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Introduction

This Supporting Information consists of three sections. Section 1 involves a brief model

derivations and the low-order meridional truncation. The parameter values in the cou-

pled model and the mathematical formulae of the anomalous Walker circulation are also

included in this section. Section 2 contains the details of determining the transition rates

in the three-state Markov jump process according to the observations. Section 3 includes

sensitivity test.

1. Model derivations, meridional truncation and parameter choices

The coupled model considered in this article is derived from a more complicated model

that consists of the skeleton model in the atmosphere [Majda and Stechmann, 2009, 2011]

coupled to a shallow water ocean in the long-wave approximation and a sea surface tem-

perature (SST) budget [Moore and Kleeman, 1999]. Then an asymptotic expansion with

respect to a small factor ε that is the ratio of intraseasonal time scale over the interannual

one is applied and the result is Eq. (1)-(4) in the article. The details of model derivation

are contained in the SI Appendix of [Thual et al., 2016]. For the convenience of statement,

we summarize the coupled model below.
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1. Atmosphere model:

−yv − ∂xθ = 0,
yu− ∂yθ = 0,
−(∂xu+ ∂yv) = Eq/(1− Q̄).

(1)

2. Ocean model:

∂τU − c1Y V + c1∂xH = c1τx,
Y U + ∂YH = 0,
∂τH + c1(∂xU + ∂Y V ) = 0.

(2)

3. SST model:

∂τT + µ∂x(UT ) = −c1ζEq + c1ηH. (3)

1.1. Meridional truncation

In order to compute the solutions of the coupled model, we consider the model in its

simplest form, which is truncated meridionally to the first parabolic cylinder functions

[Majda, 2003].

Different parabolic cylinder functions are utilized in the ocean and atmosphere due

to the difference in their deformation radii. The first atmospheric parabolic cylinder

function reads φ0(y) = (π)−1/4 exp(−y2/2), and the third one that will be utilized as

the reconstruction of solutions reads φ2 = (4π)−1/4(2y2 − 1) exp(−y2/2). The oceanic

parabolic cylinder functions read ψm(Y ), which are identical to the expressions of the

atmospheric ones except depending on the Y axis.

In the atmosphere we assume a truncation of moisture, wave activity and external

sources to the first parabolic cylinder function φ0. This is known to excite only the

Kelvin and first Rossby atmospheric equatorial waves, of amplitude KA and RA [Majda

and Stechmann, 2009, 2011]. In the ocean, we assume a truncation of zonal wind stress
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forcing to ψ0, τx = τxψ0. This is known to excite only the the Kelvin and first Rossby

atmospheric oceanic waves, of amplitude KO and RO. Similarly, for the SST model we

assume a truncation ψ0, T = Tψ0. The ENSO model truncated meridionally reads:

1. Atmosphere model:

∂xKA = χA(Eq − 〈Eq〉)(2− 2Q̄)−1,
−∂xRA/3 = χA(Eq − 〈Eq〉)(3− 3Q̄)−1,

(4)

2. Ocean model:

∂τKO + c1∂xKO = χOc1τx/2,
∂τRO − (c1/3)∂xRO = −χOc1τx/3,

(5)

3. SST model:

∂τT + µ∂x((KO −RO)T ) = −c1ζEq + c1ηH, (6)

where χA and χO are the projection coefficients from ocean to atmosphere and from

atmosphere to ocean, respectively, due to the different extents in their meridional bases.

The latent heating is linearized with Eq = αqT in the Pacific band and zero outside. Due

to the absence of dissipation in the atmosphere, the solvability condition requires a zero

equatorial zonal mean of latent heating forcing 〈Eq〉 [Majda and Klein, 2003; Stechmann

and Ogrosky , 2014]. Note that when meridional truncation is implemented, a projection

coefficient χ ≈ 0.65 appears in front of the nonlinear term [Majda and Stechmann, 2011],

which here is absorbed into the nonlinear advection coefficient µ for the notation simplicity

and the parameter µ in the Table below has already taken into account this projection

coefficient.

