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ABSTRACT

We assess the predictability of the Monsoon Intraseasonal Oscillations (MIS-

Os) as measured by precipitation. A recent advanced nonlinear time series

technique, Nonlinear Laplacian Spectral Analysis, is applied directly to the

daily rainfall data without any preliminary detrending or spatiotemporal fil-

tering to define two spatial modes associated with the MISO. The time series of

these two modes are highly intermittent with large variation in amplitude from

year to year in the boreal summer season. Then a recent systematic strategy

for data driven physics constrained low-order stochastic modeling is applied to

these time series. The result is a four dimensional nonlinear stochastic model

for the two observed MISO variables as well as two hidden variables involv-

ing correlated multiplicative noise defined through energy conserving nonlinear

interaction. Systematic calibration and prediction experiments with the nonlin-

ear stochastic model show that the precipitation MISO indices can be skillfully

predicted 20 to 50 days in advance and the ensemble spread in the forecast

model is an accurate indicator of forecast uncertainty at long lead times. Then

an effective and practical spatiotemporal reconstruction algorithm is developed,

which shows the predicted spatiotemporal patterns have comparable skill as the

MISO indices. It is also found that a 3-year short training period is sufficient

for the model to describe the essential characteristics of the MISO and retain

skillful predictions. In addition, outgoing longwave radiation is shown to be a

good proxy for monsoon intraseasonal precipitation and the lagged embedding

window size is crucial to reaching unbiased MISO indices.
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1. Introduction43

Monsoon Intraseasonal Oscillation (MISO) (Kikuchi et al. 2012; Lee et al. 2013; Sikka and44

Gadgil 1980; Goswami and Mohan 2001; Lau and Waliser 2011; Webster et al. 1998) is one of45

the prominent modes of tropical intraseasonal variability. As a slow moving planetary scale en-46

velope of convection propagating northeastward, it is strongly associated with the boreal summer47

monsoon rainfall over south Asia. Due to the interaction with the mean monsoon circulation and48

other modes of tropical variability, the propagating characteristics of the MISO are more complex49

compared with the eastward-propagating Madden-Julian Oscillation (MJO) (Zhang 2005). The50

MISO plays an important role in determining the onset and demise of the Indian summer mon-51

soon as well as affecting the rainfall over the Indian subcontinent (Murakami et al. 1986; Goswami52

and Mohan 2001; Goswami et al. 2003; Gadgil 2003). Therefore, the extended range prediction53

of MISO phases and real-time monitoring of the MISO have large societal impacts (Sahai et al.54

2013; Abhilash et al. 2014a).55

Several indices have been proposed for real-time monitoring and forecast of the MISO. The56

Indian Institute of Tropical Meteorology (IITM) relies on an index based on extended empirical57

orthogonal function (EEOF) analysis on longitudinal averaged daily rainfall anomalies for extend-58

ed range prediction of MISO (Suhas et al. 2013; Sahai et al. 2013; Abhilash et al. 2014a). Another59

well-known MISO index (Lee et al. 2013) mimics that for the real-time multivariate MJO (RM-60

M) index (Wheeler and Hendon 2004), and is based on the multivariate EOF analysis of daily61

anomalies of the zonal wind at 850h Pa and outgoing long-wave radiation (OLR). Other MISO62

indices (Kikuchi et al. 2012; Goswami et al. 1999) are based on similar EOF and EEOF tech-63

niques. These covariance-based approaches in general capture the spatiotemporal MISO patterns64

reasonably well and isolate the northeastward-propagating intraseasonal periodicity band from65
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high-frequency band (Suhas et al. 2013; Abhilash et al. 2014a,b). Yet, the seasonal extraction and66

longitudinal averaging in computing these indices are sometimes ad hoc and can potentially lead67

to loss of predictive information or mixing with other modes. In addition, these covariance-based68

techniques have potential inadequacy in capturing the rare/extreme events in complex nonlinear69

dynamics (Crommelin and Majda 2004) which have significant societal and economic impacts.70

Recently (Sabeerali et al. 2017), a new MISO index based on the Nonlinear Laplacian Spectral71

Analysis (NLSA) (Giannakis and Majda 2012b,a) technique was developed. NLSA is a non-72

linear data analysis technique that combines ideas from lagged embedding (Packard et al. 1980;73

Sauer et al. 1991), machine learning (Coifman and Lafon 2006; Belkin and Niyogi 2003), adap-74

tive weights and spectral entropy criteria to extract spatiotemporal modes of variability from high-75

dimensional time series. These modes are computed utilizing the eigenfunctions of a discrete76

Laplace-Beltrami operator, which can be thought of as a local analog of the temporal covariance77

matrix employed in EOF and EEOF techniques, but adapted to the nonlinear geometry of data gen-78

erated by complex dynamical systems. A key advantage of NLSA over classical covariance-based79

techniques is that NLSA by design requires no ad hoc detrending or spatiotemporal filtering of the80

full data set and captures both intermittency and low frequency variability (Giannakis and Majda81

2012a,b, 2013; Giannakis et al. 2012). Therefore, the NLSA-based MISO index provides an ob-82

jective identification of the MISO patterns in noisy precipitation data. In addition, as reported in83

Sabeerali et al. (2017), the NLSA MISO modes have higher memory and predictability, stronger84

amplitude and higher fractional explained variance over the western Pacific, Western Ghats, and85

adjoining Arabian Sea regions, and more realistic representation of the regional heat sources over86

the Indian and Pacific Oceans compared with those extracted via EEOF analysis. Other applica-87

tions of NLSA beyond the capability of EOF and EEOF in capturing both the intermittent and88
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low-frequent modes in climate, atmosphere and ocean can be found in Székely et al. (2016a,b);89

Slawinska and Giannakis (2016); Giannakis and Majda (2012a, 2011); Brenowitz et al. (2016).90

In this article, we assess the predictability of the MISO as measured through precipitation. A91

recent systematic strategy for data driven physics constrained low-order stochastic modeling of92

time series (Majda and Harlim 2013; Harlim et al. 2014) is applied to the two-dimensional MISO93

indices from NLSA (Sabeerali et al. 2017). The result is a four dimensional nonlinear stochastic94

model for the two MISO variables and two hidden variables. This low-order model involves95

correlated multiplicative noise defined through energy conserving nonlinear interactions between96

the observed and hidden variables as well as additive stochastic noise. The special structure of97

this nonlinear stochastic model allows effective data assimilation algorithm for determining the98

initial ensemble of the hidden variables that facilitates the ensemble prediction scheme. This99

nonlinear low-order stochastic model has been shown to have significant skill for determining the100

predictability limits of the large-scale cloud patterns of both the boreal winter MJO and boreal101

summer intraseasonal oscillations (Chen et al. 2014; Chen and Majda 2015a) as well as improving102

the prediction skill of the RMM indices (Chen and Majda 2015b). Then with the predicted MISO103

indices in hand, an effective and practical spatiotemporal reconstruction algorithm is developed,104

which overcomes the fundamental difficulty in most data decomposition techniques with lagged105

embedding that require extra information beyond the predicted time series in the future.106

