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Mutual information

The mutual information (MI) of two random variables X
and Y is a measure of the mutual dependence between the
two variables (30). MI is more general than the pattern
correlation (PC) and MI determines the similarity between
the joint distribution p(X,Y ) and the products of the factored
marginal distribution p(X)p(Y ). The definition of the MI is
as follows:

I(X;Y ) =
∫

X

∫
Y

p(X,Y ) log
(

p(X,Y )
p(X)p(Y )

)
dXdY, [1]

which is non-negative, i.e.,

I(X;Y ) ≥ 0,

and only when X and Y are independent, namely p(X,Y ) =
p(X)p(Y ), the MI is zero.

Different from the PC, the MI contains information about
both linear and nonlinear dependence. Therefore, the MI takes
into account the information in the non-Gaussian statistics.

In the special case that the two PDFs p(X) and p(Y ) are
both Gaussian, the MI and PC are linked via the following
simple relationship,

I(X;Y ) = −1
2 ln

(
1− PC2(X,Y )

)
. [2]

In the following, the MI will be adopted to study the
dependence between the variables at different spatial grid
points in the FitzHugh-Nagumo (FHN) model. Since the
PDFs of the variables ui in the FHN model is highly non-
Gaussian, the gap between the MI and PC will be emphasized
since it addresses the spatial dependence in the non-Gaussian
part.

Constructing the joint PDFs from the efficient statisti-
cally accurate algorithms with statistical symmetry

In the main text, we discussed that the statistical symmetry
makes use of the samples at different grid points to greatly
reduce the number of repeated experiments L. Here we discuss
the details of constructing the joint PDFs obtaining from the
algorithms with statistical symmetry. Below, we adopt the
1-dimensional case for the convenience of illustration. The
method can be easily extended to systems with mutivariables
and multidimensions.

Denote ū1, ū2, . . . , ūK the mean values of the Gaussian
ensembles at different grid points and the associated variance
are R1, . . . , RK . For simplicity, we only take one full run of the
system. Therefore, the total number of Gaussian ensembles is

K. Clearly, the 1D PDFs p(ui) at different grid points are the
same and are given by

p(ui) = lim
k→∞

1
K

K∑
k=1

N (ūk, Rk), i = 1, . . . ,K.

The limit is taken for statistical intuition while a finite and
small K is adopted in practice.

Now we discuss the construction of the joint PDFs. We use
the 2D joint PDF p(u1, u2) as an illustration. The joint PDF
is a Gaussian mixture with K Gaussian ensembles, where the
mean of each 2D Gaussian ensemble is

µ1 =
(

ū1
ū2

)
, µ1 =

(
ū2
ū3

)
, . . .

µK−1 =
(

ūK−1
ūK

)
, µK =

(
ūK

ū1

)
,

[3]

and the covariance matrix is given by

R1 =
(

R1
R2

)
, R2 =

(
R2

R3

)
, . . . ,

RK−1 =
(

RK−1
RK

)
, RK =

(
RK

R1

)
.

[4]

It is clear from the construction of the ensemble mean in
Eq. (3) that the subscript in the second component equals
to that of the first component plus one. That is, the first
component of each µk, k = 1, . . . ,K is treated as u1 due to
the statistical symmetry and the second component is treated
as the corresponding u2 associated with each k. The diagonal
covariance matrix in Eq. (4) comes from the fact that each
sample point is independent with each other. This is also
true and more obvious for the block diagonal conditional
covariance. Notably, the diagonal covariance matrix of each
ensemble does not mean the correlation between u1 and u2
is completely ignored. The correlation is reflected how the
points of ensemble means µk, k = 1, . . . ,K are distributed .

Scale invariant structures in the stochastic coupled
FitzHugh-Nagumo (FHN) model

Here we illustrate the scale invariant structures in the stochas-
tic coupled FitzHugh-Nagumo (FHN) model,

ε
dui

dt
= ui −

1
3u

3
i − vi +

√
εδ1Ẇui + du(ui+1 + ui−1 − 2ui),

i = 1, . . . , N, [5a]
dvi

dt
= ui + a+ δ2Ẇvi . [5b]
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Quantifying the spatial dependence using mutual information
(MI). As shown in the main text, the PDFs of both the variables
ui and vi in the stochastic coupled FHN model is highly
non-Gaussian, where p(ui) is bimodal and the p(vi) can be
sub-Gaussian. Therefore, the PC, which applies for Gaussian
variables, is not a proper measurement to quantify the spatial
dependence between the variables at different grid points in
the FHN model. To illustrate such insufficiency in the PC and
quantify the amount of spatial dependence in a precise way,
we introduce the MI and compare it with the PC.

