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Abstract. This article presents a rigorous analysis for efficient statistically accurate algorithms for solving the5
Fokker-Planck equations associated with high-dimensional nonlinear turbulent dynamical systems6
with conditional Gaussian structures. Despite the conditional Gaussianity, these nonlinear systems7
contain many strong non-Gaussian features such as intermittency and fat-tailed probability density8
functions (PDFs). The algorithms involve a hybrid strategy that requires only a small number of9
samples L to capture both the transient and the equilibrium non-Gaussian PDFs with high accura-10
cy. Here, a conditional Gaussian mixture in a high-dimensional subspace via an extremely efficient11
parametric method is combined with a judicious Gaussian kernel density estimation in the remaining12
low-dimensional subspace. Rigorous analysis shows that the mean integrated squared error in the13
recovered PDFs in the high-dimensional subspace is bounded by the inverse square root of the de-14
terminant of the conditional covariance, where the conditional covariance is completely determined15
by the underlying dynamics and is independent of L. This is fundamentally different from a direct16
application of kernel methods to solve the full PDF, where L needs to increase exponentially with17
the dimension of the system and the bandwidth shrinks. A detailed comparison between different18
methods justifies that the efficient statistically accurate algorithms are able to overcome the curse19
of dimensionality. It is also shown with mathematical rigour that these algorithms are robust in20
long time provided that the system is controllable and stochastically stable. Particularly, dynami-21
cal systems with energy-conserving quadratic nonlinearity as in many geophysical and engineering22
turbulence are proved to have these properties.23
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1. Introduction. The Fokker-Planck equation is a partial differential equation (PDE)27

that governs the time evolution of the probability density function (PDF) of a complex sys-28

tem with noise [26, 65]. Many complex dynamical systems in geophysical and engineering29

turbulence, neuroscience and excitable media have large dimensions and strong nonlinearities,30

the associated PDFs of which are highly non-Gaussian with intermittency and extreme events31

[41, 38]. Predicting the rare and extreme events [15, 19, 29, 63, 61, 20, 73], quantifying the32

uncertainty in the presence of intermittent instabilities [47, 6, 30, 5] and characterizing other33

∗Submitted to the editors DATE.
Funding: The research of A.J.M. is partially supported by the Office of Naval Research Grant ONR MURI

N00014-16-1-2161 and the Center for Prototype Climate Modeling (CPCM) at New York University Abu Dhabi
Research Institute. N.C. is supported as a postdoctoral fellow through A.J.M’s ONR MURI Grant. X.T.T is
supported by NUS grant R-146-000-226-133.
†Department of Mathematics and Center for Atmosphere Ocean Science, Courant Institute of Mathematical

Sciences, New York University, New York, NY, USA (chennan@cims.nyu.edu).
‡Department of Mathematics and Center for Atmosphere Ocean Science, Courant Institute of Mathematical

Sciences, New York University, New York, NY, USA and Center for Prototype Climate Modeling, New York University
Abu Dhabi, Saadiyat Island, Abu Dhabi, UAE. (jonjon@cims.nyu.edu).
§Department of Mathematics, National University of Singapore, Singapore (mattxin@nus.edu.sg).

1

This manuscript is for review purposes only.

mailto:chennan@cims.nyu.edu
mailto:jonjon@cims.nyu.edu
mailto:mattxin@nus.edu.sg


2 NAN CHEN, ANDREW J. MAJDA, AND XIN. T. TONG

non-Gaussian features [62, 32] all require solving high-dimensional Fokker-Planck equations34

with strong non-Gaussian features.35

Since there is no general closed-form solution for the Fokker-Planck equation, various nu-36

merical and approximate approaches have been developed to solve the evolution of the PDF37

p(u, t), where u consists of the state variables and t is the time. However, traditional numerical38

methods such as finite element and finite difference as well as the direct Monte Carlo simula-39

tions of the underlying dynamics all suffer from the curse of dimensionality [66, 22, 64, 35, 70].40

Furthermore, even in the low-dimensional scenarios, substantial computational cost is already41

required for an accurate estimation of the fat tails of the highly intermittent non-Gaussian42

PDFs. On the other hand, different methods for solving the partial or the approximate solu-43

tions of p(u, t) have been proposed for special dynamical systems. For example, asymptotic44

expansion with truncations provides good approximate PDFs associated with the slow varying45

variables in non-Gaussian systems with multiscale features [26, 55, 56, 44]. Splitting methods46

[23, 24], orthogonal functions and tensor decompositions [75, 71, 65] are able to provide rea-47

sonably good estimations of the steady state PDFs. If the systems are weakly nonlinear with48

additive noise, then equivalent linearization method [69, 3] is also frequently used for solving49

approximate solutions.50

In recent work by two of the authors [14], efficient statistically accurate algorithms have51

been developed for solving the Fokker-Planck equation associated with high-dimensional non-52

linear turbulent dynamical systems with conditional Gaussian structures [11]. Decomposing53

the state variables u into two groups u = (uI,uII) with uI ∈ RNI and uII ∈ RNII . The54

conditional Gaussian systems are characterized by the fact that once a single trajectory of55

uI(s ≤ t) is given, uII(t) conditioned on uI(s ≤ t) becomes a Gaussian process. Despite the56

conditional Gaussian structure, the coupled system of uI and uII is highly nonlinear and it is57

able to capture many strong non-Gaussian features such as intermittency and fat-tailed PDFs58

that are commonly seen in nature [11]. Note that in most turbulent dynamical systems, the59

observed variables uI represent large scale or resolved variables, which usually have only a60

small dimension, while the dimension of the unresolved or unobserved variables uII can be61

very large [53, 41]. Applications of the conditional Gaussian framework to highly nonlinear62

turbulent dynamical systems include modelling and predicting the highly intermittent and63

non-Gaussian times series of the Madden-Julian oscillation (MJO) and monsoon [15, 10, 9],64

filtering the stochastic skeleton model for the MJO [12], and state estimation of the turbulent65

ocean flows from noisy Lagrangian tracers [16, 17, 13]. Other studies that also fit into the66

conditional Gaussian framework includes the dynamic stochastic superresolution of sparsely67

observed turbulent systems using cheap exactly solvable forecast models [7, 34], stochastic68

superparameterization for geophysical turbulent flows [50], physics constrained nonlinear re-69

gression models [52, 31], stochastic parameterized extended Kalman filter [28, 27, 6, 8, 36]70

and blended particle filters for high-dimensional chaotic systems [54].71

The efficient statistically accurate algorithms [14] involve a hybrid strategy that requires72

only a small number of samples. In these algorithms, a conditional Gaussian mixture in the73

high-dimensional subspace of uII via an extremely efficient parametric method is combined74

with a judicious Gaussian kernel density estimation in the low-dimensional subspace of uI. In75

particular, the conditional Gaussian distributions in the high-dimensional subspace are solved76

via closed analytical formulae and are therefore computationally efficient and accurate. The77
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full non-Gaussian joint PDF of the system is then given by a Gaussian mixture. One remark-78

able feature of these efficient hybrid algorithms is that each conditional Gaussian distribution79

is able to cover a significant portion of the high-dimensional PDF. This guarantees the suffi-80

ciency of using only a small number of samples, which overcomes the curse of dimensionality.81

It has been shown in a stringent set of numerical tests [14] that with an order of O(100) sam-82

ples the mixture distribution has a significant skill in capturing both the statistically steady83

state and the transient behavior with fat tails of the high-dimensional non-Gaussian PDFs in84

up to 6 dimensions while an order of O(106) samples is required in the Monte Carlo simulation85

to reach the same accuracy. In [14], the restriction to 6 dimension of the hybrid method is86

not essential but was utilized to allow comprehensive validation of the statistics in the truth87

model with an instructive simple model.88

This article serves as a rigorous analysis for these efficient statistically accurate algorithms.89

