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ABSTRACT

We assess the predictability of the Monsoon Intraseasonal Oscillations (MIS-
Os) as measured by precipitation. A recent advanced nonlinear time series
technique, Nonlinear Laplacian Spectral Analysis, is applied directly to the
daily rainfall data without any preliminary detrending or spatiotemporal fil-
tering to define two spatial modes associated with the MISO. The time series of
these two modes are highly intermittent with large variation in amplitude from
year to year in the boreal summer season. Then a recent systematic strategy
for data driven physics constrained low-order stochastic modeling is applied to
these time series. The result is a four dimensional nonlinear stochastic model
for the two observed MISO variables as well as two hidden variables involv-
ing correlated multiplicative noise defined through energy conserving nonlinear
interaction. Systematic calibration and prediction experiments with the nonlin-
ear stochastic model show that the precipitation MISO indices can be skillfully
predicted 20 to 50 days in advance and the ensemble spread in the forecast
model is an accurate indicator of forecast uncertainty at long lead times. Then
an effective and practical spatiotemporal reconstruction algorithm is developed,
which shows the predicted spatiotemporal patterns have comparable skill as the
MISO indices. It is also found that a 3-year short training period is sufficient
for the model to describe the essential characteristics of the MISO and retain
skillful predictions. In addition, outgoing longwave radiation is shown to be a
good proxy for monsoon intraseasonal precipitation and the lagged embedding

window size is crucial to reaching unbiased MISO indices.
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1. Introduction

Monsoon Intraseasonal Oscillation (MISO) (Kikuchi et al. 2012; Lee et al. 2013; Sikka and
Gadgil 1980; Goswami and Mohan 2001; Lau and Waliser 2011; Webster et al. 1998) is one of
the prominent modes of tropical intraseasonal variability. As a slow moving planetary scale en-
velope of convection propagating northeastward, it is strongly associated with the boreal summer
monsoon rainfall over south Asia. Due to the interaction with the mean monsoon circulation and
other modes of tropical variability, the propagating characteristics of the MISO are more complex
compared with the eastward-propagating Madden-Julian Oscillation (MJO) (Zhang 2005). The
MISO plays an important role in determining the onset and demise of the Indian summer mon-
soon as well as affecting the rainfall over the Indian subcontinent (Murakami et al. 1986; Goswami
and Mohan 2001; Goswami et al. 2003; Gadgil 2003). Therefore, the extended range prediction
of MISO phases and real-time monitoring of the MISO have large societal impacts (Sahai et al.
2013; Abhilash et al. 2014a).

Several indices have been proposed for real-time monitoring and forecast of the MISO. The
Indian Institute of Tropical Meteorology (IITM) relies on an index based on extended empirical
orthogonal function (EEOF) analysis on longitudinal averaged daily rainfall anomalies for extend-
ed range prediction of MISO (Suhas et al. 2013; Sahai et al. 2013; Abhilash et al. 2014a). Another
well-known MISO index (Lee et al. 2013) mimics that for the real-time multivariate MJO (RM-
M) index (Wheeler and Hendon 2004), and is based on the multivariate EOF analysis of daily
anomalies of the zonal wind at 850h Pa and outgoing long-wave radiation (OLR). Other MISO
indices (Kikuchi et al. 2012; Goswami et al. 1999) are based on similar EOF and EEOF tech-
niques. These covariance-based approaches in general capture the spatiotemporal MISO patterns

