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ABSTRACT

2



Accurate uncertainty quantification for the mean and variance about forced

responses to general external perturbations in the climate system is an im-

portant subject in understanding the earth’s atmosphere and ocean in climate

change science. Here a low-dimensional reduced-order method is developed

for uncertainty quantification and capturing the statistical sensitivity in prin-

cipal model directions with largest variability, and in various regimes in two-

layer quasi-geostrophic turbulence. Typical dynamical regimes tested here

include the homogeneous flow in high-latitude and the anisotropic meander-

ing jets in low/mid-latitude. The idea in the reduced-order method is from

a self-consistent mathematical framework for general systems with quadratic

nonlinearity, where crucial high-order statistics are approximated by a sys-

tematic model calibration procedure. Model efficiency is improved through

additional damping and noise corrections to replace the expensive energy-

conserving nonlinear interactions. Model errors due to the imperfect nonlin-

ear approximation are corrected by tuning the model parameters using linear

response theory with an information metric in a training phase before predic-

tion. Here a statistical energy principle is adopted to introduce a global scaling

factor in characterizing the higher-order moments in a consistent way to im-

prove model sensitivity. The reduced-order model displays uniformly high

prediction skill for the mean and variance response to general forcing for both

homogeneous flow and anisotropic zonal jets in the first 102 dominant low-

wavenumber modes, where only about 0.15% of the total spectral modes are

resolved, compared with the full model resolution of 2562 horizontal modes.
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1. Introduction33

The climate system is a complex chaotic multi-scale system combining forcing, dissipation, and34

nonlinear energy-conserving interactions displaying significant complexity. Accurate modeling of35

the large-scale variability in the earth’s atmosphere and ocean to changes in external forcing is36

a central problem of contemporary climate change science (Zurita-Gotor et al. 2014; Gettelman37

et al. 2012; Majda and Wang 2006; Deser and Blackmon 1993; Treguier and Hua 1987). Nonlinear38

turbulent interactions may be important or dominant in maintaining the general circulation in39

atmosphere and ocean, so accurate characterization of the higher-order effects becomes crucial.40

There is a need to understand the evolution of fluctuations in the atmosphere/ocean circulation41

where various kinds of instabilities frequently take place.42

One simple but fully nonlinear fluid model which is particularly relevant to meteorology and43

oceanography is the two-layer quasi-geostrophic (QG) model with baroclinic instability in a two-44

dimensional periodic domain (Vallis 2006; Salmon 1998). It is known that the QG model is45

quite capable in capturing the essential physics of the relevant internal variability despite its rela-46

tively simple dynamical structure (Vallis 2006; Salmon 1998). The flow is usually driven at low47

wavenumbers and damped by boundary friction. Two dynamical regimes in the QG model with48

typical statistical features are representative in many applications (Treguier and Hua 1987; Panetta49

1993; Thompson and Young 2007; Grooms and Majda 2013). The first one is the fully turbu-50

lent flow with homogeneous statistics as a result of internal baroclinic instability corresponding to51

the high-latitude ocean and atmosphere; the second one is the anisotropic flow field with strong52

meandering zonal jets as in the low/mid-latitude regime.53

The quasi-geostrophic response to both stochastic and deterministic perturbations is an impor-54

tant subject in understanding the earth’s atmospheric and oceanic interactions (Abramov and Ma-55
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jda 2012; Deser and Blackmon 1993; Lutsko et al. 2015). The external perturbations can be56

induced by various forcing mechanisms. In the ocean regime, one important category of pertur-57

bation can be introduced from the atmospheric forcing effects that drive the oceanic circulation.58

For example, the large-scale, long-time sea surface temperature (SST) anomalies can be explained59

naturally as the response of the oceanic surface layers to short-time-scale atmospheric forcing60

(Kushnir 1994; Deser and Blackmon 1993). The atmospheric forcing can be caused by wind stress,61

radiative heating, pressure fluctuations, or buoyancy fluxes at the surface. It is therefore important62

to investigate the nature of the atmospheric and oceanic variability induced by the various external63

effects, especially from the fluctuating component.64

Linear response theory together with the fluctuation-dissipation theorem (FDT) provides a65

method for calculating responses to small external perturbations through the knowledge of the66

unperturbed statistical system with many practical applications (Leith 1975; Majda et al. 2005;67

Majda and Wang 2010; Gritsun and Branstator 2007; Gritsun et al. 2008). Several studies have68

tested the idea of using FDT, in the form introduced to climate science first in Leith (1975), to69

generate a linear operator that approximates the response of a general circulation model to any70

specified weak external source. The FDT approach has been applied for complex climate models71

with various approximations and numerical procedures. A quasi-Gaussian approximation has been72

applied to many problems (Abramov and Majda 2012; Lutsko et al. 2015; Gritsun et al. 2008) and73

a more practical low-frequency approach in a subspace has been developed in Majda et al. (2010).74