The main focus here is the accuracy of the recovered PDFs in terms of the sample size L as90

well as its dependence on different factors, in particular the dimension of the state variables91

and the time span. Throughout the article, the mean integrated square error (MISE) is used92

to quantify the accuracy.93

Our first result Theorem 3.1 reveals that the MISE in the recovered high-dimensional94

PDFs associated with the unresolved variables uII is bounded by E(det(RII)
−1/2), where RII95

is the conditional covariance of uII given the trajectory of uI. Notably, RII is completely96

determined by the underlying dynamical systems and has no dependence on the sample size97

L. In contrast, if a direct kernel density method is applied to recover the PDF of uII, then98

the bandwidth of the kernel H is scaled as the reciprocal of L to a certain power in order to99

minimize the MISE and the resulting MISE is proportional to L−1/NII , which means L has to100

increase exponentially with NII to guarantee the accuracy in the solution. This indicates the101

curse of dimensionality in the direct kernel density estimation and other smoothed versions of102

Monte Carlo methods. Such a notorious issue is overcome by the efficient statistically accurate103

algorithms due to the independence between RII and L in the high-dimensional subspace of104

uII. Another significant feature of the efficient statistically accurate algorithms is their long105

term persistence, which is affirmed by Theorem 3.7 in a rigorous way provided that the joint106

process (uI,uII) is controllable and stochastically stable. Theorem 3.7 also supplies a lower107

bound of RII using the controllability condition. In addition, Proposition 3.8 demonstrates108

that dynamical systems with energy conserving quadratic nonlinear interactions as in most109

geophysical and engineering turbulence [41] automatically satisfy all the conditions for the long110

time persistence, which justifies the skillful performance of the efficient statistically accurate111

algorithms in the numerical tests reported in [14]. Further validations of the controllability and112

other theoretical conditions in the algorithms are demonstrated in the numerical simulations113

at the end of this article.114

The remaining of this article is organized as follows. The high-dimensional nonlinear tur-115

bulent dynamical systems with conditional Gaussian structures are summarized in section 2,116

which is followed by a brief review of the efficient statistically accurate algorithms in [14] for117

solving the PDFs of such kind of systems. The main theoretical results are shown in sec-118

tion 3, where the proofs are included in section 4 and Supplementary Material. In section 5,119

numerical tests on a nonlinear triad model and its modified versions are used to validate the120

theoretical results. Conclusion and discussions are given in section 6.121
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2. Review of the efficient statistically accurate algorithms for solving the PDFs of122

nonlinear dynamical systems with conditional Gaussian structures.123

2.1. High-dimensional conditional Gaussian models with nonlinear and intermittent124

dynamical features . The general framework of high-dimensional conditional Gaussian models125

is given as follows [39, 11]:126

duI = [A0(t,uI) + A1(t,uI)uII]dt+ ΣI(t,uI)dWI(t),(1a)127

duII = [a0(t,uI) + a1(t,uI)uII]dt+ ΣII(t,uI)dWII(t),(1b)128129

where the state variables are u = (uI,uII) with both uI ∈ RNI and uII ∈ RNII being mul-130

tidimensional variables. In (1), A0,A1,a0,a1,ΣI and ΣII are vectors and matrices that are131

functions of time t and the state variables uI, and WI(t) and WII(t) are independent Wiener132

processes. Here the noise coefficient matrix ΣI is non-degenerated in order to guarantee the133

observability while there is no special requirement for ΣII. The dynamics (1) are named as134

conditional Gaussian systems due to the fact that once a single trajectory uI(s) for s ≤ t is giv-135

en, uII(t) conditioned on uI(s) becomes a Gaussian process with mean ūII(t) and covariance136

RII(t), i.e.,137

(2) p
(
uII(t)|uI(s ≤ t)

)
∼ N (ūII(t),RII(t)).138

Despite the conditional Gaussianity, the coupled system (1) remains highly nonlinear and139

is able to capture the strong non-Gaussian features as observed in nature [11]. One of the140

desirable properties of the conditional Gaussian system (1) is that the conditional distribution141

in (2) has the following closed analytical form [39],142

(3)

dūII(t) =[a0(t,uI) + a1(t,uI)ūII]dt+ (RIIA
∗
1(t,uI))(ΣIΣ

∗
I)−1(t,uI)×

[duI − (A0(t,uI) + A1(t,uI)ūII)dt],

dRII(t) = {a1(t,uI)RII + RIIa
∗
1(t,uI) + (ΣIIΣ

∗
II)(t,uI)

−(RIIA
∗
1(t,uI))(ΣIΣ

∗
I)−1(t,uI)(RIIA

∗
1(t,uI))

∗} dt.
143

In most geophysical and engineering turbulent dynamical systems, the nonlinear terms144

such as the nonlinear advection have quadratic forms and these quadratic nonlinear interac-145

tions conserve energy [31, 46, 52, 41, 55, 56]. The nonlinear interactions allow energy transfer146

between different scales that induces intermittent instabilities in the turbulent dynamical147

systems. Such instabilities are then mitigated by energy-conserving quadratic nonlinear inter-148

actions that transfer energy back to the linearly stable modes where it is dissipated, resulting149

in a statistical steady state. Note that the nonlinear turbulent systems without the energy-150

conserving nonlinear interactions may suffer from non-physical finite-time blow up of statistical151

solutions and pathological behavior of the related invariant measure [58]. Mathematically, the152

turbulent dynamical systems with energy-conserving quadratic nonlinear interactions have the153

following abstract forms:154

(4) du =
[
− Λu + B(u,u) + F(t)

]
dt+ Σ(t,u)dW(t),155

where −Λ = L + D. Here, L is a skew-symmetric linear operator that can represent the β156

effect of Earth’s curvature and topography, while D is a negative definite symmetric operator157
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representing dissipative processes such as surface drag, radiative damping and viscosity, etc158

[67, 72, 45, 74]. The quadratic operator B(u,u) conserves energy by itself so that it satisfies159

the following:160

(5) u ·B(u,u) = 0.161

Notably, a rich class of turbulent models with energy-conserving quadratic nonlinear inter-162

actions in (4) belongs to the conditional Gaussian systems (1), including the noisy version163

of Lorenz 63 model [40], the reduced stochastic climate model [49, 42], the nonlinear triad164

model mimicking structural features of low-frequency variability of GCMs with non-Gaussian165

features [48], the modified conceptual dynamical model for turbulence [53], and the two-layer166

Lorenz 96 model [37]. See [14] and its appendix for a general framework of conditional Gaus-167

sian systems with energy-conserving nonlinear interactions as well as concrete examples.168

2.2. The efficient statistically accurate algorithms for solving the PDFs of the condi-169

tional Gaussian systems. Assume the dimension NI of the observed variables is low, while170

the dimension NII of the unobserved variables can be high. This is the typical scenario in171

most turbulent dynamical systems, where the low-dimensional variables uI represent large172

scales or resolved variables while the high-dimensional ones uII stand for the unresolved and173

unobserved variables [53, 41].174

Below, we summarize the procedures of the efficient statistical algorithms developed in175

[14]. First, we generate L independent trajectories from the stochastic dynamical systems (1).176

In fact, the only information that is required for these algorithms is L independent trajectories177

of the observed variables, namely u1
I(s ≤ t), . . . ,uLI (s ≤ t). Then, different strategies are used178

to deal with the observed variables uI and unobserved variables uII, respectively. The PDF179

of uII is estimated via a parametric method that exploits the closed form of the conditional180