reasonably well and isolate the northeastward-propagating intraseasonal periodicity band from
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high-frequency band (Suhas et al. 2013; Abhilash et al. 2014a,b). Yet, the seasonal extraction and
longitudinal averaging in computing these indices are sometimes ad hoc and can potentially lead
to loss of predictive information or mixing with other modes. In addition, these covariance-based
techniques have potential inadequacy in capturing the rare/extreme events in complex nonlinear
dynamics (Crommelin and Majda 2004) which have significant societal and economic impacts.
Recently (Sabeerali et al. 2017), a new MISO index based on the Nonlinear Laplacian Spectral
Analysis (NLSA) (Giannakis and Majda 2012b,a) technique was developed. NLSA is a non-
linear data analysis technique that combines ideas from lagged embedding (Packard et al. 1980;
Sauer et al. 1991), machine learning (Coifman and Lafon 2006; Belkin and Niyogi 2003), adap-
tive weights and spectral entropy criteria to extract spatiotemporal modes of variability from high-
dimensional time series. These modes are computed utilizing the eigenfunctions of a discrete
Laplace-Beltrami operator, which can be thought of as a local analog of the temporal covariance
matrix employed in EOF and EEOF techniques, but adapted to the nonlinear geometry of data gen-
erated by complex dynamical systems. A key advantage of NLSA over classical covariance-based
techniques is that NLSA by design requires no ad hoc detrending or spatiotemporal filtering of the
full data set and captures both intermittency and low frequency variability (Giannakis and Majda
2012a,b, 2013; Giannakis et al. 2012). Therefore, the NLSA-based MISO index provides an ob-
jective identification of the MISO patterns in noisy precipitation data. In addition, as reported in
Sabeerali et al. (2017), the NLSA MISO modes have higher memory and predictability, stronger
amplitude and higher fractional explained variance over the western Pacific, Western Ghats, and
adjoining Arabian Sea regions, and more realistic representation of the regional heat sources over
the Indian and Pacific Oceans compared with those extracted via EEOF analysis. Other applica-

tions of NLSA beyond the capability of EOF and EEOF in capturing both the intermittent and
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low-frequent modes in climate, atmosphere and ocean can be found in Székely et al. (2016a,b);
Slawinska and Giannakis (2016); Giannakis and Majda (2012a, 2011); Brenowitz et al. (2016).

In this article, we assess the predictability of the MISO as measured through precipitation. A
recent systematic strategy for data driven physics constrained low-order stochastic modeling of
time series (Majda and Harlim 2013; Harlim et al. 2014) is applied to the two-dimensional MISO
indices from NLSA (Sabeerali et al. 2017). The result is a four dimensional nonlinear stochastic
model for the two MISO variables and two hidden variables. This low-order model involves
correlated multiplicative noise defined through energy conserving nonlinear interactions between
the observed and hidden variables as well as additive stochastic noise. The special structure of
this nonlinear stochastic model allows effective data assimilation algorithm for determining the
initial ensemble of the hidden variables that facilitates the ensemble prediction scheme. This
nonlinear low-order stochastic model has been shown to have significant skill for determining the
predictability limits of the large-scale cloud patterns of both the boreal winter MJO and boreal
summer intraseasonal oscillations (Chen et al. 2014; Chen and Majda 2015a) as well as improving
the prediction skill of the RMM indices (Chen and Majda 2015b). Then with the predicted MISO
indices in hand, an effective and practical spatiotemporal reconstruction algorithm is developed,
which overcomes the fundamental difficulty in most data decomposition techniques with lagged
embedding that require extra information beyond the predicted time series in the future.

The remainder of this article is organized as follows. Section 2 describes the precipitation dataset
and the MISO indices obtained from the NLSA technique. Section 3 presents the physics con-
strained low-order nonlinear stochastic model as well as the calibration and the effective prediction
algorithm. The results of predicting the MISO indices are reported in Section 4 and the predic-
tion of the spatiotemporal reconstructed patterns are shown in Section 5. Section 6 discusses the

possibility of shortening the training period to only 3 years and then illustrates the discrepancy



113

114

115

116

17

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

in forming the MISO indices with different lagged embedding sizes. Summary conclusions are

included in Section 7.

