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Abstract6

Multiscale data assimilation uses a coarse-resolution forecast model to increase the
number of samples in the estimation of large-scale and long time behavior of high-
dimensional complex systems along with noisy incomplete observations. A new class of
multiscale particle filters, the multiscale clustered particle filter, is developed here as an
effective multiscale data assimilation method for capturing non-Gaussian distributions
and extreme events of high-dimensional turbulent systems using relatively few particles.
The multiscale clustered particle combines the single-scale clustered particle filter with
a general multiscale data assimilation framework that can handle mixed observations
of both the resolved and unresolved scale components. To test the multiscale data as-
similation method, we use a two-layer Lorenz system having 440 modes with important
features of turbulent systems such as non-Gaussian statistics including fat-tails and in-
termittent extreme events. The effect of the observation model error is investigated and
it is shown that the multiscale clustered particle filter captures non-Gaussian distribu-
tions using a small number of samples while an ensemble-based method fails to capture
the correct distribution.
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1. Introduction9

Data assimilation or filtering of turbulent systems is an important problem in many10

contemporary applications in science and engineering including real-time prediction of11

weather and climate as well as the spread of hazardous plumes of pollutants [1]. Data12

assimilation provides the best statistical estimate of the true signal by combining a13

numerical forecast model and noisy partial observations of the true signal. Although14

data assimilation is a well-developed discipline for low-dimensional dynamical systems15

[2], its application to turbulent systems is challenging due to the characteristics of16

turbulent systems. Turbulent systems are well-known for a high-dimensional phase17

space and a large dimensional space of instability with positive Lyapunov exponents [3].18

Also turbulent systems show extreme events and non-Gaussian features such as skewed19

or fat-tailed distributions [4, 5] as observed in nature [6, 7].20
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Turbulent systems have a wide range of spatiotemporal scales in a high-dimensional21

space and thus resolving all the active scales in a high-dimensional space is computa-22

tionally prohibitive. Especially for ensemble-based data assimilation methods [8, 9], it23

is important to use a sufficient number of ensemble to approximate the probability dis-24

tribution of the system. However, due to the high computational costs to run a forecast25

model resolving all the active scales of the system, the practical ensemble number is26

limited and insufficient due to the high computational costs to run each forecast model,27

which is called “curse of dimensionality” [10] or “curse of small ensemble size” [1].28

Therefore, it is indispensable to use low-resolution or coarse-resolution forecast models29

in data assimilation of turbulent systems to alleviate the curse of small ensemble size.30

In [11], a cheap and robust coarse-resolution forecast model called stochastic superpa-31

rameterization [12], which is 200 times cheaper than the full-resolution forecast model,32

has been successfully applied for a two-layer quasigeostrophic baroclinic turbulent flows33

with inhomogeneous statistics and zonal jets.34

Another important issue in data assimilation of high-dimensional systems is catas-35

trophic filter divergence [13, 14], which drives the filter forecast to machine infinity36

although the system remains in a bounded set (see [15] for a rigorous mathematical37

analysis of catastrophic filter divergence). The catastrophic filter divergence can occur38

when observations are sparse, infrequent and of high-quality, which are typical in many39

geophysical systems due to the vast area of the geophysical systems and expensive costs40

to increase the number of observation points. In a recent study [16], it is shown that the41

coarse-resolution forecast model, stochastic superparameterization, plays an important42

role in preventing catastrophic filter divergence.43

In the use of coarse-resolution forecast models for data assimilation of high-dimensional44

systems, the imperfect coarse-resolution models lead to several model errors. The first45

error is the forecast model error related to the numerical truncation error in modeling46

the resolved large-scale dynamics and the error from unresolved sub-grid scale inter-47

actions (see [17] for a study of the information barrier from the sub-grid scales). The48

error due to imperfect models and insufficient ensemble size often yields underestima-49

tion of the uncertainty in the forecast and thus the filter puts more confidence on the50

forecast than the information given by observations, which is the standard filter diver-51

gence. Covariance inflation [18, 19], which adds uncertainty in the forecast by inflating52

the prior covariance, and localization [20], which calibrates the overestimated corre-53

lations between observed and unobserved variables, are essential tools to remedy the54

filter divergence. In a recent study [11], the effect of covariance inflation and stochastic55

parameterization of the unresolved scales are investigated to remedy the standard filter56

divergence and imperfect model errors.57

The incorporation of a coarse-resolution forecast model for data assimilation of58

high-dimensional systems has another model error, an observation model error. The59

coarse-resolution forecast model provides predictions for only the resolved coarse scales.60

However, the observation has mixed contributions from both the resolved and unre-61

solved scales and thus there is an observation model error related to the contribution62

of the unresolved or sub-grid scales to the observation. This error has been known as63
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”representation error” or ”representative error” in the data assimilation community and64

several approaches have been developed to analyze the representation error [21].65

The general multiscale data assimilation framework in [22] addresses the issues66

related to the use of coarse-resolution forecast models for data assimilation of high-67

dimensional systems. The multiscale data assimilation framework provides the best68

statistical estimate of the resolved coarse-scale dynamics using coarse-resolution fore-69

cast models and mixed contributions from both the resolved and unresolved scales. The70

general framework uses particle filtering for the low-dimensional resolved scales while71

the unresolved scales are filtered using the standard Kalman filter formula and thus72

it is also called multiscale particle filter (see [23] for multiscale data assimilation us-73

ing the modified quasi-Gaussian closure model as a forecast model). From the general74

multiscale data assimilation framework, a simpler version of multiscale data assimila-75

tion method, an ensemble multiscale data assimilation method [24] , can be derived76

under the Gaussian assumption for the forecast and linear observations. The ensemble77

multiscale data assimilation method treats the contribution of the unresolved scales to78

the observations as representation errors. The ensemble method has been successfully79

applied for several difficult problems including one-dimensional wave turbulence with80

breaking solitons and shallow energy spectrum [24] and turbulence tracers advected by81

baroclinic turbulent flows with inhomogeneous meridional structures [25]. Another data82

assimilation method incorporating a coarse-resolution forecast model has been studied83

and investigated in [26]. However, the observations in [26] depend only on the resolved84

coarse scales while the general multiscale data assimilation framework can handle mixed85

contributions from both the resolved and unresolved scales.86

Despite the successful application of the multiscale particle filter [22] for the concep-87

tual dynamical models for turbulence [27], which has energy-conserving nonlinear inter-88

actions and mimics the interesting features of turbulent flows including non-Gaussian89

statistics and extreme events, the application of the multiscale particle filter is limited90

to low-dimensional resolved spaces. The problem is not from the multiscale data as-91

similation algorithm but from the well-known inapplicability of the standard particle92

filter for high-dimensional systems (in [28, 10], it is shown that the number of particles93

increases exponentially with the dimension of the system). The multiscale ensemble94

data assimilation method is a good workaround with successful results for several diffi-95

cult test problems mentioned above. However, the method has a difficulty in capturing96

non-Gaussian features, which are typical in turbulent systems [6, 7], using relatively few97

samples as it assumes Gaussian prior and observation error statistics.98

Recently a new class of particle filter, the clustered particle filter (CPF), has been99

developed, which can be applied for high-dimensional systems effectively [29]. CPF cap-100

tures the non-Gaussian features of high-dimensional systems using relatively few parti-101

cles compared with the standard particle filter and is robust for sparse and high-quality102

observations. The key features of CPF are coarse-grained localization through cluster-103

ing of state variables depending on the observation network and particle adjustment104

that translates forecast particles to prevent particle collapse. In this paper, we combine105

the multiscale particle filter with CPF (which we call multiscale clustered particle filter106
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(MsCPF)) to apply the multiscale data assimilation framework for high-dimensional107

resolved spaces.108

A preliminary result of the multiscale clustered particle filter applied for an one-109

dimensional wave turbulence model with Gaussian large-scale statistics is reported in110