However this method is hampered by the fundamental limitation to parameter regimes with linear75

statistical response. Thus new strategies for imperfect low-order models on subspace that capture76

both the mean and variance response, i.e. quantify uncertainty, are important and a main theme77

of present research (Sapsis and Majda 2013a,b; Majda and Qi 2016; Qi and Majda 2016). The78

low-order models focus on the variability in the principal directions of the system which are most79
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energetic, and approximate the higher-order nonlinear interactions through proper closure strate-80

gies using only lower-order statistics (Qi and Majda 2016). Thus the accurate calibration about81

the statistical energy transfer in third-order moments plays a crucial role in the closure model82

construction.83

Our goal in this paper is to develop efficient reduced-order statistical models based on a detailed84

study about the role of high-order statistical symmetry in transferring the energy from the produc-85

tion wavenumbers (large-scales) to the dissipation wavenumbers (small-scales). The basic idea86

of this statistical reduced-order method is introduced in Majda and Qi (2016) and the feasibility87

has been tested successfully on simpler models such as the 40-dimensional Lorenz-96 system and88

the barotropic system with topography (Majda and Qi 2016; Qi and Majda 2016). The expensive89

higher-order moments in the true statistical dynamics are replaced by efficient additional nonlin-90

ear damping and noise corrections using only first and second order moment information. The91

imperfect model error through this approximation is calibrated through an information-theoretic92

framework using relative entropy (Majda and Gershgorin 2011; Majda et al. 2005). A systematic93

framework is proposed to improve model prediction skill and achieve the optimal model param-94

eter for various kinds of external perturbations in a training phase using only statistics from un-95

perturbed equilibrium statistics. In the training phase, linear response theory is used to calculate96

the kicked linear response operator that characterizes the model sensitivity to perturbations. The97

model sensitivity to different external perturbation forcings is further improved using the total sta-98

tistical energy as a global scaling factor through a simple scalar dynamical equation developed in99

Majda (2015, 2016).100

The performance of the reduced-order method is then tested on various dynamical regimes of the101

two-layer QG equations with distinct statistical features. Specifically we consider the high-latitude102

atmosphere and ocean regime with homogeneous statistics, and the low/mid-latitude regime where103
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anisotropic zonal jets are developed in both the atmosphere and ocean. These are two represen-104

tative dynamical regimes with direct relevance to realistic atmosphere and ocean flows. The in-105

fluence of nonlinear energy transfer due to the forcing perturbation cannot be neglected in these106

parameter ranges where nonlinearities are important. The unified systematic procedure is applied107

for portable low-dimensional reduced-order computational models that possess the skill in cap-108

turing the sensitivity in principal directions with largest variability, while effectively reduce the109

computational cost at the same time. The reduced-order models display uniformly high prediction110

skill in all these dynamical regimes by only calculating the first 10× 10 dominant modes, where111

only about 0.15% of the total spectral modes are resolved, compared with the full model resolution112

of 256×256 modes.113

The structure of the paper is arranged as follows. Section 2 describes the basic statistical for-114

mulation and the important statistical formulas for the total statistical energy is derived for the115

two-layer flow. The low-dimensional reduced-order model is developed in Section 3 with detailed116

discussions about the calibration strategy according to the symmetry in the higher-order moments.117

The feasibility of the reduced-order model is tested in different dynamical regimes in the following118

parts. Section 4 shows the results in high-latitude regime with homogenous statistics, and Section119

5 considers the low/mid-latitude regime where anisotropic jets introduce distinct structure in the120

the flow fields. Finally, Section 6 contains a summary of the results as well as an outlook on future121

developments.122
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2. Two-layer quasi-geostrophic turbulence and the statistical theories123

a. Two-layer barotropic-baroclinic flow with forcing and dissipation124

We consider a fluid system in the rotational reference frame comprised of two layers of equal125

depth between rigid lid and flat bottom. The governing two-layer quasi-geostrophic (QG) equa-126

tions in a barotropic-baroclinic mode formulation for potential vorticity anomalies
(
qψ ,qτ

)
with127

periodic boundary condition in both x,y directions are (Salmon 1998; Vallis 2006)128

∂qψ

∂ t
+ J
(
ψ,qψ

)
+ J (τ,qτ)+β

∂ψ
∂x

+U
∂
∂x

∆τ =−κ
2

∆(ψ− τ)−ν(−1)s∆sqψ +Fψ (x, t) ,

∂qτ
∂ t

+ J (ψ,qτ)+ J
(
τ,qψ

)
+β

∂τ
∂x

+U
∂
∂x

(
∆ψ + k2

dψ
)
=

κ
2

∆(ψ− τ)−ν(−1)s∆sqτ +Fτ (x, t) .
(1)

Above qψ = ∆ψ , qτ = ∆τ− k2
dτ are the disturbance potential vorticity in the barotropic and baro-129

clinic modes respectively, while ψ,τ are the corresponding disturbance barotropic and baroclinic130

stream functions. The barotropic mode ψ can be viewed as the vertically averaged effect from the131

flow, and the baroclinic mode τ is usually related with the thermal effect in heat transport. The132

relations between the upper and lower layer variables and the barotropic and baroclinic mode can133

be defined through the following relations134

qψ = ∇2ψ =
1
2
(q1 +q2) , ψ =

1
2
(ψ1 +ψ2) ,

qτ = ∇2τ− k2
dτ =

1
2
(q1−q2) , τ =

1
2
(ψ1−ψ2) .