2. The Precipitation MISO Indices from NLSA

The dataset utilized here is the daily Global Precipitation Climatology Project (GPCP) rainfall
data (Huffman et al. 2001) over the Asian summer monsoon region (20°S-30°N, 30°E-140°E) for
period 1997-2014. The spatial resolution of this dataset is 1°x 1, amounting to d = 5500 grid
points for the Asian summer monsoon region.

NLSA is applied to the daily GPCP dataset with a lagged embedding window of ¢ = 64 days, an
ideal choice for the intraseasonal time scale. A variety of extended spatial precipitation patterns
emerge from the analysis but the focus here is on the two spatial patterns associated with MISO
with time series depicted in Figure 1. The details of applying NLSA to daily GPCP dataset have
already been described in Sabeerali et al. (2017) and are thus omitted here. It is evident from
Figure 1 that these patterns are active in boreal summer and quiescent in boreal winter. It was
shown in Sabeerali et al. (2017) that the NLSA MISO modes display the characteristic pattern of
northeastward propagating anomalies associated with the MISO. A case study there also revealed
three consecutive MISO events in the NLSA MISO modes in the boreal summer of 2004, the
onset and demise phases of which are highly consistent with observations. These facts indicate
that the time series depicted in Figure 1 give a reasonable representation of the full life cycle of the
northward propagating boreal summer convection band and can be utilized to determine the phase
and amplitude of the poleward-propagating rainfall anomalies associated with the MISO. Below,

we utilize the terminology, MISO indices, for the two time series in Figure 1.
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3. The Low-Order Nonlinear Stochastic Model

Denote by u; and u, the two components, MISO 1 and MSIO 2, depicted in Figure 1. The
probability distribution functions (PDFs) for u; and u; are highly non-Gaussian with fat tails
that indicate the temporal intermittency in the large scale precipitation patterns associated with
the MSIO. The following family of low-order stochastic models are proposed to describe the

intermittent variability of the time series u; and uy:

duq

7 (—dyur +y(v+v(t)us — (a+ o) up) + 6, Wy, (1a)
d .
% = (—dyuy +y(v+vp(t)) uz + (a+ @y) uy) + o, Wy, (1b)

dv 9 .

7 (=dyv—y(uy+u3))+ o, W,, (Ic)
dw, .

Fraie (—dpwy) + 6 We, (1d)

where
Vf(t) :fo+f,sin(a)ft+¢). 2)

In (1), u; and u, are the two observed MISO variables while v and ®, are hidden unobserved
variables which represent the stochastic damping and stochastic phase, respectively. In (1),
Wi, , Wy, , W, and W,, are independent white noise. The time periodic damping in the equations
in (1a) and (1b) is utilized to crudely model the active summer season and the quiescent winter
season in the seasonal cycle. The hidden variables v, @, interact with the observed MISO vari-
ables u1,uy through energy conserving nonlinear interactions following the systematic physics
constrained nonlinear regression strategies for time series developed recently (Majda and Harlim
2013; Harlim et al. 2014). The energy-conserving nonlinearity is easily seen by multiplying (1a)—
(1d) by uy,u>,v and w,, respectively, and then these equations sum up. The energy change in the

quadratic nonlinear terms cancels with each other and thus the energy due to the nonlinear inter-
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action is conserved. The low-order stochastic nonlinear models in (1) are fundamentally different
from those utilized earlier (Kondrashov et al. 2013; Kravtsov et al. 2005) which allow for nonlinear
interactions only between the observed variables u,u> and only special linear interactions with
layers of hidden variables. The physics constrained nonlinear low-order stochastic model (1)—(2)
has been shown to have significant skill for determining the predictability limits of the large-scale
cloud patterns of both the boreal winter MJO and boreal summer intraseasonal oscillations (Chen
et al. 2014; Chen and Majda 2015a) as well as improving the prediction skill of the RMM in-
dices by incorporating a new information-theoretic strategy in the training phase (Chen and Majda

2015b).

