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Particle filtering is an essential tool to improve uncertain model pre-
dictions by incorporating noisy observational data from complex sys-
tems including non-Gaussian features. A new class of particle filters,
clustered particle filters, is introduced for high-dimensional nonlin-
ear systems, which uses relatively few particles compared to the
standard particle filter. The clustered particle filter captures non-
Gaussian features of the true signal which are typical in complex non-
linear dynamical systems such as geophysical systems. The method
is also robust in the difficult regime of high-quality sparse and infre-
quent observations. The key features of the clustered particle fil-
tering are coarse-grained localization through the clustering of the
state variables and particle adjustment to stabilize the method; each
observation affects only neighbor state variables through clustering
and particles are adjusted to prevent particle collapse due to the
high-quality observations. The clustered particle filter is tested for
the 40-dimensional Lorenz-96 model with several dynamical regimes
including strongly non-Gaussian statistics. The clustered particle
filter shows robust skill in both achieving accurate filter results
and capturing non-Gaussian statistics of the true signal. It is fur-
ther extended to the multiscale data assimilation which provides the
large-scale estimation by combining a cheap reduced-order forecast
model and mixed observations of the large- and small-scale vari-
ables. This approach enables use of a larger number of particles due
to the computational savings in the forecast model. The multiscale
clustered particle filter is tested for one-dimensional dispersive wave
turbulence using a forecast model with model errors.
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Data assimilation or filtering combines numerical forecast
models with observational data to provide the best sta-

tistical estimation and prediction of complex systems. Due
to the high-dimensionality of complex nonlinear systems such
as geophysical systems, accurate and efficient estimation and
prediction of such complex systems are formidable tasks as
enormously large computational resources are required to run
forecast models and observations are typically sparse and
infrequent. As a Monte Carlo approach, ensemble based meth-
ods (1, 2) combined with covariance inflation and localization
are indispensable tools as they allow computationally cheap,
low-dimensional ensemble state approximation for the sys-
tems and have performed well for operational applications
such as numerical weather prediction (3, 4). Nevertheless,
as the ensemble based methods approximate the forecast dis-
tribution using Gaussian statistics, these methods lead to
inaccurate estimation and prediction when the true signal has
non-Gaussian statistics which are typical for a wide range of
systems including many geophysical systems. Particle filtering
captures non-Gaussian features using different weights for dif-
ferent samples (or particles) and is an established discipline for
low-dimensional dynamical systems (5–7). Particle filtering
does not require any assumption on the prior distribution and

leads to consistent Bayesian posterior statistics. The particle
weights also determine which particles to remove and dupli-
cate, i.e. resampling strategies (8), to prevent particle collapse
where only a small fraction of particles have the most weight
while the rest of the particles have minimal or zero weights.
Despite the successful applications of the particle filter for
low-dimensional systems, the particle filter suffers from the
curse of dimensionality for high-dimensional systems, which
requires exponentially increasing particle numbers with the
dimension of the system (9, 10).

There are several attempts to overcome the curse of di-
mensionality and enhance the performance of the particle
filter with a small particle size. The blended particle filter
(11, 12) uses forecast models which have adaptively varying
reduced-order models to capture non-Gaussian statistics using
particle filtering while high-dimensional quasi-Gaussian statis-
tics are maintained by Gaussian mixtures. The maximum
entropy particle filter in Chapter 15 of (13) uses judicious
use of partial marginal distributions to avoid particle collapse.
Another method is to solve an optimal transport problem for
the transition from the prior to the posterior (14, 15) to avoid
the random sampling aspects of particle filters. Motivated by
the success of the ensemble based method using covariance
localization (16, 17), there are other methods which implement
localization for non-Gaussian statistics including the rank his-
togram filter (18) and the localized particle filter (19). The
localized particle filter uses vector particle weights instead of
the scalar weights of the standard particle filter and provides
a Bayesian update in regions near the physical locations of
observations. This method shows successful results capturing
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non-Gaussian statistics but is not robust in the difficult regime
of high-quality (i.e., small error) infrequent observations.

In this paper we introduce a new class of particle filters
which is robust in the difficult regime of high-quality infrequent
sparse observations capturing non-Gaussian features of the
true signal. In our new particle filter, each observation at dif-
ferent spatial locations affects only the neighbor state variables
through the clustering of the state variables, which implements
coarse-grained localization. The clustering is based on the
observation network and the data assimilation of the whole
space is divided into smaller size data assimilation problems
in each cluster which do not influence each other. In addition
to the clustering, our method is different from the localized
particle filter in that particles are adjusted so that the prior
particles are sufficiently close to the observation when the
observation is not in the span of the predicted observations by
prior particles. Similar issues are discussed in (6) and Chapter
15 of (13). Our method is different from these methods in
that we use a stable method similar to the ensemble square
root filter (2) instead of using an ad hoc nudging technique of
(6) or setting the posterior to be identically the observation
likelihood (13).