The remainder of this article is organized as follows. Section 2 describes the precipitation dataset107

and the MISO indices obtained from the NLSA technique. Section 3 presents the physics con-108

strained low-order nonlinear stochastic model as well as the calibration and the effective prediction109

algorithm. The results of predicting the MISO indices are reported in Section 4 and the predic-110

tion of the spatiotemporal reconstructed patterns are shown in Section 5. Section 6 discusses the111

possibility of shortening the training period to only 3 years and then illustrates the discrepancy112
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in forming the MISO indices with different lagged embedding sizes. Summary conclusions are113

included in Section 7.114

2. The Precipitation MISO Indices from NLSA115

The dataset utilized here is the daily Global Precipitation Climatology Project (GPCP) rainfall116

data (Huffman et al. 2001) over the Asian summer monsoon region (20oS-30oN, 30oE-140oE) for117

period 1997-2014. The spatial resolution of this dataset is 1o×1o, amounting to d = 5500 grid118

points for the Asian summer monsoon region.119

NLSA is applied to the daily GPCP dataset with a lagged embedding window of q = 64 days, an120

ideal choice for the intraseasonal time scale. A variety of extended spatial precipitation patterns121

emerge from the analysis but the focus here is on the two spatial patterns associated with MISO122

with time series depicted in Figure 1. The details of applying NLSA to daily GPCP dataset have123

already been described in Sabeerali et al. (2017) and are thus omitted here. It is evident from124

Figure 1 that these patterns are active in boreal summer and quiescent in boreal winter. It was125

shown in Sabeerali et al. (2017) that the NLSA MISO modes display the characteristic pattern of126

northeastward propagating anomalies associated with the MISO. A case study there also revealed127

three consecutive MISO events in the NLSA MISO modes in the boreal summer of 2004, the128

onset and demise phases of which are highly consistent with observations. These facts indicate129

that the time series depicted in Figure 1 give a reasonable representation of the full life cycle of the130

northward propagating boreal summer convection band and can be utilized to determine the phase131

and amplitude of the poleward-propagating rainfall anomalies associated with the MISO. Below,132

we utilize the terminology, MISO indices, for the two time series in Figure 1.133
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3. The Low-Order Nonlinear Stochastic Model134

Denote by u1 and u2 the two components, MISO 1 and MSIO 2, depicted in Figure 1. The135

probability distribution functions (PDFs) for u1 and u2 are highly non-Gaussian with fat tails136

that indicate the temporal intermittency in the large scale precipitation patterns associated with137

the MSIO. The following family of low-order stochastic models are proposed to describe the138

intermittent variability of the time series u1 and u2:139

du1

dt
= (−du u1 + γ (v+ v f (t))u1− (a+ωu)u2)+σuẆu1, (1a)

du2

dt
= (−du u2 + γ (v+ v f (t))u2 +(a+ωu)u1)+σuẆu2, (1b)

dv
dt

= (−dv v− γ (u2
1 +u2

2))+σvẆv, (1c)

dωu

dt
= (−dωωu)+σω Ẇω , (1d)

where140

v f (t) = f0 + ft sin(ω f t +φ). (2)

In (1), u1 and u2 are the two observed MISO variables while v and ωu are hidden unobserved141

variables which represent the stochastic damping and stochastic phase, respectively. In (1),142

Ẇu1,Ẇu2,Ẇv and Ẇω are independent white noise. The time periodic damping in the equations143

in (1a) and (1b) is utilized to crudely model the active summer season and the quiescent winter144

season in the seasonal cycle. The hidden variables v,ωu interact with the observed MISO vari-145

ables u1,u2 through energy conserving nonlinear interactions following the systematic physics146

constrained nonlinear regression strategies for time series developed recently (Majda and Harlim147

2013; Harlim et al. 2014). The energy-conserving nonlinearity is easily seen by multiplying (1a)–148

(1d) by u1,u2,v and ωu, respectively, and then these equations sum up. The energy change in the149

quadratic nonlinear terms cancels with each other and thus the energy due to the nonlinear inter-150

8



action is conserved. The low-order stochastic nonlinear models in (1) are fundamentally different151

from those utilized earlier (Kondrashov et al. 2013; Kravtsov et al. 2005) which allow for nonlinear152

interactions only between the observed variables u1,u2 and only special linear interactions with153

layers of hidden variables. The physics constrained nonlinear low-order stochastic model (1)–(2)154

has been shown to have significant skill for determining the predictability limits of the large-scale155

cloud patterns of both the boreal winter MJO and boreal summer intraseasonal oscillations (Chen156

et al. 2014; Chen and Majda 2015a) as well as improving the prediction skill of the RMM in-157

dices by incorporating a new information-theoretic strategy in the training phase (Chen and Majda158

2015b).159

a. Calibration of the Nonlinear Stochastic Model160

The parameters of the stochastic model in (1)–(2) are calibrated by fitting the highly non-161

Gaussian PDFs and autocorrelations of the two MISO variables u1,u2 in the training period from162

1998 to 2007 as shown in Figure 1. Table 1 records the optimal parameter values while Figure 2163

displays the skill of the stochastic model with these parameters in recovering the statistics of the164

two MISO indices. Panels (a) and (b) show that the stochastic model succeeds in capturing the165

autocorrelations almost perfectly for a three-month duration and even the wiggles that appear with166

lags around one year. Panel (c) shows that the stochastic model captures the highly non-Gaussian167

fat-tailed PDF of the two MISO indices due to intermittency. Panel (d) shows that the power168

spectrum of the two MISO indices from the data and those from the stochastic model match very169

well. The optimal parameters in the stochastic model from Table 1 have been determined by sys-170

tematically minimizing the information distance of the equilibrium PDF of the stochastic model171

compared with that of the actual data (Majda and Gershgorin 2010, 2011). Details are present-172
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ed in the Appendix A. Importantly, the model statistics are robust with respect to the parameter173

variations around these optimal values (See Appendix A).174

b. Prediction Algorithm and Data Assimilation of the Hidden Variables175

The ensemble prediction algorithm is applied to the nonlinear low-order stochastic model (1) for176

predicting the MISO time series. The algorithm involves running the forecast model (1) forward177

in time given the initial values. The initial data of the two state variables U = (u1,u2) are obtained178

directly from the observations, i.e., MISO 1 and MISO 2 indices. The more important and chal-179

lenging issue is to determine the initial ensemble of the two hidden variables Γ = (v,ωu). To this180

end, an active data assimilation algorithm is incorporated into the ensemble forecasting scheme.181