a. Calibration of the Nonlinear Stochastic Model

The parameters of the stochastic model in (1)—(2) are calibrated by fitting the highly non-
Gaussian PDFs and autocorrelations of the two MISO variables u1,u, in the training period from
1998 to 2007 as shown in Figure 1. Table 1 records the optimal parameter values while Figure 2
displays the skill of the stochastic model with these parameters in recovering the statistics of the
two MISO indices. Panels (a) and (b) show that the stochastic model succeeds in capturing the
autocorrelations almost perfectly for a three-month duration and even the wiggles that appear with
lags around one year. Panel (c) shows that the stochastic model captures the highly non-Gaussian
fat-tailed PDF of the two MISO indices due to intermittency. Panel (d) shows that the power
spectrum of the two MISO indices from the data and those from the stochastic model match very
well. The optimal parameters in the stochastic model from Table 1 have been determined by sys-
tematically minimizing the information distance of the equilibrium PDF of the stochastic model

compared with that of the actual data (Majda and Gershgorin 2010, 2011). Details are present-
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ed in the Appendix A. Importantly, the model statistics are robust with respect to the parameter

variations around these optimal values (See Appendix A).

b. Prediction Algorithm and Data Assimilation of the Hidden Variables

The ensemble prediction algorithm is applied to the nonlinear low-order stochastic model (1) for
predicting the MISO time series. The algorithm involves running the forecast model (1) forward
in time given the initial values. The initial data of the two state variables U = (u,u,) are obtained
directly from the observations, i.e., MISO 1 and MISO 2 indices. The more important and chal-
lenging issue is to determine the initial ensemble of the two hidden variables I" = (v, @,). To this
end, an active data assimilation algorithm is incorporated into the ensemble forecasting scheme.

The estimates of the hidden parameters I' = (v, ®,) during the training period and initialization
of these parameters during the prediction phase exploit the special structure of the nonlinear low-
order stochastic model (1). The equations in (1) are a conditional Gaussian system with respect
to the observations U = (u],u;), meaning that once u; and u are given the time evolution of the
distributions of I = (v, ,) is Gaussian. Such special feature of (1) allows the closed analytic
equations for the conditional Gaussian distributions of the hidden parameters I = (v, @, ) obtained
from the posterior estimations in the Bayesian framework (Liptser and Shiryaev 2001). Appendix
B contains the details and explicit equations. We utilize this fact to construct an initial ensemble
for forecasting at each time instant in both the training and prediction phases for ¢ € [tg,11,...,1]

in the following way.

1. Starting from a “burn in” time 7_ earlier than 7o with arbitrary initial conditions for I, solve the
associated analytic formula (B2) until time 7y to obtain the conditional Gaussian distribution
po(I'[U(fp)). The initial ensemble of the hidden variables I = (v, ,) for prediction starting

from ¢( is drawn from this distribution.

10
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2. The initial ensemble for prediction starting from the next time ¢, is drawn from p; (I'|U(#)),
where p;(['|U(#;)) is solved by running the analytic formula (B2) forward from time # to #;

with initial value po(I'|U(7)).

3. Following the same procedure, the initial distributions of the hidden variables I" = (v, w,) for
prediction starting from each time ¢; are obtained “on the fly” by running the analytic formula
(B2) forward from time #;_; to #; with initial value p; | (I'|U(#;—1)) when the new observations

up to U(#;) are available.

In the prediction below with (1), we use N ensemble members with N = 50.

