
A Simple Dynamical Model Capturing the Key
Features of Central Pacific El Niño
(Supporting Information Appendix)

Nan Chen and Andrew J. Majda

Department of Mathematics, and Center for Atmosphere Ocean Science, Courant Institute of

Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012 USA

This SI Appendix is formed by three sections. Section 1 contains a brief discussion
of the derivations of the dynamical model and its low-order meridional truncation. The
details of boundary conditions, numerical solvers as well as a list of the parameter values
are also included. The mathematical formula of the Walker circulation is shown at the
end of this section. Section 2 involves the basic information of the two-state Markov jump
process that is utilized in the article. Section 3 contains more supporting information
of the results. In Section 3.1, Hovmoller diagrams of atmospheric wind, ocean zonal
current, thermocline depth and SST associated with the deterministic advective modes
in different regimes are shown. In Section 3.2, the important roles of the stochasticity,
the nonlinear advection and the mean easterly trade wind anomaly are all emphasized.

1 More details of the coupled model, meridional trun-

cation and parameter choices

The coupled model considered in this article is derived from a more complicated model
that consists of the skeleton model in the atmosphere [1, 2] coupled to a shallow water
ocean in the long-wave approximation and a sea surface temperature (SST) budget with
features from [3]. Then an asymptotic expansion with respect to a small factor ε that
is the ratio of intraseasonal time scale over the interannual one is applied and the result
is Eq. (1)-(4) in the article. The details of model derivation are contained in the SI
Appendix of [4]. For the convenience of statement, we summarize the coupled model
below.
1. Atmosphere model:

−yv − ∂xθ = 0,

yu− ∂yθ = 0,

−(∂xu+ ∂yv) = Eq/(1− Q̄).

(A1)

2. Ocean model:

∂τU − c1Y V + c1∂xH = c1τx,

Y U + ∂YH = 0,

∂τH + c1(∂xU + ∂Y V ) = 0.

(A2)
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3. SST model:
∂τT + µ∂x

(
UT
)

= −c1ζEq + c1ηH. (A3)

1.1 Meridional truncation

In order to compute the solutions of the coupled model, we consider the model in its
simplest form, which is truncated meridionally to the first parabolic cylinder functions
[5].

Different parabolic cylinder functions are utilized in the ocean and atmosphere due
to the difference in their deformation radii. The first atmospheric parabolic cylinder
function reads φ0(y) = (π)−1/4 exp(−y2/2), and the third one that will be utilized as
the reconstruction of solutions reads φ2 = (4π)−1/4(2y2 − 1) exp(−y2/2). The oceanic
parabolic cylinder functions read ψm(Y ), which are identical to the expressions of the
atmospheric ones except depending hon the Y axis.

In the atmosphere we assume a truncation of moisture, wave activity and external
sources to the first parabolic cylinder function φ0. This is known to excite only the Kelvin
and first Rossby atmospheric equatorial waves, of amplitude KA and RA [1, 2]. In the
ocean, we assume a truncation of zonal wind stress forcing to ψ0, τx = τxψ0. This is known
to excite only the the Kelvin and first Rossby atmospheric oceanic waves, of amplitude
KO and RO. Similarly, for the SST model we assume a truncation ψ0, T = Tψ0. The
ENSO model truncated meridionally reads:
1. Atmosphere model:

∂xKA = χA(Eq − 〈Eq〉)(2− 2Q̄)−1,

−∂xRA/3 = χA(Eq − 〈Eq〉)(3− 3Q̄)−1,
(A4)

2. Ocean model:

∂τKO + c1∂xKO = χOc1τx/2,

∂τRO − (c1/3)∂xRO = −χOc1τx/3,
(A5)

3. SST model:
∂τT + µ∂x

(
(KO −RO)T

)
= −c1ζEq + c1ηH, (A6)

where χA and χO are the projection coefficients from ocean to atmosphere and from
atmosphere to ocean, respectively, due to the different extents in their meridional bases.
The latent heating is linearized with Eq = αqT in the Pacific band and zero outside. Due
to the absence of dissipation in the atmosphere, the solvability condition requires a zero
equatorial zonal mean of latent heating forcing 〈Eq〉 [6, 7]. Note that when meridional
truncation is implemented, a projection coefficient χ ≈ 0.65 appears in front of the
nonlinear term [2], which here is absorbed into the nonlinear advection coefficient µ for
the notation simplicity and the parameter µ in the Table below has already taken into
account this projection coefficient.