[29]. To investigate several aspects of the multiscale data assimilation algorithm, in-111

cluding the effect of the observation model error (or representation error), we introduce112

an advective two-layer Lorenz-96 model as a test model, which contains both large- and113

small-scale advection to small-scale components. This model is a prototype model for114

slow-fast systems, which is typical, for example, in atmosphere where a slow advective115

vortical Rossby wave is coupled with fast inertia-gravity waves [30, 31]. The model has116

non-Gaussian statistics and extreme events represented by fat-tails and thus serves as117

a good test model for the multiscale data assimilation method.118

The structure of this paper is as follows. In section 2, we briefly review the standard119

and clustered particle filters and describe the main algorithm, the multiscale clustered120

particle filter. In section 3, we propose a new test model with two different scales,121

advective two-layer Lorenz-96 model and discuss test regimes with non-Gaussian statis-122

tics and instability and provides linear stability analysis of the model as a guideline. In123

section 4, we show the data assimilation prediction experiments with a superior perfor-124

mance of MsCPF in capturing non-Gaussian statistics of the true signal, followed by125

discussions and conclusions in section 5.126

2. Multiscale Clustered Particle Filter127

In this section, we explain a mathematical setup and introduce notation to describe128

the main algorithm, the multiscale clustered particle filter. After introducing the basic129

setup, we briefly review the standard particle filter [2] and the clustered particle filter130

[29], which are important to derive and understand the multiscale clustered particle131

filter algorithm.132

Throughout this paper, we consider the data assimilation of the true signal u ∈ RN133

at a discrete time (or observation time) n∆T, n ∈ N, where ∆T is the observation134

interval, whose dynamics is given by a nonlinear map ψ135

un+1 = ψ(un). (1)

As we are concerned with high-dimensional systems with turbulent behavior, the dimen-136

sion of the system, N , is assumed to be large N � 1, and ψ has chaotic characteristics137

such as a large dimensional space of instability with positive Lyapunov exponents. As138

the system is difficult to estimate and predict due to the chaotic behavior, we use ob-139

servations v = {v1, ..., vNo} ∈ RNo , No ≤ N , which are available at each observation140

time. We assume that the observation operator, H : RN → RNo is local, that is, each141

observation variable yj , depends on only the corresponding state variable at the same142

location143

v = H(u) + ξ = (h(xi1 + ξ1, h(xi2) + ξ2, ..., h(xiNo ) + ξNo) (2)
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where ξj is I.I.D. Gaussian with mean zero and variance ro. In real applications, a full144

recovery of the true state from observations is impossible due to incomplete observations;145

the observations are noisy and sparse, i.e., the number of observation No is smaller than146

the dimension of the full state N for high-dimensional systems N � 1, along with147

the nonlinear dependence of the observation on the true signal. Thus the goal of data148

assimilation is to provide the best statistical estimate combining the forecast PDF from149

a numerical prediction model and incomplete partial observations.150

The standard particle filter [2] is a well-developed discipline for filtering low-dimensional151

non-Gaussian systems using different weights for different samples (or particles) to ef-152

fectively represent the PDF of the system. Using K particles and scalar particle weights153

{wk ≥ 0, k = 1, 2, ...,K}, the standard particle filter approximates a probability density154

using the following form of PDF155

p(u) =
K∑
k

wkδ(u− uk), (3)

where δ is the Dirac delta function. In comparison with the standard Monte-Carlo156

or ensemble-based method, which uses the same weight 1
K for each sample, the stan-157

dard particle filter can represent non-Gaussian distributions more efficiently using non-158

constant particle weights for each sample. The standard particle filer shows robust159

performance in many applications in science and engineering [2]. However, its appli-160

cations are limited to low-dimensional systems as the number of particles increases161

exponentially with the dimension of the system [28, 10]; in the application of the stan-162

dard particle filter for high-dimensional systems, the standard particle filter suffers from163

particle collapse where only a small fraction of particles have the most weights while164

the rest of the particles have nearly zero weights.165

2.1. Clustered particle filter166

There are several attempts to overcome the limitation of the standard particle filter167

in the application for high-dimensional systems including the method that solves an168

optimal transport problem for the transition before the posteior to avoid the random169

sampling aspects of the standard particle filter [32], hybrid ensemble transform particle170

filter [33], and the localized particle filter [34]. Recently a new class of particle filter,171

clustered particle filter (CPF), has been proposed and it shows robust filtering per-172

formance with successful application for difficult test regimes, sparse and high-quality173

observation networks, in [29]. CPF also does not need ad-hoc tuning parameters.174

Coarse-grained localization175

The main features of the clustered particle filter are coarse-grained localization and176

particle adjustment, which enable the method to use relatively few particles to cap-177

ture non-Gaussian statistics of high-dimensional systems even with sparse and infre-178

quent observations. In the formulation of CPF, we assume that the observations are179

so sparse that each observation at different locations is uncorrelated with each other.180
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Clustered Particle Filter

Figure 1: Schematics of particle weight for the k-th particle. Total dimension is 6 and there are two
observations at u2 and u5, which yields two clusters in CPF. The standard particle filter uses the
same particle weight at different locations whereas the clustered particle filter uses different weights in
different clusters but the weights are the same in the same cluster.

Thus, if there are No observation points, CPF partitions the state vectors into No non-181

overlapping clustered {Cl, l = 1, 2, ..., No} according to the observation location. Each182

cluster, Cl, is centered at the observation point and the cluster boundary is chosen as183

the middle point of the two adjacent observation locations, which can be applied to184

irregularly spaced observation networks. For the subspace state vector of each cluster,185

uCl = {ui|ui ∈ Cl} after clustering of the state variable, each cluster uses its own clus-186

ter particle weights {wl,k} to represent the marginalized probability distribution of each187

cluster (see Figure 1 which compares the schematics of the particle weights of the stan-188

dard and the clustered particle filters for a 6 dimensional system with two observation189

points).190

To use the particle adjustment step explained later in this section, CPF considers191

only the marginalized probability distribution of each cluster192

p(uCl) =

K∑
k

wl,kδ(uCl − uXCl ). (4)

When we sequentially assimilate each observation vj (which is possible as each obser-193

vation error is spatially uncorrelated), the observation vj affects the marginalized PDF194

of the corresponding cluster Cj while the other clusters remain unaffected. From the195

forecast particle weights {wfl,k} for the cluster Cj , the posterior particle weights {waj,k}196

are given by197

ωal,k =


ωfl,kp(vj |uk)∑K
m ωfl,mp(vj |um)

l = j,

ωfl,k l 6= j.
(5)

Therefore the clustering of the state variables plays the role of coarse-grained localiza-198

tion.199

Particle adjustment200

Another important key ingredient of the clustered particle filter is the particle ad-201

justment step, which translates and shrink the forecast particles instead of reweighing202