4. Results of Predicting the MISO indices

With the optimal parameters from Table 1 and the ensemble initialization scheme described in
Section 3b, the prediction skill of the stochastic model in (1) for the six year prediction period from
year 2008 to 2013 is presented here. The skill scores of ensemble mean prediction as a function
of lead time (days) in different years are shown in Figure 3 and the comparison of the ensemble
mean prediction and the truth at lead times of 15 and 25 days for MISO 1 index for all six years
are shown in Figure 4. Here, the skill scores adopted are the root-mean-squared (RMS) error and

pattern correlation (Corr):

d\2 predy\o
re Zn: ui —ut"’ + (U2 u
RMS error(U;, U d):\/ o (e — )2 o (s — ] ))7

n

d
Er (] o )
pred predy\o ’
\/Zt 1 ”1t+”2t \/Zt 1 (uz,t ))

pred _  pred  pred
U (ult U )

Corr(U,, U =

where 7 is the number of the points in the time series, and U; = (u , u27,) and
are the truth and predicted time series, respectively. It is shown in Figures 3 and 4 that the 15 day

predictions are very skillful and even the 25 day predictions have highly significant skill in most

11
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years. Among different years, year 2010 has useful predictions for about 20 days while year 2011
and 2013 have skillful predictions around 25-30 days. In year 2008, 2009 and 2012, there is a
significant prediction skill out to more than 50 days. Here, useful predictions are defined by 1)
the RMS error in the prediction is less than the standard deviation of the truth at the equilibrium
and 2) the pattern correlation between the predicted signal and the truth is above 0.5. Importantly,
the prediction here yields a significantly higher skill than the conventional EEOF based indices
(Suhas et al. 2013).

Both the phase and amplitude of MISO activity play important roles in determining the pre-
diction skill in different years. For example, year 2008 has an overall strong and regular MISO
activity during the whole monsoon season that results in a long predictability, while the signal to
noise ratio in year 2010 is smaller than other years and thus the predictability is greatly affected.
Note that although year 2009 is a drought year with weak MISO activity during the late monsoon
season (September), the MISO activity in other months of 2009 boreal summer remains strong
and the overall prediction skill is high. From the limited sample size (12 years) of our analyis, it is
hard to derive relationship between predictability of MISO and interannual variability of monsoon.
However, it appears that the drought years do not necessarily have low predictability.

In addition to the ensemble mean prediction, the ensemble spread that indicates the predictive
uncertainty is another important indicator of the prediction skill. Figure 5 shows the ensemble
predictions including the ensemble spread for the six years, beginning at three different dates:
April 1, June 1 and October 1. It is clear from Figure 1 that April 1 is a time at the transition
between the quiescent phase and the active phase of the MISO indices; June 1 is a starting date in
the active mature phase while October 1 is a starting date in the decaying phase of MISO activity.
As shown in Figure 5, the ensemble mean predictions for the April 1 starting date do not have any

long range skill but the ensemble spread automatically predicts this lack of skill and the envelope
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of the ensemble predictions contains the true signal for all years and forecast times including the
return to skill in the winter quiescent phase. The forecasts from June 1 obviously have skill from
both the mean and ensemble spread for all years for moderate to long lead times. The forecasts
starting from October 1 have both an accurate mean and small ensemble spread for all six years
and for very long times.

It is easy to perform twin prediction experiments with the perfect nonlinear stochastic model
in (1)—(2) where 10 year training segments of the data generated from the model are utilized to
make 6 year forecasts. It is significant that this internal prediction skill of the stochastic model is
comparable to its skill in predicting the MISO indices from observations (not shown here). This
lends support to the fact that the nonlinear stochastic model in (1)—(2) can accurately determine

the predictability limits of the two MISO indices in Figure 1.

5. The Spatiotemporal Reconstruction

With the predicted MISO indices in hand, the final step is to recover the spatiotemporal MISO

patterns in physical space. This requires the combination of time series and spatial bases.

a. Method

Let z; be an d-dimensional vector of gridded precipitation values over the South Asia monsoon
region at time i. Here, i is an integer ranging from 1 to n, representing the period of training
phase. The first step in NLSA is to construct a higher-dimensional, time lagged embedding dataset

utilizing Takens’ method of delay. Denote g be the lagged embedding window size. Then the

13
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lagged embedding matrix can be written as