Standard particle filter and localization

Throughout this paper, we consider the data assimilation of
the true signal x = (x1, x2, ..., xNstate) ∈ RNstate at discrete
times n∆T, n ∈ N whose evolution is given by

xn+1 = ψ(xn) [1]

for a nonlinear evolution operator ψ using observations y =
y = {y1, y2, ..., yNobs} ∈ RNobs available at different phys-
ical locations. We assume a linear observation operator
H : RNstate → RNobs

y = Hx + ξ [2]

which observes Nobs uniformly distributed components of xn

perturbed by an observation error ξ ∈ RNobs which is indepen-
dent at different spatiotemporal locations with mean zero and
variance ro.

Using K particles {xk, k = 1, 2, ...,K} and scalar weights
{ωk ≥ 0, k = 1, 2, ...,K}, the standard particle filter represents
a probability distribution of the state x of the form

pf (x) =
K∑

k=1

ωf
kδ(x− xk) [3]

where δ(x − x0) = 1 if x = x0 and zero otherwise. The
localized particle filter (19) implements localization which
tapers the sampled covariances using vector-valued particle
weights Ωk = (ω1,k, ω2,k, ..., ωNstate,k) whose component ωi,k

is the weight for the corresponding state variable xi. Using
a correlation function l(yj , xi, r) which has 1 for yj = xi and
decreases to zero as the distance between yj and xi increases
and assuming that the prior weights are equally distributed,
the analysis vector-valued particle weight for the k-th particle
is given by

ωi,k = (p(yj |xi,k)− 1) l(yj , xi, r) + 1. [4]

where r is the localization radius which determines the localiza-
tion length scale. Note that when l = 1, the analysis particle

wk

x1 x2 x3 x4 x5 x6

Standard Particle Filter

x1 x2 x3 x4 x5 x6

Localized Particle Filter

w5,kw4,kw3,kw2,kw1,k w6,k

w1,k w2,k

x1 x2 x3 x4 x5 x6

Clustered Particle Filter

Fig. 1. Schematics of particle weight, wk , for the k-th particle. Total dimension is 6
and there are two observations at x2 and x5 which yields two clusters in the clustered
particle filter. The standard particle filter uses the same particle weight at different
locations while the localized particle filter uses different weights at different locations.
The clustered particle have different weights in different clusters but the weights are
the same in the same cluster.

weight is fully influenced by the observation with the value
p(yj |xi,j) while it remains unchanged when l = 0. Despite the
successful applications of the localized particle filter for several
interesting test regimes including non-Gaussian features (19),
the method is not robust when the observation is infrequent
and high-quality with a small observation error (see Fig. 2
for the performance of the localized particle filter applied to a
standard data assimilation problem with high-quality observa-
tions). In the next section, we introduce a new particle filtering
with localization which is robust for high-quality infrequent
observations.

Clustered particle filter

We now describe our proposed particle filtering method, clus-
tered particle filter (CPF), which utilizes the clustering of
the state variables and particle adjustment. One of the key
differences between the localized particle filter and the clus-
tered particle filter is the particle adjustment which updates
the prior particle values closer to the observation instead of
reweighing the particles when the prior is too far from the ob-
servation likelihood. In the case of sparse observations, not all
state variables are observed and thus adjacent state variables
of the observed variable must have the same particle weights
for cross covariances. For this purpose, the clustered particle
filter partitions the state variables into non-overlapping clus-
ters {Cl, l = 1, 2, ..., Nobs} where each cluster is centered at
each observation point. This yields Nobs clusters correspond-
ing to Nobs observation locations. Instead of using different
weights at different locations as in the localized particle filter,
the clustered particle filter uses scalar particle weights {ωl,k}
for the state variables in the same cluster Cl (See Fig. 1 for
the schematics of particle weights of the standard, localized,
and clustered particle filers for a six-dimensional system with
two observations at x2 and x5).