6



when a special criterion related to the forecast statistics is satisfied. An important ob-203

servation for the standard particle filter is that the posterior statistics by combining the204

forecast statistics and observations is given by reweighing the forecast samples, which205

is a convex combination of the forecast samples. This fact implies that if the posterior206

mean cannot be represented by a convex combination of the forecast samples, it is not207

possible to represent the accurate posterior statistics using only the reweighing of the208

forecast samples. This situation can happen when the observation is of high-quality,209

i.e., the observation error variance is small and thus the observation is close to the true210

value. In that case, it is straightforward to check whether the observation can be rep-211

resented by a convex combination of the forecast samples. Otherwise, another method212

to represent the accurate posterior statistics is necessary.213

The particle adjustment step of the hard threshold version clustered particle filter214

checks whether each observation vj is in the convex hull of the forecast samples in the215

corresponding cluster Cj216

vj ∈{
K∑
k

qkH(ufCj ,k)|, ∀qk ≥ 0 such that
∑
k

qk = 1}. (6)

If (6) is not satisfied, we trigger the particle adjustment step, which updates the forecast217

samples {ufCl,k} through an adjustment matrix A (see the supporting information of [29]218

for a way to find the adjustment matrix A)219

uaCj ,k = uaCj +A(ufCj ,k − ufCj ). (7)

to match the Kalman analysis mean xaCj and covariance RaCj which are given as220

uaCj = ufCj +G(yj −HufCj ) (8)

and221

RaCj = (I −GH)RfCj (9)

respectively, where G = RfHT (HRfHT + roI)−1 is the Kalman gain matrix, ufCj =222 ∑K
k ωj,ku

f
Cj ,k

is the forecast mean and RfCj =
∑K

k ωj,k(u
f
Cj ,k
− ufCj )(u

f
Cj ,k
− ufCj )

T is223

the forecast covariance. In the particle adjustment step, the particle weights remain224

unchanged. There are other criteria to trigger particle adjustment than (6) (such as the225

soft threshold criterion in [29]). In our study, we use only the hard threshold criterion (6)226

as it shows robust results in our tests. Now we summarize the hard threshold clustered227

particle filter228

Hard Threshold Clustered Particle Filter Algorithm - one step assimila-229

tion.230

Given :231

1) No observations {v1, v2, ..., vNo}232

2) prior K particles {ufCj ,k, k = 1, 2, ...,K} and weight vectors {ωfl,k, k = 1, 2, ...,K} for233

each cluster Cl, l = 1, 2, .., Nobs234
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For vj from j = 1 to No235

If The hard threshold criterion (6) is satisfied236

Update the prior particles using (7) to match the Kalman update (8) and (9)237

Else Use particle filtering238

Update {ωfj,k} using (5)239

If Keff = 1∑
k(ω

a
l,k)

2 <
K
2240

Do resampling241

Add additional noise to the resampled particles242

uCl,Resample(k) ← uCl,Resample(k) + ε (10)

where ε is IID Gaussian noise with zero mean and variance rnoise243

End If244

End If245

End For246

Note that there is a potential issue, dynamic imbalance of CPF through the coarse-247

grained localization [35, 36]. We emphasize that we consider sparse observations where248

each observation point is uncorrelated with each other (which is typical in geophysical249

systems due to the vast area of the system). Thus the effect of dynamic imbalance250

is marginal. In our tests in section 4, we do not find any issues related to dynamic251

imbalance.252

2.2. Multiscale clustered particle filter253

The basic idea of the multiscale clustered particle filter is to use the same coarse-254

grained localization and particle adjustment as in CPF. The only difference is that the255

particle weights in each cluster are updated using the multiscale particle filer method256

[22] in each cluster.257

For the subspace state vector uCl corresponding to the cluster Cl, we assume that258

there is a decomposition of the full state vector into resolved large-scale component xCl259

and unresolved small-scale component yCl . Using this decomposition into the resolved260

and unresolved scales, the marginalized PDF of uCl is represented by the following261

conditional Gaussian mixture distribution (compare (11) with (4))262

p(uCl) =
K∑
k

wl,kδ(x− xl)N (yl(xl,k),R
′(xl,k)). (11)

where each summand is a Gaussian distribution conditional to the resolved scale xCl,k.263

Note that the interactions between the resolved and unresolved scales through the de-264

pendence of the unresolved scale PDFs on the resolved scale can make non-trivial be-265

havior including non-Gaussian distributions.266

When the observation v has the following form (which can be regarded as a Taylor267

expansion of general nonlinear observation operators around the resolved scale)268

v = H(x,y) + ξ = Hx + H′(x)y + ξ, (12)
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where H′ has rank No, the posterior marginalized distribution of uCl taking into account269

the observation vj is in the same form as the forecast PDF (see Proposition 3.1 of [22])270

and its analysis weight is given by271

wal,k =


wfl,kIk∑
k w

f
l,kIk

l = j,

wfl,k l 6= j
(13)

where Ik =
∫
p(vj |xCl,k,yCl)p(yCl |xk)dyCl .272

To trigger particle adjustment for the multiscle clustered particle filter, we use the273

hard threshold version in the observation space274

vj ∈{
K∑
k

qkH(xfCj ,k,y
f
Cj ,k

)|,∀qk ≥ 0 such that
∑
k

qk = 1}, (14)

that is, we check whether each observation is in the convex combination of the full state275

vector as the observation does not separate the resolved and unresolved scales. When276

this criterion (14) is satisfied, we trigger particle adjustment, which is the standard277

particle adjustment step (7) except that the posterior mean and covariance is given by278

(8) and (9) with an increased observation error [24, 22]279

G = RfHT (HRfHT + roI +R′)−1 (15)

accounting for the contribution from the unresolved small-scales, i.e., the representation280

error.281

Hard Threshold Multiscale Clustered Particle Filter Algorithm - one step282

assimilation.283

Given :284

1) No observations {v1, v2, ..., vNo}285

2) priorK particles {(xfCj ,k,y
f
Cj ,k

), k = 1, 2, ...,K} and weight vectors {ωfl,k, k = 1, 2, ...,K}286

for each cluster Cl, l = 1, 2, .., Nobs287

For vj from j = 1 to No288

If The hard threshold criterion (14) is satisfied289

Update the prior particles using (7) to match the Kalman update (8) and (9)290

with the Kalman gain G is given by (15)291

Else Use particle filtering292

Update {ωfj,k} using (13)293

If Keff = 1∑
k(ω

a
l,k)