21 22 Tt Zn-2g+1 1 22 t AN—g+1  IN—g+2 IN-1
4) 3t In2g42 2 3t IN-g+2  IN-g+3 IN+1
X = : S : = : SRS : : , (3)
-1 I Zn—g-1 -1 Zg ot IN-d “ INg-3  IN+g-2
g Zg+1 Zn—q g Zg+1 IN+1 ©tt ZN+g-2  ZN+4g-1

where N =n—2g+ 1. Note that ¢ in (3) is actually dq but d is omitted here for notation simplicity.
Although the lagged embedding matrix X in (3) is formed by the raw observational data, the matrix
associated with each eigenmode, such as the annual mode, semi-annual mode and MISO mode,
after the spatiotemporal reconstruction has essentially the same structure, except that the g entries
that are represented by the same z; in (3) may have different values. Therefore, averaging over
these ¢ entries finalizes the reconstruction of z;. From now on, X represents the lagged embedding
matrix containing only the MISO mode. Note that, since zy,...,z,—1 and zy1,...,2v¢—1 appear
less than g times in (3), recovering these components requires a longer observational period.

The relationship between the spatiotemporal representation X, the time series (i.e., indices) ¢

and the spatial basis A is simply given by
X =AdT, 4)

where -7 stands for the transpose. Clearly, with the predicted MISO indices in hand, the recon-
struction (4) is easily achieved as long as A is able to be reached in the predicted phase. Different
from the 2-Dimensional time series that is predicted by the low-order models, it is a challenge
to describe and predict the exact evolution of the high-dimensional spatial basis A. Therefore,
approximations are typically included in developing A in the predicted phases. Below, the spatial
basis A utilized for prediction is assumed to be a constant matrix that is completely determined in

the training phase. Note that the stationary assumption of A is in general not necessary and may
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even result in some errors in the spatiotemporal reconstruction for nonlinear data. Nevertheless,
adopting a constant matrix A greatly reduces the computational cost and facilitates an effective
and practical prediction algorithm as will be demonstrated soon. As will be shown at the end of
this section, the approximated reconstruction with such a constant spatial basis is actually highly
consistent with the truth. In Section 6d, one alternative of creating a non-stationary spatial basis
will be briefly discussed and compared with the method proposed in this section.

In light of both X and & in the training period, the spatial pattern A according to (4) is given by

A=cXP, with ¢ = (&)

(115

Then a natural way of performing the spatiotemporal reconstruction of the predicted MISO pat-
terns is to multiply A obtained from (5) by the predicted MISO indices. Denote X/ and &/ the

spatiotemporal pattern and indices in the prediction period. The following relation is reached:

A-[®;@7] = [X;X7], (6)

where we ignore the transpose in ® and ®/ for notation simplicity.

However, as is shown in Appendix C, the fundamental barrier for the direct method (6) to be-
come practical is that in order to obtain the spatiotemporal patterns at s lead days, the prediction
of the time series up to s+ ¢ days is required (Comeau et al. 2016). For example, in the prediction
of MISO, reconstructing the spatiotemporal pattern for the next day requires the prediction of time
series up to the next 65 days! In fact, to reach the last zy as shown in (3), the information up to
IN+¢—1 18 required.

One remedy to overcome such difficulty is to switch the extra future information as required in

the time series @ to that in the spatial basis A by calculating a “predicted spatial basis” A in the

15
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training phase. This A is obtained by taking advantage of a new lagged embedding matrix X,

Zq Zq+l ot in—q
~ Zg+1  Zg+2 " Zn—q+l
X = ; (7
Q2g—-1 22 Zn—1

which is just g — 1 units shift forward in time with respect to X in (3). Similar as A, a new spatial

pattern A is formed by

A=cX, with ¢ = (8)

P[>
Replacing A by A in (6) leads to

A-[@;07] = [X,X7]. ©)