The estimates of the hidden parameters Γ = (v,ωu) during the training period and initialization182

of these parameters during the prediction phase exploit the special structure of the nonlinear low-183

order stochastic model (1). The equations in (1) are a conditional Gaussian system with respect184

to the observations U = (u1,u2), meaning that once u1 and u2 are given the time evolution of the185

distributions of Γ = (v,ωu) is Gaussian. Such special feature of (1) allows the closed analytic186

equations for the conditional Gaussian distributions of the hidden parameters Γ = (v,ωu) obtained187

from the posterior estimations in the Bayesian framework (Liptser and Shiryaev 2001). Appendix188

B contains the details and explicit equations. We utilize this fact to construct an initial ensemble189

for forecasting at each time instant in both the training and prediction phases for t ∈ [t0, t1, . . . , ts]190

in the following way.191

1. Starting from a “burn in” time t− earlier than t0 with arbitrary initial conditions for Γ, solve the192

associated analytic formula (B2) until time t0 to obtain the conditional Gaussian distribution193

p0(Γ|U(t0)). The initial ensemble of the hidden variables Γ = (v,ωu) for prediction starting194

from t0 is drawn from this distribution.195
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2. The initial ensemble for prediction starting from the next time t1 is drawn from p1(Γ|U(t1)),196

where p1(Γ|U(t1)) is solved by running the analytic formula (B2) forward from time t0 to t1197

with initial value p0(Γ|U(t0)).198

3. Following the same procedure, the initial distributions of the hidden variables Γ = (v,ωu) for199

prediction starting from each time ti are obtained “on the fly” by running the analytic formula200

(B2) forward from time ti−1 to ti with initial value pi−1(Γ|U(ti−1)) when the new observations201

up to U(ti) are available.202

In the prediction below with (1), we use N ensemble members with N = 50.203

4. Results of Predicting the MISO indices204

With the optimal parameters from Table 1 and the ensemble initialization scheme described in205

Section 3b, the prediction skill of the stochastic model in (1) for the six year prediction period from206

year 2008 to 2013 is presented here. The skill scores of ensemble mean prediction as a function207

of lead time (days) in different years are shown in Figure 3 and the comparison of the ensemble208

mean prediction and the truth at lead times of 15 and 25 days for MISO 1 index for all six years209

are shown in Figure 4. Here, the skill scores adopted are the root-mean-squared (RMS) error and210

pattern correlation (Corr):211

RMS error(Ut ,Upred
t ) =

√
∑

n
t=1
(
(u1,t−upred

1,t )2 +(u2,t−upred
2,t )2

)
n

,

Corr(Ut ,Upred
t ) =

∑
n
t=1
(
u1,tu

pred
1,t +u2,tu

pred
2,t
)√

∑
n
t=1
(
u2

1,t +u2
2,t
)√

∑
n
t=1
(
(upred

1,t )2 +(upred
2,t )2

) ,
where n is the number of the points in the time series, and Ut =(u1,t ,u2,t) and Upred

t =(upred
1,t ,upred

2,t )212

are the truth and predicted time series, respectively. It is shown in Figures 3 and 4 that the 15 day213

predictions are very skillful and even the 25 day predictions have highly significant skill in most214
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years. Among different years, year 2010 has useful predictions for about 20 days while year 2011215

and 2013 have skillful predictions around 25-30 days. In year 2008, 2009 and 2012, there is a216

significant prediction skill out to more than 50 days. Here, useful predictions are defined by 1)217

the RMS error in the prediction is less than the standard deviation of the truth at the equilibrium218

and 2) the pattern correlation between the predicted signal and the truth is above 0.5. Importantly,219

the prediction here yields a significantly higher skill than the conventional EEOF based indices220

(Suhas et al. 2013).221

Both the phase and amplitude of MISO activity play important roles in determining the pre-222

diction skill in different years. For example, year 2008 has an overall strong and regular MISO223

activity during the whole monsoon season that results in a long predictability, while the signal to224

noise ratio in year 2010 is smaller than other years and thus the predictability is greatly affected.225

Note that although year 2009 is a drought year with weak MISO activity during the late monsoon226

season (September), the MISO activity in other months of 2009 boreal summer remains strong227

and the overall prediction skill is high. From the limited sample size (12 years) of our analyis, it is228

hard to derive relationship between predictability of MISO and interannual variability of monsoon.229

However, it appears that the drought years do not necessarily have low predictability.230

In addition to the ensemble mean prediction, the ensemble spread that indicates the predictive231

uncertainty is another important indicator of the prediction skill. Figure 5 shows the ensemble232

predictions including the ensemble spread for the six years, beginning at three different dates:233

April 1, June 1 and October 1. It is clear from Figure 1 that April 1 is a time at the transition234

between the quiescent phase and the active phase of the MISO indices; June 1 is a starting date in235

the active mature phase while October 1 is a starting date in the decaying phase of MISO activity.236

As shown in Figure 5, the ensemble mean predictions for the April 1 starting date do not have any237

long range skill but the ensemble spread automatically predicts this lack of skill and the envelope238
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of the ensemble predictions contains the true signal for all years and forecast times including the239

return to skill in the winter quiescent phase. The forecasts from June 1 obviously have skill from240

both the mean and ensemble spread for all years for moderate to long lead times. The forecasts241

starting from October 1 have both an accurate mean and small ensemble spread for all six years242

and for very long times.243

It is easy to perform twin prediction experiments with the perfect nonlinear stochastic model244

in (1)–(2) where 10 year training segments of the data generated from the model are utilized to245

make 6 year forecasts. It is significant that this internal prediction skill of the stochastic model is246

comparable to its skill in predicting the MISO indices from observations (not shown here). This247

lends support to the fact that the nonlinear stochastic model in (1)–(2) can accurately determine248

the predictability limits of the two MISO indices in Figure 1.249

5. The Spatiotemporal Reconstruction250

With the predicted MISO indices in hand, the final step is to recover the spatiotemporal MISO251

patterns in physical space. This requires the combination of time series and spatial bases.252

a. Method253

Let zi be an d-dimensional vector of gridded precipitation values over the South Asia monsoon254

region at time i. Here, i is an integer ranging from 1 to n, representing the period of training255

phase. The first step in NLSA is to construct a higher-dimensional, time lagged embedding dataset256

utilizing Takens’ method of delay. Denote q be the lagged embedding window size. Then the257
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lagged embedding matrix can be written as258

X =



z1 z2 · · · zn−2q+1

z2 z3 · · · zn−2q+2

...
...