Besides, J (A,B) = AxBy−AyBx represents the Jacobian operator. kd =
√

8/Ld = (2 f0/NH)2 is135

the baroclinic deformation wavenumber corresponding to the Rossby radius of deformation Ld . A136

large-scale vertical shear (U,−U) with the same strength and opposite directions is assumed in137

the background to induce baroclinic instability. In the dissipation operators on the right hand sides138
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of the equations (1), besides the hyperviscosity, ν∆sqi, we only use Ekman friction, κ∆ψ2, with139

strength κ on the lower layer of the flow.140

The forcing terms on barotropic and baroclinic modes, Fψ ,Fτ , are decomposed into the deter-141

ministic part, and the random component represented by Gaussian white noises142

Fψ (x, t) = fψ (x, t)+σψ (x)Ẇψ (t) ,

Fτ (x, t) = fτ (x, t)+στ (x)Ẇτ (t) .
(2)

Examples of the large-scale forcing terms can include radiative heating, surface wind stress etc.,143

while wind stress, convective storms, unresolved baroclinic instability process can act as the forc-144

ing on small length scales (Majda and Wang 2006; Vallis 2006). Usually the two-layer system145

will reach an equilibrium statistical steady state without any forcing perturbations, and we will146

mostly focus on investigating the system’s deviation from the unperturbed equilibrium state due147

to various external effects from nature.148

b. Formulation of the exact statistical moment dynamics149

NORMALIZED EQUATIONS AND SYMMETRIES IN THE NONLINEAR QUADRATIC FORMS150

We formulate the two-layer QG system with Galerkin truncation to finite number of spectral151

modes. Consider the truncated spectral expansion of the barotropic and baroclinic mode, (ψN ,τN),152

with a high wavenumber truncation N under standard Fourier basis ek = exp(ik ·x) due to the153

periodic boundary condition154

ψN = ∑
1≤|k|≤N

ψkeik·x, τN = ∑
1≤|k|≤N

τkeik·x.

In model simulations, it is useful to introduce a new set of rescaled normalized quantities so that155

pψ,k =qψ,k/ |k|=−|k|ψk,

pτ,k =qτ,k/

√
|k|2 + k2

d =−
√
|k|2 + k2

dτk.

(3)
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The introduction of this new set of quantities (3) offers convenience that the energy inner-product156

becomes the standard Euclidean form, and pψ , pτ can share the similar order of amplitude espe-157

cially for the ocean case with larger kd . Under the above set-up, the rescaled set of equations of158

(1) can be summarized in the form for each wavenumber as159

dpk
dt

= Bk (pk,pk)+(Lk−Dk)pk +Fk, pk =
(

pψ,k, pτ,k
)T

, (4)

where the linear operators are decomposed into the non-symmetric part Lk involving β -effect and160

vertical shear flow U and dissipation part Dk, together with the forcing Fk combining determin-161

istic component and stochastic component (see Appendix A for explicit formulas).162

Most importantly, B(p,p) is the nonlinear interaction so that163

Bk (pk,pk) =




Bψ,k

Bτ,k


=




∑m+n=k
m⊥·n
|k|

(
|n|
|m| pψ,m pψ,n +

√
|n|2+k2

d
|m|2+k2

d
pτ,m pτ,n

)

∑m+n=k
m⊥·n√
|k|2+k2

d

(√
|n|2+k2

d
|m| pψ,m pτ,n +

|n|√
|m|2+k2

d

pτ,m pψ,n

)


 .

(5)

One important property of the system (4) is the symmetry in the nonlinear quadratic interaction164

term that conserves both energy and enstrophy (Salmon 1998; Sapsis and Majda 2013a). With165

the inner-product defined according to the energy or enstrophy, the nonlinear interaction always166

satisfies the conservation law ∑k pk ·Bk (pk,pk) = 0, meaning that the nonlinear interaction will167

not change the total energy and enstrophy inside the system. Furthermore, it can be shown that168

a detailed triad energy conservation symmetry (see Majda 2015, 2016) is guaranteed in the non-169

linear term. Therefore, a statistical energy principle can be developed for the two-layer system170

(4) following the general theoretical framework (Majda 2015), with the help of which we can171

estimatethe total statistical energy structure.172
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STATISTICAL MOMENT DYNAMICS OF THE TWO-LAYER SYSTEM173

Due to the turbulent nature of the system, it is more useful to investigate the dynamical evolution174

of the statistical moments in the state variables of interest. We consider the combined statistical175

energy in each mode including variability in both mean and variance176

Rk = pk∗pk =



∣∣pψ,k

∣∣2 p∗ψ,k pτ,k

pψ,k p∗τ,k
∣∣pτ,k

∣∣2


 , (6)

where the ‘overbar’ can be viewed as ensemble average combining energy in the mean and co-177

variance, p∗1,k p2,k = p̄∗1,k p̄2,k + p′∗1,k p′2,k. Note that in the homogeneous case (see Section 4 for178

the results in high latitudes) where the equilibrium mean and the cross-covariance between dif-179

ferent wavenumber modes are both vanishing, Rk becomes exactly the covariance matrix between180

barotropic and baroclinic modes; on the other hand, when anisotropic structure is generated (like181

in the regime with jets in Section 5), Rk will combine variabilities in both mean and variance.182

The idea to use the statistical energy in each mode Rk is to construct a unified framework for183

predicting responses in different regimes, and at the same time avoid the possibly complicated184

mean-covariance interaction terms if mean and variance dynamics are considered individually.185