Now instead of solving the coupled system (1)–(3), we solve the system (4)–(6). Periodic

boundary conditions are adopted for the atmosphere model (4). Reflection boundary
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conditions are adopted for the ocean model (5),

KO(0, t) = rWRO(0, t), RO(LO, t) = rEKO(LO, t), (7)

where rW = 0.5 representing partial loss of energy in the west Pacific boundary across

Indonesian and Philippine and rE = 0.5 representing partial loss of energy due to the

north-south propagation of the coast Kelvin waves along the eastern Pacific boundary.

Note that rE here is different from the one taken in [Thual et al., 2016] (rE = 1), where a

perfect reflection is assumed. For the SST model, no normal derivative at the boundary

of T is adopted, i.e. dT/dx = 0.

To prevent nonphysical boundary layers in the finite difference method, the coupled

model is solved through an upwind scheme, where some details of discretization is included

in the SI Appendix of [Thual et al., 2016; Chen and Majda, 2016]. The total grid points

in the ocean and in the atmosphere are NO = 56 and NA = 128, respectively, which are

doubled compared with that in [Thual et al., 2016] for the purpose of resolving some small

scale interactions due to the nonlinearity. The time step is ∆t = 4.25 hours. The ratio

∆t/∆x is approximately 0.115 under the nondimensional values.

The physical variables can be easily reconstructed in the following way.

u = (KA −RA)φ0 + (RA/
√

2)φ2,

θ = −(KA +RA)φ0 − (RA/
√

2)φ2,

v = (4∂xRA − H̄A− Sθ)(3
√

2)−1φ1,

U = (KO −RO)ψ0 + (RO/
√

2)ψ2,

H = (KO +RO)ψ0 + (RO/
√

2)ψ2.

l (8)

See [Majda and Stechmann, 2011; Thual et al., 2016; Chen and Majda, 2016] for more

details. The variables in (8) are utilized in showing the Hovmoller diagrams in Figure 4

and 5 of the main article.
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1.2. Choices of parameters values

Two tables are included below. Table 1 summarizes the variables in the coupled model

and lists the associated units and the typical unit values. Table 2 shows the nondi-

mensional values of the parameters that are utilized in the meridional truncated model

(4)–(6).

1.3. Anomalous Walker circulation

In the atmospheric model (see [Majda and Stechmann, 2009] for the original version of

the skeleton model), only the first baroclinic mode is included in the vertical direction,

which has a profile of cos(z) function. Also recall that the coupled model is projected to

the leading parabolic cylinder function in the meridional direction, which has a Gaussian

profile that centers at the equator. Thus, the meridional derivative at the equator is

∂yφ0(y) = 0 and the mass conservation equation reduces to

ũx(x, z) + w̃z(x, z) = 0, (9)

where ũ(x, z) and w̃(x, z) are the zonal and vertical velocities, respectively, which are

functions of both x and z. Recall that the zonal velocity can be written as [Majda and

Stechmann, 2009]

ũ(x, z) = u(x) cos(z). (10)

To satisfy the mass conservation condition (9), the vertical velocity is given by

w̃(x, z) = w(x) cos(z) = −ux(x) sin(z), (11)

where w(x) = −ux(x). In the dimensional form (variables with notation ·D ),

wD(x) = − [Hv]

[L]
uDx (x), (12)
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where [Hv] = 16/πkm is the vertical length scale and [L] = 15000km is the horizonal

length scale with nondimensional range x ∈ [0, 1.17], z ∈ [0, π]. The pair
(
ũ(x, z), w̃(x, z)

)
forms the anomalous Walker circulation above the equatorial Pacific ocean as shown in

Figure 4 of the main article.