2 <
K
2294

Do resampling295

Add additional noise to the resampled particles296

uCl,Resample(k) ← uCl,Resample(k) + ε (16)

where ε is IID Gaussian noise with zero mean and variance rnoise297

9



End If298

End If299

End For300

301

2.3. Multiscale ensemble filter302

As a benchmark method, we use the multiscale ensemble method [22, 24], which303

uses a Gaussian assumption for the multiscale forecast PDF. Under this assumption,304

the multiscale ensemble filter becomes the standard ensemble filter except that the305

update formula uses an increased observation variance, i.e., the representation error,306

coming from the contribution of the unresolved scales. As we believe that the qualitative307

behavior of the multiscale ensemble filter is not strongly dependent on the particular308

choice of ensemble filters, we choose the ensemble adjustment Kalman filter [37] for the309

multiscale ensemble filter (we call it Multiscale EAKF (MsEAKF) hereafter).310

3. Multiscale Dynamical Systems with Non-Gaussianity and Extreme Events311

: A Paradigm Model312

A preliminary result of the multiscale clustered particle filter is reported in [29] with313

a successful application of the multiscale CPF for an one-dimensional wave turbulence314

model with breaking solitons and shallow energy spectrum but with a Gaussian dis-315

tribution. Here we propose a multiscale turbulence model with interesting features of316

geophysical turbulence flows such as non-Gaussian statistics and extreme events to test317

the multiscale data assmilation method.318

Our test model, which we call advective two-layer Lorenz-96 model, is given by the319

following two-layer coupled Lorenz-96 system320

dxi
dt

= xi−1(xi+1 − xi−2) + λ1

J∑
j=1

yi,j − d1xi + F, i = 1, 2, ..., I

dyi,j
dt

=
aLxi + aSyi,j+1

ε
(yi,j−1 − yi,j+2)− λ2xi − d2yi,j , j = 1, 2, ..., J

(17)

where xi is periodic in i and yi,j is periodic in both i and j. This model is characterized321

by two sets of variables, slow-climate variable x = {xi} of size I and fast-weather322

variable y = {yi,j} of size IJ . Here ε > 0 is an explicit time-scale separation parameter,323

F is an external slow forcing (which is constant in our study), λ1 and λ2 (which are324

not necessarily equal) are coupling parameters, and d1 > 0 and d2 > 0 are damping325

coefficients to stabilize the system. For the fast variable y, there are large- and small-326

scale advection corresponding to the terms aL and aS respectively, which yields the327

slow-fast system when aL = 0.328

In our study, we fix I = 40 and J = 10 so that there are 440 variables in total329

(40 xi’s and 400 yi,j ’s). Note that when λ1 = 0, the equation of xi is the standard330

Lorenz-96 model designed to mimic baroclinic turbulence in the midlatitude atmosphere331
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with energy-conserving nonlinear advection and dissipation [38, 3]. As the coupling332

parameters are set to nonzero values (λ1 6= 0, λ2 6= 0), this model problem is a good test333

model for filtering slow variables influenced by fast variables, which is crucial for the334

problems of medium-range weather prediction that is given by both the slow advective335

wave and the slowly varying envelope of the fast gravity waves. Note that without336

damping (d1 = d2 = 0) and no large-scale advection to the small-scale (aL = 0) along337

with the same coupling parameters λ1 = λ2, this equation becomes the inviscid full338

Lorenz-96 model designed to study high skill prediction using FDT in [39].339

3.1. Linear stability340

To find interesting test regimes with extreme events and intermittency, which are341

represented by non-Gaussian fat-tails, we use the linear stability analysis of the model.342

First we consider the equation for the stationary homogeneous solution, xi = x and343

yij = y. As this solution has no spatial dependence, the equation of the homogeneous344

solution becomes345

dx

dt
= λ1Jy − d1x+ F = 0 (18)

dy

dt
= −λ2x− d2y = 0, (19)

which yields346

x =
F

d1− λ1λ2J/d2
, y =

λ2
d2
x. (20)

If we denote the perturbations of xi and yij around the steady state by x′i and y′ij
respectively so that

xi = x+ x′i and yij = y + y′ij ,

the equations of x′i and y′ij are given by347

dx′i
dt

= (x+ x′i)(x
′
i+1 − x′i−2) + λ1

∑
j

y′ij − d1x′i (21)

dy′ij
dt

= (aL(x+ x′i) + aS(y + y′ij))(y
′
ij−1 − y′ij+2)− λ2x′i − d2y′ij (22)

To check the linear stability, we linearize (21) and (22) and obtain348

dx′i
dt

= x(x′i+1 − x′i−2) + λ1
∑
j

y′ij − d1x′i

dy′ij
dt

= (aLx+ aSy)(y′ij−1 − y′ij+2)− λ2x′i − d2y′ij

(23)

Now we define Yj as the average of y′ij over j

Yi :=
1

J

∑
j

y′ij .
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By summing the second equation of (23) over j and divide it by J , we obtain the349

following system350

dx′i
dt

= x(x′i+1 − x′i−2) + λ1
∑
j

y′ij − d1x′i

dYi
dt

= −λ2x′i − d2Yi

(24)

Using Fourier series expansions of x′i =
∑

k x̂
′
k exp(2πikiI ) and Yi =

∑
k Ŷk exp(2πikiI ),351

plug them in (24), which yields the following equations for the Fourier coefficients352

d

dt

(
x̂′k
Ŷk

)
= A

(
x̂′k
Ŷk

)
=

(
x(exp(2πikI )− exp(−4πik

I ))− d1 λ1J
−λ2 −d2

)(
x̂′k
Ŷk

)
(25)

The real and imaginary parts of the matrix A are given by353

<(A) =

(
x(cos(2πkI )− cos(4πkI ))− d1 λ1J

−λ2 −d2

)
, (26)

and354

=(A) =

(
x(sin(2πkI ) + sin(4πkI ))− d1 0

0 0

)
(27)

respectively. Note that the real and imaginary parts commute and thus the linear355

stability is related to the eigenvalues of the real part matrix (26). For simplicity, we use356

the following notations for the components of the real part matrix357

a11 = x(cos(
2πk

I
)− cos(

4πk

I
))− d1,

a12 = λ1J,

a21 = −λ2,
a22 = −d2.

(28)

If the discriminant of the characteristic function of the real part matrix358

D := (a11 + a22)
2 − 4(a11a22 + a12a21) (29)

is positive there are two real eigenvalues. In this case, the condition for one positive
and one negative eigenvalues is

a11a22 − a12a21 < 0

that is,359

λ1λ2J

d2
< x(cos(

2πk

I
)− cos(

4πk

I
))− d1. (30)
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On the other hand, the condition for two positive eigenvalues for linear instability is

a11 + a22 > 0 and a11a22 − a12a21 > 0

that is,360

λ1λ2J

d2
> x(cos(

2πk

I
)− cos(

4πk

I
))− d1 > d2 (31)

If D is negative (or zero), the eigenvalues are complex (or repeated real) and thus361

the condition for a positive real part of the eigenvalues (or positive repeated real), which362

guarantee linear instability, becomes363

a11 + a22 > 0. (32)

In addition to the linear stability analysis of xi and the local average of yij , Yi, we364

check the linear stability analysis of yij conditional to xi. If we assume that there is365

time scale separation between x′i and y′ij , that is, x′i can be assumed to be constant366

compared with y′ij , we can check the linear stability of y′ij directly from the second367

equation of (23). For fixed x′i (and i), we use the Fourier series expansion of y′ij =368

−λ2x′i
d2

+
∑

m ŷ
′
m exp(2πimjJ ) (where the first term

−λ2x′i
d2

is the steady state solution to369

the second equation of (23)) and plug it into the second equation of (23), which yields370

d

dt
ŷ′m =

(
(aLx+ aSy)(exp(−2πim

J
)− exp(

4πim

J
))− d2

)
ŷ′m. (33)