Gaussian posterior statistics (3),181

(6) p(uII(t)) = lim
L→∞

1

L

L∑
i=1

p(uII(t)|uiI(s ≤ t)).182

Note that the limit L → ∞ in (6) (as well as (7) and (9) below) is taken to illustrate the183

statistical intuition, while the estimator is the non-asymptotic version. On the other hand,184

a Gaussian kernel density estimation method is used for solving the PDF of the observed185

variables uI,186

(7) p
(
uI(t)

)
= lim

L→∞

1

L

L∑
i=1

KH

(
uI(t)− uiI(t)

)
,187

where H = H(t) is the bandwidth matrix, and KH(·) is a Gaussian kernel centered at each188

sample point with covariance H(t),189

(8) KH

(
uI(t)− uiI(t)

)
∼ N

(
uiI(t),H(t)

)
.190

Below, we simply use H to represent the bandwidth at time t for the notation simplicity.191
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The kernel density estimation algorithm here involves a “solve-the-equation plug-in” ap-192

proach for optimizing the bandwidth, the idea of which was originally proposed in [4]. The193

solve-the-equation approach does not impose any requirement for the profile of the underlying194

PDF. Therefore, it works for the non-Gaussian cases and the computational cost comes from195

numerically solving a scalar high order algebraic equation for the optimal bandwidth in order196

to minimize the asymptotic mean integrated squared error (AMISE) in the estimator. Fur-197

thermore, we adopt a diagonal matrix for H. This greatly reduces the computational costs198

while remains the results with reasonable accuracy. Note that in the limit L→∞, the kernel199

density method is simply the Monte Carlo simulation, where the bandwidth shrinks to zero.200

Finally, with (6) and (7) in hand, a hybrid method is applied to solve the joint PDF of uI201

and uII through a Gaussian mixture,202

(9) p(uI(t),uII(t)) = lim
L→∞

1

L

L∑
i=1

(
KH(uI(t)− uiI(t)) · p(uII(t)|uiI(s ≤ t))

)
.203

One important features of these algorithms is that the solutions of both the two marginal204

distributions in (6) and (7) and the joint distribution in (9) are consistent with those of205

solving the Fokker-Planck equation for p(uII(t)), p(uI(t)) and p(uI(t),uII(t)), respectively.206

Practically, L ∼ O(100) is sufficient for the efficient hybrid method (9) to solve the joint207

PDF with NI ≤ 3 and NII ∼ 10 while an order of O(106) samples is required for solving the208

joint PDF using classical Monte Carlo methods to reach the same accuracy for a 6 dimensional209

turbulent system [14]. Since L is only of order O(100), the L independent trajectories u1
I(s ≤210

t), . . . ,uLI (s ≤ t) can be obtained by running a Monte Carlo simulation for the coupled system211

(1) with L samples, which is computationally affordable. In addition, the closed form of the L212

conditional distributions in (6) can be computed in a parallel way due to their independence,213

which further reduces the computational cost. See [14] for more details.214

3. Main theoretical results. The rigorous analysis of the efficient statistically accurate215

algorithms involving the hybrid strategy (9) is studied in this section. For comparison, the216

theoretical results by applying the kernel density estimation method to the full system (1) is217

also illustrated. Note that the kernel density estimation is essentially the Monte Carlo simula-218

tion when L is large and therefore it suffers from the curse of dimensionality. Such comparison219

facilitates the understanding of the advantages of the efficient algorithm (9) in recovering the220

high-dimensional subspace of uII using only a small number of samples. Below, pt(uI,uII)221

represents the true PDF while p̃t(uI,uII) and p̂t(uI,uII) stand for the recovered PDFs based222

on the pure kernel density estimation and the efficient hybrid method (9), respectively.223

Kernel density estimation for the joint PDF.224

p̃t(uI,uII) =
1

L

L∑
i=1

KH((uI,uII)− (uiI(t),u
i
II(t))),(10)225

with KH(uI,uII) = (2πH)−
NI+NII

2 exp

(
− 1

2H

NI∑
i=1

c2iu
2
I,i −

1

2H

NII∑
i=1

c2i+NI
u2

II,i

)
.(11)226

227
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Hybrid method — kernel density estimation for uI and conditional Gaussian mixture for uII.228

p̂t(uI,uII) =
1

L

L∑
i=1

KH(uI − uiI(t))p(uII|uiI(s ≤ t)).(12)229

with KH(uI) = (2πH)−
NI
2 exp

(
− 1

2H

NI∑
i=1

c2iu
2
I,i

)
.(13)230

231

In (11) and (13), we let H = HC as in (9). The scalar H is the scale of the bandwidth232

[68, 76, 77, 4] and c2i are the diagonal terms of C such that c2iH represents the bandwidth in233

one direction. In the following, we mostly concern the performance of p̃t and p̂t when L is234

large.235

One standard metric to measure the performance of a density estimator is the mean236

integrated squared error (MISE). The MISE of the hybrid method, for example, is the average237

L2 distance to the true density:238

MISE = E
∫
|pt(uI,uII)− p̂t(uI,uII)|2duIduII.239

Note that p̂t relies on the realization of the samples and therefore it is natural to take the240

expectation of the distance.241

Applying the Bias-Variance decomposition [25] to the MISE yields242

(14) MISE = E
∫
|p̂t(uI,uII)− p̄t(uI,uII)|2duIduII︸ ︷︷ ︸

Bias

+

∫
|pt(uI,uII)− p̄t(uI,uII)|2duIduII︸ ︷︷ ︸

Variance

,243

where p̄t := Ep̂t. The variance part comes from the sampling error of the method and the244

bias part comes from the usage of the kernel method. See (28) for a direct proof of this245

decomposition.246

The MISE and its decomposition (14) will be used to understand the performance of the247

two density estimation methods in (10) and (12), where the scenarios with a large number248

of samples and a large dimension of the variables NII are of particular interest. Main results249

are presented below and the rigorous proofs of these results are shown in section 4. Note that250

despite quite a few studies of kernel density estimation, especially in the asymptotic limit,251

exist in literature [68, 76, 77, 33, 4], no analysis has been established for the hybrid method252

(12). Moreover, the results here are all non-asymptotic, and therefore they hold for arbitrary253

choice of bandwidth parameters. This is important in practice, as the bandwidth matrix H(t)254

may change with t.255

3.1. MISE of the hybrid method. The main result of our analysis is the following:256
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Theorem 3.1. The two parts of MISE in (14) for the hybrid method (12) are bounded:257

(15)

p̂t Variance ≤ 1

L
E

(
NI∏
i=1

(πHc2i )det(πRII(t))

)− 1
2

,

p̂t Bias ≤ 1 + δ

4
H2J

(
NI∑
i=1

c2i ∂
2
u2
I,i
pt(uI,uII)

)
+

1 + δ−1

2
M2H3

(
NI∑
i=1

c2i

)3

J(M(uI,uII)).

