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Abstract14

A comparative analysis of 14 5-year long climate simulations produced by the National Cen-15

tres for Environmental Predictions (NCEP) Climate Forecast System version 2 (CFSv2), in16

which a stochastic multicloud (SMCM) cumulus parameterization is implemented, is pre-17

sented here. These 5-year runs are made with different sets of parameters in order to figure18

out the best model configuration based on a suite of state-of-the-art metrics. This analysis is19

also a systematic attempt to understand the model sensitivity to the SMCM parameters. The20

model is found to be resilient to minor changes in the parameters used implying robustness21

of the SMCM formulation. The model is found to be most sensitive to the mid-tropospheric22

dryness parameter (MTD) and to the stratiform cloud decay timescale (τ30). MTD is more23

effective in controlling the global mean precipitation and its distribution while τ30 has more24

effect on the organization of convection as noticed in the simulation of the Madden-Julian25

oscillation (MJO). This is consistent with the fact that, in the SMCM formulation, mid-26

tropospheric humidity controls the deepening of convection and stratiform clouds control27

the backward tilt of tropospheric heating and the strength of unsaturated downdrafts which28

cool and dry the boundary layer and trigger the propagation of organized convection. Many29

other studies have also found mid-tropospheric humidity to be a key factor in the capacity of30

a global climate model to simulate organized convection on the synoptic and intra-seasonal31

scales.32

1 Introduction33

The successful implementation of any convective parameterization scheme, any param-34

eterization scheme for that matter, involves formulation, assessment and tuning. Formulation35

is the process of designing and implementing the model equations from first principles. Once36

the scheme is formulated, assessment and tuning evolve simultaneously. Due to the complex37

nature of the climate system and the inherent uncertain parameters of the scheme, tuning is38

unavoidable and it is time consuming. Hourdin et al. [2016] views tuning as a work of “art”,39

than a mere engineering calibration exercise, as it involves skill gained through observation40

and experience. In their survey, they found that 96% of climate models evolve through the41

process of tuning. They also found that cumulus schemes to be the most commonly tuned42

parameterizations in a climate model, second to microphysics schemes.43

Convective parameterizations are traditionally deterministic [Palmer, 2001; Plant and44

Craig, 2008]. The basis for a deterministic convective parameterization is the underlying as-45

sumption that, a typical GCM grid size is large enough to contain a large ensemble of the46

clouds, which is in quasi-equilibrium with the large scales [Arakawa and Schubert, 1974].47

However, with the increasing resolution of the present day GCMs, the validity of this as-48

sumption needs to be reevaluated [Palmer, 1996]. Moreover, there is an undeniable possibil-49

ity that neglecting the variability of the subgrid scale convective elements may lead to biases50

in the mean climate [Palmer, 2001]. Many recent studies have showed that a stochastic ap-51

proach to the convective parameterization problem can be promising [Buizza et al., 1999;52

Lin and Neelin, 2000, 2002, 2003; Palmer, 2001; Majda and Khouider, 2002; Khouider53

et al., 2003; Plant and Craig, 2008; Teixeira and Reynolds, 2008; Deng et al., 2015, 2016;54

Ajayamohan et al., 2016; Davini et al., 2016]. In order to introduce stochasticity to an ex-55

isting deterministic convective parameterization (CP), different methods have been adopted.56

The perturbed parameterization tendencies approach introduced by Buizza et al. [1999] con-57

sists of multiplying the CP outputs by correlated or non-correlated random numbers at each58

GCM column [Davini et al., 2016, and references therein]. Teixeira and Reynolds [2008]59

followed a similar technique as Buizza et al. [1999] but they multiplied only the convec-60

tive tendencies. Lin and Neelin [2000] had added stochasticity to a deterministic scheme61

by adding zero-mean red noise to it. In the study by Lin and Neelin [2002], a distribution62

of precipitation is assumed a priori to control the statistics of the overall convective heat-63

ing. Lin and Neelin [2003] tested a stochastic deep convective parameterization in a general64

circulation model for the first time. Plant and Craig [2008] used equilibrium statistical me-65
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chanics to derive a Poisson distribution for convective plumes based on radiative convective66

equilibrium cloud resolving simulations. Majda and Khouider [2002] and Khouider et al.67

[2003] used a Markov process on a lattice for convective inhibition. The stochastic lattice ap-68

proach has been extended in Khouider et al. [2010] to derive the stochastic multicloud model69

(SMCM). The SMCM has been extensively used and evaluated in simple models for orga-70

nized convection and convectively coupled equatorial waves (CCEW) [Frenkel et al., 2012,71

2013; Peters et al., 2013; De La Chevrotière et al., 2015; De La Chevrotière and Khouider,72

2017]. The SMCM has been successfully adopted as a cumulus parameterization in an aqua-73

planet GCM to simulate the Madden-Julian oscillation (MJO), CCEWs and Indian summer74

monsoon intra-seasonal oscillations (MISOs) [Deng et al., 2015, 2016; Ajayamohan et al.,75

2016]. This study investigates the impact of the stochastic multicloud model when imple-76

mented in a comprehensive climate model, namely, the National Centres for Environmental77

Predictions (NCEP) Climate Forecast System version 2 (CFSv2) model [Saha et al., 2014].78

Noteworthy, here we do not add stochasticity to the existing CP scheme in CFSv2. Rather,79

we completely replace it with the stochastic multicloud model. For brevity, the coupled80

CFSv2_SMCM model is termed as CFSsmcm. The first results of the implementation of the81

SMCM in CFSv2 have appeared in Goswami et al. [2017a], followed by a thorough analysis82

of the results in Goswami et al. [2017b]. CFSsmcm is found not only to improve some of the83

known biases of CFSv2 associated with organized tropical convection but it also captures the84

main physical and dynamical features of the major modes of tropical variability such as the85