For the sub-state vector xCl = {xi|xi ∈ Cl} ∈ RNstate/Nobs

corresponding to cluster Cl, the clustered particle filter consid-
ers the marginalized probability distribution function (PDF)

p(xCl ) =
K∑
k

ωl,kδ(xCl − xCl,k) [5]

and each observation yj updates only the marginalized PDF
of the corresponding cluster which implements coarse-grained

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Lee et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

localization. That is, for forecast particle weights {ωf
l,k} of

each cluster Cl, the analysis particle weights {ωa
l,k} are given

by

ωa
l,k =


ω

f
l,k

p(yj |xk)∑K

m
ω

f
l,m

p(yj |xm)
l = j,

ωf
l,k l 6= j.

[6]

Thus the assimilation of the full state vector is decomposed
into Nobs independent assimilation problems for each cluster of
a dimension Nstate

Nobs
smaller than the full state dimension Nstate.

Note that in contrast to the localization using a smoothly vary-
ing correlation function with a localization radius parameter,
the clustered particle filter has no adjustable parameter to
tune localization.

Particle adjustment. One of the central issues of particle filter-
ing which collapses the particles is when the observations are
not in the span of the predicted observations by prior particles
{Hxf

k} which is highly possible for high-quality (i.e., small
error) observations. This issue is discussed in Chapter 15 of
(13) under the name of ‘Dynamic Range A issue’ which implies
that the prior distribution is in the tail of the observation
likelihood. In (13), their remedy for this issue is to simply
match the posterior distribution to the observation likelihood
function. Also a similar issue is addressed in (6) using an ad
hoc nudging technique to constrain the prior particles to be
sufficiently close to the observations. Our proposed method,
CPF, is different from these approaches in that the particles
are adjusted in a stable way similar to the ensemble square
root filters (2).

As the observation error ξ is independent and identi-
cally distributed at different different locations, the clustered
particle filter uses a sequential update of the observations
(y1, y2, ..., yNobs). In the assimilation of observation yj , the
forecast particles in the cluster Cj , {xf

Cj ,k} with weights {ωj,k},
are adjusted by an adjustment matrix A

xa
Cj ,k = xa

Cj
+A(xf

Cj ,k − xf
Cj

) [7]

so that the mean and covariance of the adjusted particles
satisfy the Kamlan analysis mean xa

Cj
and covaraince Ra

Cj

which are given as

xa
Cj

= xf
Cj

+G(yj −Hxf
Cj

) [8]

and
Ra

Cj
= (I −GH)Rf

Cj
[9]

respectively. Here G is the Kalman gain matrix
G = RfHT (HRfHT + roI)−1, xf

Cj
is the forecast mean

xf
Cj

=
∑K

k
ωj,kxf

Cj ,k and Rf
Cj

is the forecast covariance∑K

k
ωj,k(xf

Cj ,k−xf
Cj

)(xf
Cj ,k−xf

Cj
)T (See SI for the method to

find the adjustment matrix A). The particle adjustment helps
to avoid the particle collapse. However the particle filter still
can have particle collapse due to many other factors such as
insufficient instability in forecast models and sampling errors.
Thus as in the standard particle filter, the clustered particle
filter uses resampling (8) which discard low weight particles
and duplicate large weight particles when the effective particle
number Keff = 1∑

k
(ωa

l,k
)2 drops below a threshold value. In

our study, we trigger resampling with a threshold value K/2.
Now we summarize the hard threshold version clustered

particle filter which triggers the particle adjustment if the
following condition is satisfied

Hard threshold criterion for particle adjustment :

yj 6∈ Range of predicted observations

= Range{Hxf
Cj ,k|k = 1, 2, ...,K}

[10]

Hard Threshold Clustered Particle Filter Algorithm - one step assimi-
lation. .

Given :
1) Nobs observations {y1, y2, ..., yNobs}
2) prior K particles {xf

Cj ,k, k = 1, 2, ...,K} and weight vectors
{ωf

l,k, k = 1, 2, ...,K} for each cluster Cl, l = 1, 2, .., Nobs

For yj from j = 1 to Nobs

If The hard threshold criterion Eq. (10) is satisfied
Update the prior particles using Eq. (7) to match the

Kalman update Eq. (8) and Eq. (9)
Else Use particle filtering
Update {ωf

j,k} using Eq. (6)
If Keff = 1∑

k
(ωa

l,k
)2 <

K
2

Do resampling
Add additional noise to the resampled particles

xCl,Resample(k) ← xCl,Resample(k) + ε [11]

where ε is IID Gaussian noise with zero mean and
variance rnoise

End If
End If

End For
Note that, in addition to the hard threshold criterion, other
criteria can be used to trigger the particle adjustment utilizing
additional information such as innovation statistics (see SI for a
soft threshold version clustered particle filter using innovation
statistics). Therefore there can be many other variants of
the clustered particle filter incorporating a different criterion
for the particle adjustment and other factors such as several
resampling strategies and inflation techniques. Throughout
this study, we use the hard threshold clustered particle filter
with residual resampling (8) which shows robust and accurate
filtering skills in our tests including the 40-dimensional Lorenz
96 (20) model and the MMT wave turbulence model (21, 22).