258

Here δ is any fixed strictly positive number. E is the statistical average. J(f(uI,uII)) denotes259

the integral
∫
f2(uI,uII)duIduII. The function M(uI,uII) is an upper bound of the third260

order directional derivative of pt in the direction of uI around (uI,uII). That is, we assume261

(16)

∣∣∣∣ d3ds3 pt(uI + sv,uII)

∣∣∣∣ ≤M(uI,uII), for all v ∈ RNI , |v| ≤ 1.262

In a practical scenario, as the sample size L increases, bandwidth H can decrease, so that both263

the variance and bias terms decrease to zero. By taking δ close to zero and ignoring the higher264

order term in the bias upper bound, we recover an upper bound similar to the asymptotic265

MISE (AMISE) in [76, Eqn. (2.6)], except that our method also consists a random component266

of RII(t):267

(17) AMISE ≤ 1

L
E

(
NI∏
i=1

(πHc2i )det(πRII(t))

)− 1
2

+
1

4
H2J

(
NI∑
i=1

c2i ∂
2
u2
I,i
pt(uI,uII)

)
,268

where the two terms on the right hand side represents the variance and bias, respectively. It269

is natural to equate the order of these two terms, that is letting LH−
1
2
NI ∼ O(H2). This leads270

to the common choice of the bandwidth [33]271

(18) H ∼ O
(
L
− 2

4+NI

)
and consequentially MISE ∼ O

(
L
− 4

4+NI

)
.272

Notably, the variance part of MISE in (17) depends on uII through E
√

det(πRII(t))
−1

,273

which indicates that the hybrid method in (12) performs better with a larger RII(t). This274

is consistent with the intuition that a large RII(t) corresponds to a conditional distribution275

N (ūII(t),RII(t)) with a wide band that is able to recover a sufficient portion of the PDF.276

3.2. Comparison between the two density estimators. Theorem 3.1 already reveals the277

advantage of the hybrid method (12) over the the direct kernel density method (10). For a278

qualitative comparison of the two methods, we can view the latter as a trivial application of279

the hybrid method by taking u′I = (uI,uII) and u′II = ∅, and therefore u′II is trivially linear280

conditioned on u′I. A direct application of Theorem 3.1 leads to281

(19)

p̃t Variance ≤ 1

L
E

(
NI+NII∏
i=1

πHc2i

)− 1
2

,

p̃t Bias ≤ (1 + δ)H2

4
J

(
NI∑
i=1

c2i ∂
2
u2
I,i
pt +

NII∑
i=1

c2i+NI
∂2u2

II,i
pt

)
+

(1 + δ−1)H3

2

(
NI∑
i=1

c2i

)3

J(M̃).

282
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where M̃ ≥ M is the upper bound for third order directional derivative in RNI+NII of pt.283

Similar results in the asymptotic setting can be found in [76].284

If we use the same bandwidth H and sample size L in both method, Comparing (19) with285

(15), we find that286

p̃t Bias bound ≥ p̂t Bias bound,287

and moreover288

p̃t Variance bound

p̂t Variance bound
=
H−

NII
2
∏NII
i=1 ci+NI

E
√

det(RII(t))
−1 .289

Practically, a large L is chosen to guarantee the accuracy of the recovered PDFs, which290

corresponds to a small bandwidth H. Then the variance part of the direct kernel method is291

several magnitudes larger than that of hybrid method, especially when the dimension NII is292

high.293

As discussed above, one would optimize the choice of H such that the two quantities in294

(19) are of the same order, which leads to the scaling H ∼ O
(
L
− 2

4+NI+NII

)
, and also the295

overall MISE ∼ O
(
L
− 4

4+NI+NII

)
, However, This is much worse than the MISE associated296

with the conditional Gaussian method (18) when NII is large. Alternatively, if one wants the297

performance of the direct kernel method to be the same as the conditional Gaussian one (18),298

then the sample size needs to increase to L̃ = L
4+NI+NII

4+NI , which can be many magnitudes299

larger than L.300

In conclusion, direct application of the kernel method suffers from the curse of dimension-301

ality. This is due to the fact that the variance scales with the bandwidth as H−
NI+NII

2 , and302

therefore one needs to increase sample size exponentially with the dimension in order to have303

a small bandwidth that guarantees the accuracy of the recovered PDFs. However, when H is304

small, the kernel density method approximates the standard Monte Carlo simulation, which305

suffers from the curse of dimensionality. On the other hand, the hybrid method resolves this306

issue by estimating the uII part using a parametric method where the bandwidth (or the307

covariance) does not depend on L. Therefore, the performance of the hybrid method (12) can308

be much superior than the direct kernel method (10) when NII is large.309

3.3. Marginal distribution of uII(t). There are scenarios where the focus is only on es-310

timating the density of uII(t). Again, both methods can be applied here. The direct kernel311

method (10) results in the estimation of the marginal density312

(20)

p̃t(uII) :=
1

L

L∑
i=1

KH(uII − uiII(t)), KH(uII) = (2πH)−
NII
2 exp

(
− 1

2H

NII∑
i=1

c2i+NI
u2

II,i

)
.313

On the other hand, the hybrid method (12) simply becomes a conditional Gaussian mixture314

method which contains no kernel density estimation315

(21) p̂t(uII) :=
1

L

L∑
i=1

p(uII|uiI(s ≤ t)).316
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It is straightforward to check these density estimators are the marginal PDFs of the joint317

distributions in (10) and (12).318

Since there is no kernel involved for the conditional Gaussian method in (21), the MISE319

has a simple bound without the bias part:320

Proposition 3.2. The marginal MISE of the conditional Gaussian estimator in (21) is321

bounded as322

(22) p̂t MISE ≤ 1

L
E (det(πRII(t)))

− 1
2 .323

Following the derivation of (19), the MISE of the direct kernel method in (20) is given by324
325

p̃t MISE ≤ 1

L
E

(
NII∏
i=1

πHc2i+NI

)− 1
2

+
(1 + δ)H2

4
J

(
NII∑
i=1

c2i+NI
∂2u2

II,i
pt

)
326

+
(1 + δ−1)H3

2

(
NI∑
i=1

c2i

)3

J(M̃).327

328

With the optimal choice H ∼ O
(
L
− 2

4+NII

)
, the direct kernel method MISE ∼ O

(
L
− 4

4+NII

)
.329

The hybrid method with the conditional Gaussian mixture is clearly superior for marginal330

density estimation, as its MISE (22) is essentially O(L−1), and the bandwidth H has no331

dependence on L.332

3.4. Fixed subspace. In many scenarios, only a part of uII is of practical interest. To this333

end, we consider here uPII = PuII, where P : RNII 7→ RNP
II maps uII onto a lower dimensional334

subspace. Below, we study the estimation of the density pPt (uI,u
P
II) of (uI(t),u

P
II(t)) using335

the hybrid method.336

It is straightforward to show the conditional distribution of uPII(t) given uI(s ≤ t) follows337

the Gaussian density p(uPII|uI(s ≤ t)) of the following form338

det(2πPRII(t)P
∗)−

1
2 exp

(
−1

2(uPII −PūII(t))
∗[PRII(t)P

∗]−1(uPII −PūII(t))
)
.339

The density of (uI(t),u
P
II(t)) can be estimated by340

p̂Pt (uI,u
P
II) =

1

L

L∑
i=1

KH(uI − uiI(t))p(u
P
II|uiI(s ≤ t)).341

Following Theorem 3.1, we can show that342

Corollary 3.3. Under the same assumption as in Theorem 3.1, the MISE decomposition of343

p̂Pt has the following two bounds344

p̂Pt Variance ≤ 1

L
E

(
NI∏
i=1

(πHc2i )det(πPRII(t)P
∗)

)− 1
2

,

p̂Pt Bias ≤ 1 + δ

4
H2J

(
NI∑
i=1

c2i ∂
2
u2
I,i
pPt (uI,u

P
II)

)
+

1 + δ−1

2
H3

(
NI∑
i=1

c2i

)3

J(MP (uI,u
P
II)),

345
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where MP is a upper bound of third order derivative of pPt in uI, as in (16).346