Now instead of solving the coupled system (A1)–(A3), we solve the system (A4)–(A6).
Periodic boundary conditions are adopted for the atmosphere model (A4). Reflection
boundary conditions are adopted for the ocean model (A5),

KO(0, t) = rWRO(0, t), RO(LO, t) = rEKO(LO, t), (A7)
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where rW = 0.5 representing partial loss of energy in the west Pacific boundary across
Indonesian and Philippine and rE = 0.5 representing partial loss of energy due to the
north-south propagation of the coast Kelvin waves along the eastern Pacific boundary.
Note that rE here is different from the one taken in [4] (rE = 1), where a perfect reflection
is assumed. For the SST model, no normal derivative at the boundary of T is adopted,
i.e. dT/dx = 0.

To prevent nonphysical boundary layers in the finite difference method, the coupled
model is solved through an upwind scheme, where some details of discretization is included
in the SI Appendix of [4]. The total grid points in the ocean and in the atmosphere are
NO = 56 and NA = 128, respectively, which are doubled compared with that in [4] for the
purpose of resolving some small scale interactions due to the nonlinearity. The time step
is ∆t = 4.25 hours. The ratio ∆t/∆x is approximately 0.115 under the nondimensional
values.

The physical variables can be easily reconstructed in the following way.

u = (KA −RA)φ0 + (RA/
√

2)φ2,

θ = −(KA +RA)φ0 − (RA/
√

2)φ2,

v = (4∂xRA − H̄A− Sθ)(3
√

2)−1φ1,

U = (KO −RO)ψ0 + (RO/
√

2)ψ2,

H = (KO +RO)ψ0 + (RO/
√

2)ψ2.

(A8)

See [2, 4] for more details. The variables in (A8) are utilized in showing the Hovmoller
diagrams in Figure 5 and 6 of the article.

1.2 Choices of parameters values

Two tables are included. Table 1 summarizes the variables in the coupled model and
lists the associated units and the typical unit values. Table 2 shows the nondimensional
values of the parameters that are utilized in the meridional truncated model.

1.3 Walker circulation

In the atmospheric model (skeleton model [1]), only the first baroclinic mode is included
in the vertical direction, which has a profile of cos(z) function. Also recall that the
coupled model is projected to the leading parabolic cylinder function in the meridional
direction, which has a Gaussian profile that centers at the equator. Thus, the meridional
derivative at the equator is ∂yφ0(y) = 0 and the mass conservation equation reduces to

ũx(x, z) + w̃z(x, z) = 0, (A9)

where ũ(x, z) and w̃(x, z) are the zonal and vertical velocities, respectively, which are
functions of both x and z. Recall that the zonal velocity can be written as [1]

ũ(x, z) = u(x) cos(z). (A10)

The vertical velocity that satisfy the mass conservation condition (A9) is given by

w̃(x, z) = w(x) cos(z) = −ux(x) sin(z), (A11)
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Variable unit unit value
x zonal axis [y]/δ 15000km

y meridional axis atmosphere
√
cA/β 1500km

Y meridional axis ocean
√
cO/β 330km

t time axis intraseasonal 1/δ
√
cAβ 3.3 days

τ time axis interannual [t]/ε 33 days
u zonal wind speed anomalies δcA 5ms−1

v meridional wind speed anomalies δ[u] 0.5ms−1

θ potential temperature anomalies 15δ 1.5K
q low-level moisture anomalies [θ] 1.5K

a envelope of synoptic convective activity 1
Ha convective heating/drying [θ]/[t] 0.45K.day−1

Eq latent heating anomalies [θ]/[t] 0.45K.day−1

T sea surface temperature anomalies [θ] 1.5K
U zonal current speed anomalies cOδO 0.25ms−1

V zonal current speed anomalies δ
√
c[U ] 0.56 cms−1

H thermocline depth anomalies HOδO 20.8m

τx zonal wind stress anomalies δ
√
β/cAHOρOc

2
OδO 0.00879N.m−2

τy meridional wind stress anomalies [τx] 0.00879N.m−2

Table 1: Definitions of model variables and units in the meridional truncated model.