Fig. S1, S2 and S3 show the spatial dependence between
u1 and ui, where i = 2, . . . , N in the strongly coherent regime,
weakly coherent regime and strongly mixed regime, respec-
tively. Due to the homogenous property, the spatial depen-
dence between ui′ and all other ui with i′ 6= i has the same
profile as those between u1 and different ui. In each figure,
the total MI is compared with the MI based on the Gaussian
fit PDFs. The latter is equivalent to the PC via the link in
Eq. (2), which is also validated in panels (d)-(e) and (i)-(j) in
all the three figures.

In the strongly coherent regime (Fig. S1), the total MI
(panel (b)) I(u1, ui) remains significant I ≥ 0.9 for all i =
2, . . . , 500. A larger MI is found when i is close to 1, as
expected. As comparison, although the MI based on the
Gaussian fit PDFs (panel (d)) has a similar profile as the
total MI, it decays faster when i increases and its minimum
(min IG ≈ 0.15) is much smaller than that of the total MI.
This indicates that only around 1/6 information of the spatial
dependence between u1 and u250 is from the Gaussian part
while the remaining 5/6 information is not reflected in the PC.
In fact, with a slight abuse of the concept by plugging I = 0.9
into the Eq. (2), the resulting PC is around 0.91 between u1
and u250 while the actual PC is only 0.58. For the other two
regimes, the total MI I(u1, ui) experiences a rapid decay for
i > 10 and reaches much smaller values compared with that in
the strongly coherent regime. Nevertheless, the gap between
the total MI and its Gaussian part remains significant. On
the other hand, although the difference between I(v1, vi) and
IG(v1, vi) is not as large as that associated with u due to
the weak non-Gaussianity in v, it is still clear that these is a
non-negligible contribution of the spatial dependence from the
non-Gaussian part of v.

Scale invariant structures. One of the compelling features of
the stochastic coupled FHN model is its scale invariant struc-
ture. The scale invariant structure means that the spatial-
temporal structures in any given scale has little change as the
number of spatial grid points N increases. Fig. S4, Fig. S7
and Fig. S10 show the scale invariant structure in the strongly
coherent regime, weakly coherent regime and strongly mixed
regime, respectively with N ranging from 50 to 500. A clear
indication is shown in columns (b) and (e) with i ranging
from 1 to 100 in x-axis. The latter is the zoomed-in results
of those in column (d) with N = 500. At a fixed grid point
i = 1, the time series and the associated PDFs are shown in
Fig. S5, Fig. S8 and Fig. S11 while the power spectrums and
autocorrelation functions are shown in Fig. S6, Fig. S9 and
Fig. S12. These figures justify the scale invariant features of
the stochastic coupled FHN in all the three regimes.

Finally, in addition to the MI, the following averaged spatial
quadratic variations is used to quantify the scale invariant

structure,

[u]x = lim
T→∞

1
T

∫ T

0
[u(t)]xdt,

where

[u(t)]x =
Nx−1∑

s=1

(
u(s+ 1, t)− u(s, t)

)2 with t fixed.

In other words, we first compute the quadratic variation [u(t)]x
that is associated with the 1D curve made up of the spatial
points at each fixed time instant t. Then we take the time av-
erage of the [u(t)]x. The motivation of introducing this spatial
quadratic variation is as follows. The major contribution of the
spatial quadratic variation comes from the large intermittent
bursts. If the quadratic variations in two simulated fields with
different N are comparable, then this is roughly equivalent
to saying that the two fields have the same number of large
bursts, and it provides the scale invariant structures. Below
we also show the averaged number of peaks in spatial direction
as a validation of the quadratic variations.

Columns (a) and (c) in Fig. S13 show the averaged spatial
quadratic variation as a function of N . Linear functions clearly
indicate the scale invariant structures in all the three regimes.
As comparison, columns (b) and (d) show the averaged spatial
number of peaks, which have the same profile as the averaged
spatial quadratic variation. Here the threshold of detecting
the peaks are ũ = 0 and ṽ = 0.5, respectively. These validate
the motivation of adopting the averaged spatial quadratic
variation as a more objective measurement for quantifying the
scale invariant structures.