Notably, the variance term depends only on E
√

det(πPRII(t)P∗)
−1

, where PRII(t)P
∗ is347

a NP
II × NP

II matrix that is independent of the components complementary to uPII(t). In348

other words, the performance of the hybrid estimator on a certain part of the components349

is independent of the other components. This is particularly useful when NP
II is small. Note350

that such a property also holds for the direct kernel method but in practice the kernel method351

works only for the case when NII is small.352

3.5. Controllability and a lower bound of RII. According to Theorem 3.1, RII(t) controls353

the sampling variance term in the MISE. Therefore, it is desirable to derive a lower bound354

for RII(t). Note that in the conditional Gaussian system (1), uI can be interpreted as an355

observation of uII, and p(uII|uI(s ≤ t)) is essentially the optimal Kalman filter with covariance356

RII(t). Therefore, a lower bound of RII(t) can be guaranteed by the controllability of the357

associated signal-observation system. In short, the controllability condition ensures the noise358

in the system is regular enough such that the optimal filter is not accurate to a singular degree359

in any component. More discussions on the controllability of Kalman filters can be found in360

[18, 21, 51]. A recent work [2] has summarized some of the major results in this area. It361

is noteworthy that since the term a1 depends on realization of uI, both the controllability362

condition and the lower bounds rely on the realization of uI.363

In our context, a standard way to characterize this notion is the following assumption:364

Assumption 3.4. Let Es,t be the matrix flow generated by a1:365

d

dt
Es,t = a1(t,uI(t))Es,t, Es,s = INII

.366

Suppose there are constants v > 0,m ≥ 0 and Dc ≥ 1 such that for any t ≥ v and s ∈ [t−v, t],367

D−1c INII
� Es,tE∗s,t � DcINII

, σ2II,−INII
� Σ∗IIΣII � σ2II,+INII

,368

369

A∗1(t,uI(t))[ΣIΣ
∗
I ]−1A1(t,uI(t)) � Dc(|uI(t)|2m + 1)INII

.370

Throughout this paper, for two real symmetric matrices A and B, we use A � B to indicate371

that B −A is a positive semi-definite matrix.372

While A∗1(ΣIΣ
∗
I)−1A1 actually concerns of observability, this bound is very mild. Thus, we373

still call Assumption 3.4 the controllability condition.374

Proposition 3.5. Suppose NII ≥ 2, and the controllability condition, Assumption 3.4 holds,375

then for any t ≥ v, RII(t) � h−1t,v (uI)INII
, where376

ht,v(uI) := v2σ2II,+σ
−2
II,−D

6
c

(
v +

∫ t

t−v
|uI(r)|2mdr

)
+ v−1Dcσ

−2
II,−.377

In particular there are constants D1 and D2 such that378

E
√

detRII(t)
−1
≤ D1 +D2

∫ t

t−v
E|uI(r)|mNIIdr.379
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The dependence of RII(t) on uI(s)|t−v≤s≤t comes from the observational term A1. As is seen380

from (3), if A∗1(ΣIΣ
∗
I)−1A1 is large, RII(t) has a large quadratic damping, which can bring381

it to a very low level.382

In symmetry, an upper bound can be derived if a lower bound of A∗1(ΣIΣ
∗
I)−1A1 is383

assumed. Furthermore, one can show that the Riccati flow of RII(t) is contractive, so its384

dependence on RII(0) is diminishing. Since these results are not directly related to the385

performance of the hybrid estimator, we put them in the supplementary material along with386

the verification of Proposition 3.5.387

3.6. Long time performance. The simulation of (uiI(t),u
i
II(t)) can be maintained con-388

tinuously, and the conditional Gaussian density estimator (12) can be applied for an online389

estimation. One important question to ask is whether the performance, and in particular the390

MISE, degenerates with time. If this is the case, additional samples are needed to reinforce391

the estimation, which is however usually difficult to carry out in practice. In this subsection,392

we show that the conditional Gaussian density estimator has a long time stable performance,393

as long as the joint process (uI,uII) is stable and ergodic.394

In stochastic analysis, the stability and ergodicity of a process can be guaranteed by energy395

dissipation and non-degenerate stochastic forcing. For our purpose, we can assume the energy396

is dissipative, while the noise is elliptic [57].397

Assumption 3.6. Suppose ΣI and ΣII are full rank, and the energy is dissipative with a398

rate ρ > 0 and a constant De399

(23) uI · (A0 + A1uII) + uII · (a0 + a1uII) ≤ −ρ(|uI|2 + |uII|2) +De.400

Theorem 3.7. Under Assumption 3.6, the following hold.401

1) The joint density pt converges geometrically to an ergodic measure p∞ with a rate c > 0.402

In particular, there is a constant D0 so that403

(24)

∫ ∣∣∣∣ ptp∞ (uI,uII)− 1

∣∣∣∣2 p∞(uI,uII)duIduII ≤ D0e
−ct〈|u|2 + 1, p0〉

∥∥∥∥ p0p∞ − 1

∥∥∥∥2
∞
.404

Here 〈|u|2 + 1, p0〉 denotes the quantity
∫

(|uI|2 + |uII|2 + 1)p0(uI,uII)duIduII, and ‖f‖∞405

denotes the supremum ‖f‖∞ = supuI,uII
|f(uI,uII)|.406

2) Suppose Assumption 3.4 also holds, then for any t > 0 and δ > 0, NII ≥ 2, the two parts407

of the MISE using the hybrid method are bounded by408

p̂t Variance ≤
Dm,NII,v

Lπ
NI+NII

2 H
NI
2
∏NI
i=1 ci

(
exp(−1

2ρmNIIt)E|u(0)|mNII +Dm,NII,v

)
,409

p̂t Bias ≤(1 + δ)2

4
H2J

(
NI∑
i=1

c2i ∂
2
u2
I,i
p∞(uI,uII)

)
+

(1 + δ)2

2δ
H3

(
NI∑
i=1

c2i

)3

J(M∞(uI,uII))410

+ 8(1 + δ−1)D0e
−ct〈|u|2 + 1, p0〉

∥∥∥ p0
p∞
− 1
∥∥∥2
∞
‖p∞‖∞,411

412

where Dm,NII,v is a constant independent of L and H, and M∞ is a bound for the third order413

uI-directional derivative of p∞ as in (16).414
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In particular, when t→∞, we have415

lim sup
t→∞

MISE ≤
D2
m,NII,v

Lπ
NI+NII

2 H
NI
2
∏NI
i=1 ci

+
(1 + δ)2

4
H2J

(
NI∑
i=1

c2i ∂
2
u2
I,i
p∞(uI,uII)

)
416

+
(1 + δ)2

2δ
H3

(
NI∑
i=1

c2i

)3

J(M∞(uI,uII)).417

418

This leads to the same bandwidth and MISE scaling with L, namely:419

H ∼ O
(
L
− 2

4+NI

)
and MISE ∼ O

(
L
− 4

4+NI

)
.420

The proof strategy of Theorem 3.7 is straightforward. The first part is simply corollaries of421

[60, 59, 1]. To reach a bound on the variance part in 2), it suffices to have a lower bound on422

E
√

detRII(t)
−1

. This can be achieved by Proposition 3.5 and an energy dissipation argument.423

For the bias term, we use the Poincaré inequality (24) to approximate it with the bias term424

at equilibrium.425

3.7. Conditional Gaussian turbulent dynamical systems with energy-conserving426

quadratic nonlinearity. Recall the turbulence model u with quadratic energy conserving non-427

linear interactions (4)–(5)428

du = −Λudt+ B(u,u)dt+ Fdt+ ΣdWt.429

The linear damping part provides a uniform dissipation, so for some λ− > 0,430

u · Λu ≥ λ−|u|2,431

and the nonlinearity term B is quadratic and conserves energy.432

In our conditional Gaussian setup, we can decompose the dynamics into the form below433

