

regime (F =5,6), the MSM response has the lowest skill; this is attributed to severe

model errors with Ornstein-Uhlenbeck approximation in weakly chaotic regime [19].
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In this regime, the skill of the AR(p) response is comparable to that of the more ex-

pensive quasi-Gaussian approximation, but they are still much less skillful compared

to the blended response especially for long and infinite time. When the system is

strongly chaotic (F =8), the MSM, AR(p) and quasi-Gaussian strategies have com-

parable skills at all times. In the fully turbulent regime (F =16), the model error due

to the Ornstein-Uhlenbeck approximation becomes less severe and the MSM FDT

response has much higher skill than before. In this regime, the AR(p) response has

correlation skill beyond the quasi-Gaussian approximation and is comparable to that

of the blended response at all time. The ℓ2-error of the AR(p) response, however, is

only comparable to that of the quasi-Gaussian approximation (results are not shown).

Table 4.1. Correlation between the ideal response and the responses from MSM, quasi-Gaussian
approximation, the AR(p) model, and the blended response algorithm for different rescaled times T

and different forcing F .

F T MSM quasi-Gaussian AR(p) Blended
5 5 0.8268 0.9148 0.9364 0.9998

20 0.7154 0.7392 0.7239 0.9996
∞ 0.6641 0.7322 0.7192 0.9346

6 5 0.8733 0.9718 0.9564 0.9999
20 0.6938 0.7866 0.7291 0.99994
∞ 0.7150 0.7765 0.7407 0.9827

8 5 0.9429 0.9707 0.9751 0.9999
20 0.7757 0.8076 0.7801 0.9976
∞ 0.7637 0.7618 0.7363 0.9741

16 5 0.9649 0.9924 0.999 0.9999
20 0.9136 0.9279 0.9982 0.9982
∞ 0.8862 0.9082 0.9892 0.9892

5. Concluding Discussion

In this paper, we apply linear regression models with memory, AR(p) models, to

approximate linear response for the mean to a constant change in external forcing.

From numerical tests on three energy conserving nonlinear chaotic dynamical systems
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with Gaussian invariant measure (Section 3), we conclude that the response estimate

with the AR(p) model is much more skillful than that with the MSM for short time.

The improved skill in short time response estimate with the AR(p) model over the

MSM is attributed to more accurate fitting of the autocorrelation functions. For in-

finite time response, the improved estimate with the AR(p) model over the MSM

becomes negligible since the parameters in the MSM are directly fitted to the corre-

lation time (see (2.8)). We also see high pattern correlation between distributions of

autoregressive order p and memory depth measure Tabs as functions of wavenumbers

which suggests that the AR(p) regression fitting [7, 5] automatically informs us about

the memory depth of the system through the choice of the autoregressive order p

without having to compute Tabs.

We also test this AR(p) strategy on a dissipative-forced nonlinear system, the L96

model with an invariant measure which is slightly skewed from Gaussian distribution,

on various dynamical regimes ranging from weakly to strongly chaotic to fully turbu-

lent (Section 4). In this context, the AR(p) model produces a response estimate that

is much more skillful than that of the MSM particularly in the weakly chaotic regime.

The skill separation between the AR(p) and MSM decreases as the system becomes

more chaotic; such phenomenon is also observed in the context of climate modeling

[37, 36, 38, 11] and filtering [21, 19, 20, 22]. We also find that the skill of the response

from the AR(p) model is comparable to that of the more expensive quasi-Gaussian

approximation in all three dynamical regimes, weakly and strongly chaotic, and fully

turbulent.

Finally, we should point out that the impressive skill with the computationally

cheap AR(p) model is only attainable when a longer time series is available. Such a

restriction is because the AR(p) models have more coefficients (larger p) especially
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when the signals being modeled has long memory.
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Fig. 3.1. The autocorrelation functions from the KZ model (thick grey solid curves), reproduced
from the MSM model (black dashed curves) and the AR(p) model (red solid curves), respectively.
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Fig. 3.2. The spectra of correlation times for the KZ model (thick grey solid), reproduced from
the MSM model (black dash with squares) and the AR(p) model (red solid with dots). The left panel
shows Tcorr defined as the integrals with the autocorrelation functions directly. The right panel
shows Tabs defined as the integrals with the absolute values of the autocorrelation functions.
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Fig. 3.4. Translationally averaged linear response operators in physical space of the KZ model
(thick grey solid lines), the AR(p) model (red solid lines), and the MSM model (black dashed lines)
at different times T =0.12 (upper-left), 0.24 (upper-right), 0.72 (lower-left), and ∞ (lower-right).
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Fig. 3.5. The autocorrelation functions from the TBH model (thick grey solid curves), repro-
duced from the AR(p) model (red solid curves), and MSM model (black dashed curves).
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Fig. 4.2. Translationally averaged autoregressive infinite-time linear response (dashed line) and
ideal response (solid line) for the L-96 model in various chaotic regimes with forcing strengths F =5,
6, 8, and 16.