Thus ŷ′m is linearly unstable when371

<
(

(aLx+ aSy)(exp(−2πim

J
)− exp(

4πim

J
))− d2

)
=

(
(aLx+ aSy)(cos(

2πm

J
)− cos(

4πm

J
))− d2

)
> 0

(34)

3.2. Three parameter regimes372

Depending on the presence of the large-scale and small-scale advection to the small-373

scale variable, we consider three parameter regimes. For each combination of advection,374

the other parameters are chosen to make instability in the system of xi and yij (23) or the375

system of xi and Yi (24) (see Table 1 for the parameters of each regime). For the slow-fast376

system case, where (aL = 0, aS = 1), λ1 and λ2 are equal and thus the interaction terms377

conserve the energy. This regime is a slow-fast system, which is typical in geophysical378

systems, for example, in atmosphere where a slow advective vortical Rossby wave is379

coupled with fast inertia-gravity waves [30, 31]. It is straightforward to check that the380

discriminant (29) is negative and thus the real part matrix has two complex eigenvalues.381

Further analysis shows that the real part of these complex numbers are negative and382

thus the linearized xi and Yi system is stable. However, if we assume that there is383

time-scale separation between xi and yij , which is true for this system (see Table 2 for384
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Slow-fast system Strongly chaotic Weakly chaotic

aL 0 1 1
aS 1 1 0
F 1 5 5
λ1 -3 1/4 1/4
λ2 -3 -1 -1
d1 0.01 1 1.5
d2 0.1 2 2.5
ε 0.1 1 1

Table 1: Three parameter regimes of the test model (17). I and J are fixed at 10 and 40 respectively.

Figure 2: Slow-fast system. Linear stability of yij by assuming scale-separation between xi and yij (34)
. Wavenumber 2 is linearly unstable. Solid line : y(cos( 2πm

J
) − cos( 4πm

J
)). Dash line : d2.

the decorrelation times of xi and yij), the linear stability analysis of yij (34) shows that385

yij is unstable (Figure 2 shows linearly unstable modes of yij for fixed i). Note that386

in this regime, only a small number of fast waves corresponding to wavenumber 2 are387

unstable.388

When λ1 > 0 and λ2 < 0 (strongly chaotic and weakly chaotic cases), the discrim-389

inant (29) is positive and thus the system is unstable when (30) or (31) are satisfied.390

Figure 3 shows linearly unstable modes of the xi and Yi system (marked with blue391

circles) of the strongly chaotic and weakly chaotic cases. In the weakly chaotic regime,392

for low wavenumber k, the system of xi and Yi is unstable with one positive eigenvalue393

for the real part matrix of the linearized equation. In the strongly chaotic regime, low394

wavenumbers except 7-10 are unstable. Note that the eigenvector of (24) is a linear395

combination of xi and Yi. If we assume that there is time-scale separation between xi396

and yij , the linear stability of yij (34) implies yij is linearly stable.397

Table 2 shows the climatological properties of the three regimes. For the slow-fast398

and the strongly chaotic regimes, there are strongly non-Gaussian features (non-zero399

skewness and kurtosis away from 3). In the weakly chaotic regime, the decorrelation400

times of xi and yij are inverted (yij has a longer decorrelation time than that of xi)401

while the slow-fast and the strongly chaotic regimes have correct orders for decorrelation402

times; the presence of the small-scale advection makes the signal decorrelate rapidly in403
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(a) Strongly chaotic (b) Weakly chaotic

Figure 3: Strongly chaotic and weakly chaotic cases. Linear stability of xi and Yi = 1
J

∑
j yij . Unstable

wavenumbers are marked with squares while stable wavenumbers are marked with crosses. Solid line :
x(cos( 2πk

I
) − cos( 4πk

I
)) − d1. Dash-dot line : d2. Dash line : λ1λ2J/d2

Slow-fast system Strongly chaotic Weakly chaotic

xi yij xi yij xi yij
mean 0.022 0.033 1.69 -0.04 2.01 0.80

variance 0.009 0.021 5.71 6.80 8.51 0.75
skewness 0.261 -0.139 -0.02 -0.89 0.18 0.38
kurtosis 7.421 3.914 2.57 6.93 2.40 2.68

corr length ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1
corr time 1.91 0.88 0.92 0.22 2.93 3.52

Table 2: Climatological properties of the system (17).

time.404

Space-time diagrams of xi and yij for all regimes are shown in Figure 4. In the405

slow-fast system case, there are random standing waves for x with intermittent local406

bursts and y is strongly mixing with no significant spatial structure. In the strongly407

chaotic case, x has westward moving waves and y has local bursts following the pattern408

of the moving waves of x. In the weakly chaotic case, there are breaking waves while409

y has local bursts corresponding to the pattern of x. Thus all three regimes have410

characteristics of turbulent flows, from strongly turbulent to weakly turbulent along411

with extreme events.412

As a qualitative measure of non-Gaussian statistics, the stationary state PDFs of413

xi + yij , xi and yij of all regimes are shown in Figure 5 along with the Gaussian fits to414

the true. The top row of each figure shows the PDFs in log-scale (note that the log-415

scale of a Gaussian distribution is a parabola) while the bottom row of the figure shows416

the PDF without scaling. In all regimes, we can check that the system has strongly417

non-Gaussian statistics with fat-tails, which imply local extreme events.418

Figure 6 shows the time series of xi and yij at a grid point, i = 2 and j = 5. In419

the slow-fast system case, x2 shows strong intermittency and y2,5 has intermittent fast420

oscillation when there is intermittency in x2. In the strongly and weakly chaotic cases,421

y2,5 shows intermittent local bursts explaining the fat-tails of yij .422

Another important statistical property of the turbulent system for data assimilation423

is decorrelation times and spatial correlation lengths. In Figure 7, the autocorrelation424
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(a) Slow-fast system

(b) Strongly chaotic

(c) Weakly chaotic

Figure 4: Space-time diagrams of x and y of the advective two-layer Lorenz-96 model (17) for all
regimes.

functions and spatial correlation functions are shown to analyze the decorrelation time425

and spatial correlation length. Except Regime 3, the decorrelation time of xi is longer426

than that of yij , which are physical for slow-climate variable xi and fast-weather variable427
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(a) Slow-fast system

(b) Strongly chaotic

(c) Weakly chaotic

Figure 5: Stationary state PDFs of xi + yij , xi and yij . Log-scale (top) and without scaling (bottom).
Dash lines are Gaussian fits. Note that the log-scale of a Gaussian distribution is a parabola.

yij . Also, the spatial correlation length is less than 1 spatial grid point and thus all428

regimes are difficult test models for multiscale data assimilation.429
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(a) Slow-fast system

(b) Strongly chaotic

(c) Weakly chaotic

Figure 6: Time series at a grid point, x2 and y2,5

4. Numerical Experiments for Data Assimilation and Prediction using the430

Multiscale Particle Filter431

In this study, we are interested in the effect of the observation model error, i.e. the432

representation error, on the forecast skill for complex systems (see [11] for the study433
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(a) Slow-fast system

(b) Strongly chaotic

(c) Weakly chaotic

Figure 7: Autocorrelation (left) and spatial-correlation (right) functions of xi (top) and yij (bottom)

of the effect of forecast model errors on the filter performance). To minimize the ef-434

fect from the forecast model error, we use the perfect model as the forecast model.435