(25)
duI = (−ΛI,0uI + BI,0(uI,uI) + FI)dt+ (−ΛI,1 + BI,1(uI))uIIdt+ ΣIdWI,

duII = (−ΛII,0uI + BII,0(uI,uI) + FII)dt+ (−ΛII,1 + BII,1(uI))uIIdt+ ΣIIdWII.
434

The quantities in the brackets naturally correspond to A0,A1,a0 and a1 respectively.435

For the damping term Λ, we assume there are constants 0 < λ− ≤ λ+,436

(26) λ−INI+NII
�
[

ΛI,0 ΛI,1

ΛII,0 ΛII,1

]
� λ+INI+NII

.437

The energy conservation condition, u ·B(u,u) = 0, requires that438

(27) uI ·BI,0(uI,uI) = 0, uII ·BII,1(uI)uII = 0, uI ·BI,1(uI)uII + uII ·BII,0(uI,uI) = 0.439

See the Appendix of [14] for details.440
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Proposition 3.8. For the stochastic flow with energy conserving quadratic nonlinearity (25),441

assume that (26) and (27) hold, and ΣI and ΣII are of full rank. We have the following results:442

1). Assumption 3.6 holds with ρ = 1
2λ− and De = 1

2λ−
(|FI|2 + |FII|2).443

2). Assumption 3.4 holds with v = 1,m = 1 and444

Dc = max

{
1,

2λ+σ
−2
II,−

1− exp(−2λ+)
,
σ2II,+
2λ−

, 2λ2+σ
−2
I,−, 2λ

2
Bσ
−2
I,−, exp(2λ+)

}
,445

where the constants are chosen such that |BII,1(uI)| ≤ λB|uI| and446

σ2I,−INI
� ΣIΣ

∗
I , σ2II,−INII

� ΣIIΣ
∗
II � σ2II,+INII

.447

The proof of Proposition 3.8 is shown in SM4. The energy conservation property plays an448

essential role in verifying the system stability, and449

4. Proofs.450

4.1. Finite time MISE.451

Proof of Theorem 3.1. Denote the one sample path density function:452

p̂i(uI,uII) := KH(uI − uiI(t))p(uII|uiI(s ≤ t)),453

such that the recovered PDF is given by p̂t(x, y) = 1
L

∑L
i=1 p̂i(x, y). Consider its average454

p̄t(uI,uII) = EKH(uI − uI(t))p(uII|uiI(s ≤ t)) = Ep̂t(uI,uII).455

The true density can be written as pt(uI,uII) = Eδui
I(t)

(uI)p(uII|uiI(s ≤ t)), since for any test456

function f , the following holds457 ∫
pt(uI,uII)f(uI,uII)duIduII = Ef(uiI(t),u

i
II(t))458

= EE(f(uiI(t),u
i
II(t))|uiI(s ≤ t)) = E

∫
f(uI,uII)δui

I(t)
(uI)p(uII|uiI(s ≤ t))duIduII.459

460

This gives the following result461

p̄t(uI,uII) = EKH(uI − uI(t))p(uII|uiI(s ≤ t))462

= E
∫
du′IKH(uI − u′I)δui

I(t)
(u′I)p(uII|uiI(s ≤ t))463

=

∫
du′IKH(uI − u′I)pt(u

′
I,uII) =: KH ∗ pt(uI,uII),464

465

where ∗ denotes the convolution. The Variance-Bias decomposition of the MISE can be made:466

E
∫
|p̂t(uI,uII)− pt(uI,uII)|2duIduII467

=

∫
E|p̂t(uI,uII)− p̄t(uI,uII)|2duIduII +

∫
|p̄t(uI,uII)− pt(uI,uII)|2duIduII468

=

∫
var p̂t(uI,uII)duIduII +

∫
|p̄t(uI,uII)− pt(uI,uII)|2duIduII.(28)469

470
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Since p̄t = pt ∗KH , so471

|p̄t(uI,uII)− pt(uI,uII)| =
∣∣∣∣∫ KH(uI − u′I)(pt(u

′
I,uII)− pt(uI,uII))du

′
I

∣∣∣∣ .472

In Lemma SM1.2, a Taylor expansion on (pt(u
′
I,uII)−pt(uI,uII)) leads to the following upper473

bound for the bias part:474

1 + δ

4
H2J

(
NI∑
i=1

c2i ∂
2
u2
I,i
pt(uI,uII)

)
+

1 + δ−1

2
M2H3

(
NI∑
i=1

c2i

)3

J(M(uI,uII)), ∀δ > 0.475

Moreover, in light of the relation p̂t(uI,uII) = 1
L

∑L
i=1 p̂i(uI,uII) and the independence of the476

density samples p̂i, we have477 ∫
var p̂t(uI,uII)duIduII =

1

L

∫
var p̂i(uI,uII)duIduII478

≤ 1

L

∫
E|p̂i(uI,uII)|2duIduII =

1

L
E
∫
|p̂i(uI,uII)|2duIduII.479

480

Note that each p̂i(x, y) is a Gaussian density with mean (uiI(t), ūII(t)) and a block diagonal481

covariance, where the blocks are given by HC and RII(t), respectively. In Lemma SM1.1, a482

straightforward computation of the L2 norm of a Gaussian density shows that483 ∫
|p̂i(uI,uII)|2duIduII =

1√∏NI
i=1(πHc

2
i )det(πRII(t))

.484

This leads to the bound of the MISE.485

Proof of Proposition 3.2. Denote p̂i(uII) = p(uII|uiI(s ≤ t)), then following the same486

proof as in Theorem 3.1, we have pt(uII) = Ep̂i(uII) and p̂t(uII) = 1
L

∑L
i=1 p̂i(uII). Thus,487 ∫

|pt(uII)− p̂t(uII)|2duII =

∫
var p̂t(uII)duII =

1

L

∫
var p̂i(uII)duII488

≤ 1

L

∫
E|p̂i(uII)|2duII =

1

L
E

1√
det(πRII(t))

.489

490

Proof of Corollary 3.3. The proof is identical to the one of Theorem 3.1, as long as one491

replaces the densities involving uII to the version for uPII. Therefore it is omitted here.492

4.2. Long time result.493

Proof of Theorem 3.7. Part 1): The geometric ergodicity, i.e. the following L1 conver-494

gence,495 ∫
|pt(uI,uII)− p∞(uI,uII)|duIduII ≤ D0e

−ct〈|u|2 + 1, p0〉,496

is a direct result that comes from the framework of [60, 59]. Its equivalence to the Poincaré497

type of inequality (24) is a result by [1]. We will try to verify the conditions needed in [1].498
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We claim that V (uI,uII) = |uI|2 + |uII|2 + 1 is a Lyapunov function of Definition 1.1 in499

[1]. Apply the generator L of the diffusion process500

LV = 2uI · (A0 + A1uII) + 2uII · (a0 + a1uII) + tr(ΣIΣ
∗
I + ΣIIΣ

∗
II)

≤ −2ρV + (2ρ+ 2De + tr(ΣIΣ
∗
I + ΣIIΣ

∗
II)) ≤ −ρV + b1U ,

501

where b = 2ρ + 2De + tr(ΣIΣ
∗
I + ΣIIΣ

∗
II), and U = {V (uI,uII) ≤ b}. The fact that U , and502

actually any compact subset, is a petite set can be verified by the same proof of Lemma 3.4 in503