As shown in Appendix C, with (9), reconstructing the spatiotemporal patterns at s days in the future
requires only the prediction of the time series for s days. Since A is completely determined in the
training period that involves only straightforward calculations, the formula in (9) is an effective

and practical method for predicting the spatiotemporal patterns.

b. Prediction of the Spatial-Temporal Reconstructed Precipitation Fields

Figure 6 includes three phase diagrams of the MISO indices, each containing a length of one-
month period. The corresponding predictions, starting from the first day of each period and lasting
for 30 days, is also included. Among the three periods, a significant skillful prediction is found for
July 2009 while the prediction skill of June 2008 is moderate. The true signal of June 2013 has
a weak amplitude and the corresponding prediction is far from the truth. Below, the prediction of
spatiotemporal patterns based on the improved method (9) is demonstrated, where the ensemble

mean of prediction is utilized for spatiotemporal reconstruction.
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The skill scores of the predicted spatiotemporal patterns for each of the three periods are shown
in Figure 7. Consistent with the MISO indices, July 2009 has the highest prediction skill and
the useful prediction lasts for 40 days. On the other hand, a higher pattern correlation is found
in predicting the spatiotemporal patterns of June 2008 than that of June 2013, where the useful
prediction of June 2008 is up to around 22 days. Note that, different from predicting the MISO
indices, the skill scores of predicting the spatiotemporal pattern do not decrease monotonically
as a function of lead time. This is due to the stationary approximation of the spatial basis A
in the prediction period. In addition, this averaged spatial basis may also lead to the amplitude
underestimation in the predicted spatiotemporal reconstruction. A direct remedy is to compute the
ratio of ||A|| and ||A|| in the training period and multiply this constant ratio in prediction. In fact,
the value of ||A|| decreases with the increases in ¢ value. This is because the correlation between
the spatial basis and the time series that with a phase lag becomes weaker when the lag increases.

Figures 8 and 9 compare the truth and the predicted spatiotemporal patterns of July 2009 and
June 2008, respectively. The predicted patterns for the whole July 2009 are highly consistent
with the truth, especially in the regions of Indian subcontinent and Bay of Bengal. On the other
hand, despite the skillful prediction up to 20 days lead time, significant errors in the spatiotem-
poral patterns appear for longer time predictions of June 2008 due to the failure in predicting the
precipitation in regions such as the Indian Ocean.

To understand the approximated error in A, the true spatiotemporal patterns from NLSA, which
is validated in Sabeerali et al. (2017), and the approximated patterns based on A® for July 2009
are compared in the first two rows of Figure 10. Note that the truth of & is adopted here to exclude
the error in the prediction of the time series. Despite the stationary approximation in creating the

spatial basis A, the time series ® from NLSA remains highly nonlinear and intermittent. Clearly,
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the approximated patterns are remarkably consistent with the truth, where the non-Gaussian and

intermittent features in the spatiotemporal patterns are both retained to a high extent.

6. Discussions

a. Prediction with a 3-year short training period

A typical situation in climate science is that only a short period of observational data is avail-
able. This actually leads to one of the fundamental difficulties in prediction utilizing most non-
parametric methods that require a huge amount of data for training. Suitable models that are
able to describe essential characteristics of the data are usually preferred since they allow a much
shorter training period. Recall in previous sections, 10 years of observations (1998-2007) were
adopted for model calibration and the prediction skill were assessed for the remaining 6 years
(2008-2013). Although this 10-year training window is already much shorter than that required
by most non-parametric methods, it is important to understand whether an even shorter training
period is possible here for the nonlinear model to obtain the information in nature.