MJO, CCEWs and the MISO [Goswami et al., 2017b]. Peters et al. [2017] used the SMCM86

to control the triggering of deep convection and correct deficiencies in the ECHAM model,87

resulting in important improvements in its ability to simulate climate variability associated88

with organized convection, including the MJO and CCEWs. The SMCM framework has89

been also used by Dorrestijn et al. [2013a,b, 2015, 2016] with one key difference of using90

large eddy simulation data to infer the transition probabilities, a discrete-time Markov chain,91

conditional on the large scale predictors, instead of using Arrhenius-type activation functions92

to define transition rates, of a continuous time Markov process, as functions of the large scale93

predictors as done originally [Khouider et al., 2010].94

Notably the implementation of the SMCM in the CFSv2 model, assessed and cali-95

brated here, is done essentially in order to improve the simulation of convective organization96

and variability, especially in the tropics. In its conventional form, CFSv2 uses the Simpli-97

fied Arakawa-Schubert (SAS) [Pan and Wu, 1995; Pattanaik et al., 2013] scheme for con-98

vection parameterization. SMCM was introduced in Khouider et al. [2010] following the99

inception of the multi-cloud model approach in its deterministic form [Khouider and Ma-100

jda, 2006]. It is designed to capture the organization and variability of tropical convection by101

promoting the three cloud types that are observed to dominate organized tropical convective102

systems [Lin and Johnson, 1996; Johnson et al., 1999; Mapes et al., 2006; Moncrieff et al.,103

2012], namely, congestus, deep and stratiform. The cloud coverage, associated with each104

cloud type, within a GCM grid, evolves as a stochastic Markov process with transition prob-105

abilities depending on the large scale mid-tropospheric dryness (MTD), convective available106

potential energy (CAPE), convective inhibition (CIN) and the large scale vertical velocity107

(W) [Goswami et al., 2017a]. These large scale variables are normalized by some reference108

values and the normalized values are used in a birth-death Markov chain process for the dif-109

ferent clouds to grow, decay and transition from one type to another. The choice of the ref-110

erence values of the convective available potential energy (CAPE) and the mid-tropospheric111

dryness (MTD) are shown to be crucial for the dynamics of the stochastic cloud fractions112

[Khouider et al., 2010]. The simulation of the MJO and CCEWs are found to be sensitive to113

the longevity of stratiform heating [Ajayamohan et al., 2016; Deng et al., 2016]. In fact, all114

the earlier studies involving SMCM [e.g. Khouider et al., 2010; Deng et al., 2015; Ajayamo-115

han et al., 2016; Deng et al., 2016] agree that the parameters responsible for the magnitude116

of the stratiform heating, and the transition time scales between different cloud types are117

among the most uncertain parameters. De La Chevrotière et al. [2015] have used a Baysian118

inference procedure to learn the cloud transition time scales from large eddy simulation data119

(GigaLES) from the Global Atmospheric Research Programme (GARP) Atlantic Tropical120
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Experiment (GATE) field campaign [Khairoutdinov et al., 2009]. While De La Chevrotiere121

et al’s study provides reference values for these parameters their precise values remain un-122

certain as the tropical Atlantic region is not per se representative of the whole tropical atmo-123

sphere which is characterized by various meteorological regimes that depend strongly on the124

geography.125

Moreover, while the earlier studies involving the SMCM provide some directions for126

tuning the CFSsmcm, several aspects are totally new to the present implementation. The127

differences are obvious as the previous studies were carried out in an aquaplanet idealized128

framework and they all rely on the radiative convective equilibrium (RCE) solution of the129

governing equations to construct the background to set up the multi-cloud parameterization.130

Instead, in the present study, we use the long term mean of the observed climate as the back-131

ground. Also, unlike the aqua-planet framework, used in the previous studies, here, we use132

CFSv2 as the host model, which is a fully coupled state-of-the-art climate model. This is the133

first time the SMCM has been implemented in a coupled climate model. It is motivated by134

the success of the SMCM in the aqua-planet setup. Due to the significant modifications in135

the SMCM formulation done in order to make it compatible with the CFSv2, the CFSsmcm136

model requires tuning. As a prerequisite to simulate a realistic climate, it is necessary to un-137

derstand, how CFSv2 responds to the implementation of the SMCM in it. Does the SMCM138

retain its major behavioral features seen in the idealized setup? How sensitive is the SMCM139

to the new set of parameters introduced in the present formulation, especially, regarding the140

parameters associated with the background? Consequently, the aim of this study is to fig-141

ure out the best suite of parameters for the CFSsmcm model. With the primary interest be-142

hind implementing the SMCM in CFSv2 being to improve the simulation of organization and143

variability of tropical convection, we have essentially made 5-year long climate runs for dif-144

ferent sets of parameters. These runs are tuned for the mean climate, defined in terms of tem-145

perature, moisture and precipitation and then fine-tuned for the capability to capture the in-146

traseasonal and synoptic variability associated with convectively coupled waves as measured147

by the Takayabu-Wheeler-Kiladis spectra [Takayabu, 1994; Wheeler and Kiladis, 1999].148

The paper is organized as follows. A brief description of the SMCM model formu-149

lation is presented in Section 2 to introduce the tunable parameters involved. Section 3 de-150

scribes the sensitivity of the model to different parameters. Finally, a few concluding re-151

marks are provided in Section 4.152

2 Model Equations, Data, and Methodology153

The stochastic multicloud model (SMCM) uses 3 prescribed profiles for convective154

heating, φc , φd and φs , associated with cumulus congestus cloud decks (which warm and155

moisten the lower troposphere and cool the upper troposphere through radiation and de-156

trainment), deep cumulus clouds (which heat up the whole atmospheric column) and strat-157

iform anvils (which heat the upper troposphere and cool and moisten the lower troposphere158

through melting and evaporation of stratiform precipitation), respectively [Khouider and Ma-159

jda, 2006, 2008; Khouider et al., 2011]160

The total convective heating is thus expressed as:

Qtot (z) = Hdφd(z) + Hcφc(z) + Hsφs(z). (1)

Here, Hc , Hd and Hs are the parameterized heating rates associated with the three cloud
types, congestus, deep, and stratiform, respectively. In particular, they are assumed to be
proportional to the stochastically evolving area fractions, σc , σd and σs , respectively. We
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Table 1. SMCM transition rules. The transition rates are given in terms of the large scale predictors CAPE,
C = CAPE/CAPE0, Low level CAPE, CL = LCAPE/LCAPE0, dryness, D = H/MT D0, whereH is the
relative humidity, large scale subsidence, WN = −min(0,W/W0), and CN = −CIN/CIN0. Here LCAPE

is the part of the CAPE integral between LFC and the freezing level. We note that CIN is by definition a
negative definite quantity, so that when CIN is large, Γ(CN ) −→ 1.