2 of 15 Nan Chen and Andrew J. Majda 10.1073/pnas.XXXXXXXXXX



Fig. S1. [FHN model]. Spatial dependence in the strongly coherent regime. Panel (a): spatial-temporal structure of u. Panel (b): total mutual information I(u1, ui)
between u1 and ui with i = 2, . . . , 500. Panel (c): pattern correlation PC(u1, ui) between u1 and ui with i = 2, . . . , 500. Panel (d) mutual information IG(u1, ui)
based on the Gaussian fit PDFs of p(u1) and p(ui). Panel (e): mutual information with Gaussian assumptions computed from the pattern correlation using the identity in
Eq. (2). Panel (f)-(j): similar but for variable v.

Fig. S2. [FHN model]. Spatial dependence in the weakly coherent regime. Panel (a): spatial-temporal structure of u. Panel (b): total mutual information I(u1, ui) between
u1 and ui with i = 2, . . . , 500. Panel (c): pattern correlation PC(u1, ui) between u1 and ui with i = 2, . . . , 500. Panel (d) mutual information IG(u1, ui) based on the
Gaussian fit PDFs of p(u1) and p(ui). Panel (e): mutual information with Gaussian assumptions computed from the pattern correlation using the identity in Eq. (2). Panel
(f)-(j): similar but for variable v.

Fig. S3. [FHN model]. Spatial dependence in the strongly mixed regime. Panel (a): spatial-temporal structure of u. Panel (b): total mutual information I(u1, ui) between
u1 and ui with i = 2, . . . , 500. Panel (c): pattern correlation PC(u1, ui) between u1 and ui with i = 2, . . . , 500. Panel (d) mutual information IG(u1, ui) based on the
Gaussian fit PDFs of p(u1) and p(ui). Panel (e): mutual information with Gaussian assumptions computed from the pattern correlation using the identity in Eq. (2). Panel
(f)-(j): similar but for variable v.
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Fig. S4. [FHN model]. Spatial-temporal structures with scale invariant feature in the strongly coherent regime, where δ2 = 0.1 and du = 10. Columns (a)–(d) show the
results with N = 50, 100, 200 and 500, respectively. Column (e) is the zoomed-in structures of column (d) with N = 500 but it only shows the first 100 spatial grid points,
which has similar features as compared with column (b).
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Fig. S5. [FHN model]. Spatial-temporal structures with scale invariant feature in the strongly coherent regime, where δ2 = 0.1 and du = 10. Rows (a)–(e) show sample
time series and the associated PDFs at x = 1 for the system with different N . Due to the statistical symmetry, the PDFs at different grid points are the same.

4 of 15 Nan Chen and Andrew J. Majda 10.1073/pnas.XXXXXXXXXX



Fig. S6. [FHN model]. Spatial-temporal structures with scale invariant feature in the strongly coherent regime, where δ2 = 0.1 and du = 10. Top and bottom panels show
the power spectrums and autocorrelation functions at x = 1 for the system with different N . Due to the statistical symmetry, the PDFs at different grid points are the same.

Fig. S7. [FHN model]. Spatial-temporal structures with scale invariant feature in the weakly coherent regime, where δ2 = 0.4 and du = 0.5. Columns (a)–(d) show the
results with N = 50, 100, 200 and 500, respectively. Column (e) is the zoomed-in structures of column (d) with N = 500 but it only shows the first 100 spatial grid points,
which has similar features as compared with column (b).
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Fig. S8. [FHN model]. Spatial-temporal structures with scale invariant feature in the weakly coherent regime, where δ2 = 0.4 and du = 0.5. Rows (a)–(e) show sample
time series and the associated PDFs at x = 1 for the system with different N . Due to the statistical symmetry, the PDFs at different grid points are the same.