[59], since we assume ΣI and ΣII are full rank. The fact the stochastic process is irreducible504

can also be verified using the same argument. More details on these arguments are provided505

in [57] for more general conditions.506

Therefore, applying theorem 1.2 of [1] leads to the L1 convergence above. Theorem 2.1507

also applies with f(uI,uII) = p0
p∞

(uI,uII), which gives (24).508

509

Part 2): We again decompose the MISE into (28).510

MISE =

∫
var p̂t(uI,uII)duIduII +

∫
|p̄t(uI,uII)− pt(uI,uII)|2duIduII.511

Following the proof of Theorem 3.1, we have the variance part512 ∫
varp̂t(uI,uII)duIduII ≤ E

1

L
√∏NI

i=1(πHc
2
i )det(πRII(t))

.513

Proposition 3.5 leads to E 1√
det(RII(t))

≤ D1 +D2

∫ t
t−v E|uI(r)|mNIIdr. To provide a bound for514

E|uI(t)|mNII , we verify that any fixed moment |u|2n = (|uI|2 + |uII|2)n is also dissipative.515

Applying the generator of the diffusion process yields516

L|u(t)|2n = 2n|u|2(n−1)(uI · (A0 + A1uII) + uII · (a0 + a1uII))517

+ ntr(Σ∗(|u|2(n−1)I + 2(n− 1)|u|2(n−2)uu∗)Σ)518

≤ −2nρ|u|2n + 2nDe|u|2(n−1) + 2n2tr(ΣIΣ
∗
I + ΣIIΣ

∗
II))|u|2(n−1) ≤ −nρ|u|2n +Dn,Σ,519520

where Σ = [Σ∗I ,Σ
∗
II]
∗ and the constant Dn,Σ exists because of Young’s inequality.521

Apply Dynkin’s formula for eρnt|u(t)|2n, and combine it with the result above, we have522

the following Gronswall’s inequality523

(29) E|u(t)|2n ≤ e−ρntE|u(0)|2n +
Dn,Σ

nρ
.524

To continue, we let n = mNII/2 in (29) and integrate it in time range [t− v, t],525

E
∫ t

t−v
|uI(s)|mNIIds ≤ v exp(−1

2ρmNII(t− v))E|u(0)|mNII +
2vDmNII/2,Σ

mNIIρ
.526

Consequently, there exists a constant Dm,NII,v such that527 ∫
varp̂t(uI,uII)duIduII ≤

Dm,NII,v

Lπ
NI+NII

2 H
NI
2
∏NI
i=1 ci

(
exp(−1

2ρmNIIt)E|u(0)|mNII +Dm,NII,v

)
.528
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For the bias term,
∫
|p̄t(uI,uII)− pt(uI,uII)|2duIduII, we use the Cauchy Schwartz529

(a+ b+ c)2 ≤
(

1

1 + δ
+

δ

2(1 + δ)
+

δ

2(1 + δ)

)(
(1 + δ)a2 + 2(1 + δ−1)b2 + 2(1 + δ−1)c2

)
,530

with531

a = |pt(uI,uII)−p∞(uI,uII)|, b = |p̄t(uI,uII)− p̄∞(uI,uII)|, c = |p∞(uI,uII)− p̄∞(uI,uII)|.532

Recall that p̄∞ = KH ∗ p∞. Using the same proof as in Theorem 3.1, we have533
534 ∫

|p∞(uI,uII)− p̄∞(uI,uII)|2duIduII535

≤ 1 + δ

4
H2R

(
NI∑
i=1

c2i ∂
2
u2
I,i
p∞(uI,uII)

)
+

1 + δ−1

2
H3

(
NI∑
i=1

c2i

)3

.536

537

Then apply (24), we have538 ∫
|pt(uI,uII)− p∞(uI,uII)|2duIduII539

≤ ‖p∞‖∞
∫
|pt(uI,uII)− p∞(uI,uII)|2

1

p∞(uI,uII)
duIduII540

≤ D0e
−ct〈|u|2 + 1, p0〉

∥∥∥ p0
p∞
− 1
∥∥∥2
∞
‖p∞‖∞.541

542

Next, recall that p̄t(uI,uII) =
∫
KH(u′I)pt(uI − u′I,uII)du

′
I. Therefore, by Cauchy Schwartz543

|p̄t(uI,uII)− p̄∞(uI,uII)|2544

=

(∫
KH(u′I)(pt(uI − u′I,uII)− p∞(uI − u′I,uII))du

′
I

)2

545

≤
∫
KH(u′I)du

′
I

∫
(pt(uI − u′I,uII)− p∞(uI − u′I,uII))

2KH(u′I)du
′
I546

≤
∫

(pt(uI − u′I,uII)− p∞(uI − u′I,uII))
2KH(u′I)du

′
I.547

548

Consequently,549 ∫
|p̄t(uI,uII)− p̄∞(uI,uII)|2duIduII550

≤
∫

(pt(uI − u′I,uII)− p∞(uI − u′I,uII))
2KH(u′I)du

′
IduIduII551

=

∫ (∫
(pt(uI − u′I,uII)− p∞(uI − u′I,uII))

2duIduII

)
KH(uI − u′I)du

′
I552

=

∫
|pt(uI,uII)− p∞(uI,uII)|2duIduII.553

554

Combining the results finishes the proof.555
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5. Numerical examples. Below, numerical examples are used to support the theoretical556

results in section 3. The test model considered here is the following triad model [52],557

du1
dt

= A1u2u3,(30a)558

du2
dt

= A2u3u1 − d2u2 + σ2Ẇ2,(30b)559

du3
dt

= A3u1u2 − d3u3 + σ3Ẇ3,(30c)560
561

where A1 + A2 + A3 = 0 represents the energy-conserving nonlinear interactions and d2 >562

0, d3 > 0 are the damping terms. Note that there is no damping and dissipation in (30a) but563

(30) is a hypoelliptic diffusion [57, 59]. Linear stability is satisfied for u2, u3 while there is564

only neutral stability of u1. Define E2 = σ22/(2d2) and E3 = σ23/(2d3). It is straightforward565

to show that the triad system (30) has a Gaussian invariant measure [43, 52]566

peq(u) = C exp

(
−1

2

(
u21
E1

+
u22
E2

+
u23
E3

))
,567

provided that the following condition is satisfied568

(31) E1 = −A1E2E3(A2E3 +A3E2)
−1 > 0.569

If the condition in (31) is violated, namely E1 < 0, then the variance in u1 direction will570

increase unboundedly and there is no invariant measure for the triad system (30).571

Below, two dynamical regimes of the triad model (30) are studied, where the corresponding572

parameters are listed in the Table 1. Particularly, the triad system (30) in Regime I has a573

Gaussian invariant measure while there is no invariant measure in Regime II due to the fact574

that E1 < 0. See Figure 1 for the time evolution of the three marginal variances and one575

realization of each variable and [41] for dynamical introduction about such triad models.576

Table 1
Parameters of two dynamical regimes of the triad model (30)

A1 A2 A3 d2 d3 σ2 σ3 E2 E3 E1 Var(u1)
Regime I −2.5 1 1.5 1 0.5 1 1 =⇒ 0.5 1 5/11 Bounded
Regime II −0.5 −1 1.5 1 0.5 1 1 0.5 1 −5/3 Unbounded

Denote uI = (u2, u3)
T and uII = u1. The triad system (30) belongs to the conditional577