Therefore the true dynamical equations for the statistical moment Rk in the form of a 2× 2186

matrix containing barotropic and baroclinic mode in the same wavenumber k become187

dRk
dt

= (Lk−Dk)Rk +QF,k +Qσ ,k + c.c., |k| ≤ N, (7)

where c.c. represents the complex completion for the conjugate parts. On the right hand side of the188

equation, Lk,Dk, the same as the previous equations (4), represent the linear interactions between189

modes, including β -effect through the rotation of the earth, the effects from the mean shear flow190

U , as well as the dissipations from Ekman drag and hyperviscosity. Qσ,k is the external forcing191

perturbations represented by hypothetical stirring and heating forces. Importantly, the nonlinear192
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flux193

QF,k = pk∗Bk (pk,pk) =




p∗ψ,kBψ,k p∗ψ,kBτ,k

p∗τ,kBψ,k p∗τ,kBτ,k


 , (8)

represents the nonlinear interactions between different wavenumbers due to the advection term.194

Third-order moments with triad modes m+n = k enter the first two order moments dynamics195

representing the nonlinear energy transfer between small and large scales. The nonlinear energy196

exchange mechanism is crucial in the energy budget and will be discussed in more detail in follow-197

ing sections. The conservation property is also satisfied due to the triad symmetry as ∑k trQF,k = 0.198

The explicit formulations of the operators can be found in Appendix A.199

c. Statistical energy conservation principle200

The total statistical energy dynamical equation concerns the evolution of the total variability in201

mean and variance in response to external perturbations (Majda 2015, 2016). With the normalized202

variables introduced in (3), the total statistical energy in the two-layer system can be defined203

through204

E =
1
2 ∑

1≤|k|≤N
|k|2 |ψk|2 +

(
|k|2 + k2

d

)
|τk|2 =

1
2 ∑

1≤|k|≤N

∣∣pψ,k
∣∣2 +

∣∣pτ,k
∣∣2. (9)

The exact dynamics for the statistical energy can be derived following the general framework205

described in Majda (2015) as206

dE
dt

+H f =−κE +
κ
2

F−νH +Qσ . (10)

The nonlinear interaction terms in B(p,p) will not alter the total statistical energy structure due207

to the detailed triad symmetry (Majda 2015). This is consistent with the total energy conserving208

relation in the nonlinear flux term, ∑k trQF,k = 0. However, due to the baroclinic instability in209

the two-layer model, statistical energy is no longer conserved as in the barotropic case. H f is the210
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meridional heat flux due to baroclinic instability211

H f = k2
dU
∫

ψxτ = k2
dU ∑ ikxψ∗kτk,

that transfers energy from the unstable baroclinic modes to the barotropic ones. F is the additional212

damping effects due to the non-symmetry in Ekman drag only applied on the bottom layer, which213

is related with the potential energy and the cross-covariance between modes214

F = ∑k2
d|τk|2 +2 |k|2Reψ∗kτk.

And νH is the additional dissipation from the hyperviscosity. Finally Qσ adds the stochastic215

external perturbations to the system as an additional energy source term. We display the explicit216

formulation about the statistical energy equation also in Appendix A.217

3. General low-dimensional reduced-order statistical methods for principal responses218

In this section, we describe the general framework of the reduced-order models that can cap-219

ture the statistical responses to perturbations in the most energetic and sensitive directions. In the220

first place, the ideas in linear response theory are introduced which can offer an effective way to221

estimate the linear leading order responses and calibrate imperfect model errors in the training222

phase. On the other hand, as the perturbation amplitudes increase, reduced-order dynamical mod-223

els offer more accurate way to capture nonlinear responses. Following the systematic information-224

theoretical framework introduced in Majda and Qi (2016); Qi and Majda (2016), we develop the225

low-dimensional reduced-order models for the two-layer baroclinic turbulence which can resolve226

model variability along principal directions with both accuracy and efficiency.227
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a. Linear statistical response theory with deterministic and stochastic perturbation228

The linear response theory and fluctuation-dissipation theory (FDT) offer a convenient way to229

get leading-order linear approximation about model responses to perturbations (Leith 1975; Ma-230

jda et al. 2005; Majda and Wang 2010; Abramov and Majda 2012). Here we consider system231

perturbation as a combination of deterministic and stochastic random noise232

δF = δ f (t)a(u)+
√

δ f (t)σ (x)Ẇ. (11)

We assume zero forcing, F ≡ 0,σ0 ≡ 0, in the unperturbed equilibrium, and that the stochastic233

perturbation is in the order O
(√

δ
)

, thus the Fokker-Planck operator corresponding to the deter-234

ministic and stochastic perturbation becomes235

La p =−∇u · (ap) , Lσ p =
1
2

∇∇u ·
[
σσT p

]
.