181

182

183

184

185

Description Transition Rate, where Γ(x) =
{
(1 − e−x), if x > 0
0, otherwise

Time Scale (hours)

Formation of congestus R01 =
1
τ01
Γ(CL)Γ(D) (1−Γ(WN))+(1−Γ(CN))

2 τ01=32

Decay of congestus R10 =
1
τ10
Γ(D) τ10=2

Conversion of congestus to deep R12 =
1
τ12
Γ(C)(1 − Γ(D)) τ12=0.25

Formation of deep R02 =
1
τ02
(Γ(C)(1 − Γ(D)) (1−Γ(WN))+(1−Γ(CN))

2 τ02=12

Conversion of deep to stratiform R23 =
1
τ23

τ23=0.25

Decay of deep R20 =
1
τ20
(1 − Γ(C)) τ20=9.5

Decay of stratiform R30 =
1
τ30

τ30=1

have:

Hd =
σd

σ̄d
Qd (2)

Hc =
σc

σ̄c
αcQc (3)

∂Hs

∂t
=

1
τs

[
σs

σ̄s
αsHd − Hs

]
, (4)

here, σ̄c , σ̄d and σ̄s are the background values of σc , σd and σs respectively while αc and161

αs are respectively the congestus and stratiform adjustment coefficients and τs is the strati-162

form heating adjustment time-scale [Khouider et al., 2010; Deng et al., 2015].163

The cloud area fractions σc , σd and σs are derived through the coarse graining of a164

stochastic lattice model taking the values 0,1,2, or 3, at each lattice site, according to whether165

the site is not cloudy (abusively called clear sky although it may support shallow convec-166

tion) or occupied by a congestus, deep, or stratiform cloud type. Together they describe a167

Markov jump stochastic process in the form of a multi-dimensional birth-death system whose168

transition probabilities depend explicitly on some key large scale predictors motivated by ob-169

servations and physical intuition [Khouider et al., 2010; Frenkel et al., 2012; Peters et al.,170

2013; Deng et al., 2016]. The interested reader is referred to these original papers for de-171

tails. While earlier versions of the SMCM use only mid tropospheric dryness (MTD) and172

convective available potential energy (CAPE) as large scale predictors, here we also use con-173

vective inhibition (CIN) and vertical velocity (W) in order to obtain a better dialog between174

the deep convection parameterization, i.e., SMCM, and CFSv2’s shallow convection scheme,175

by inhibiting congestus and deep convective clouds in regions of high CIN and/or large-scale176

subsidence. Therefore the transition rates from one cloud type to another remain the same177

as prescribed in Deng et al. [2015], for example, except for the formation of congestus and178

deep convection from clear sky. The transition rates closure equations are provided in Table179

1 where the new modifications are highlighted in bold.180
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In Eqn (2-4), Qc and Qd are the potentials for congestus and deep convection which
are closed following the equations [Khouider et al., 2010; Deng et al., 2015],

Qd =

[
Q̄d +

1
τq

Lv

Cp
q
′
m +

1
τc

(
θ
′

eb − γcθ
′
m

)]+
(5)

Qc =

[
Q̄c +

1
τc

(
θ
′

eb − γcθ
′
m

)]+
(6)

Here and elsewhere in the paper X+ and X− denote, respectively, the positive and neg-
ative parts of the variable X : X+ = max(X, 0) and X− = min(X, 0). The variables θ, θe
and q denote potential temperature, equivalent potential temperature and moisture (specific
humidity). Lv is the latent heat of condensation and Cp is the specific heat of air at constant
pressure. The bar-ed notations indicate fixed background values and the prime-ed notations
indicate deviations of the large scale GCM variables from the background variables. The
suffix m stands for the middle troposphere value and b for the bulk boundary layer value,
namely,

θm = θ(500hPa)
qm = q(700hPa)

Xb =
1
h

∫ h

0
X(z)dz,where h is the GCM PBL height

In addition to the direct heating and cooling in Eq. (1), the SMCM deep convection parame-
terization provides downdrafts,

Dc = µ

[
Hs − Hc

Q̄c

]+
, (7)

which cool and dry the boundary layer and moisten the mid-troposphere due to the evapora-186

tion and melting of stratiform precipitation that falls into a dry lower troposphere.187

While further details about the implementation of the SMCM convective parametriza-
tion in CFSv2 are found in Goswami et al. [2017a], the SMCM temperature and moisture
tendency equations are formulated below for the sake of clarity:[

∂

∂t
θ(z)

]
SMCM

=

{
Qtot (z), if z > h
Qtot (z) − Dc

h 4mθ, if z < h
(8)[

∂

∂t
q(z)

]
SMCM

=

{
−P(z) + E(z), if z > h
−P(z) − Dc

h 4mq, if z < h.
(9)

Here, 4mX is the difference between the middle-troposphere value and the PBL aver-
aged value of X and P(z) and E(z) are the precipitation and evaporation rates, respectively,
given by

P(z) = Qtot (z) Q2(z)

E(z) =
(
δm(z)

Dc

H

)
4mθe,

where Q2(z) is a vertical structure function mimicking the Yanai moisture sink profile [Yanai188

et al., 1973] and δm(z) is another structure function with a bottom heavy profile used in or-189

der to realistically simulate moistening due to evaporative cooling (see Figure 4 and 5 of the190

Electronic Supplementary Material of Goswami et al. [2017a] , for the exact shapes of Q2(z)191

and δm(z) profiles). The parameter H is the height of the tropical troposphere and h is the192

GCM’s boundary layer height.193
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Table 2. Parameter values (corresponds to run 129)212

Reference Parameter Value Remarks

Eqn 5 τq 144 hrs moisture adjustment timescale

Eqn 4 τs 96 hrs stratiform convection adjustment timescale

Eqn 5, 6 τc 240 hrs congestus convection adjustment timescale

Eqn 7 µ 0.0125 Relative contribution of stratiform evaporative cooling to downdraft

Eqn 5, 6 γc 0.1 Adjustment coeff. for relative contribution of congestus to deep heating