. . .
...

zq−1 zq · · · zn−q−1

zq zq+1 · · · zn−q


=



z1 z2 · · · zN−q+1 zN−q+2 · · · zN−1 zN

z2 z3 · · · zN−q+2 zN−q+3 · · · zN zN+1

...
...

. . .
... · · · · · · · · ·

...

zq−1 zq · · · zN−1 zN · · · zN+q−3 zN+q−2

zq zq+1 · · · zN zN+1 · · · zN+q−2 zN+q−1


, (3)

where N = n−2q+1. Note that q in (3) is actually dq but d is omitted here for notation simplicity.259

Although the lagged embedding matrix X in (3) is formed by the raw observational data, the matrix260

associated with each eigenmode, such as the annual mode, semi-annual mode and MISO mode,261

after the spatiotemporal reconstruction has essentially the same structure, except that the q entries262

that are represented by the same zi in (3) may have different values. Therefore, averaging over263

these q entries finalizes the reconstruction of zi. From now on, X represents the lagged embedding264

matrix containing only the MISO mode. Note that, since z1, . . . ,zq−1 and zN+1, . . . ,zN+q−1 appear265

less than q times in (3), recovering these components requires a longer observational period.266

The relationship between the spatiotemporal representation X , the time series (i.e., indices) Φ267

and the spatial basis A is simply given by268

X = AΦ
T , (4)

where ·T stands for the transpose. Clearly, with the predicted MISO indices in hand, the recon-269

struction (4) is easily achieved as long as A is able to be reached in the predicted phase. Different270

from the 2-Dimensional time series that is predicted by the low-order models, it is a challenge271

to describe and predict the exact evolution of the high-dimensional spatial basis A. Therefore,272

approximations are typically included in developing A in the predicted phases. Below, the spatial273

basis A utilized for prediction is assumed to be a constant matrix that is completely determined in274

the training phase. Note that the stationary assumption of A is in general not necessary and may275
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even result in some errors in the spatiotemporal reconstruction for nonlinear data. Nevertheless,276

adopting a constant matrix A greatly reduces the computational cost and facilitates an effective277

and practical prediction algorithm as will be demonstrated soon. As will be shown at the end of278

this section, the approximated reconstruction with such a constant spatial basis is actually highly279

consistent with the truth. In Section 6d, one alternative of creating a non-stationary spatial basis280

will be briefly discussed and compared with the method proposed in this section.281

In light of both X and Φ in the training period, the spatial pattern A according to (4) is given by282

A = cXΦ, with c =
1
‖Φ‖2 . (5)

Then a natural way of performing the spatiotemporal reconstruction of the predicted MISO pat-283

terns is to multiply A obtained from (5) by the predicted MISO indices. Denote X f and Φ f the284

spatiotemporal pattern and indices in the prediction period. The following relation is reached:285

A · [Φ;Φ
f ] = [X ;X f ], (6)

where we ignore the transpose in Φ and Φ f for notation simplicity.286

However, as is shown in Appendix C, the fundamental barrier for the direct method (6) to be-287

come practical is that in order to obtain the spatiotemporal patterns at s lead days, the prediction288

of the time series up to s+q days is required (Comeau et al. 2016). For example, in the prediction289

of MISO, reconstructing the spatiotemporal pattern for the next day requires the prediction of time290

series up to the next 65 days! In fact, to reach the last zN as shown in (3), the information up to291

zN+q−1 is required.292

One remedy to overcome such difficulty is to switch the extra future information as required in293

the time series Φ to that in the spatial basis A by calculating a “predicted spatial basis” Ã in the294
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training phase. This Ã is obtained by taking advantage of a new lagged embedding matrix X̃ ,295

X̃ =



zq zq+1 · · · zn−q

zq+1 zq+2 · · · zn−q+1

...
... . . . ...

z2q−1 z2q · · · zn−1


, (7)

which is just q−1 units shift forward in time with respect to X in (3). Similar as A, a new spatial296

pattern Ã is formed by297

Ã = cX̃Φ, with c =
1
‖Φ‖2 . (8)

Replacing A by Ã in (6) leads to298

Ã · [Φ;Φ
f ] = [X̃ , X̃ f ]. (9)

As shown in Appendix C, with (9), reconstructing the spatiotemporal patterns at s days in the future299

requires only the prediction of the time series for s days. Since Ã is completely determined in the300

training period that involves only straightforward calculations, the formula in (9) is an effective301

and practical method for predicting the spatiotemporal patterns.302

b. Prediction of the Spatial-Temporal Reconstructed Precipitation Fields303

Figure 6 includes three phase diagrams of the MISO indices, each containing a length of one-304

month period. The corresponding predictions, starting from the first day of each period and lasting305

for 30 days, is also included. Among the three periods, a significant skillful prediction is found for306

July 2009 while the prediction skill of June 2008 is moderate. The true signal of June 2013 has307

a weak amplitude and the corresponding prediction is far from the truth. Below, the prediction of308

spatiotemporal patterns based on the improved method (9) is demonstrated, where the ensemble309

mean of prediction is utilized for spatiotemporal reconstruction.310

16



The skill scores of the predicted spatiotemporal patterns for each of the three periods are shown311

in Figure 7. Consistent with the MISO indices, July 2009 has the highest prediction skill and312

the useful prediction lasts for 40 days. On the other hand, a higher pattern correlation is found313

in predicting the spatiotemporal patterns of June 2008 than that of June 2013, where the useful314

prediction of June 2008 is up to around 22 days. Note that, different from predicting the MISO315

indices, the skill scores of predicting the spatiotemporal pattern do not decrease monotonically316

as a function of lead time. This is due to the stationary approximation of the spatial basis Ã317

in the prediction period. In addition, this averaged spatial basis may also lead to the amplitude318

underestimation in the predicted spatiotemporal reconstruction. A direct remedy is to compute the319

ratio of ‖A‖ and ‖Ã‖ in the training period and multiply this constant ratio in prediction. In fact,320

the value of ‖Ã‖ decreases with the increases in q value. This is because the correlation between321

the spatial basis and the time series that with a phase lag becomes weaker when the lag increases.322

Figures 8 and 9 compare the truth and the predicted spatiotemporal patterns of July 2009 and323