The equilibrium statistics and leading-order correction to the perturbation of some functional236

about the state variable A(u) can be formulated as an asymptotic expansion, A(u) = A(u)eq +237

δA(u)(t)+O
(
δ 2), with238

A(u)eq =
∫

A(u) peq (u)du, δA(u)(t) =
∫ t

0
RA (t− s)δ f (s)ds. (12)

Above the ‘overbar’ denotes the statistical average under the solution from Fokker-Planck equa-239

tion. RA (t) is the linear response operator to perturbations according to the functional A, which240

is calculated through correlation functions in the unperturbed climate only241

RA (t) = A(u(t))B(u(0))eq, B(u) =
(La +Lσ ) peq

peq
. (13)

Note that even though in general the linear response operator is difficult to calculate considering242

the complicated and unaccessible equilibrium distribution. A convenient way to get accurate esti-243

mation about the linear response operator is from the Gaussian approximation about each spectral244
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mode and assume independence between modes with different wavenumbers (Majda et al. 2005,245

2010). The simple form of the quasi-Gaussian closure, peq, makes it possible for the development246

of exact formulation about the FDT algorithm and linear response operator (see Appendix B for247

the explicit forms of the linear response operators for the two-layer equations).248

b. Low-dimensional reduced-order closure models249

In developing reduced-order models, we concentrate on the first M dominant modes, |k| ≤250

M,M� N, that cover the most energetic directions in the system. The nonlinear term in (5) al-251

ways includes interactions between modes in a wide spectrum through the triads k = m+n. Thus252

the (unresolved) less energetic high wavenumber modes (|k|> M) could be important for the final253

energy spectrum in low wavenumber modes (|k| ≤M) due to the strong backward cascade of en-254

ergy through these nonlinear triad interactions. Therefore careful calibration about the small-scale255

unresolved nonlinear feedbacks in the resolved large-scale modes forms the central issue in the256

construction of low-dimensional truncated reduced-order models to achieve both computational257

accuracy and efficiency.258

From the exact statistical equation (7), the linear dynamics in the two-layer equations are de-259

coupled into a 2× 2 blocked-diagonal system with interactions only inside the barotropic and260

baroclinic mode within the same wavenumber. The statistical modes with different wavenumbers261

are coupled only through the nonlinear interactions, QF , in third-order moments. In the devel-262

opment of reduced-order models, this becomes the most expensive but crucial part to estimate.263

Therefore a judicious estimation about these nonlinear interaction terms is the major task in de-264

signing the low-order schemes. The basic idea can be viewed as replacing the expensive nonlinear265

interactions in the small-scale with proper additional nonlinear damping and noise as in Majda and266

Qi (2016); Qi and Majda (2016). Additional damping serves as the stabilizing effects balancing on267
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the linearly unstable modes, while adding additional noise excitation models the energy received268

on the stable modes. Considering all these aspects, the reduced-order models can be formulated in269

the forms of the 2×2 blocks about barotropic and baroclinic pairs with the same wavenumber as270

dRM,k

dt
= (Lk−Dk)RM,k +QM,k +Qσ,k + c.c., |k| ≤M. (14)

The above equations are only solved for the resolved modes among wavenumbers 1≤ |k| ≤M�271

N. Comparing with the exact formulation (7), the imperfect model approximation comes from272

the nonlinear flux QM,k, which characterizes the unresolved higher-order interactions due to the273

quadratic nonlinear effects. The major interest is to see whether we can construct proper re-274

duced low-order approximation model (14) to capture the model sensitivities when various kinds275

of model perturbations are applied through the forcing perturbation from Qσ,k.276

In general in the original dynamics, the nonlinear flux QF,k describes the energy transfer from277

the unstable subspace to the stable one through higher-order interactions. As described in Qi and278

Majda (2016) for one-layer barotropic flow, the low-order approximation of this nonlinear flux279

is through additional damping and noise by splitting this operator into two separate components,280

QM,k (E) = Q+
M,k (E)+Q−M,k (E). The low-order correction made in QM,k is only constructed from281

the first two order of statistics. The next task is to propose proper forms to calibrate the nonlinear282

flux forms using additional damping in Q−M and additional noise in Q+
M.283

Reduced-Order Statistical Energy Closure284

A preferred approach for the nonlinear flux QM,k combining both the detailed model energy285

mechanism and control over model sensitivity is proposed in the form286

QM,k = Q−M,k +Q+
M,k = f1 (E)

[
−
(
NM,k,eq +dM

)
RM,k

]
+ f2 (E)

[
Q+

F,k,eq +σ2
M,k

]
. (15)

The closure form (15) consists of three indispensable components:287
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i) higher-order corrections from equilibrium statistics: in the first part of the correction288

(
NM,k,eq,Q+

F,k,eq

)
, unperturbed equilibrium statistics in the nonlinear flux are used to cali-289

brate the higher-order moments as additional energy sink and source. The true equilibrium290

higher-order flux can be calculated without error from first and second order moments in Rk,eq291

from the unperturbed true dynamics (7) with Qσ ,k ≡ 0 in steady state292

QF,k,eq = Q−F,k,eq +Q+
F,k,eq =−(Lk−Dk)Rk,eq + c.c., NM,k,eq =

1
2

Q−F,k,eqR−1
k,eq. (16)