Eqn 3 αc 0.1 congestus adjustment coefficient

Eqn 4 αs 0.2 stratiform adjustment coefficient

For Normalization CAPE0 5000 J/kg reference value of CAPE

LCAPE0 2000 J/kg reference value of LCAPE

MT D0 5 % reference value of MTD

CIN0 5 J/kg reference value of CIN

W0 0.05 m/s reference value of vertical velocity

In the CFSsmcm, except for replacing the SAS cumulus scheme with SMCM, the rest194

of that CFSv2 configuration is unchanged. For instance, CFSsmcm still uses the same shal-195

low cumulus scheme as CFSv2 (the SMCM scheme does not have shallow convection).196

However, unlike the SAS scheme the SMCM implementation ignores radiative feedback197

from the parameterized clouds.198

The details of the reference model CFSv2 are available in Saha et al. [2014]. We have199

used TRMM3b42-v7 (0.25°x 0.25°; daily) [Huffman et al., 2010], outgoing long-wave radi-200

ation (OLR) from NOAA (2.5°x 2.5°; daily) [Liebmann and Smith, 1996] and the thermo-201

dynamical and dynamical parameters from NCEP reanalysis (2.5°x 2.5°; daily) [Kalnay202

et al., 1996] as the observational benchmark to evaluate the model simulated climate. Indian203

Meteorology department (IMD) 1°x 1°rainfall data [Rajeevan et al., 2006] is used an addi-204

tional observational benchmark while plotting the annual cycle of rainfall over the central205

Indian region in Figure 4.206

The parameters used in the SMCM formulation are provided in Table 2, along with207

their values. The values of the parameters provided in Table 2 are the ones found to be the208

best among 14 sets of parameter values corresponding to 14 runs made to understand the209

model-behaviour. Table 3 provides the different sets of parameters corresponding to the dif-210

ferent runs considered here.211

The first column of Table 3 shows the run identification numbers (ID). As can be seen214

from the run IDs, these 14 runs are actually a few runs selected out of 140 runs made in the215

process of developing the model, after completing the necessary computer coding to incor-216

porate the SMCM in CFSv2. The reference values of CAPE, LCAPE and MTD ( CAPE0,217

LCAPE0 and MTD0 respectively), are obtained from the CFSR [Saha et al., 2010] clima-218

tology. The model is run in T126 horizontal resolution, 64 vertical levels, and a 10 minutes219

time step.220
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Table 3. Parameter values for the different CFSsmcm runs213

Run ID CAPE0 LCAPE0 MTD0 τq τs τc αs τ30

122 4000 1500 25 14 10 24 0.2 1
123 5000 2000 25 14 10 24 0.2 1
124 5000 2000 25 144 96 240 0.2 1
126 5000 2000 25 288 192 480 0.2 1
128 6000 3000 25 144 96 240 0.2 1
129 5000 2000 5 144 96 240 0.2 1
130 5000 2000 5 144 96 240 0.5 1
131 5000 2000 5 144 96 240 0.3 5
132 6000 3000 15 144 96 240 0.3 5
133 5000 2000 15 144 96 240 0.7 1
134 5000 2000 15 144 96 240 0.7 5
135 5000 2000 15 144 96 240 0.7 10
139 5000 2000 O=5; L=25 144 96 240 0.2 1
140 6000 3000 O=5; L=25 288 192 480 0.3 5

Determination of the adjustment timescales221

Adjustment timescales measure the time over which convection brings the environment222

back to equilibrium. The SMCM uses three different adjustment timescales: τq to equili-223

brate moisture abundance by promoting deep convection and τc and τs are, respectively, the224

congestus and the stratiform convection adjustment timescales. In order to determine these225

timescales, the SMCM is run as a single column stochastic cloud model in standalone mode,226

forced by predictors coming from reanalysis. The timescales τq , τc and τs are calibrated by227

comparing the simulated precipitation with TRMM rainfall. This exercise is done for a few228

judiciously selected points across the globe. While the details are omitted for brevity, the229

optimal time-scales that are obtained during this exercise are as follows: τq = 144 hours,230

τs = 96 hours and τc = 240 hours. While these values are adopted as the standard, here, we231

have also tested faster (τq = 14 hours, τs = 10 hours and τc = 24 hours in runs 122 and232

123) and slower (τq = 288 hours, τs = 192 hours and τc = 480 hours in runs 126 and 140)233

adjustment time scales.234

The parameters αs and τ30 are chosen based on experience gained from previous stud-235

ies using the SMCM in idealized settings [Khouider et al., 2010; Peters et al., 2013; Deng236

et al., 2015] and the GigaLES study by De La Chevrotière et al. [2015].237

3 Results238

In this section the results from the 14 CFsmcm runs in the Table 3 are assessed and239

compared to a control CFSv2 simulation and to the observations. In Section 3a, we look at240

the mean state of the climate in terms of the daily global mean temperature and moisture at241

the surface and middle troposphere (500hPa). This is followed by an assessment of the cli-242

matological annual mean precipitation distribution over the globe in Section 3b. The analysis243

of the mean climate helps in identifying the group of parameters controlling the mean cli-244

mate of the model. The middle tropospheric dryness re-normalization constant (MTD0) and245

the adjustment time-scales (τs , τq and τc in Eqns 4-6) are found to constitute this group. In246

Section 3c, we check the mean meridional cross-section of temperature, moisture and zonal247

winds, to further investigate the fidelity of the model in simulating the mean climate. In Sec-248

tion 3d, we indulge into assessing the model in terms of its ability to simulated the variability249

and organization on the intraseasonal time-scale. Here we focus more on the parameters re-250
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sponsible for controlling the stratiform heating in the SMCM formulation. These parameters251

are the stratiform adjustment coefficient (αs in Eqn 4) and the decay time-scale of stratiform252

heating (τ30 in Table 3 last row). This is motivated by the fact that, in observations [Schu-253

macher et al., 2007; Chattopadhyay et al., 2009; Kumar et al., 2016] and previous SMCM254

studies [Ajayamohan et al., 2016; Deng et al., 2016, for example], stratiform heating is found255

to play a crucial role in organizing convection in the tropics.256

3.1 Mean Temperature and Moisture260

In Figure 1, we plot the global mean temperature and moisture fields at various heights,261

as they evolve over the 5-year simulation period, for the 14 CFSsmcm runs listed in Table 3,262

contrasted with the control run using the original CFSv2 model and NCEP reanalysis data263