In the multiscale data assimilation setup, it is important to estimate the small-scale436

variance R′(xl,k) for each large-scale variable. In our experiments, we approximate the437
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Figure 8: Slow-fast system. Time-averaged forecast RMS errors as functions of covariance inflation
level. MsCPF (left) and MsEAKF (right). 20 observations.

small-scale covariance as a diagonal matrix whose diagonal components are given by438

the variance of {yij} for each i. The original multiscale data assimilation framework439

provides a method to update the small-scale variables. However, this update is com-440

putationally expensive in real applications. Therefore, we update only the large-scale441

variables using the multiscale data assimilation method while the small-scale variables442

remain unchanged. This approximation is not optimal as it ignores information for the443

small-scale variables and thus there is an information barrier to get the optimal result.444

Although this is an interesting research topic, we do not investigate the barrier in the445

current study.446

4.1. Experiment setup447

We test the multiscale clustered particle filter (MsCPF) and the multiscale ensemble448

adjustment filter (MsEAKF) for the advective two-layer Lorenz 96 model. We first449

consider the expriments for the slow-fast and the strongly chaotic regimes. In each450

experiment, the true signal is given by one realization of the model. Both the true model451

and the forecast model use the same time integration method, the Euler-Maruyama452

method with a time step 10−3. To mimic the incomplete partial observations in real453

applications, we test two scenarios, 40 full observations and 20 uniformly distributed454

observations that are available for each even i. Each observation component vj directly455

observes the sum of xj and yj,5456

vj = xj + yj,5 + ξi, ξi : iid random noise (35)

which has contributions from both the large-scale and the small-scale variables where457

the fifth component of yij contributes to the observation for each i. The observation458

interval varies from 0.1 to 0.8 for the slow-fast system case and from 0.05 to 0.1 for459

the strongly chaotic case, which are frequent compared with the decorrelation times460

of the large-scale variables in each regime. Observation error variance is only 1% of461

the total variance; however, the contribution from the unresolved small-scale variables,462

i.e., the representation error, is more than 50% of the total variance. Thus recovering463

accurate estimation and prediction skill for the resolved large-scale is difficult for both464

test regimes.465
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In each test, we run 5000 cycles and use the last 3000 cycles to measure the filter466

performance. Both MsCPF and MsEAKF use 50 samples and EAKF uses covariance467

localization using the smooth localization function by Gaspari and Cohn [40]. As the468

large-scale variable has a short decorrelation length (see Figure 7 and Table 2), we469

use a localization radius 2 that affects only the adjacent state variables. Covariance470

inflation plays an important role in recovering filter skill in the presence of model and471

sampling error [18, 19, 11]. In our multiscale data assimilation test, the covariance472

inflation plays no significant role in improving the filter performance. For the slow-fast473

system case, we tested several inflation levels and compare the time-averaged forecast474

RMS erros (Figure 8 shows the time-averaged forecast RMS errors as functions of the475

inflation level for both methods). Except the MsEAKF using a small inflation level and476

marginal gain, covariance inflation degrades the filter performance for both MsCpF and477

MsEAKF. Thus, the covariance inflation is not utilized in our tests.478

4.2. Data Assimilation and Prediction479

4.2.1. Slow-fast system regime480

The slow-fast system system is typical in geophysical systems such as the atmosphere481

system where a slow advective vortical Rossby wave is coupled with fast inertia-gravity482

waves [30, 31]. Also more than two thirds of the total variance is carried by the un-483

resolved small-scale variables, which is a difficult test problem for data assimilation as484

the unresolved small-scale variable plays an role of additional observation error in the485

estimation of xi (i.e., the representation error).486

As a quantitative path-wise measure, we check the RMS error of the forecast es-487

timates. Figure 9 shows the time series of forecast RMS errors with 20 observations488

and observation time 0.1 by MsCPF and MsEAKF along with two benchmark values.489

The dash line is the climatological error given by the standard deviation of the resolved490

scale xi, which is the error when we use the steady state mean. The other line, dash-491

dot line, is the effective observation error, which is the square root of the unresolved492

small-scale variance in addition to the raw observation error variance, which accounts493

for the representation error from the unresolved scale variables. From the figure, both494

MsCPF and MsEAKF have RMS errors staying below the climatological error except495

intermittent times, which shows filter skill from the noisy observational data both from496

the raw instrumental observation error and the unresolved scale error. Table 3 shows the497

time-averaged RMS errors and pattern correlation in parenthesis for several observation498

times and 40 full and 20 partial observations. As the observation time increases and499

the observation number decreases, the RMS error increases. However both methods are500

comparable and the RMS errors are smaller than the climatological error, which show501

filter skill.502

One of the important measures in filtering high-dimensional systems is the recovery503

of the true PDF, which assess the lack of information in the filtered estimation and504

prediction. The RMS error and pattern correlation, which are path-wise measures of505

filter performance and are related to the Shannon entropy and the mutual information506

in information theory [3], fail to assess the lack of information in the filter estimates507
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Figure 9: Slow-fast system. Time series of x-estimation RMS errors by MsCPF (blue) and MsEAKF
(red). 20 observations and observation time 0.1. Dash line : climatological error. Dash-dot line :
effective observation error.

40 observations 20 observations

obs time MsCPF MsEAKF MsCPF MsEAKF

0.1 0.061 (0.781) 0.061 (0.758) 0.079 (0.467) 0.078 (0.451)
0.3 0.062 (0.727) 0.060 (0.736) 0.080 (0.453) 0.078 (0.449)
0.5 0.072 (0.633) 0.069 (0.643) 0.085 (0.413) 0.085 (0.421)
0.8 0.075 (0.600) 0.071 (0.606) 0.087 (0.397) 0.085 (0.406)

Table 3: Slow-fast system. Time averaged RMS errors and pattern correlation in parenthesis. Clima-
tological error is 0.095. Effective observation error is 0.145.

and the predicted states [41, 42]. It is shown in [42] that two filtered trajectories with508

disparate amplitudes can have the same RMS error and pattern correlation. Especially509

in complex high-dimensional systems, which show extreme events and non-Gaussian510

statistics, it is important to quantify the ability of filters in capturing extreme events511

and non-Gaussian statistics. Figure 10 shows the climatological PDFs ((a) in log-scale512

and (b) without scaling) of the forecast estimates of xi. The true PDF of xi shows513

a strongly non-Gaussian PDF with fat-tails (see Figure 10 (a)). Both MsCPF and514

MsEAKF have fat-tails but MsCPF has a better fit to the true PDF than MsEAKF.515

From the PDFs without scaling (Figure 10 (b)), we can check more significant difference516

between MsCPF and MsEAKF; MsCPF has a comparable PDF with the true PDF with517

marginal misfit but MsEAKF has a very sharp peak and shallow tails with significant518

misfit from the true PDF.519

The relative entropy, which is also called Kullback-Leibler divergence in probability520

theory and information theory, is defined as follows521

P(π, πfilter) =

∫
π(x) ln

π(x)

πfilter(x)
dx (36)

where π(x) and πfilter(x) are the true and filtered forecast PDFs of x respectively. The522

relative entropy measures the lack of information in estimating the true PDF π using523

the filtered forecast PDF πfilter and this has been successfully applied in quantifying524

the filter performance in several contexts [5, 43]. Note that if we have πfilter = π the525
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(a) in log-scale (b) without scaling

Figure 10: Slow-fast system. Forecast PDFs of x by MsCPF (blue) and MsEAKF (red) along with the
true value (black). Dash-line is the Gaussian fit to the true PDF. 20 observations

relative entropy is 0 and a large value means much lack of information of the filtered526

PDF. The forecast relatively entropy using the forecast PDFs by MsCPF and MsEAKF527

are shown in Table 4 for 40 and 20 observations and observation times from 0.1 to 0.8.528

As we use the forecast PDFs for the relative entropy, a smaller relative entropy means529

better prediction and forecast skill than a larger relative entropy. As expected from530

the recovery of the true PDF, the forecast relative entropy of MsCPF is smaller than531

one of MsEAKF, the relative entropy of MsEAKF is about four times larger than that532

of MsCPF. As the number of observations and the observation interval increase, the533

lack of information in the forecast filter estimate increases, that is, the relative entropy534

increases. However, the ratio between MsCPF and MsEAKF does not change.