June 2008, respectively. The predicted patterns for the whole July 2009 are highly consistent324

with the truth, especially in the regions of Indian subcontinent and Bay of Bengal. On the other325

hand, despite the skillful prediction up to 20 days lead time, significant errors in the spatiotem-326

poral patterns appear for longer time predictions of June 2008 due to the failure in predicting the327

precipitation in regions such as the Indian Ocean.328

To understand the approximated error in Ã, the true spatiotemporal patterns from NLSA, which329

is validated in Sabeerali et al. (2017), and the approximated patterns based on ÃΦ for July 2009330

are compared in the first two rows of Figure 10. Note that the truth of Φ is adopted here to exclude331

the error in the prediction of the time series. Despite the stationary approximation in creating the332

spatial basis Ã, the time series Φ from NLSA remains highly nonlinear and intermittent. Clearly,333
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the approximated patterns are remarkably consistent with the truth, where the non-Gaussian and334

intermittent features in the spatiotemporal patterns are both retained to a high extent.335

6. Discussions336

a. Prediction with a 3-year short training period337

A typical situation in climate science is that only a short period of observational data is avail-338

able. This actually leads to one of the fundamental difficulties in prediction utilizing most non-339

parametric methods that require a huge amount of data for training. Suitable models that are340

able to describe essential characteristics of the data are usually preferred since they allow a much341

shorter training period. Recall in previous sections, 10 years of observations (1998-2007) were342

adopted for model calibration and the prediction skill were assessed for the remaining 6 years343

(2008-2013). Although this 10-year training window is already much shorter than that required344

by most non-parametric methods, it is important to understand whether an even shorter training345

period is possible here for the nonlinear model to obtain the information in nature.346

To this end, a very short training period involving only the first three years of the time series347

(1998-2000) is adopted here for model calibration. Figure 11 compares the statistics of the MISO348

time series with different lengths, including this short 3-year training period (1998-2000), the349

10-year training period adopted in previous sections (1998-2007) and the full MISO period (1998-350

2013). The fact that the statistics of the 10-year training period and the full MISO period almost351

perfectly match each other indicates the sufficiency of the 10-year training period in obtaining352

the unbiased information. On the other hand, the 3-year training period, including one weak353

year (1998), one moderate year (1999) and one strong year (2000) of MISO activity, also has354

highly consistent statistics with those associated with the full MISO time series, including the355

18



non-Gaussian fat-tailed PDFs, the power spectrums and the autocorrelations up to 1.5 months.356

Therefore, the information of the full MISO indices are well reflected in this short 3-year training357

period. Due to the robustness of the model parameters (Appendix A), the calibrated parameters358

based on this 3-year short training period are nearly the same as the optimal parameters shown359

in Table 1. Importantly, this short training period allows the study of prediction skill for a long360

period back to year 2001 and the results are roughly reported here.361

Figure 12 shows the skill scores and the predicted signals based on the ensemble mean prediction362

from year 2001 to 2007, analogous to those in Figure 3 and 4 from year 2008 to 2013. The useful363

prediction of these 7 years all exceeds 25 days, where in particular the skillful predictions in year364

2001, 2003 and 2007 are more than 40 days. Among these 7 years, year 2002 and 2004 are365

recorded as drought years. A significant error is found in predicting the subdued MISO activity366

during August and September of year 2002, which explains its lower overall prediction skill than367

most of the other years. On the other hand, despite being a drought year, MISO activity during368

2004 is persistently strong throughout the boreal summer. The major error in predicting MISO369

indices of year 2004 is in fact due to the model’s failure in capturing the extremely slow oscillation370

frequency during August and September.371

We have also check the model statistics and prediction skill by utilizing any three consecutive372

years between 1998-2013 as the training phase. Despite the discrepancy in the signal variance373

due to the strength of MISO activity in different years, the fat tails in the non-Gaussian PDFs,374

the peak of the power spectrums and the autorrelations up to 1.5 months all resemble those of375

the full MISO time series. Importantly, the ensemble prediction skill does not have significant376

deterioration based on different training periods.377

19



b. MISO indices based on different lagged embedding window sizes and the corresponding pre-378

diction skill379

Recall that the two MISO indices shown in Figure 1 and studied throughout this article were380

obtained by applying NLSA to the precipitation data with a lagged embedding window of length381

q= 64 days. Adopting q= 64 is natural since it is an ideal choice for representing the intraseasonal382

time scale and such lagged embedding window size was utilized for defining the large-scale cloud383

patterns of the MJO and monsoon in previous works (Chen et al. 2014; Chen and Majda 2015b,a;384

Tung et al. 2014). On the other hand, EEOF was also widely utilized in defining the MISO indices385

in literature (Suhas et al. 2013; Kikuchi et al. 2012), which involves removing the climatological386

mean, first a few harmonics of the seasonal cycle and then applying a much shorter embedding387

window with 15-20 days. Therefore, it is important to study the difference in the MISO indices by388

applying NLSA with different lagged embedding window sizes.389

Figure 13 shows the resulting MISO indices by applying NLSA with q = 64,48 and 34 as well390

as the corresponding statistics. Different from q = 64, the MISO indices with q = 48 and 34391

have active phases in both boreal summer and winter, implying that the obtained MISO indices392

contain the components of the boreal winter MJO, and the associated PDFs are nearly Gaussian.393

In addition to being polluted by the boreal winter signal, these time series, especially with q = 34,394

also contain bi-annual, annual and semi-annual cycles, as indicated by the large bursts in the low-395

frequent band of the power spectrum. Another significant discrepancy with different q values396

lies in the causality between the two components of the MISO indices. With q = 64, the cross-397

correlation functions have significant peaks at lags around 12 days, which is nearly 1/4 of the398

averaged oscillation frequency and indicates the quadrature structure of MISO 1 and MISO 2. On399

the other hand, the cross-correlations R12(t) and R21(t) with q = 48 and q = 34 remain close to400
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zero, and the maximum value of the lagged correlation between MISO 1 and MISO 2 indices is401

less than 0.3 (not shown here). These facts imply that MISO 1 and MISO 2 are nearly uncorrelated402

and therefore model errors appear in fitting the cross-correlations utilizing the nonlinear low-order403

model (1). Finally, the fast decay of autocorrelations R11(t) and R22(t) with q = 48 and 34 implies404

deterioration in the predictability of the MISO indices.405

Figure 14 shows the prediction skill with different q. Here useful prediction is defined in the406

same way as that in Section 4: 1) the RMS error in the prediction is less than the standard deviation407

of the truth at the equilibrium and 2) the pattern correlation between the predicted signal and the408

truth is above 0.5. In addition to illustrating the prediction skill for the whole year, the prediction409

skill conditioned on the boreal summer time (June to September) is also emphasized. As expected,410

with the decrease in q, the overall prediction skill becomes worse. Nevertheless, conditioned on411

the boreal summer time, the prediction with q = 48 remains quite skillful and in particular the412