(OBS). All the runs of CFSsmcm and CFSv2 are found to simulate the temperature and264

moisture profiles realistically though the atmosphere looks slightly cooler and drier with a265

tendency to further cool and dry as we proceed along time and height. Although not very266

severely, the cooling and drying trend continues and eventually settles down over time in the267

long (15 year) run (not shown here, see Goswami et al. [2017a,b]). At 500hPa, the CFSsmcm268

runs look drier compared to CFSv2, with the two runs (Runs 122 and 123) obtained with269

the fastest adjustment timescales, in Table 3, especially performing poorly. A notable feature270

of the CFSsmcm is the resilience of its mean climate, with respect to changes in parameter271

values, as evidenced from the overlapping temperature and moisture cycles in Fig 1. This ro-272

bustness of the SMCM to changes in some key parameters, a highly desirable feature of any273

parameterization, is no doubted due to the fact that the scheme was designed from first prin-274

ciples, based on the present mean climate state. The fact that all the temperature and mois-275

ture annual means in Figure 1 are grouped together separate from the observed (reanalysis)276

profiles indicates that the convective parameterization is not the only factor responsible for277

all the climate model biases. We suspect that the systematic cooling/drying of the mid tro-278

posphere in CFSsmcm is perhaps due to the lack of radiation feedback due to the stratiform279

clouds [Frenkel et al., 2015].280

3.2 Mean Precipitation281

Figure 2 shows the annual mean precipitation distributions for TRMM and the 5 year288

CFSv2 and CFSsmcm runs listed in Table 3. Consistent with the temperature and moisture289

plots in Figure 1, there are no notable differences between different CFSsmcm runs, ex-290

cept for the runs 122 and 123. Nonetheless, there are some noticeable deviations in terms291

of global mean precipitation. In Figure 3, the parameter values corresponding to different292

CFSsmcm runs are arranged according to increasing amount of global mean precipitation.293

LCAPE0 is not plotted as it’s variation for the different CFSsmcm runs is similar to that of294

CAPE0. For a similar reason, among τc , τq and τs , only τc is plotted. Clearly, the mean pre-295

cipitation (black bordered histograms) and MTD0 (the blue line) are positively correlated, in296

all CFSsmcm runs. It should be mentioned that, mixed MTD0 values are being used for runs297

139 and 140 to take into account the land-ocean contrast. Indeed, there is no justified rea-298

son why the same MTD0 parameter value would work over both land and ocean. Runs 122299

and 123 bring the mean-MTD0 correlation down. Possibly, the faster adjustment time-scales300

influenced the impact of MTD0 on the mean precipitation. For the adjustment time-scales301

obtained from the SMCM standalone calibration with TRMM and the slower ones, MTD0302

appears to be the primary factor in affecting the global mean precipitation.303

The impact of changing αs (the sky blue histograms) and τ30 (the green histograms)304

values do not seem to make a large impact on the global mean precipitation. However, the or-305

ganization of convection is found to be more sensitive to these parameters, as will be shown306

in Sub-section d below.307

In order to assess the fidelity of the simulation of rainfall regionally, we plotted the an-312

nual cycle of precipitation at some of the major locations of active convection (Figure 4).313
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Figure 1. Global average temperature and moisture at surface and at 500hPa for the 5 years of 14 different
runs of CFSsmcm simulated climate compared to CFSv2 (solid grey line) and NCEP reanalysis (dashed grey
line).

257

258

259
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Figure 2. Climatological annual mean precipitation (mm day-1) for the 5 years of 14 different runs of
CFSsmcm simulated climate compared to TRMM and CFSv2.

282

283

Figure 3. Variation of mean climatological rainfall (histograms) averaged over 50°S-50°N for different sets
of parameters corresponding to the different CFSsmcm runs.[Note: For the runs 139 and 140, MTD0 value is
calculated as = (1/4)(MTD0(over ocean)*3+MTD0(over land)*1)=(1/4)*(5*3+25*1)=10. Secondary axis is
for τ30.]
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285

286

287
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Figure 4. Annual cycle of climatological precipitation (mm day-1) over 4 regions namely: Central In-
dia (CI) (73°E-82°E; 18°N-28°N), West Pacific (WP) (140°E-160°E; Eq-10°N), Amazonia (75°W-50°W;
10°S-5°N) and the entire tropics (15°S-15°N), corresponding to the different CFSsmcm runs, and for CFSv2
simulations and TRMM. Also IMD data is used for the CI region.

308

309

310

311
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Over Central India (CI) and Amazonia regions, CFSv2 severely underestimates the rain-314

fall. In fact, most state-of-the-art climate models show similar dry bias in these two loca-315

tions [Goswami and Goswami, 2016]. Almost all the CFSsmcm runs (except 122 and 123)316

show a reduction in this dry bias over CI and Amazonia. However, while it is almost a tie317

over the Western Pacific (WP), when averaged over the entire tropics, CFSv2 is comparable318

with the best runs of CFSsmcm. Over the tropics, while most of the CFSsmcm runs capture319

the observed peak in the month of May realistically, it is almost missed in CFSv2 simula-320

tions. A closer look at Figure 4 reveals that, for land regions the CFSsmcm runs with higher321

MTD0 values have a smaller dry bias. Though, over the oceanic regions, and the entire trop-322

ics, it simulates too much precipitation. Similarly, for a low MTD0 value, even though the323

wet bias over the oceanic regions is reduced, the land regions are simulated severely dry. To324

address this issue, we used different MTD0 values (runs 139 and 140) for land (MTD0=25)325

and ocean (MTD0=5). A low MTD0 value essentially means that the middle troposphere326

needs to be very moist to allow deep convection. It can be seen in Figure 4 that, run 139 and327

140 show relatively better annual cycles over all the regions plotted.328

3.3 Mean meridional cross-sections: Temperature, Moisture, and Zonal Wind329

Due to the orbital geometry of the earth, the latitudinal profiles of the zonal mean can330

provide valuable information about the mean climate. In Figures 5, 6, and 7, we plotted the331

mean meridional cross sections of temperature, moisture (specific humidity), and zonal wind,332

respectively, in order to further evaluate the simulations. While, in Figure 5 and 6, we have333

plotted the bias for temperature and moisture with respect to the NCEP reanalysis, in Figure334