40 observations 20 observations

obs time MsCPF MsEAKF MsCPF MsEAKF

0.1 0.0365 0.1647 0.0398 0.1701
0.3 0.0383 0.1783 0.0403 0.1795
0.5 0.0410 0.1812 0.0421 0.1819
0.8 0.0437 0.1841 0.0438 0.1881

Table 4: Slow-fast system. Forecast relative entropy using the forecast estimate PDFs by MsCPF and
MsEAKF.

535

The filer performance between MsCPF and MsEAKF in capturing the non-Gaussian536

statistics also can be investigated from the time series of the forecast estimate of x10537

shown in Figure 11. The true value of x10 stays bounded but it shows amplified fast538

oscillations extreme events beginning from time 2100. Both methods capture the be-539

ginning of fast oscillations; however the amplitude of MsEAKF is less than half of the540

true amplitude at time around 2700 while MsCPF has a comparable amplitude of the541

true value, which explains the narrower tail bounds of MsEAKF and the sharp peak in542

the forecast PDF of xi (Figure 10).543
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Figure 11: Slow-fast system. Time series of x10 forecast estimates (left) and forecast error (right) by
MsCPF and MsEAKF. 20 observations

Figure 12: Strongly chaotic case. Time series of x-estimation RMS errors by MsCPF (blue) and
MsEAKF (red). Dash line : climatological error. Dash-dot line : effective observation error.

4.2.2. Strongly chaotic regime544

We now investigate the filter performance of MsCPF and MsEAKF applied for the545

second test regime, which has both the large- and small-scale advection to the small-546

scale dynamics (aL 6= 0, aS 6= 0). The westward moving waves seen in xi is typical in547

the midlatitude atmosphere, i.e., the Rossby waves and xi has non-Gaussian statistics,548

which is of our interest to recover using the multiscale data assimilation method.549

As in Slow-fast system, we compare the filter performance using the path-wise mea-550

sures, RMS error and pattern correlation. Figure 12 shows the forecast estimate RMS551

errors of xi as a function of time (the blue line is MsCPF and the red line is MsEAKF552

along with the climatological error (dash line) and the effective observation error (dash-553

dot line)). Both methods have filter skill and have comparable RMS errors that are554

smaller than both the climatological and the effective observation errors. Table 5 shows555

the time averaged forecast RMS errors and pattern correlations in parenthesis for fre-556

quent observation times 0.05 and 0.1 and 40 full and 20 sparse observations. Sparse557

observation and long observation time degrade the filter performance but both methods558

show skillful filter performance with RMS errors smaller than the climatological error559

along with pattern correlations larger than 88% and 73% for 40 and 20 observations560
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respectively.

40 observations 20 observations

obs time MsCPF MsEAKF MsCPF MsEAKF

0.05 1.12 (0.885) 1.17 (0.896) 1.66 (0.747) 1.67 (0.747)
0.10 1.17 (0.879) 1.21 (0.890) 1.76 (0.732) 1.79 (0.731)

Table 5: Strongly chaotic case. Time averaged RMS errors and pattern correlation in parenthesis.
Climatological error is 2.39. Effective observation error is 2.620.

561

In the slow-fast system, the filter performance between MsCPF and MsEAKF is562

observed in quantifying the lack of information in the filter estimates and the predicted563

states, that is, the recovery of the true PDF. The climatological PDFs of the forecast564

estimates of xi by both methods along with the true PDF are shown in Figure 13. In565

the log-scale plot (Figure 13 (a)), we can check that the forecast PDF of MsCPF is on566

top of the true PDF, which has sub-Gaussian tails. On the other hand, the PDF of the567

ensemble-based method, MsEAKF, is a Gaussian fit to the true PDF. Without scaling,568

we can check more significant performance difference between MsCPF and MsEAKF.569

In Figure 13 (b), the PDF of MsCPF is on top of the true PDF capturing the non-570

symmetric peak of the true PDF. However, the PDF of MsEAKF fails to capture the571

non-symmetric peak of the true PDF.

(a) in log-scale (b) without scaling

Figure 13: Strongly chaotic case. Forecast PDFs of x by MsCPF (blue) and MsEAKF (red) along with
the true value (black). Dash-line is the Gaussian fit to the true PDF.

572

As in the slow-fast system, the forecast relatively entropy using the forecast estimate573

PDFs by MsCPF and MsEAKF are shown in Table 6, which measure the prediction574

skill and the lack of information in the forecast. The lack of information in the forecast575

prediction is much larger for MsEAKF; the forecast relatively entropy of MsCPF is576

about four times smaller than the relative entropy of MsEAKF. This result implies that577

the filter prediction can have significant performance difference in quantifying the un-578

certainty although they have comparable performance measured by path-wise measures579

such as the RMS error and pattern correlation [17, 43].580

The space-time diagrams of the forecast estimates of xi along with the true xi are581

shown in Figure 14. Both methods have wave patterns comparable to the true state582

however the wave of MsEAKF has artificial local intermittency (for example, check the583
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40 observations 20 observations

obs time MsCPF MsEAKF MsCPF MsEAKF

0.05 0.0016 0.0069 0.0018 0.0078
0.10 0.0018 0.0072 0.0019 0.0089

Table 6: Strongly chaotic case. Forecast relative entropy using the forecast estimate PDFs by MsCPF
and MsEAKF.

time around 350). This comparison also shows that there is no significant evidence of584

dynamic imbalance in MsCPF although MsCPF uses the coarse-grained localization.585

As another qualitative measure of filter performance, Figure 15 shows the time series

Figure 14: Snapshots of the forecast estimates of x by MsCPF (middle) and MsEAKF (right) along
with the true value (left)

586

of x10. At the 3320th and 3430th cycles, MsCPF captures the correct local peaks but587

the ensemble-based multiscale filter fails to capture the comparable peaks.

Figure 15: Strongly chaotic case. Time series of x10 forecast estimates by MsCPF (top) and MsEAKF
(bottom) along with the true value.