Fig. S9. [FHN model]. Spatial-temporal structures with scale invariant feature in the weakly coherent regime, where δ2 = 0.4 and du = 0.5. Top and bottom panels show
the power spectrums and autocorrelation functions at x = 1 for the system with different N . Due to the statistical symmetry, the PDFs at different grid points are the same.
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Fig. S10. [FHN model]. Spatial-temporal structures with scale invariant feature in the strongly mixed regime, where δ2 = 0.8 and du = 0.5. Columns (a)–(d) show the
results with N = 50, 100, 200 and 500, respectively. Column (e) is the zoomed-in structures of column (d) with N = 500 but it only shows the first 100 spatial grid points,
which has similar features as compared with column (b).
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Fig. S11. [FHN model]. Spatial-temporal structures with scale invariant feature in the strongly mixed regime, where δ2 = 0.8 and du = 0.5. Rows (a)–(e) show sample
time series and the associated PDFs at x = 1 for the system with different N . Due to the statistical symmetry, the PDFs at different grid points are the same.
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Fig. S12. [FHN model]. Spatial-temporal structures with scale invariant feature in the strongly mixed regime, where δ2 = 0.8 and du = 0.5. Top and bottom panels show
the power spectrums and autocorrelation functions at x = 1 for the system with different N . Due to the statistical symmetry, the PDFs at different grid points are the same.
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Fig. S13. [FHN model]. Averaged spatial quadratic variation and averaged spatial number of peaks as a function of N in the three different regimes for u (columns (a) and (b))
and v (columns (c) and (d)).
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More detailed results of recovering the PDFs of the two-
layer inhomogeneous Lorenz 96 model

Recall the two-layer inhomogeneous Lorenz 96 (L96) model:

dui

dt
= ui−1(ui+1 − ui−2) +

5∑
j=1

γi,juivi,j − d̄iui

+ F + σuẆui , i = 1, . . . , I, [6a]
dvi,j

dt
= −dvi,jvi,j − γju

2
i + σi,jẆvi,j , j = 1, . . . , J, [6b]

where I = 5 and J = 40 as in the main text and therefore the
total number of variables is 240. The parameters are listed in
Table S1. With these parameters, the model in Eq. (6) has
many desirable properties as in more complicated turbulent
systems. For example, both energy and decorrelation decay
from large-scale fluctuation variables to small-scale ones while
the smaller scales are more intermittent with stronger fat tails
in PDFs.

Table S1. Parameters of the two-layer inhomogeneous L96 model in
Eq. (6)

σu σk,1 σk,2 σk,3 σk,4 σk,5
1 0.5 0.2 0.1 0.1 0.1

F dvk,1 dvk,2 dvk,3 dvk,4 dvk,5

8 0.2 0.5 1 2 5

d̄i γi,j = γi

1 + 0.7 cos(2πi/I) 0.1 + 0.025 cos(2πi/I)

In the coupled system Eq. (6), the nonlinear coupling be-
tween vi,j , j = 1, . . . , 5 and u is only through the i-th com-
ponent of u, namely ui. This guarantees the block diag-
onal structure of the conditional covariance matrix, where
the total number of entries in the conditional variance ma-
trix is 2002 = 40, 000 while that of the non-zero entries is
40× 52 = 1000. Notably, these 40 blocks of conditional covari-
ance, each being a 5×5 matrix, can be solved in a parallel way.
On the other hand, the nonlinear terms ui−1(ui+1 − ui−2) in
Eq. (6a) result in the coupling in the conditional mean of all
the vi,j for i = 1, . . . , I and j = 1, . . . , J .

A schematic description of the structure of the two-layer
inhomogeneous L96 model is included in Fig. S14. Here I = 6
is used for the illustration purpose. All the I × J variables are
coupled with each other, which is reflected in the conditional
mean. On the other hand, with each fixed i, the variables vi,j

do not interact with vi′,j in the conditional covariance matrix
with i′ 6= i.

Fig. S16–S18 show the time series and the associated 1D
PDFs of the two-layer inhomogeneous L96 model with F = 8
at three different grid points: i = 1, 11 and 21, respectively.
As shown in the main text, the damping term becomes weaker
from i = 1 to i = 21. Therefore, the variance of u21 is larger
than that of u11 and the variance of u1 is the smallest. As a
result, the non-Gaussian features in v21,j , j = 1, . . . , 5 is the
most significant due to the strongest feedback from u21 while
v1,j with j = 1, 2, 3 are nearly Gaussian and v1,4, v1,5 do not
have as strong fat tails as those in v21,4, v21,5. This provides
the wave train structures in the spatial-temporal evolution of
the variable u in the regions with weaker damping as shown
in Fig. 5 of the main text.
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Fig. S14. A schematic description of the structure of the two-layer inhomogeneous
L96 model. Here for the illustration purpose, I = 6.