7, the zonal wind is plotted as is.335

Before moving further, we would like to pause and caution the reader that the results in336

Figures 5 and 6 need to be interpreted somewhat loosely. Because the CFSv2 outputs of the337

dynamical variables (wind, temperature and moisture) are one-per-daily instantaneous val-338

ues, taken at 00:00 UTC, while their NCEP reanalysis counterparts are daily averages, we are339

not comparing apples to apples per se. But a careful investigation of this issue (not shown340

here) was conducted by comparing two 5 year means, of the same CFSv2 runs, obtained341

from a 00:00 UTC one-per-daily instantaneous output, and a 3 hourly output, respectively.342

It is found that the difference in temperature, for example, between the two means, does not343

exceed 0.25°C while the differences in moisture and winds are even less-significant, relative344

to the major biases of CFSv2.345

It is clear from Figure 5 that CFSv2 simulates a cold troposphere. This is a well doc-348

umented issue of the simulated climate across generations of the Climate Forecast System349

framework [Saha et al., 2014; Goswami et al., 2015]. Further concerns of CFSv2 simulated350

climate are the warm bias in the upper troposphere (100-200hPa) and in the Antarctic (from351

the surface to about 650hPa). Barring runs 122 and 123, all CFSsmcm runs show reduced352

cold bias in the troposphere. More importantly, the warm bias in the upper troposphere has353

been reduced significantly. However, the warm bias in the Antarctic lower troposphere per-354

sists. There can be two related explanations for this. First, the SMCM parameterization is355

primarily designed for and based on tropical convection properties and second, the scope of356

any convective parameterization is naturally limited over the poles where heating and cooling357

is primarily driven by radiation and eddy mixing.358

Figure 6 shows the zonal and time mean specific humidity bias for CFSv2 and for the361

14 CFSsmcm runs. All model simulations, including CFSv2 and Runs 122 and 123, look362

comparable in Figure 6. However, Runs 122 and 123 are still the most biased. These two363

simulations are the driest in the northern hemisphere. A close evaluation reveals some differ-364

ences between the different simulations near the surface, especially in the latitude band 0°-365

30°N. CFSv2 looks marginally drier than a few CFSsmcm runs over this latitude band. How-366

ever, it should be kept in mind that these biases are computed relative to NCEP reanalyzed367

specific humidity field and the finer details have every possibility to look different relative368
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Figure 5. Bias (model simulation minus NCEP reanalysis) in the zonally-averaged temperature (Kelvin) for
CFSv2 and the CFSsmcm runs.

346

347

Figure 6. Bias (model simulation minus NCEP reanalysis) in the zonally-averaged specific humidity (g
kg-1) for CFSv2 and the CFSsmcm runs.

359

360
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Figure 7. Mean meridional cross-section of zonal wind (m s-1) for NCEP, CFSv2 and the CFSsmcm runs.372

to some other reanalysis products. However, it is fair to conclude that CFSsmcm simulates a369

reasonably realistic moisture field near the surface, which is as good as CFSv2 simulations, if370

not better in some cases. (At the surface, only Runs 122,123,134,135 are worse than CFSv2).371

Figure 7 shows the mean meridional cross-sections of the zonal wind. The improve-373

ment in the zonal winds is evident in the CFSsmcm simulations (especially in Runs 129, 130,374

131 and 140), which is consistent with the improvements in temperature simulations seen in375

Figure 5. For a better visualization of the improvements of CFSsmcm simulations, the mean376

easterlies (negative values, with contour interval of 1ms-1) including 0 ms-1 and the peak of377

the westerly jet stream (wind >25 ms-1, with contour interval of 2ms-1) are highlighted using378

additional contours over the shading. The unrealistically strong westerly jet, as indicated by379

the size of the 25 ms-1 contour loop around the location (30°N, 200 hPa), is better simulated380

in a few CFSsmcm simulations (prominent in runs 129, 130, 131 and 140). Also, the extend381

of the winter hemisphere westerly jet, located at (30°S, 200hPa), is better simulated in most382

of the CFSsmcm simulations (Figure for the seasonal mean meridional cross-sections of the383

zonal winds are not shown). The double peaked-ness of the winter hemisphere westerly jet384

seen in the NCEP winds is clearly missing in CFSv2; a feature all CFSsmcm runs, except385

runs 122 and 123, tend to capture. All the model results, including CFSv2 and CFSsmcm386

runs, overestimate the strength of the winter hemisphere westerly jet. A serious concern in387

CFSv2 simulated winds is the westerly mean flow over the equator in the upper troposphere.388

This equatorial superrotation implies erroneous simulation of the eddy momentum fluxes389

[Saravanan, 1993; Biello et al., 2007; Khouider et al., 2011]. Kraucunas and Hartmann390

[2005] argues that a proper simulation of the zonal-mean zonal winds over the equator re-391

quires the longitudinal variation of the diabatic heating to be simulated realistically. Thus,392

a better simulation of the zonal winds over the equator indicates a better diabatic heating in393

the CFSsmcm simulations. Moreover, the fact that none (except runs 122 and 123) of the394
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CFSsmcm runs actually indicate equatorial superrotation, is another testimony for the robust-395

ness of the SMCM formulation.396

3.4 Convectively coupled equatorial waves: organization of convection397

Organization is an integral part of tropical convection. The tropical atmosphere re-398

sponds to the convective heating in terms of equatorial waves. These waves in turn, affect399

the convection by organizing it. Realistic simulation of the organization of convection im-400

plies an adequate simulation of the CCEWs. A standard metric to analyze a model’s fidelity401

in simulating the CCEWs is the Takayabu-Wheeler-Kiladis (TWK) spectra [Takayabu, 1994;402

Wheeler and Kiladis, 1999]. We have plotted the symmetric and asymmetric TWK-spectra403

for the observed and simulated precipitation in Figure 8 and Figure 9, respectively. In the404

Figures 8 and 9 we have plotted the raw/background power, where background power is com-405

puted following the method of Wheeler and Kiladis [1999].406

The features of the TWK-spectra for observation are well documented [Wheeler and410