15-day lead time prediction is highly consistent with the truth. This is, however, not true for the413

prediction with q = 34, where the useful prediction only lasts for 10-12 days in terms of both the414

whole year and only the boreal summer time.415

c. Significant prediction skill of the precipitation MISO indices with parameters calibrated from416

OLR dataset417

Most tropical rainfall is convective, which implies that OLR, a proxy for the convection, is a418

potential candidate to describe the precipitation in tropics. Positive (negative) OLR anomalies are419

associated with reduced (increased) cloudiness, hence suppressed (enhanced) deep convection.420

Due to the possible relationship between the OLR and the tropical precipitation anomalies, it is421

important to understand the skill of the low-order nonlinear stochastic model (1)–(2) in predicting422

the MISO indices with parameters calibrated from OLR dataset.423
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In Chen and Majda (2015b), the low-order nonlinear stochastic model (1)–(2) was adopted to424

predict the two boreal summer intraseasonal oscillation (BSISO) modes obtained by applying425

NLSA to the brightness temperature, a highly correlated variable with OLR, within the equato-426

rial tropical belt from 15oS to 30oN. The dataset utilized there was Cloud Archive User Service427

(CLAUS) Version 4.7. To explore the strength of the correlation between OLR and precipitation,428

the parameters in Chen and Majda (2015b) are applied to (1)–(2) to calibrate and predict the pre-429

cipitation MISO indices. For simplicity, these parameters are named as OLR-based parameters.430

The OLR-based parameters are listed in the second row of Table 1 with two minor modifications.431

First, since the time series in Chen and Majda (2015b) were started from September instead of432

January, the phase parameter φ in Chen and Majda (2015b) is modified accordingly. Second,433

due to the general negative correlation between OLR and precipitation, the sign of the oscillation434

frequency a in Chen and Majda (2015b) is flipped. In fact, as shown in Table 1, the OLR-based435

parameters are quite similar to the optimal parameters utilized in the previous sections.436

Panels (a)-(d) of Figure 15 show the model statistics with the OLR-based parameters. The437

autocorrelations, power spectrums and non-Gaussian fat-tailed PDFs are all quite consistent with438

the truth, implies nearly identical statistical and dynamical features in describing the precipitation439

MISO with the OLR-based parameters. The slight underestimation of the variance with the OLR-440

based parameters is due to the gap in the units of the two variables, which can easily be remedied441

by applying an amplitude rescaling to the OLR variable and is a secondary issue here. Panels442

(e) and (f) compare the 25-day lead ensemble mean predictions using the optimal parameters and443

the OLR-based parameters of three different years from 2008 to 2010 with strong, moderate and444

weak MISO activities, respectively. In fact, except a light underestimation of the amplitude due445

to the insufficient amplitude of the seasonal cycle damping ft , the prediction utilizing OLR-based446

parameters has almost the same skill as that utilizing the optimal parameters in all the three years.447
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The results from both model calibration and prediction confirm a strong (negative) correlation448

between OLR and precipitation anomalies (Sabeerali et al. 2017).449

d. Defects of creating the spatial basis based on the running average over the raw data450

Recall in Section 5, despite a stationary spatial basis Ã being utilized, the approximated spa-451

tiotemporal reconstructed pattern ÃΦ is highly consistent with nature (Figure 10). In addition to452

the strong nonlinear and intermittent time series Φ, adopting the spatiotemporal pattern X̃ from453

NLSA in determining Ã is another important reason for such high consistency, which will be454

emphasized in this section.455

Note that the true spatiotemporal patterns based on the traditional linear methods, such as EOF456

and EEOF, are typically reached by applying bandpass filter or running average on the raw obser-457

vations over a certain prescribed window. Below, running average is applied to the raw data, the458

results of which in the training period are then utilized to form the spatial basis. In the prediction459

period, such spatial basis is multiplied by the NLSA MISO indices for the spatiotemporal recon-460

struction. Since the same NLSA MISO indices are utilized here and in Section 5, the discrepancy461

in the reconstructed spatiotemporal patterns completely lies in the spatial basis.462

The details of the spatiotemporal reconstruction mentioned above is presented below. Note that463

a non-stationary spatial basis is adopted here based on phase decomposition in the training period.464

First, a q day running average is applied on raw rainfall datasets and the daily rainfall anomaly465

is computed at each grid point in the training period. Then the whole phase space of MISO 1466

and MISO 2 is divided into S disjoint pieces, named as phases. The spatial pattern of each phase467

is computed by conditional averaging of this rainfall anomalies subject to the criteria that the468

instantaneous MISO indices have amplitude being greater than 1 standard deviation and belong to469

the corresponding phase. In the prediction stage, multiplying the magnitude of the predicted MISO470
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indices by the selected spatial basis according to the location of the predicted MISO indices in the471

phase space. This results in the spatiotemporal reconstructed pattern. A typical situation involves472

dividing the whole phase space into S = 8 pieces with equal areas (See Figure 6) as was done473

in RMM and other MJO and monsoon indices (Wheeler and Hendon 2004; Székely et al. 2016a;474

Suhas et al. 2013; Lee et al. 2013). Since all the phases and the associated average spatial bases are475

determined in training period, this spatiotemporal prediction is also practical and computational476

efficient.477

We apply this phase decomposition method with S = 8 to reach the spatial-temporal patterns478

of July 2009 and the results are shown in the third row of Figure 10. Significant differences are479

found compared with the truth (first row). Particularly, a reversed drought/flood pattern from July480

1 to July 11 in the India subcontinent based on these two methods is observed and the amount of481

precipitation in Indian Ocean and Arabian Sea is significantly different within the whole month.482

Such errors result from the spatial basis that is determined by applying the running average over483

the raw data. In fact, as was pointed out in Sabeerali et al. (2017) that many important MISO484

features are not well represented by those linear methods, including underestimating the fractional485

variance over Western Ghats and the failure in capturing variability over Indo-West Pacific region486

which is particularly crucial in determining the propagation characteristics of MISO (Sabeerali487

et al. 2017). This indicates the importance of the NLSA spatial patterns in addition to the nonlinear488

and intermittent time series.489

Replacing the non-stationary spatial basis resulting from the modes based on the running average490

of the raw data by the NLSA modes is a potential way to improve the spatiotemporal reconstruction491

in the prediction stage. Yet, the phase decomposition method has an obvious drawback that the492

predicted spatiotemporal patterns are discontinuous in time when the corresponding spatial basis493

transits from one phase to another. One remedy to the discontinuity issue is to introduce a smooth494
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transition between different phases such as adopting a convolution with a Gaussian kernel. This495

remains as a future work.496

7. Conclusions497

A recently developed technique for nonlinear time series analysis NLSA (Giannakis and Majda498