Q−F,eq,Q
+
F,eq are the negative and positive definite components in the unperturbed equilibrium293

nonlinear flux QF,eq. Since exact model statistics are used in the imperfect model approxi-294

mations, the true mechanism in the nonlinear energy transfer can be modeled under this first295

correction form. This is the similar idea used for measuring higher-order interactions in Sap-296

sis and Majda (2013a,b), while more sophisticated and expensive calibrations are required to297

make that model work;298

ii) additional damping and noise to model nonlinear flux: the above closure by using equilibrium299

information for nonlinear flux is not sufficient for accurate prediction in the reduced-order300

methods since the scheme is only marginally stable and the energy transferring mechanism301

may change with large deviation from the equilibrium case when external perturbations are302

applied. We propose the additional damping and noise
(

dM,σ2
M,k

)
as from Majda and Qi303

(2016); Qi and Majda (2016) for further corrections in the form304

Qadd
M,k =−dMRM,k +σ2

M,k, dM =




dM,ψ iωM

−iωM dM,τ


 . (17)

Here specifically for the two-layer system, we introduce the additional damping operator dM305

with different damping rates in the barotropic mode, dM,ψ , and baroclinic mode, dM,τ . The306
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off-diagonal parameter ωM introduces additional calibration for the internal energy transfer307

between the barotropic and baroclinic mode;308

iii) statistical energy scaling to improve model sensitivity: Still note that we add these additional309

parameters regardless of the true nonlinear perturbed energy mechanism where only unper-310

turbed equilibrium statistics are used. To capture the responses to a specific perturbation311

forcing, it is better to make the imperfect model parameters change adaptively according to312

the total energy structure. Considering this, the additional damping and noise corrections are313

scaled with factors f1 (E) , f2 (E) related with the total statistical energy E in (9) as314

f1 (E) =
(

E
Eeq

)1/2

, f2 (E) =
(

E
Eeq

)3/2

. (18)

In the positive-definite part Q+
F,eq +σ2

M, it calibrates the rate of energy injected into the spec-315

tral mode due to nonlinear effect. The term multiplying noise scales with E3/2 so that the316

corrections to higher statistics keep consistent in scaling dimension with the third-order mo-317

ment approximations; In the negative damping rate NM,eq− dM, the scaling function is used318

to characterize the amount of energy that flows out the spectral mode due to nonlinear inter-319

actions. Still scaling with a square-root for the total energy E1/2 is applied for this damping320

rate to make it consistent in scaling dimension.321

Next we discuss the detailed calibration about the nonlinear flux approximations. Two steps of322

model calibration should be considered: i) the equilibrium consistency that the reduced model323

will converge to the true equilibrium statistics as no perturbations are added; ii) model sensitivity324

by blending statistical response and information theory so that the imperfect model can capture325

the responses to various kinds of perturbations as the system is perturbed. Construction (16)326

guarantees equilibrium consistency using the true equilibrium model nonlinear flux structure. On327
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the other hand, to improve model sensitivity, the linear response operators with information metric328

are used to find optimal parameters from the correction part in (17).329

1) CLIMATE CONSISTENCY330

In designing the reduced-order models, equilibrium consistency should be guaranteed in the first331

place in the unperturbed climate. That is, the same final unperturbed statistical equilibrium Rk,eq332

should be recovered from the reduced-order models RM,k in each resolved mode k. Comparing the333

true statistical equation (7) with the reduced-order model (14), time derivatives about the statistics334

on the left hand sides vanish in statistical steady state, thus climate consistency can be achieved335

only if we have exact recovery of the estimation in the nonlinear flux term. Specifically, it requires336

that the model nonlinear flux correction term (15) converges to the truth, QM → QF,eq, when no337

external perturbation is added, Qσ = 0. Under this condition in steady state the reduced-order338

model (14) goes to the true unperturbed statistics339

0 = (Lk−Dk)RM,k +QF,k,eq + c.c. → RM,k = Rk,eq.

In construction the first component
(

NM,k,eq,Q+
F,k,eq

)
comes from the true equilibrium statistics.340

This part will be automatically equal to the true nonlinear flux in equilibrium. Thus climate con-341

sistency requires that the second component correction makes no contribution in the unperturbed342

case, and no further correction in the scaling functionals. That is,343

σ2
M,k = dMRM,k,eq, f1

(
Eeq
)
= 1, f2

(
Eeq
)
= 1. (19)

By choosing parameters according to (19), the climate consistency for the imperfect reduced-344

order models in (14) in the unperturbed equilibrium is guaranteed. In addition, we still leave345

one controlling parameter dM for the freedom to tune the imperfect model performance in both346
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barotropic and baroclinic mode, considering that climate consistency is only the necessary but not347

sufficient condition for good model prediction (Majda and Gershgorin 2011).348

2) MODEL CALIBRATION BLENDING STATISTICAL RESPONSE AND INFORMATION THEORY349

Next we try to find a unified way to achieve the optimal model parameters dM such that the im-350

perfect models can maintain high performance for various kinds of external perturbations. Accu-351

rate modeling about the model sensitivity to various external perturbations requires the imperfect352

reduced-order models to correctly reflect the true system’s “memory” about its previous states.353

Following the idea in Majda and Gershgorin (2011); Majda and Qi (2016), it is noticed that the354

linear response operator RA in (13) can characterize the model sensitivity involving the nonlinear355

effects in the system regardless of the specific forms of the external perturbations. The optimal356

imperfect model parameter thus can be achieved by measuring the linear response operator under357

the unbiased information metric.358

Information-theoretical framework to measure the linear responses In this training phase, we359

try to find the optimal model parameters dM by comparing the linear response operators from the360

true system and imperfect approximation model. The true model linear response operator can be361

calculated from (13) with the quasi-Gaussian closure which is detailed in Appendix B, and the362

reduced-order model response operators are calculated from the kicked response strategy (Majda363

and Qi 2016; Qi and Majda 2016). The distance between these two operators can be calculated364

through the information metric from Kullback and Leibler (1951); Majda and Gershgorin (2011)365

which offers an unbiased and invariant measure for model distributions366

P
(
πδ ,πM

δ
)