Numerical Tests

We test the filter performance of the clustered particle filter
and compare the result with other methods, the localized
particle filter and an ensemble based method EAKF (23). The
methods are applied to the following 40-dimensional Lorenz
96 model (20)

dui

dt
= (ui+1−ui−2)ui−1−ui +F, i = 1, 2, ..., J = 40. [12]

in a periodic domain. This system is a popular model for
turbulent systems mimicking baroclinic turbulence in the mid-
latitude atmosphere with energy conserving nonlinear advec-
tion and dissipation (13, 20). As the external constant force
F varies, this model generates a wide variety of dynamical
regimes ranging from weakly chaotic to strongly chaotic to
strongly turbulent (12, 13). In our numerical experiments,
we test the filter performance in the difficult regime using
high-quality infrequent observations. The observations are
available at every time interval 0.2 with an observation error
variance 0.05 which is about or less than 1% of the true signal
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Fig. 2. Lorenz 96 F=8. Time series of RMS errors of the localized particle filter
(LocPF), EAKF and the clustered particle filter (CPF). 40 observations and observation
error variance 0.05. Dash-dot line is the observation error 0.22 and dash line is the
climatological error 3.64. 50 particle and ensemble members for the particle filter and
EAKF respectively.

variance. The forecast model is the perfect model with a time
step 10−3 using a fourth-order Runge-Kutta time integration
method and thus each assimilation cycles requires 200 time
integrations of the forecast model. Both EAKF and the clus-
tered particle filter use 50 ensemble members and particles.
EAKF uses a localization radius 3 so that each observation
updates four adjacent state variables.

Lorenz 96 with F = 8, standard test regime. The Lorenz 96
with F = 8 is a standard dynamical regime to test data assim-
ilation methods with strongly chaotic features (12, 19). Fig. 2
shows the time series of the RMS errors of the three methods
applied to the Lorenz 96 model with F = 8 with 40 plentiful
and 20 sparse observations. The localized particle filter with
40 observations has RMS errors larger than the observation
error (dash-dot line) and fails to achieve meaningful filtering
skill; if observations become sparser the performance degrades
and RMS errors are comparable to the climatological error
(dash line). EAKF uses no covariance inflation and shows
better results than the localized particle filter. However the
method suffers from local bursts of RMS errors which becomes
larger than the climatological error with 20 observations. Our
proposed method, CPF, which uses localization and particle
adjustment, has robust filter performance with RMS errors
comparable to the observation error without significant local
bursts in the errors. When the observation becomes very
sparse with 10 observations, the soft threshold version clus-
tered particle filter which uses innovation statistics to trigger
particle adjustment has a better performance than the hard
threshold version method. See SI for the results of both the
hard and soft versions with 10 observations. Note that the
performance of EAKF can be improved by tuning localiza-
tion (See Fig. S1 in SI for the result of EAKF with tuned
parameters). However the clustered particle filter has robust
performance without tuning the localization.

Lorenz 96 with F = 5, strongly non-Gaussian test regime.
The 40-dimensional Lorenz 96 with F = 8 is a standard
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Fig. 3. Lorenz 96 F=5. Time series of RMS errors of EAKF and the clustered particle
filter (CPF). Observation error variance 0.05. Dash-dot line is the observation error
0.22. 50 particle and ensemble members for the particle filter and EAKF respectively.

test case for data assimilation methods but has weakly non-
Gaussian statistics (12). To compare the filter performance in
capturing non-Gaussian features, we compare the results of
EAKF and the clustered particle filter applied to the Lorenz
96 with F = 5 with strongly non-Gaussian statistics (11, 12)
(see SI for the results of the localized particle filter which
does not show accurate filtering skill). Fig. 3 shows the time
series of RMS errors of EAKF and the clustered particle filter
using 40 (top), 20 (middle) and 10 (bottom) observations.
EAKF has RMS errors comparable to the clustered particle
filter. However EAKF has local bursts of large errors. As the
observation becomes sparse, the clustered particle filter also
has local bursts of errors but their magnitudes are much less
than ones of EAKF. Note that, as in the case with F = 8, the
RMS errors of EAKF can be reduced by tuning parameters.
See Fig. S4 in SI for the tuned results of EAKF.