To this end, a very short training period involving only the first three years of the time series
(1998-2000) is adopted here for model calibration. Figure 11 compares the statistics of the MISO
time series with different lengths, including this short 3-year training period (1998-2000), the
10-year training period adopted in previous sections (1998-2007) and the full MISO period (1998-
2013). The fact that the statistics of the 10-year training period and the full MISO period almost
perfectly match each other indicates the sufficiency of the 10-year training period in obtaining
the unbiased information. On the other hand, the 3-year training period, including one weak
year (1998), one moderate year (1999) and one strong year (2000) of MISO activity, also has

highly consistent statistics with those associated with the full MISO time series, including the
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non-Gaussian fat-tailed PDFs, the power spectrums and the autocorrelations up to 1.5 months.
Therefore, the information of the full MISO indices are well reflected in this short 3-year training
period. Due to the robustness of the model parameters (Appendix A), the calibrated parameters
based on this 3-year short training period are nearly the same as the optimal parameters shown
in Table 1. Importantly, this short training period allows the study of prediction skill for a long
period back to year 2001 and the results are roughly reported here.

Figure 12 shows the skill scores and the predicted signals based on the ensemble mean prediction
from year 2001 to 2007, analogous to those in Figure 3 and 4 from year 2008 to 2013. The useful
prediction of these 7 years all exceeds 25 days, where in particular the skillful predictions in year
2001, 2003 and 2007 are more than 40 days. Among these 7 years, year 2002 and 2004 are
recorded as drought years. A significant error is found in predicting the subdued MISO activity
during August and September of year 2002, which explains its lower overall prediction skill than
most of the other years. On the other hand, despite being a drought year, MISO activity during
2004 is persistently strong throughout the boreal summer. The major error in predicting MISO
indices of year 2004 is in fact due to the model’s failure in capturing the extremely slow oscillation
frequency during August and September.

We have also check the model statistics and prediction skill by utilizing any three consecutive
years between 1998-2013 as the training phase. Despite the discrepancy in the signal variance
due to the strength of MISO activity in different years, the fat tails in the non-Gaussian PDFs,
the peak of the power spectrums and the autorrelations up to 1.5 months all resemble those of
the full MISO time series. Importantly, the ensemble prediction skill does not have significant

deterioration based on different training periods.
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b. MISO indices based on different lagged embedding window sizes and the corresponding pre-

diction skill

Recall that the two MISO indices shown in Figure 1 and studied throughout this article were
obtained by applying NLSA to the precipitation data with a lagged embedding window of length
q = 64 days. Adopting g = 64 is natural since it is an ideal choice for representing the intraseasonal
time scale and such lagged embedding window size was utilized for defining the large-scale cloud
patterns of the MJO and monsoon in previous works (Chen et al. 2014; Chen and Majda 2015b,a;
Tung et al. 2014). On the other hand, EEOF was also widely utilized in defining the MISO indices
in literature (Suhas et al. 2013; Kikuchi et al. 2012), which involves removing the climatological
mean, first a few harmonics of the seasonal cycle and then applying a much shorter embedding
window with 15-20 days. Therefore, it is important to study the difference in the MISO indices by
applying NLSA with different lagged embedding window sizes.

Figure 13 shows the resulting MISO indices by applying NLSA with ¢ = 64,48 and 34 as well
as the corresponding statistics. Different from ¢ = 64, the MISO indices with ¢ = 48 and 34
have active phases in both boreal summer and winter, implying that the obtained MISO indices
contain the components of the boreal winter MJO, and the associated PDFs are nearly Gaussian.
In addition to being polluted by the boreal winter signal, these time series, especially with g = 34,
also contain bi-annual, annual and semi-annual cycles, as indicated by the large bursts in the low-
frequent band of the power spectrum. Another significant discrepancy with different g values
lies in the causality between the two components of the MISO indices. With g = 64, the cross-
correlation functions have significant peaks at lags around 12 days, which is nearly 1/4 of the
averaged oscillation frequency and indicates the quadrature structure of MISO 1 and MISO 2. On

the other hand, the cross-correlations Ry» () and Ry (¢) with ¢ = 48 and ¢ = 34 remain close to
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zero, and the maximum value of the lagged correlation between MISO 1 and M