Kiladis, 1999] and we shall avoid repeating. For CFSv2, the simulated climate underesti-411

mates the power in almost all the observed waves. In CFSsmcm, Runs 122 and 123 perform412

poorly. In the previous analyses presented above, we have noticed improvement in the mean413

climate immediately after relaxing the adjustment time-scales in 124 compared to Runs 122414

and 123. However, in the case of the TWK-spectra, such dramatic improvements are not no-415

ticed. However, Run 124 provided us with a reasonable spectra to build on the tuning fur-416

ther. Out of the several runs performed, Run 129 simulated a decent TWK-spectra putting417

power in almost all the right waves although the strength of the power is underestimated.418

In Run 129, we had decreased the value of MTD0 to 5% in order to make the middle atmo-419

sphere wait longer until it gets much moister compared to MTD0=25% scenario in Run 124,420

for example, to precipitate. Noteworthy, no significant improvement in the TWK-spectra,421

compared to Run 124, was noted when we relaxed the adjustment time-scales (Run 126) or422

LCAPE0 & CAPE0 values (Run 128). As per the simulated rainfall (Figures 2 and 3 and423

other seasonal mean analyses not shown here), temperature (Figure 5), moisture (Figure 6)424

and winds (Figure 7), Run 129 looks the best among 124, 126, 127, 128 and 129. It is also425

the best in terms of TWK-spectra. The concern with Run 129 is that it reduces the precipi-426

tation dry bias (observed in CFSv2 simulations) only slightly. In order to explore the scope427

of improving the TWK-spectra further we explored the impact of changing values of αs and428

τ30. The rational behind this is that, a larger αs would promote more stratiform and conse-429

quently more organization as seen in Ajayamohan et al. [2016] and Deng et al. [2016]. A430

recent study by Kumar et al. [2016], using TRMM observations, also demonstrates the role431

of stratiform heating in organizing the Indian summer monsoon intra-seasonal oscillations.432

Similarly a larger τ30 would keep the stratiform clouds for a longer time resulting in similar433

effects as a larger αs [Deng et al., 2016]. In Run 130, αs is increased to 0.5 from 0.2 (in Run434

129). And in Run 131, αs and τ30 values are increased to 0.3 and 5 hrs from 0.2 and 1hr (in435

Run 129), respectively. Although some improvements are seen in Runs 130 and 131 in the436

simulated TWK-spectra, the mean precipitation got adversely effected in regions over warm437

oceans (figure not shown), possibly due to too many stratiform clouds. The mean rainfall in438

Runs 130 and 131 is still underestimated over the continents while the oceanic regions are439

positively biased. In Run 132, we increased the MTD0, CAPE0 and LCAPE0 parameters440

compared to Run 131 anticipating a balancing effect coming from increasing CAPE0 and441

LCAPE0 and increasing MTD0. The TWK spectra are impressive for Run 132 but the pre-442

cipitation in the oceanic region is unrealistically high. We experimented with the αs and τ30443

values further in Runs 133, 134 and 135 keeping MTD0=15. But, one systematic behaviour444

of the model noted, for MTD0>5, is a wet bias over the warm oceans. Moreover for very445

large values of αs and τ30 the TWK-spectra also deteriorated. So based on all the metrics we446

used to analyze the model simulations, Run 129 appeared to be the best. Hence we continued447

that run for 15 years. A brief overview of the last 10 of these 15 years of simulations can be448

found in Goswami et al. [2017a] and a more detailed account is reported in Goswami et al.449

[2017b].450
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Figure 8. Wheeler-Kiladis spectra (symmetric component) for TRMM and simulated precipitation by
CFSv2 and the CFSsmcm runs.

407

408
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Figure 9. Same as Figure 8 but for the asymmetric component.409
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In Figure 8 the MJO power is stronger in the CFSv2 TWK-spectra compared to all451

the CFSsmcm runs, except Run 131. However, for a longer simulation the CFSsmcm sim-452

ulates a stronger MJO as shown by [Goswami et al., 2017b]. Also it is interesting to note,453

from a visual inspection of the Figures 8 and 9, that improvement in the asymmetric compo-454

nent is more prominent than the symmetric component, a feature visible for a longer simu-455

lation as well [Goswami et al., 2017b]. Although, we do not have any analyses to comment456

on the reason behind this improvement, the key may reside in better simulation of the inter-457

tropical convergence zone (ITCZ). In a pair of recent studies, Kiladis et al. [2016] and Dias458

and Kiladis [2016], the authors have presented substantial evidence to relate the existence459

of the n=0 mixed Rossby-gravity waves and the eastward inertio-gravity waves with the split460

ITCZ over the west-central Pacific. Another key feature of the TWK-spectra is the improved461

simulation of the Kelvin waves in the SMCM implemented runs compared to the default462

CFSv2 model in the back drop of the findings of Straub et al. [2010]. While analyzing a463

set of CMIP3 model outputs Straub et al. [2010] found realistic precipitation climatology464

as a possible prerequisite for simulating reasonable Kelvin waves. Improvements seen in the465

simulation of the asymmetric TWK-spectra and the Kelvin waves is consistent with the fact466

that the CFSsmcm simulated mean climate is, in fact, slightly better than that of the CFSv2467

[Goswami et al., 2017a].468

Finally, in an attempt to address the land-ocean in-homogeneity, we have simultane-469

ously used two different MTD0 values, one for land (MTD0=25) and one for ocean (MTD0=5),470

in Runs 139 and 140. Run 139 is exactly the same as Run 129 except for having two MTD0471

values. In Run 140, we tried to push the model to higher values for all the parameters. There472

is a definite improvement in the precipitation simulation in Runs 139 and 140 (Figure 4, thick473

green and purple lines). For convective organization, however Run 129 still looks the best.474

4 Discussion and Conclusion475

The implementation and calibration of the stochastic multicloud model (SMCM) con-476

vective parameterization of Khouider et al. [2010] in CFSv2 is presented here. In particular477

a thorough parameter sensitivity analysis is conducted in order to understand how the CF-478

Ssmcm coupled model responds to changes in SMCM parameters. The CFSsmcm model is479

found to be robust as the simulated mean climate appears to be resilient to small changes in480

the parameter values. Another feature noted here is that the CFSsmcm mean climate does481

not deteriorate while tuning the model for its variability, unlike many other state-of-the-art482

climate models [Waliser et al., 2003; Lin et al., 2006; Kim et al., 2011, 2012; Mauritsen483

et al., 2012]. In a survey of model tuning, Hourdin et al. [2016] states that, a specific met-484

ric targeted tuning degrades the performance of the model over some other metric.485