= S
(
πG,δ

)
−S (πδ )

+
1
4 ∑

k
R−2

k
(
δRk−δRM,k

)2
+O

(
δ 3) . (20)
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The first row above is the inherent information barrier due to the second-order closure approxi-367

mation; and the last row is the dispersion error for calibrating the linear responses in the first two368

order of moments, δRk.369

Correction through total statistical energy In the previous calibrations, we just consider the equi-370

librium statistics without any perturbed model measurements considered. To capture the responses371

to a specific perturbation forcing, it is better to make the imperfect model parameters change adap-372

tively according to the total energy structure. In the closure form (15), two additional scaling373

factors, f1, f2, are introduced to further quantify the nonlinear energy flux in and out the spec-374

tral modes due to the nonlinear interactions. We propose the dynamical corrections with the total375

statistical energy E as in the forms (18). This total energy correction introduces global informa-376

tion into each spectral mode so the nonlinear energy transfer can be better characterized in the377

imperfect model, while solving only one additional scalar equation is the only additional cost in378

computation. The scaling factor from E (t) introduces nonlinear global effects into the additional379

damping and noise corrections in each mode.380

One further difficulty is about solving this statistical energy equation in (10) since only the first381

few low-wavenumber modes are resolved. The strategy here is to run the approximated equa-382

tion instead and again use the equilibrium steady state statistics to estimate the unresolved part.383

Therefore the dynamical equation we need to run becomes384

dEM

dt
+ k2

dU ∑
|k|≤M

ikxψ∗kτk =−κEM +
κ
2 ∑
|k|≤M

[
k2

d|τk|2 +2 |k|2Reψ∗kτk

]
+

EM

EM,eq
Q∞ +Qσ . (21)

Above in the model equation, only the resolved part is calculated explicitly and the unresolved385

component Q∞ is from the equilibrium statistics and again scaled with the statistical energy. In386
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explicit form we can calculate387

Q∞ =

[
k2

dU ∑
|k|≤M

ikxψ∗kτk +κEM−
κ
2 ∑
|k|≤M

(
k2

d|τk|2 +2 |k|2 ψ∗kτk

)]

eq

.

Therefore the solution of the above equation (21) can be used as an approximation of the total388

energy E of the system and a more feasible scaling factor to calibration the nonlinear flux including389

all the external perturbation forms. The additional computational expense for solving the scalar390

equation (21) is fairly low.391

In summary, we approximate high-order nonlinear energy flux in the true system with an ad-392

ditional damping terms Q−M and the additional noise Q+
M consisting of two components. The first393

component calibrates the nonlinear energy transfers through the true equilibrium information, thus394

the model can reflect the true energy mechanism; and the second component offers better control395

for the model sensitivity, thus we can seek the optimal parameters through a training process.396

Model equilibrium consistency is guaranteed through this construction. Model sensitivity can397

simply be controlled by the constant parameter dM. Two more scaling coefficients, f1 and f2398

with total statistical energy, are introduced to further improve the model sensitivity to external399

perturbations.400

c. Summary of the Reduced-Order Statistical Energy Closure algorithm401

We summarize the low-dimensional reduced-order statistical closure algorithm with calibration402

from total statistical energy and linear response theory (Majda 2015; Majda and Qi 2016). The403

general reduced-order model algorithm is split into two separated steps of a training phase and a404

prediction phase. The training phase is used to improve model sensitivity by tuning the imperfect405

model parameter using only unperturbed climate statistics for the linear response operator. Then406
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the optimal parameter can be applied for predicting model responses to different kinds of external407

perturbations.408

Algorithm 1 (Reduced-order statistical closure model for two-layer baroclinic turbulence)409

Decide the low-dimensional subspace RM spanned by orthonormal basis {ek}M
|k|=−M covering410

the regime with largest variability (energy) in the spectrum. Set up statistical dynamical equations411

(14) by Galerkin projecting the original equations to the resolved subspace RM for 1≤ |k| ≤M, as412

well as the statistical energy equation (21) to get the total statistical energy EM in the system. The413

reduced-order method can be carried out in two steps with a calibration phase and a prediction414

phase:415

• Calibration step:416

– Construct low-order approximation of the nonlinear flux in the statistical equations us-417

ing the statistical energy closure proposed in (15) consistent with the equilibrium cli-418

mate;419

– Compute the true linear response operator from the unperturbed equilibrium statistics,420

and calculate the imperfect model predicted linear response operator from proper esti-421

mation strategies (using formulas shown in Appendix B);422

– Determine the imperfect model parameter values through minimizing the information423

distance (20) between linear response operators from true equilibrium statistics and424

imperfect model approximation;425

• Prediction step:426
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– Use the optimal tuned parameters achieved from the previous step in the reduced-order427

model to get statistical responses of the state variables of interest in principal directions428