2. Details of the transition rates in the three-state Markov jump process

Recall the governing equation of the stochastic wind burst amplitude ap,

dap
dτ

= −dp(ap−âp(TW )) + σp(TW )Ẇ (τ), (13)

As discussed in the main article, a three-state Markov jump process is adopted for the

parameters in (13),

State 2: σp2 = 2.7, dp2 = 3.4, âp2 = −0.25, (14)

State 1: σp1 = 0.8, dp1 = 3.4, âp1 = −0.25, (15)

State 0: σp0 = 0.5, dp0 = 3.4, âp0 = 0, (16)

where State 2 corresponds to the traditional El Nino and State 1 to the CP El Nino

while State 0 stands for quiescent phases. We assume all the three states can switch

between each other. The detailed forms of the transition rates are shown below, which

are functions of TW , the averaged SST over the western Pacific. These transition rates

are determined in accordance with the observational facts [Chen et al., 2015] as will be

discussed below.

• The transition rates from State 2 to State 1 and from State 2 to State 0 are given

by respectively

ν21 =
1

10
· 1− tanh(2TW )

4
, (17)
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ν20 =
9

10
· 1− tanh(2TW )

4
. (18)

Starting from State 2, the probability of switching to State 0 is much higher than that to

State 1. This comes from the fact that a traditional El Niño is usually followed by a La

Niña rather than a CP El Niño (e.g., year 1963, 1965, 1972, 1982 and 1998). Typically,

the La Niña event has a weaker amplitude and a longer duration compared with the

preceding El Niño. This actually corresponds to a discharge phase of the ENSO cycle

with no external wind bursts (State 0).

• The transition rates from State 1 to State 0 and from State 1 to State 2 are given

by respectively

ν10 =
1− tanh(2TW )

12
, (19)

ν12 =
1 + tanh(2TW )

40
, (20)

Although the denominator of ν10 is smaller than that of ν12, quite a few CP El Niño events

are associated with a slight positive TW in the model, which means the transition rate ν12

is not necessarily smaller than ν10. In fact, with the transition rates given by (19)–(20),

the results show in the main article that more events are transited from state 1 to 2 than

from state 1 to 0. This is consistent with the observations (e.g., year 1981 and 1995),

implying that the CP El Niño is more likely to be followed by the classical El Niño than

the quiescent phase.

• The transition rates from State 0 to State 1 and State 2 are given by

ν01 =
2

3
· 1 + tanh(2TW )

7
, (21)

ν02 =
1

3
· 1 + tanh(2TW )

7
. (22)
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Again, the transition rates to State 1 and 2 are different. This is due to the fact that after

a quiescent period or discharge La Niña phase, more events are prone to becomes CP El

Niño as a intermediate transition instead of directly forming another traditional El Niño

(e.g., year 1969, 1977, 1990 and 2002).

Note that in (17)–(22), the transition rate νij from a more active state to a less active

state (with i > j) is always proportional to 1 − tanh(2TW ) while that from a less active

state to a more active state (with i < j) is always proportional to 1 + tanh(2TW ). These

are consistent with the fact stated in the main article that a transition from a less active

to a more active state is more likely when TW ≥ 0 and vice versa.

3. Sensitivity test

With the optimal parameters of the transition rates shown in (17)–(22), the variance of

the three T indices almost perfectly match those of the Nino indices and the non-Gaussian

statistical characteristics in different Nino regions are recovered. Since most of the general

circulation models tend to be sensitive to parameter perturbations [Ham and Kug , 2012;

Kug et al., 2012; Ault et al., 2013], it is important to test the robustness of the coupled

model studied in the main article. To this end, some perturbations are added to the

transition rates and the statistics with the suboptimal rates are shown in the following.

In each of the panel below, the variable with asterisk stands for the optimal value given

by (17)–(22). The maximum perturbation of each transition rate is ±25%.

In Figure 1–3, the variance, skewness and kurtosis of T-3, T-3.4 and T-4 are shown

as functions of perturbed transition rates. It is clear that all these statistics are fairly

robust with respect to the parameter perturbations, where the variance of different T
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indices remain nearly the same as those in nature and the non-Gaussian features are still

significant. The only parameter that is slightly sensitive is the transition rate from State

1 to State 2, i.e., ν12. In fact, if ν12 is underestimated, then the frequency of the extreme

super El Niño will be lower than that of the observations and therefore the non-Gaussian

features will be become significant.