Kim et al. [2012] reported an improvement in the simulation of the intra-seasonal vari-486

ability, Madden-Julian oscillation (MJO), in a GCM by increasing the entrainment rate in the487

underlying mass flux-type convective parameterization. Kim et al. [2011] [and the relevant488

references therein], demonstrates that, a convection scheme can be tuned to simulate better489

intra-seasonal variability by making it sensitive to large scale moisture. A possible expla-490

nation, for this behaviour of the convective parameterization schemes can be found in Lin491

et al. [2006]. As discussed in Lin et al. [2006], a stronger moisture trigger prolongs the mois-492

ture build up for deep convection to occur. The dilemma is that the same parameterization493

changes lead to deterioration in the mean state. In CFSsmcm, the improvement in the sim-494

ulation of intra-seasonal variability and convectively coupled equatorial waves is achieved495

by tuning the strength and longevity of stratiform heating. By doing so, we are also affect-496

ing the process of moisture build up leading to deep convection, which process is taken into497

account by the design of the SMCM through congestus moisture preconditioning [Khouider498

and Majda, 2006; Khouider et al., 2010]. However, it does not deteriorate the mean climate.499

An investigation in the backdrop of this fundamental difference in tuning the sensitivity of500

the trigger to the environmental moisture between the previous studies [Lin et al., 2006; Kim501
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et al., 2011] and the CFSsmcm formulation may provide insight to processes crucial for un-502

derstanding growth of convection.503

To get the mean climate right, in CFSsmcm, the most dominant parameters, are the504

adjustment time-scales (τq , τc and τs). The model’s mean climate looks hugely biased for505

faster time-scales. However, for the time-scales obtained by calibrating the SMCM simu-506

lated precipitation, in standalone mode, with TRMM data, the mean climate looks reason-507

ably realistic. For further prolonged adjustment time-scales, the change in the mean climate508

is insignificant. In a reasonably simulated mean climate, the distribution of the mean pre-509

cipitation is found to be most sensitive to the mid-tropospheric dryness (MTD). The mid-510

tropospheric dryness has always been a key notion in the SMCM formulation [Khouider511

and Majda, 2006; Khouider et al., 2010]. The reference value of MTD (MTD0) used for512

its own normalization, is varied to control the response of the SMCM to middle troposphere513

moisture. The value of MTD0 decides how moist the middle troposphere needs to be to pro-514

mote deep convection: a low MTD0 value implies a moister environmental threshold and a515

higher value means a drier threshold. Consequently, the model yields more (less) precipita-516

tion for high (low) MTD0 values. As per our analyses, the SMCM formulation favors low517

value of MTD0, as otherwise the regions over the warm tropical oceans tend to precipitate518

too much. However, the land regions are found to be relatively lacking precipitation for low519

MTD0 values. Our analyses show that overall a low MTD0 value is more adequate, perhaps520

due to the fact that 75% of the earth surface is occupied by oceans. In an effort to find a solu-521

tion to this dilemma, a variable-MTD0 value is also tried in a couple of test runs with a high522

MTD0 value over the continents and a low MTD0 value for the oceanic regions. Few cru-523

cial improvements are noted in these variable-MTD0 runs. The precipitation climatology is524

improved, in particular, the dry bias in the simulated Indian summer monsoon rainfall is sig-525

nificantly reduced. As a consequence, the poleward migrations of convection bands over the526

Indian monsoon region has improved while the TWK-spectra remain almost unchanged. This527

is expected, as the variable-MTD0 is primarily intended to improve the mean more than the528

variability. The improvements seen in these variable-MTD0 runs compared to the univalued529

MTD0 runs, especially compared to Run 129, are promising. However, these variable-MTD0530

runs still need to be analyzed for a longer simulation.531

The simulated climate variability is found to be sensitive to the parameters responsible532

for stratiform heating strength and lifetime. The role of stratiform heating in organizing trop-533

ical convection is well appreciated in several studies [Schumacher et al., 2007; Chattopad-534

hyay et al., 2009; Kumar et al., 2016]. The SMCM also, in idealized framework, captures535

the role of stratiform heating in organizing convection [Ajayamohan et al., 2016; Deng et al.,536

2016]. Consistent with the previous studies, the simulation of the planetary scale tropical537

waves is found to be sensitive to the stratiform heating and its lifetime. For quickly decaying538

weak stratiform heating, the organization is found to be weak. Whereas, for long-lived and539

strong stratiform heating the organization is much stronger. However, excessive stratiform540

heating is also not good as it starts deteriorating the organization (Run 135). This behaviour541

of the CFSsmcm is new and different from the findings of Deng et al. [2016] and Ajayamo-542

han et al. [2016], who used an aquaplanet framework, where a long-lived and stronger strat-543

iform heating is found to favor MJO and intra-seasonal oscillations in general while a short-544

lived and moderate stratiform heating promotes synoptic scale organization such as convec-545

tively coupled Kelvin waves and monsoon depressions. However no such behavior is noted546

in CFSsmcm, based on the TWK-spectra. Among all the 140 runs none of them were found547

to favor synoptic variability at the expense of MJO unlike the aquaplanet case [Deng et al.,548

2016; Ajayamohan et al., 2016]. In this coupled setting, the MJO seems to be very resilient.549

The motivation behind this documentation was to evaluate the best possible set of550

parameters for the CFSsmcm model and gain some understanding of its sensitivity to the551

SMCM parameters. According to the analysis presented here the parameter regimes corre-552

sponding to Run 129 in Table 2 appears to be the most suitable when all the various metrics553

in sections 3a-d are weighted in. There may be some amount of uncertainty sticking to the554
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parameter values that are found to be the most suitable but the model’s resistance to slight555

changes in the parameter values makes this uncertainty insignificant. Nevertheless, as the556

model evolves further, it can be tuned more. For now, Run 129 is run for 15 years and the557

simulated climate is analyzed for the planetary-scale organization of convection Goswami558

et al. [2017a] and a more detailed account is reported in Goswami et al. [2017b].559
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