588

4.3. Weakly chaotic regime : prediction of the large-scale of yij589

In the previous two test regimes, we were interested in the estimation and prediction590

of the slow resolved variable xi, which has a longer decorrelation time than the one of591
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yij . In the weakly chaotic regime, the decorrelation times of xi and yij are reversed592

and thus it is a non-physical and uninteresting test to predict xi instead of yij as the593

unresolved yij is easier to predict than xi and thus this setup is not a typical situation of594

data assimilation in real applications. In this section, we change the role of xi and yij ,595

that is, we compare the multiscale filtering methods in the estimation and prediction of596

yij instead of xi.597

More precisely, we use the following observation v = {v1, v2, ..., vj}598

vj = xj + Yj + ξi, ξi : iid random noise (37)

where Yj is the local average of yij599

Yj =
1

J

∑
j

yij (38)

so that there are equal number of variables for xi and Yi. This setup is not artificial600

but pratical in that in real applications, many observations have collective information601

of different locations or variables such as radiation information from satellites [44].602

This coupled observation test and its mathematical analysis has already been studied603

in Chapter 7 of [1]. Our experiment setup is comparable to the setup in [1] but our604

test in this study is different from them as we test computationally efficient and cheap605

multiscale data assimilation methods instead of single-scale standard data assimilation606

methods.607

Except the new observation operator (37), the other setup parameters are the same608

as in the previous two tests. We test 40 and 20 full and sparse observations with frequent609

observation intervals 0.05 and 0.10. Observation error variance is only 1% of the total610

variance and thus most of the observation error comes from the unresolved scale, i.e.,611

the representation error. Both MsCPF and MsEAKF use 50 samples and run 5000612

assimilation cycles and use the last 3000 cycles to measure the filter performance.613

4.3.1. Data assimilation and prediction in the weakly chaotic regime614

The time series of the forecast RMS errors by MsCPF (blue) and MsEAKF (red)615

with 20 observations and an observation interval 0.05 are shown in Figure 16 along with616

the climatological (dash) and effective observation (dash-dot) errors. In contrast to the617

previous two test regimes, there is significant performance difference in the RMS error,618

a path-wise filter measure; the RMS error of MsCPF stays below the climatological619

error, which shows significant filter skill but the RMS error of MsEAKF is larger than620

the climatological error without any filter skill. For other test scenarios (40 observations621

and an observation interval 0.10), the time averaged RMS errors and pattern correlations622

are shown in Table 7. For all possible observation scenarios, the RMS errors of MsCPF623

is at least 30% less than the climatological error while MsEAKF has errors larger than624

the climatological error. Regarding the forecast pattern correlations, which explains625

how much of the spatial variation is explained by the forecast, the pattern correlations626
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Figure 16: Weakly chaotic case. Time series of forecast Y -estimation RMS errors by MsCPF (blue) and
MsEAKF (red). Dash line : climatological error. Dash-dot line : effective observation error.

40 observations 20 observations

obs time MsCPF MsEAKF MsCPF MsEAKF

0.05 0.52 (0.90) 1.30 (0.64) 0.55 (0.83) 1.46 (0.52)
0.10 0.54 (0.87) 1.32 (0.63) 0.61 (0.81) 1.53 (0.50)

Table 7: Weakly chaotic case. Time averaged RMS errors and pattern correlation in parenthesis.
Climatological error is 0.844. Effective observation error is 2.900.

of MsCPF is at least 80% but the forecast pattern correlation of MsEAKF is less than627

65% for all scenarios and is marginally above 50% for the toughest test scenario.628

Next we consider the recovery of the true PDF using the forecast estimates and the629

relative entropy to assess the lack of information in the forecast estimates and predic-630

tions. The forecast PDFs of Yi (blue : MsCPF, red : MsEAKF) using 20 observations631

and an observation time 0.05 along with the true PDF of Yi (black) are shown in Fig-632

ure 17. The PDF of MsCPF captures the comparable variance and shape of the true633

PDF although it is not on the top of the true PDF compared to the previous two test634

regimes. In contrary, the PDF of MsEAKF has a too large variance compared to the635

true PDF. This result shows that forecast using MsEAKF is inadequate as it provides636

incorrect weights on large deviated values while MsCPF has comparable weights to the637

true PDF. As a quantitative measure of the lack of information, the relative entropy for

(a) in log-scale (b) without scaling

Figure 17: Weakly chaotic case. Forecast PDFs of x by MsCPF (blue) and MsEAKF (red) along with
the true value (black). Dash-line is the Gaussian fit to the true PDF.

638

several scenarios are shown in Table 8. As discussed before, a smaller relative entropy639
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40 observations 20 observations

obs time MsCPF MsEAKF MsCPF MsEAKF

0.05 0.1631 0.3024 0.1787 0.4328
0.10 0.1791 0.3234 0.1891 0.4523

Table 8: Weakly chaotic case. Forecast relative entropy using the forecast estimate PDFs by MsCPF
and MsEAKF.

implies a better prediction or less lack of information. In comparison between MsCPF640

and MsEAKF, it is obvious that MsCPF has a superior prediction skill with relative641

entropies half of those of MsEAKF. As the number of observation decreases or the ob-642

servation interval increases, the relative entropy decreases, which implies performance643

degradation. However, the relative entropies of MsEAKF never becomes smaller than644

those of MsCPF.645

5. Conclusions646

In the data assimilation of high-dimensional complex systems such as turbulent647

geophysical systems, it is indispensable to use coarse-resolution forecast models as it648

is computationally prohibitive to resolve all active spatiotemporal scales. To mitigate649

the problem related to the incorporation of coarse-resolution forecast models, i.e., mixed650

contributions from both the resolved and unresolved scales, we have proposed and tested651

the multiscale clustered particle filter (MsCPF). MsCPF follows the single-scale clus-652

tered particle filter [29] that use coarse-grained localization and particle adjustment653

while the update in each cluster follows the general multiscale particle filter [22] instead654

of the standard particle filter update.655

To test the multiscale algorithm under effect of the observation model error, we656

proposed and developed an advective two-layer Lorenz-96 system. Using several com-657

bination of large- and small-scale advection on the small-scale equation, the model can658

mimic several different test regimes including the standard slow-fast system that is typ-659

ical in atmosphere where a slow advective vortical Rossby wave is coupled with fast660

inertia-gravity waves. All different regimes we considered in this study have impor-661

tant features of turbulent systems such as non-Gaussian statistics including fat-tails662

and intermittent extreme events. The multiscale clustered particle filter shows robust663

skill in recovering the true non-Gaussian PDF using a relatively few particles while664

an ensemble-based method fails to capture the non-Gaussian feature. In the weakly665

chaotic test regime with collective observation of the slow variables, which mimics one666

of the difficult test scenario in real-applications such as radiation observation from satel-667

lites, MsCPF shows superior performance to the ensemble based multiscale methods,668

MsEAKF, in both the path-wise measure, RMS errors and pattern correlations and the669

information theoretic measure, recovery of true PDF and relative entropy.670

In this study, we focused on the investigation of the effect of the observation model671

error, which is indispensable in the multiscale data assimilation as the forecast model672
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provides only the resolved large-scale components. For this purpose, only the perfect673

forecast model has been tested in our study to minimize the error from the forecast674

model error, which is another important factor for filter performance. Thus it is natural675

to extend the current study to the investigation of the forecast model error, especially676

from the coarse-resolution model error. Also we believe that the information barrier677

related to the ignored small-scale update in our study could hinder further performance678

improvement of the multiscale clustered particle filter. In the near future, we plan to679

investigate the effects of the information barrier and the forecast model error on the680

multiscale filter performance.681
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