Gaussian family (1). Notably, the noise coefficient in uII is ΣII = 0, which implies the system578

has no controllability. The initial values in the tests below are all given at origin. Here only579

the hybrid method (9) is tested and the number of samples is always L = 500.580

Figure 2 shows the recovered PDF at t = 1 in Regime I of the triad model. Despite an581

accurate estimation of the joint PDF of the observed variables p(u2, u3) as shown in Panel (e),582

the recovered PDF of the unobserved variable u1 in Panel (f) has quite a few noisy fluctuations583

and the recovered joint PDFs p(u1, u2) and p(u3, u1) in Panel (d) and (f) are non-smooth in584

u1 direction as well. Such pathological behavior results from the loss of controllability of the585
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system, which is consistent with the theoretical discussion in subsection 3.5. In fact, the term586

a1 in (1) associated with the triad system (30) is zero. Therefore, according to (3), ΣII = 0587

implies the posterior variance RII = 0 and the posterior mean ūII simply follows the sampled588

trajectory of uII. In other words, the posterior states from the algorithm are exactly the589

Monte Carlo samples, as is validated in Panel (h). The same performance is found in Regime590

II and thus we omit the figure here.591

In order to make the triad system have controllability, a small noise is added to (30a) and592

the resulting modified triad system is given as follows,593

du1
dt

= A1u2u3 + εẆ1,(32a)594

du2
dt

= A2u3u1 − d2u2 + σ2Ẇ2,(32b)595

du3
dt

= A3u1u2 − d3u3 + σ3Ẇ3,(32c)596
597

where ε is the noise coefficient of u1 with ΣII = ε in (1). Below we set ε = 0.1� σ2 = σ3 = 1.598

The other parameters in (32) remain the same as those in Table 1.599

This extra noise implies the triad system is controllable, which significantly improves the600

accuracy of the recovered PDFs. See Figure 3 for the results in Regime I at t = 1. In particular,601

Panel (h) of Figure 3 shows that the posterior means are quite different from the Monte Carlo602

samples and the posterior variances are no longer zero. It is also shown in Figure SM1 that603

the recovered PDFs at a long time t = 20 (i.e., statistically steady state) are very close to the604

truth with this extra small noise.605

Similarly, Figure 4 shows the recovered PDFs of Regime II with ε = 0.1 at t = 1, the error606

in which compared with the truth is negligible. Notably, although the amplitude of u1 has an607

unbounded growth in this regime due to the fact that E1 < 0, the recovered PDFs with ε = 0.1608

at t = 20 as illustrated in Figure SM2 remain quite accurate. Next, the performance of the609

hybrid algorithm at a very long time in this regime is studied. Figure 5 shows the recovered610

PDFs at t = 400. Similar to Figure 2, the noisy fluctuations are found in the recovered PDF611

of u1. In fact, direct calculations show that the posterior variance RII in (3) is bounded612

from above since the unbounded signal u1 does not enter into the evolution of RII, which is613

also validated by the numerical simulation in Panel (h). Since the variance of u1 increases614

with time, the percentage of the portion covered by each conditional Gaussian distribution615

decreases in time, which reduces the skill in the recovered PDFs by the conditional Gaussian616

mixtures. In Figure SM3, we show that by further imposing a damping in the dynamics of617

u1 of the modified triad model (32) in Regime II, the model then satisfies all the conditions618

in Proposition 3.8 and the resulting model has an invariant measure. In such a scenario, the619

hybrid algorithm is skillful in both short and long time as is affirmed by Proposition 3.8.620

It is also worthwhile pointing out that all the test models in [14], including the noisy621

version of Lorenz 63 model [40], the stochastic climate model [49, 42], the nonlinear triad622

model mimicking structural features of low-frequency variability of GCMs with non-Gaussian623

features [48] and the modified conceptual dynamical model for turbulence [53], all satisfy the624

conditions in Proposition 3.8. Therefore, the hybrid algorithm (9) is able to solve the PDFs625

of those models with high accuracy with only a small number of samples.626
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Figure 1. Triad model (30). (a) Marginal variance as a function of time (t ∈ [0, 100]) in the two dynamical
regimes with parameters in Table 1. (b) Sample trajectories up to t = 1000 of the two dynamical regimes. Note
the unbounded growth of the amplitude of u1 in Regime II.
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recovered 1D PDF p(u1). (h) Top: Posterior mean (x-axis) and posterior variance (y-axis). Bottom: Monte
Carlo samples. The total number of samples is L = 500.
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Figure 3. Modified triad model (32), Regime I at t = 1. Same captions as in Figure 2.

(a)  Truth p(u
1
, u

2
)

u
1

-1 -0.5 0 0.5 1

u 2

-2

-1

0

1

2

(b)  Truth p(u
2
, u

3
)

u
2

-2 -1 0 1 2

u 3

-3

-2

-1

0

1

2

3

(c)  Truth p(u
3
, u

1
)

u
3

-2 0 2

u 1

-1

-0.5

0

0.5

1

(d)  Recovered p(u
1
, u

2
)

u
1

-1 -0.5 0 0.5 1

u 2

-2

-1

0

1

2

(e)  Recovered p(u
2
, u

3
)

u
2

-2 -1 0 1 2

u 3

-3

-2

-1

0

1

2

3

(f)  Recovered p(u
3
, u

1
)

u
3

-2 0 2

u 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

(g)  p(u
1
)

Truth
Recovered

Post. mean
-1 -0.5 0 0.5 1

P
os

t. 
va

ria
nc

e

×10 -3

9.7

9.8

9.9

10

(h)  Comparison of Post. State and MC

Monte Carlo
-1 -0.5 0 0.5 1

-1

0

1

Figure 4. Modified triad model (32), Regime II at t = 1. Same captions as in Figure 2.

6. Discussion and Conclusions. This article presents a rigorous analysis for the efficient627

statistically accurate algorithms developed in [14], which succeed in solving both the transient628

and the equilibrium solutions of Fokker-Planck equations associated with high-dimensional629

nonlinear turbulent dynamical systems with conditional Gaussian structures. Despite the630

conditional Gaussianity, these nonlinear systems capture many strong non-Gaussian features631

such as intermittency and fat-tailed PDFs. The algorithms involve a hybrid strategy that632
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Figure 5. Modified triad model (32), Regime II at t = 400. Same captions as in Figure 2.

requires only a small number of samples L to capture both the transient and the equilibrium633

non-Gaussian PDFs with high accuracy.634

Theorem 3.1 shows that the MISE in the recovered high-dimensional PDFs associated635

with the unresolved variables uII is bounded by E(det(RII)
−1/2), where RII is completely636

determined by the underlying dynamical systems and it has no dependence on the sample637

size L. This is fundamentally different from the direct application of the kernel methods to638

recover the PDF of uII, in which the bandwidth of the kernel H is scaled as a reciprocal of639

L to a certain power and the resulting MISE is proportional to L−1/NII . This implies the640

curse of dimensionality in the kernel density estimation and other smoothed Monte Carlo641

methods due to the fact that L has to increase exponentially as NII in order to guarantee642

the accuracy in the solution. As is shown in Theorem 3.1, many fewer samples are needed643

in the efficient statistically accurate algorithms in order to reach the same accuracy as using644

the smoothed Monte Carlo methods, especially with a large NII. Theorem 3.7 affirms the645

long term persistence of the efficient statistically accurate algorithms in a rigorous way under646

the assumption that the joint process (uI,uII) is controllable and stochastically stable. It647

also provides a lower bound of RII using the controllability condition. The validations of648

the controllability and other theoretical conditions in the algorithms are demonstrated in the649

numerical simulations in section 5. Furthermore, Proposition 3.8 illustrates that the turbulent650

dynamical systems with quadratic energy conserving nonlinear interactions [41] automatically651

satisfy all the conditions for the long time persistence. This justifies the skillful performance652

of the efficient statistically accurate algorithms in the numerical tests reported in [14] and653

provides important guidelines for future applications.654
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