2012a,b, 2013) has been utilized to define two MISO indices from the daily GPCP rainfall data499

set without detrending or spatiotemporal filtering (Sabeerali et al. 2017). The observed time series500

have non-Gaussian fat-tailed PDFs, which is a consequence of intermittency.501

Systematic strategies for physics constrained regression models (Majda and Harlim 2013; Har-502

lim et al. 2014) suggest a four dimensional stochastic model with two hidden variables repre-503

senting stochastic damping and random phasing with energy conserving nonlinear feedback in-504

teraction (Section 3). In a calibration phase, these models can successfully capture the observed505

non-Gaussian PDFs, power spectrums and autocorrelations. The models have a special structure506

that allows efficient data assimilation and ensemble initialization algorithms for the hidden vari-507

ables. It is shown in Section 4 that the low-order nonlinear stochastic model has been applied to508

prediction of the NLSA MISO indices with forecasting skill ranging from 20 to 50 days in dif-509

ferent years. Furthermore, the ensemble spread in the stochastic model has been shown to be an510

accurate predictive indicator of forecast uncertainty at long range.511

An effective and practical spatiotemporal reconstruction algorithm is then proposed in Section 5,512

which overcomes the fundamental difficulty in most data decomposition techniques with lagged513

embedding that require extra information beyond the predicted time series in the future. The514

prediction skill of the reconstruction spatiotemporal patterns is consistent with that of the MISO515

indices.516
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A few issues are addressed in Section 6. First, the model calibration and prediction with a517

3-year short training period is studied. The resulting statistics and prediction skill do not have sig-518

nificant deterioration compared with those based on a 10-year training period. This suggests the519

advantage of utilizing the low-order nonlinear model (1) over most non-parametric methods in pre-520

dicting the MISO indices from a practical point of view. Second, the NLSA MISO indices based521

on different lagged embedding window sizes are compared. The resulting MISO indices with a522

shorter lagged embedding window size (q = 48 and q = 34) are polluted with other variabilities523

and the corresponding overall prediction skill is greatly affected. Nevertheless, with q = 48 days524

lag, the prediction conditioned on the boreal summer time remains still skillful. Thirdly, the low-525

order nonlinear stochastic model with OLR-based parameters remains high skill in both fitting526

the non-Gaussian statistics and predicting the precipitation MISO indices, implying a significant527

correlation between the tropical precipitation and OLR. Finally, algorithms with potential abilities528

to improve the prediction skill of the spatiotemporal patterns are briefly discussed, the implemen-529

tation of which remains as future works.530

Developing more effective and accurate spatiotemporal reconstruction algorithm remains as one531

of the future works. In fact, clustering method is a promising technique for recovering more532

detailed features of spatial basis conditioned on different phases.533
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APPENDIX A541

Calibration of the nonlinear stochastic model with information theory542

The optimal parameters in the nonlinear low-order stochastic model (1) are calibrated by sys-543

tematically minimizing the information distance, i.e., the model error, in the PDF of the model544

πM compared with that of the MISO index π (Majda and Gershgorin 2010, 2011; Kleeman 2002;545

Majda and Branicki 2012; Branicki et al. 2013),546

P(π,πM) =
∫

π log
(

π

πM

)
. (A1)

The model error dependence on the variation of different parameters is shown in Figure A1, which547

indicates that the nonlinear low-order stochastic model (1) is robust with respect to the parameters548

around their optimal values. The huge model error with the underestimation of σu, ft and γ and549

the overestimation of du is due to the failure of capturing the intermittency. Note that the model550

error has only a weak dependence on the background phase a since the contribution of the oscil-551

lation in the signal has been averaged out in the time-averaged PDF. However, the parameter a is552

crucial in describing the frequency of intraseasonal oscillation, and it is calibrated by matching the553

autocorrelation functions associated with the model and the truth. The other parameters dv,σv,dω554

and σω in describing the stochastic processes affect not only on the model error but more on the555

autocorrelations and power spectrums as well. A large discrepancy appears in the statistics if these556

parameters are outside the optimal range. The parameter f0 is not an independent parameter given557

du and γ and therefore we fix its value. The frequency ω f in the time-periodic damping v f (t) is558

prescribed to be 2π/12 such that one time unit of the model corresponds to one month in reality.559

27



The phase φ in v f (t) is tuned to make the strong intermittency occur in the boreal summer in560

accordance with the MISO indices. Note that none of the parameters is redundant in the nonlin-561

ear stochastic model (1). In fact, without the hidden variables v and ωu, even if the time-period562

damping v f (t) is able to crudely describe the active phase of BSISO in the reduced linear model,563

a distinguished disparity is observed in the model statistics compared with the truth, indicating the564

intrinsic barrier (Majda and Gershgorin 2011; Majda and Branicki 2012).565

Prediction with random suboptimal parameters is also studied. Here the suboptimal parameters566

are taken randomly between the two dotted lines in each panel of Figure 7. Comparable prediction567

skill is found with these random suboptimal parameters as the optimal parameters.568

APPENDIX B569

Mathematical details of effective data assimilation and prediction algorithm570

Recall the nonlinear low-order stochastic model (1). Denote by U = (u1,u2)
T and Γ= (v,ωu)

T .571

The abstract form of the low-order stochastic model (1) is given as follows:572

dUt = [A0(t,U)+A1(t,U)Γt ]dt +ΣU(t,U)dWU(t), (B1a)

dΓt = [a0(t,U)+a1(t,U)Γt ]dt +ΣΓ(t,U)dWΓ(t), (B1b)

where573

A0 =

 −du u1 + γ v f (t)u1−au2

−du u2 + γ v f (t)u2 +au1

 , A1 =

 γ u1 −u2

γ u2 u1

 ,

a0 =

 −γ (u2
1 +u2

2)

0

 , a1 =

 −dv

−dω

 ,

ΣU =

 σu

σu

 , ΣΓ =

 σv

σω

 .
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The model (B1) is a conditional Gaussian system conditioned on the observations U, meaning that574

once the observations U are given the dynamics of Γ in (B1) becomes a Gaussian system (Chen575

and Majda 2016). The special structure of system (B1) allows the closed analytic formulae for the576

evolution of the conditional Gaussian distributions of the hidden parameters v and ωu (Liptser and577