The accuracy of the filtering methods relies on the forecast
models’ skill to obtain the right statistics of the true signal.
We now check the filter performance of the two methods in
capturing the non-Gaussian features of the true signal. Due
to the ergodicity of the Lorenz 96 system Eq. (12), the PDFs
of the model can be obtained by running an ensemble of the
model in statistical steady state for a long time. The PDFs
for the physical space variable x and the two most energetic
7th and 8th Fourier modes are shown in the first row of Fig.
4. The PDF of x is far from a Gaussian distribution and the
ones of the absolute values of x̂7 and x̂8 are far from Rayleigh
distributions, which show strong non-Gaussian behaviors of
the true signal. The other two lines, which are the PDFs
of the clustered particle filter (real) and EAKF (dash-dot)
with 20% covariance inflation both using 10 observations,
show a significant performance difference between the two
methods. The forecast PDF of the clustered particle filter is
on top of the true signal while EAKF has poor performance in
capturing the non-Gaussian features; as EAKF uses a Gaussian
assumption for assimilation, the forecast PDFs of EAKF look
very similar to the Gaussian distribution for x and Rayleigh
distributions for |x̂7| and |x̂8|. The bottom row of Fig. 4
shows the forecast error PDFs of the state variable and the
real parts of the 7th and 8th Fourier modes. In comparison
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Fig. 4. Lorenz 96 F=5. Forecast error PDFs (top row) and forecast PDFs (bottom
row) of x and the two most energetic modes x̂7 and x̂8. EAKF uses 20% covariance
inflation.
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Fig. 5. Lorenz 96 F=5. Time series of RMS errors of the clustered particle with and
without particle adjustment. 10 observations and observation error variance is 0.05.

with EAKF, the clustered particle filter has much tighter error
bounds than EAKF which implies better forecast estimation
skill in predicting the true signal.

In our experiments, the particle adjustment is triggered less
than 30% on average and at most 70% in assimilating clusters
at each observation time. However the particle adjustment
plays a crucial role in stabilizing the filter. Fig. 5 shows
two time series of RMS errors of the clustered particle filter
with and without particle adjustment. At the beginning the
clustered particle filter without particle adjustment shows
stable filter performance. However, at the 200th cycle, its
performance quickly degrades and the filter does not show
skillful performance. On the other hand, the clustered particle
filter with particle adjustment shows robust and stable results
throughout the long assimilation cycles.

Application to multiscale data assimilation

Tremendously large computational costs to run forecast mod-
els for high-dimensional complex dynamical systems limit the
number of samples, which degrades the filter performance. The
multiscale data assimilation method (24) aims at increasing
the sample numbers using computationally cheap but robust
reduced-order coarse grid forecast models and provides the
resolved large scale estimation and prediction using mixed
observations of the large and small scales. The reduced-order
forecast model resolves the large-scale variables while the
small-scale variables are approximated using conditional Gaus-
sian distributions which can represent non-Gaussian statistics
through the interaction between the large and small scales. The
multiscale filtering also provides a mathematical framework
for representation errors, the errors due to the contribution
of unresolved scales (25, 26) in the observation. Under this
framework, the multiscale data assimilation method has been
applied for an ensemble based method and shown successful
applications in several stringent multiscale problems including
wave turbulence (27) and baroclinic turbulence (28). In addi-

tion to the ensemble based approach, the multiscale particle
filter in (24) uses particle filtering for the resolved coarse large
scales while the unresolved small scales are updated using
the Kalman update which has significantly low computational
costs compared to the standard particle filter. Here we use the
clustered particle filter algorithm, CPF, for multiscale particle
filtering of high-dimensional resolved large-scale variables with-
out the Gaussian assumption and test it for a one-dimensional
wave turbulence model. As the reduced-order forecast method
has model errors, the experiment in the next section also serves
as a data assimilation test for the clustered particle filter with
model errors.