Table S2. Pattern correlation between the curves associated truth
and recovered 1D marginal statistics of the two-layer inhomoge-
neous L-96 model as illustrated in Fig. 6 of the main text

Mean Variance Skewness Kurtosis

ui 0.97 0.98 0.53 0.78
vi,1 0.99 0.99 0.80 0.35
vi,2 0.99 0.99 0.87 0.69
vi,3 0.99 0.99 0.90 0.80
vi,4 0.98 0.99 0.96 0.91
vi,5 0.93 0.97 0.98 0.97

Table S2 shows pattern correlations (PCs) between the
curves associated with the truth and recovered 1D marginal
moments of the two-layer inhomogeneous L-96 model, as illus-
trated in Fig. 6 of the main text. Significant PCs with values
greater than 0.93 are found in the recovered mean and vari-
ance for all the variables, namely ui and vi,j with j = 1, . . . , 5.
Notably, even for the higher order moments, namely skewness
and kurtosis, the recovered curves are highly correlated with
the truth for vi,j with j = 2, 3, 4, 5. The variable vi,1 is nearly
Gaussian and the value of PC in the skewness and kurtosis
is not relevant. In addition, the distribution of ui for all i is
nearly symmetric and thus the PC in skewness is irrelevant
either.

Fig. S15 compares the recovered 1D PDFs of ui and vi,j

with j = 1, . . . , 5 with the truth at three different grid points:
i = 1, 11 and 21. With the increase of j, the non-Gaussian
features become more significant at all the grid points. The
non-Gaussianity also becomes stronger when the damping is
weaker. Therefore, the PDFs of the small-scale fluctuation
variables at i = 21 has the largest skewness and kurtosis. The
large-scale variable u is also non-Gaussian and particularly
it is bimodal at i = 11. The efficient statistically accurate
algorithms are able to recover all these PDFs with only L = 500
samples.
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Fig. S19 and Fig. S20 compare some recovered 2D joint
PDFs with the truth at a fixed grid point i, where the results
at three different grids i = 1, 11 and 21 are shown. In Fig. S19,
the joint PDFs between ui and vi,3 and those between ui and
vi,5 are shown. In Fig. S20, the joint PDFs of p(vi,1, vi,2) and
p(vi,5, vi,1) are illustrated. The difference in the true PDFs
with distinct i is due to the inhomogeneous damping and
coupling between u and v variables. Notably, these highly non-
Gaussian PDFs are recovered quite accurately by the efficient
statistically accurate algorithms with only L = 500 samples.

Fig. S21 shows the correlation functions between ui and
uj (panel (a)), between vi,3 and vj,3 (panel (b)) and between
vi,5 and vj,5 (panel (c)), where for each fixed i the strongest
negative correlation corresponds to j = i ± 2 and the most
significant positive correlation happens when j = i ± 5. In
Fig. S22 and Fig. S23 we compare the truth and the recov-
ered 2D PDFs for p(ui, ui+2), p(ui, ui+5), p(vi,3, vi+2,3) and
p(vi,5, vi+2,5) with i = 1, 11 and 21, respectively. Both the
non-Gaussian and correlated features are captured almost per-
fectly by the efficient statistically accurate algorithms. The
inhomogeneity at different grid points are clearly indicated by
the recovered PDFs as well.

Finally, we study the error in the recovered PDFs using a
quantitative measurement. The natural way to quantify the
error in the recovered PDF related to the truth is through an
information measure, namely the relative entropy (or Kullback-

Leibler divergence) (30). The relative entropy is defined as

P(p(u), pM (u)) =
∫
p(u) ln p(u)

pM (u)du, [7]

where p(u) is the true PDF and pM (u) is the recovered one
from the efficient statistically accurate algorithms. This asym-
metric functional on probability densities P(p, pM ) ≥ 0 mea-
sures lack of information in pM compared with p and has
many attractive features. First, P(p, pM ) ≥ 0 with equality
if and only if p = pM . Secondly, P(p, pM ) is invariant under
general nonlinear changes of variables. Notably, the relative
entropy is a good indicator of quantifying the difference in
the tails of the two PDFs, which is particularly crucial in the
turbulent dynamical systems with intermittency and extreme
events. On the other hand, the traditional ways of quantifying
the errors, such as the relative error ‖p − pM‖/‖p‖, usually
underestimate the lack of information in the PDF tails.