Parameter description Nondimensional values
c ratio of ocean and atmosphere phase speed 0.05
ε Froude number 0.1
c1 ratio of c/ε 0.5
χA Meridional projection coefficient from ocean to atmosphere 0.31
χO Meridional projection coefficient from atmosphere to ocean 1.38
LA Equatorial belt length 8/3
LO Equatorial Pacific length 1.16
γ wind stress coefficient 6.529
rW Western boundary reflection coefficient in ocean 0.5
rE Eastern boundary reflection coefficient in ocean 0.5
ζ Latent heating exchange coefficient 8.5
αq Latent heating factor 0.3782
Q̄ mean vertical moisture gradient 0.9
µ nonlinear zonal advection coefficient 0.08
ap dissipation coefficient in the wind burst model 3.4

Table 2: Nondimensional values of the parameters.

where w(x) = −ux(x). In the dimensional form (variables with notation ·D ),

wD(x) = − [Hv]

[L]
uDx (x), (A12)

where [Hv] = 16/πkm is the vertical length scale and [L] = 15000km is the horizonal

length scale with nondimensional range x ∈ [0, 1.17], z ∈ [0, π]. The pair
(
ũ(x, z), w̃(x, z)

)
forms the Walker circulation above the equatorial Pacific ocean as shown in Figure 7 of
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the article.

2 Effective stochastic noise with a two-state Markov

jump process

A two-state Markov jump process is adopted to generate effective stochastic noise that
facilitates the intermittent occurrence of the central Pacific (CP) El Niño. The detailed
set-up is included in [4] while more general background can be found in [8]. Here we
summarize the necessary information that is utilized in the article.

Recall the evolution of wind burst amplitude ap,

dap
dτ

= −dp(ap − âp(TW )) + σp(TW )Ẇ (τ), (A1)

where both σp and âp switch between one quiescent phase (State 0) and one active phase
(State 1),

State 0 (s0) : σp = 0.2, and âp = 0,

State 1 (s1) : σp = 1.0, and âp = −0.25.

The local transition probabilities between the two states for small ∆t are given as follows,

P (Xt+∆t = s1|Xt = s0) = µ01∆t+ o(∆t),

P (Xt+∆t = s0|Xt = s1) = µ10∆t+ o(∆t),

P (Xt+∆t = s0|Xt = s0) = 1− µ01∆t+ o(∆t),

P (Xt+∆t = s1|Xt = s1) = 1− µ10∆t+ o(∆t),

(A2)

where Xt stands for either σp or ap at time t. In (A2), µ01 and µ10 are the transition
rates from State 0 to 1 and from State 1 to 0, respectively.

Due to the fact that an increase of the SST in the western Pacific leads to an enhanced
wind burst activity, the active state corresponds to the instance when the western Pacific
SST is high (TW ≥ 0). On the other hand, since no strong wind burst is observed with
a reduced SST in the western Pacific, a negative anomaly TW ≤ 0 is linked with the
quiescent state [9, 10, 11]. Given these facts, the following transition rates are utilized

State 1 to 0: µ10 =
5

6

(
1− tanh(2TW )

)
,

State 0 to 1: µ01 =
1

6

(
tanh(2TW ) + 1

)
.

(A3)