Multiscale filtering of wave turbulence, test with model errors.
We apply the multiscale cluster particle filter for the MMT
model introduced in (21, 22) as a computationally tractable
model of wave turbulence. The model is described by the
following one-dimensional PDE for a complex scalar ψ

i∂tψ = |∂x|1/2ψ − |ψ|2ψ + iF + iDψ [13]

in a periodic domain of length L with large-scale forcing set to
F = 0.0163 sin(4πx/L) and dissipation D for both the large
and small scales. It has several features of wave turbulence
which make it a difficult test problem for data assimilation.
The model has a shallow energy spectrum proportional to
k−5/6 for wavenumber k and inverse cascade of energy from
small to large scales. It also has non-Gaussian extreme event
statistics caused by intermittent instability and breaking of
solitons. As the unresolved small scales carry more than two-
thirds of the total variance, it is a difficult filtering problem
to estimate and predict the resolved large scales using mixed
observations of the large-and small-scale components.

Here we compare the filtering results of the ensemble based
multiscale data assimilation method (27) and the multiscale
clustered particle filter for the MMT model. As the forecast
model for both the methods, we use the stochastic superpa-
rameterization multiscale method (29, 30) which is a seam-
less multiscale coarse-grid method using conditional Gaussian
statistics for the unresolved small scales. The forecast model
uses only 128 grid points while the full resolution uses 8192
grid points, which yields about 250 times cheaper computa-
tional savings (considering savings in the time step). As the
forecast model has a low computational cost compared to the
full resolution signal, the forecast model has significant model
errors. Observations of the full-scale variables are available
at uniformly distributed 64 grid points (which are extremely
sparse compared to the full resolution 8192 grid points) with
an observation error variance corresponding to 3% of the total
variance at every time interval of 0.25. The ensemble based
method uses the tuned parameters in (27), i.e., a short local-
ization radius 1 and 2% covariance inflation. For the hard
threshold version clustered particle filter, the particle adjust-
ment is triggered if either real or imaginary parts are not in
the range of the predicted observation as we observes both the
real and imaginary parts of the true signal. Both methods use
129 samples.

Time series of the large-scale estimation RMS errors
of the ensemble based filter and clustered multiscale par-
ticle filter are shown in Fig. 6. The dash-dot line is
the effective observation error 0.34 which is defined as√
observation error variance + small-scale variance by treat-

ing the small-scale contribution as an additional error, i.e.

Lee et al. PNAS | July 14, 2016 | vol. XXX | no. XX | 5



DRAFT

cycle
500 600 700 800 900 1000

R
M

S
E

0

0.1

0.2

0.3

0.4
Ensemble-based multiscale filtering

cycle
500 600 700 800 900 1000

R
M

S
E

0

0.1

0.2

0.3

0.4
Clustered multiscale particle filtering
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Fig. 7. MMT. Large-scale real part forecast PDF (left) and forecast error PDF (right)
using 64 observations.

the representation error (25, 26). The dash line is the cli-
matological error 0.20 which is the standard deviation of the
large-scale variables. The ensemble based method has RMS
errors smaller than the effective observation error but larger
than the climatological error. The clustered particle filter, on
the other hand, shows skillfull filter performance with RMS
errors smaller than the climatological error. The forecast
PDFs and forecast error PDFs of the real part which show
the prediction skill of the method are shown in Fig. 7 (see
Fig. S5 in SI for the result of the imaginary part). The clus-
tered particle filter has a better forecast PDF fit to the true
signal and a narrower peak in the forecast error PDF than the
ensemble-based method.

Concluding Discussions

The clustered particle filter introduced in this paper shows ro-
bust state estimation and prediction skill for high-dimensional
systems using high-quality sparse observations and relatively
few particles. In addition to its accurate filter results measured
by RMS errors, the clustered particle filter captures the non-
Gaussian features of the true signal while the ensemble based
EAKF has incorrect Gaussian features. The clustered particle
filter is also extended to multiscale particle filtering with model
errors. Using a cheap reduced-order forecast model with a
model error, our method is successfully applied to the stringent
one-dimensional wave turbulence MMT model. The clustered
particle filter uses clustering of the state variables based on the
observation network to implement coarse-grained localization.
It is also shown that the particle adjustment is an essential
step to stabilize the filter and achieve accurate estimation
and prediction skill in addition to localization. This suggests
that it is an interesting research topic to investigate various
criteria to trigger the particle adjustment which can affect
the performance of the clustered particle filter and combine
the clustered particle filter with several covariance inflation
techniques (31, 32) to account for variance underestimation
and sampling errors and stabilize the filter. Here we have
considered only one-dimensional uniformly distributed linear
observations. It would be natural to speculate if the clustered
particle filter can be extended to two- or three-dimensional
non-uniformly distributed and nonlinear observations for op-
erational applications.
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