Other sensitivity tests with respect to the parameter perturbations in the coupled ocean-

atmosphere were shown in the previous study [Thual et al., 2016]. The results there also

indicate the robustness of the coupled model.
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Variable unit unit value

x zonal axis [y]/δ 15000km

y meridional axis atmosphere
√
cA/β 1500km

Y meridional axis ocean
√
cO/β 330km

t time axis intraseasonal 1/δ
√
cAβ 3.3 days

τ time axis interannual [t]/ε 33 days

u zonal wind speed anomalies δcA 5ms−1

v meridional wind speed anomalies δ[u] 0.5ms−1

θ potential temperature anomalies 15δ 1.5K

q low-level moisture anomalies [θ] 1.5K

a envelope of synoptic convective activity 1

Ha convective heating/drying [θ]/[t] 0.45K.day−1

Eq latent heating anomalies [θ]/[t] 0.45K.day−1

T sea surface temperature anomalies [θ] 1.5K

U zonal current speed anomalies cOδO 0.25ms−1

V zonal current speed anomalies δ
√
c[U ] 0.56 cms−1

H thermocline depth anomalies HOδO 20.8m

τx zonal wind stress anomalies δ
√
β/cAHOρOc

2
OδO 0.00879N.m−2

τy meridional wind stress anomalies [τx] 0.00879N.m−2

Table 1. Definitions of model variables and units in the meridional truncated model.
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Parameter description Nondimensional values

c ratio of ocean and atmosphere phase speed 0.05

ε Froude number 0.1

c1 ratio of c/ε 0.5

χA Meridional projection coefficient from ocean to atmosphere 0.31

χO Meridional projection coefficient from atmosphere to ocean 1.38

LA Equatorial belt length 8/3

LO Equatorial Pacific length 1.16

γ wind stress coefficient 6.529

rW Western boundary reflection coefficient in ocean 0.5

rE Eastern boundary reflection coefficient in ocean 0.5

ζ Latent heating exchange coefficient 8.5

αq Latent heating factor 0.3782

Q̄ mean vertical moisture gradient 0.9

µ nonlinear zonal advection coefficient 0.08

dp dissipation coefficient in the wind burst model 3.4

Table 2. Nondimensional values of the parameters.
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Figure 1. Sensitivity test. The variance of the three T indices as functions of suboptimal

transition rates, where the variable with asterisk stands for the optimal value in (17)–(22).

D R A F T September 28, 2016, 9:55am D R A F T



NAN CHEN AND ANDREW J MAJDA: SIMPLE MODEL CAPTURING ENSO DIVERSITY X - 15

75% 85% 95% 105% 115% 125%

−0.4

−0.2

0

0.2

0.4

0.6
(a) ν21/ν

∗

21 and ν20/ν
∗

20

 

 

T−3

T−4

T−3.4

75% 85% 95% 105% 115% 125%

−0.4

−0.2

0

0.2

0.4

0.6
(b) ν10/ν

∗

10

75% 85% 95% 105% 115% 125%

−0.4

−0.2

0

0.2

0.4

0.6
(c) ν12/ν

∗

12

75% 85% 95% 105% 115% 125%

−0.4

−0.2

0

0.2

0.4

0.6
(d) ν01/ν

∗

01 and ν02/ν
∗

02

75% 85% 95% 105% 115% 125%

−0.4

−0.2

0

0.2

0.4

0.6
(e) ν21/ν

∗

21 and ν
∗

20/ν20

75% 85% 95% 105% 115% 125%

−0.4

−0.2

0

0.2

0.4

0.6
(f) ν01/ν

∗

01 and ν
∗

02/ν02

Skewness

Figure 2. Sensitivity test. The skewness of the three T indices as functions of sub-

optimal transition rates, where the variable with asterisk stands for the optimal value in

(17)–(22).
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Figure 3. Sensitivity test. The kurtosis of the three T indices as functions of suboptimal

transition rates, where the variable with asterisk stands for the optimal value in (17)–(22).
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