The lack of information in a various 1D and 2D PDfs at
three different grid points i = 1, i = 11 and i = 21 are shown
in Fig. S24–S26, respectively. The lack of information decays
as a function of the number of samples L. Typically, when L
is above 200, the curve of the lack of information becomes flat.
It is also noticeable that the lack of information has a uniform
behavior at different grid points, indicating its robustness.
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Fig. S15. [Two-layer inhomogeneous L-96 model]. Comparison of the 1D marginal PDFs of ui and vi,j with j = 1, . . . , 5 in the two-layer L-96 model Eq. (6). Rows (a),
(b) and (c) show the PDFs at grids i = 1, 11 and 21, respectively.
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Fig. S16. [Two-layer inhomogeneous L-96 model]. Sample trajectories and PDFs at i = 1.

Nan Chen and Andrew J. Majda 10.1073/pnas.XXXXXXXXXX 11 of 15



-5 0 5 10
0

0.1

0.2
PDF

Truth
Gaussian fit

50 60 70 80 90 100 110 120 130 140 150
-5

0

5

10
Sample trajectory at i = 11

u

-6 -4 -2
0

0.5

50 60 70 80 90 100 110 120 130 140 150

-6
-4
-2

v
1

-3 -2 -1
0

1

2

50 60 70 80 90 100 110 120 130 140 150

-3

-2

-1

v
2

-2 -1
0

1

2

50 60 70 80 90 100 110 120 130 140 150

-2.5
-2

-1.5
-1

-0.5

v
3

-2 -1 0
0

2

4

50 60 70 80 90 100 110 120 130 140 150
-2

-1

0

v
4

-1 -0.5 0
0

5

50 60 70 80 90 100 110 120 130 140 150
t

-1

-0.5

0

v
5

Fig. S17. [Two-layer inhomogeneous L-96 model]. Sample trajectories and PDFs at i = 11.
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Fig. S18. [Two-layer inhomogeneous L-96 model]. Sample trajectories and PDFs at i = 21.
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Fig. S19. [Two-layer inhomogeneous L-96 model]. 2D joint PDFs p(ui, vi,3) and p(ui, vi,5) at one fixed grid point i. Here the PDFs at i = 1, 11 and 21 are shown.
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Fig. S20. [Two-layer inhomogeneous L-96 model]. 2D joint PDFs p(vi,1, vi,2) and p(ui,5, vi,1) at one fixed grid point i. Here the PDFs at i = 1, 11 and 21 are shown.
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Fig. S21. [Two-layer inhomogeneous L-96 model]. Correlations between ui and uj (panel (a)), between vi,3 and vj,3 (panel (b)) and between vi,5 and vj,5 (panel (c)).
The strongest negative correlation corresponds to j = i ± 2 and the most significant positive correlation happens when j = i ± 5.
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Fig. S22. [Two-layer inhomogeneous L-96 model]. Comparison of the truth and the recovered 2D PDFs of p(ui, ui+2) and p(ui, ui+5) with i = 1, 11 and 21. According
to Fig. S21, p(ui, ui+2) and p(ui, ui+5) have the strongest negative and positive correlations, respectively, with each given i.
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Fig. S23. [Two-layer inhomogeneous L-96 model]. Comparison of the truth and the recovered 2D PDFs of p(vi,3, vi+2,3) and p(vi,5, vi+2,5) with i = 1, 11 and 21.
According to Fig. S21, p(vi,3, vi+2,3) and p(vi,5, vi+2,5) have the strongest negative correlations, respectively, with each given i.
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Fig. S24. [Two-layer inhomogeneous L-96 model]. Lack of information in the recovered PDFs compared with the truth at i = 1.
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Fig. S25. [Two-layer inhomogeneous L-96 model]. Lack of information in the recovered PDFs compared with the truth at i = 11.
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Fig. S26. [Two-layer inhomogeneous L-96 model]. Lack of information in the recovered PDFs compared with the truth at i = 21.
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