Shiryaev 2001) obtained in the Bayesian framework:578

dµt =[a0(t,U)+a1(t,U)µt ]dt +(RtA∗1(t,U))(ΣUΣ
∗
U)
−1(t,U)×

[dUt− (A0(t,U)+A1(t,U)µt)dt],

dRt ={a1(t,U)Rt +Rta∗1(t,U)+(ΣΓΣ
∗
Γ)(t,U)

−(RtA∗1(t,U))(ΣUΣ
∗
U)
−1(t,U)(RtA∗1(t,U))∗

}
dt,

(B2)

where µt and Rt are the posterior mean and posterior covariance of the conditional distributions,579

respectively. The asterisk represents the complex conjugate.580

As a remark, the formulae (B2) are optimal if and only if the signal is generated from system581

(B1). Since our observed signal, i.e., the MISO indices, are not from the nonlinear low-order s-582

tochastic model (B1), the evolutions of the conditional Gaussian distributions (B2) are suboptimal.583

APPENDIX C584

Details of the spatiotemporal reconstruction585

Recall the relation between the spatial basis Φ, the time series A and the spatiotemporal patterns586

X given by the direct method (6)587

A · [Φ;Φ
f ] = [X ;X f ]. (C1)
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The left and right hand side of (C1) are given respectively by588

A ·
[
Φ;(Φ f )

]
=



A1

A2

...

Aq


·
(

Φ1, · · · , ΦN , Φ
f
1 , Φ

f
2 , · · · , Φ

f
q

)

=



A1Φ1 · · · A1ΦN A1Φ
f
1 A1Φ

f
2 · · · A1Φ

f
q

A2Φ1 · · · A2ΦN A2Φ
f
1 A2Φ

f
2 · · · A2Φ

f
q

... · · · ...
...

... · · · ...

Aq−1Φ1 · · · Aq−1ΦN Aq−1Φ
f
1 Aq−1Φ

f
2 · · · Aq−1Φ

f
q

AqΦ1 · · · AqΦN AqΦ
f
1 AqΦ

f
2 · · · AqΦ

f
q



(C2)

and589

[X ;X f ] =



z1 z2 · · · zn−2q+1 zn−2q+2 zn−2q+3 · · · zn−q z f
1

z2 z3 · · · zn−2q+2 zn−2q+3 zn−2q+4 · · · z f
1 z f

2

...
... . . . ...

...
... . . . ...

...

zq−1 zq · · · zn−q+1 zn−q z f
1 · · · z f

q−1 z f
q−1

zq zq+1 · · · zn−q z f
1 z f

2 · · · z f
q z f

q


, (C3)

However, the entries with boxes in (C2) and (C3) implies that in order to obtain the spatiotem-590

poral pattern at one lead time unit, the time series up to q lead time units are required. In other591

words, predicting q = 64 days of the time series in the future is only sufficient to achieve the592

spatiotemporal pattern for 1 day forward. Therefore, this method is not practical.593

On the other hand, the improved method based on the new spatial basis Ã in (8). Recall the594

relationship in (C4),595

Ã · [Φ;Φ
f ] = [X̃ , X̃ f ]. (C4)
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The left and right hand sides can be written down explicitly,596

Ã · [Φ;Φ
f ] =



Ã1

Ã2

...

Ãq


·

(
Φ1, · · · , ΦN−q, ΦN−q+1, · · · , ΦN , Φ

f
1 , Φ

f
2 , · · · , Φ

f
q

)

=



Ã1Φ1 · · · Ã1ΦN−q Ã1ΦN−q+1 Ã1ΦN−q+2 · · · Ã1ΦN Ã1Φ
f
1 · · · Ã1Φ

f
q

Ã2Φ1 · · · Ã2ΦN−q Ã2ΦN−q+1 Ã2ΦN−q+2 · · · Ã2ΦN Ã2Φ
f
1 · · · Ã2Φ

f
q

...
. . .

...
...

...
. . .

...
...

. . .

Ãq−1Φ1 · · · Ãq−1ΦN−q Ãq−1ΦN−q+1 Ãq−1ΦN−q+2 · · · Ãq−1ΦN Ãq−1Φ
f
1 · · · Ãq−1Φ

f
q

ÃqΦ1 · · · ÃqΦN−q ÃqΦN−q+1 ÃqΦN−q+2 · · · ÃqΦN ÃqΦ
f
1 · · · ÃqΦ

f
q


,

(C5)

and597

[X̃ ; ˜̃X ] =



zq · · · zn−2q zn−2q+1 zn−2q+2 · · · zn−q z f
1 · · · z f

q−1

zq+1 · · · zn−2q+1 zn−2q+2 zn−2q+3 · · · z f
1 z f

2 · · · z f
q

... . . . ...
...

... . . . ...
... . . . ...

z2q−2 · · · zn−q zn−q+1 zn−q · · · z f
q−1 z f

q−1 · · · z f
2q−2

z2q−1 · · · zn−q−1 zn−q z f
1 · · · z f

q z f
q · · · z f

2q−1


. (C6)

Comparing (C5) and (C6), it is clear that reconstructing the spatiotemporal patterns at s days in598

the future requires only the prediction of the time series for s days.599
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FIG. 6. Phase diagrams of MISO 1 and MISO 2 (blue) and the corresponding predictions [ensemble mean

(red) and 50 ensemble members (green)], starting from 2009/07/01, 2008/06/01 and 2013/06/01 and lasting for

30 days. Blue dots and small red rectangles indicate the truth and prediction for every 5 days.
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FIG. 7. Skill score with pattern correlation (left) and RMS error (right) for predicting the reconstructed

spatiotemporal patterns as a function of lead time (days) for July 2009 (black), June 2008 (red) and June 2013

(green).
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FIG. 8. Reconstruction and prediction of the spatiotemporal patterns of July 2009 starting from 1 July 2009.

The prediction at day 1, 4, 8, 12, 16, 20, 24 and 30 are shown.
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FIG. 9. Same as Figure 8 but for June 2008.
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FIG. 10. Comparison of the truth (first row), the approximated spatiotemporal patterns from NLSA based on

(9) (second row) and the patterns in which the spatial basis is obtained based on the modes by applying running

average to the raw data as described in Section 5 (third row).
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Right: 25-day lead prediction of MISO 1 at four different years. The model parameters are listed in the top row

of Table 1.
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FIG. 14. Comparison of the prediction skill of the indices obtained by applying NLSA with different lagged

embedding window sizes (top: q = 64; middle: q = 48; bottom: q = 34). Left: useful prediction for the full year

and for only the boreal summer time (June to September). Right: 15-day lead prediction for the indices obtained
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FIG. 15. Applying the parameters in Chen and Majda (2015b) to calibrate and predict the MISO precipitation
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