3 More supporting information of the results

3.1 Illustration of different fields associated with the determin-
istic nonlinear advective modes

Figure S1–S3 show the Hovmoller diagrams of atmosphere wind, ocean zonal current,
thermocline height and anomalous SST at the equator that are associated with the de-
terministic nonlinear advective modes with mean easterly trade wind anomalies, where
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up = ûp. These figures correspond to the three dynamical regimes shown in Panel (b)-
(d) of Figure 3 in the article with the same parameters. As stated in the main article,
corresponding to anomalous warm SST in the central Pacific, the ocean zonal current
is westward and the rising branch of the Walker circulation shifts to the central Pacif-
ic region, which accompany with an eastern Pacific cooling with a shallow thermocline.
Figure S4 shows a case with the intensification of a mean westerly trade wind anoma-
ly. Reversed situation, including eastward zonal current and divergence of atmospheric
surface wind in the central Pacific, is found.
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Figure S1: Hovmoller diagrams of atmospheric surface wind, ocean zonal current, ther-
mocline depth and SST fields at the equator corresponding to Panel (b) of Figure 3 in
the article (Regime I). Here up = ûp = apsp(x)φ0(0) has constant values along longitude
lines.
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Figure S2: Hovmoller diagrams of atmospheric surface wind, ocean zonal current, ther-
mocline depth and SST fields at the equator corresponding to Panel (c) of Figure 3 in
the article (Regime II). Here up = ûp = apsp(x)φ0(0) has constant values along longitude
lines.
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Figure S3: Hovmoller diagrams of atmospheric surface wind, ocean zonal current, ther-
mocline depth and SST fields at the equator corresponding to Panel (d) of Figure 3 in
the article (Regime III). Here up = ûp = apsp(x)φ0(0) has constant values along longitude
lines. Note that the range of the y-axis is different from that in Figure S1 and S2.
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Figure S4: Hovmoller diagrams of atmospheric surface wind, ocean zonal current, ther-
mocline depth and SST fields at the equator with a constant westerly trade wind anomaly.
Here up = ûp = apsp(x)φ0(0) has constant values along longitude lines.
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3.2 Roles of the nonlinear advection, mean easterly trade winds
and stochasticity

Here, the roles of the nonlinear advection, mean easterly trade winds and stochasticity in
wind model in generating the CP El Niño are further explored. These results are based
on the coupled model, in which the stochastic wind burst process has an additive noise.
In all the three cases below, except the difference in one or two parameters as will be
pointed out, all the other set-up and the random number seeds are chosen to the same
as those of Figure 4 in the article.

As shown in Figure 4 of the article, a moderate amplitude of the noise level σp ≈ 1.0
facilitates the occurrence of the CP El Niño events. Figure S5 includes the SST field with
the same set-up but with an increase of σp. If the noise level σp is too large, then the
effect from the stochasticity will dominate that from deterministic nonlinear advective
modes. These stochastic winds represent strong westerly and easterly wind that trigger
traditional El Niño and La Niña in the eastern Pacific ocean [4].

Figure S6 involves the situation that the coupled model has no zonal advection, i.e.,
µ = 0. With a mean easterly wind anomaly ap and a moderate noise σp, anomalous
warm SST occurs in the central-eastern Pacific, which is consistent with the deterministic
convective mode shown in Figure S1. However, these warm SST anomalies cannot access
the central and central-western Pacific regions as those shown in Figure 4–6 in the article.
Clearly, the difference in the anomalous warm SST field is due to the difference in the
budget from the flux divergence.

Figure S7 shows the results of the coupled model with a strong zonal advection but
no easterly mean trade wind anomalies. Regardless of the noise level, very few central
Pacific El Niño appears. In fact, in the absence of the mean easterly trade wind anomaly,
moderate stochastic noise leads to very weak anomalous warm SST in the central-eastern
Pacific. Due to such lack of the warm water source, almost no CP El Niño appears
despite of the strong advection. On the other hand, strong stochastic noise only results
in eastern Pacific El Niño, which is similar to those in Figure S5.
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Figure S5: Model with increased stochastic noise levels. SST fields and the cor-
responding stochastic wind bursts with additive noise, where σp = 1.5, 2.0, 2.5 and 3.0,
respectively. Both the other set-up and the seeds of random number generators are kept
to be the same and as those of Figure 4 in the article.
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Figure S6: Model without nonlinear zonal advection. SST fields with different
levels of additive stochastic noise in the wind burst model. Both the other set-up and
the seeds of random number generators are kept to be the same and as those of Figure 4
in the article.
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Figure S7: Model without the intensification of the easterly trade wind. SST
fields with different levels of additive stochastic noise in the wind burst model. Both the
other set-up and the seeds of random number generators are kept to be the same and as
those of Figure 4 in the article.
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