with all kinds of specific external perturbations.429

Note that in the calibration step in the algorithm, only the unperturbed statistics in equilibrium430

are required. Thus this offers the optimal model parameters that are ideally valid for all kinds of431

specific forcing perturbation forms. With the help of the linear response operator we are able to432

find a unified way to tune the imperfect model parameters and avoid the exhausting and impractical433

process to tune the models each time with different kinds of perturbations.434

4. Reduced-order models with homogeneous mean flow435

In this section, we test the prediction skill of the reduced-order model for the two-layer QG436

turbulence in both representative ocean and atmosphere regimes. Distinct turbulent structures437

can be produced at different latitudes as the β -effect changes. In high latitude case (strongly438

supercritical), homogeneous statistical can be generated, while in low/mid latitude case (weakly439

supercritical), anisotropic jets are representative features that can always be observed. In this440

section we focus on the high latitude ocean and atmosphere regimes with homogeneous statistics,441

and the imperfect model skill in capturing inhomogeneous structures will be discussed in next442

section.443

SET-UP OF NUMERICAL SIMULATIONS444

In numerical simulations, the true statistics is calculated by a pseudo-spectra code by resolving445

the two-layer equations (1) with 128 spectral modes zonally and meridionally, corresponding to446

256×256×2 grid points in total. In the reduced-order methods, only the large-scale modes |k| ≤447

10 are resolved, which is about 0.15% of the full model resolution. For the nonlinear advection448
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terms a standard 3/2-rule is applied to get rid of aliasing error. The time integration is through449

the standard 4th-order Runge-Kutta methods with time step ∆t = 5×10−4 and ∆t = 5×10−3 for450

ocean and atmosphere regime respectively, which is small enough to capture all the small-scale451

dynamics. Note that due to the much smaller Rossby deformation radius in the ocean regime, the452

system becomes more stiff and much smaller time step is required for the ocean case for stability.453

The time-series are recorded at every 20 or 10 time steps for ocean and atmosphere case, that is,454

we sample the data at every 0.01 or 0.05 time unit. We integrate the system up to a long time with455

N = 3.5×105 time steps with the first 5000 steps skipped in the calculation of model statistics.456

EXTERNAL FORCING IN STOCHASTIC AND DETERMINISTIC COMPONENT457

The forcing perturbations are expressed in the barotropic and baroclinic mode individually as458

in (2). The barotropic perturbation can be used to describe the penetrated forcing through the459

flow surface independent of depth; while the baroclinic perturbation can represent the effects from460

radiative heating and baroclinic stirring. In our testing cases, the stochastic forcing is represented461

as a random Gaussian process, where only the variance spectrum in wavenumber needs to be462

prescribed; and the deterministic forcing is introduced through a perturbation in the vertical shear463

as follows:464

• The amplitude of the stochastic forcing is introduced according to the equilibrium energy so465

that466

σ2
ψ,k = δσ2

0
∣∣qψ,k

∣∣2
eq, σ2

τ,k = δσ2
0
∣∣qτ,k

∣∣2
eq. (22)

σ0 is a scaling variable to control the strength of the barotropic and baroclinic perturbations;467

∣∣qψ,k
∣∣2

eq,
∣∣qτ,k

∣∣2
eq are from the unperturbed equilibrium statistics of the vorticity so that the468

energy injected into each mode is balanced. Only modes in largest scales, 1 ≤ |k| ≤ 10, are469
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perturbed, while the higher wavenumbers are kept unperturbed in the following numerical470

tests.471

• The deterministic forcing is introduced through a perturbation in the background shear Uδ =472

U +δU , so that the perturbation on the barotropic and baroclinic mode becomes473

δ fψ,k = δUikx

(
−|k|2

)
τk, δ fτ,k = δUikx

(
−|k|2 + k2

d

)
ψk. (23)

Still the perturbation strength is according to the structure in each barotropic and baroclinic474

mode so that the forcing is balanced. This deterministic perturbation due to the change in475

shear flow strength is then applied along the entire spectrum. This is the same perturbation476

form tested in Sapsis and Majda (2013a) with a more complicated set of closure methods.477

The strong nonlinear interactions in the QG flow induce energy exchange between small and large478

scales even when only the large-scale modes are perturbed. The challenge in the reduced-order479

model is to predict the nonlinear responses to barotropic and baroclinic perturbations with only480

large-scale modes resolved.481

a. True model statistics with homogeneous structure482

In the first place, we demonstrate the true model statistics and energy structure. Parameters483

for high-latitude dynamical regimes are shown in Table 1. These parameters are chosen so that484

baroclinic instability is exhibited in a wide range of modes
√

β
2U ≤ |k| ≤ kd with a turbulent485

cascade. The unstable waveband spectra from linear analysis in each regime are also listed in the486

last three columns of the table. The Ekman damping reduces the maximum growth rate while487

at the same time extends the spread of the unstable waveband. The ocean regime in general488

has a wider band of instability with more unstable small-scale (high wavenumber) modes and489

stronger growth rate compared with the atmosphere case. Due to the β -effect stopping the inverse490
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energy cascade, the largest scales |k| < 2 always stay (linearly) stable. Small hyperviscosity,491

ν = 1.2×10−15 (ocean) or ν = 5×10−15 (atmosphere), is added to both barotropic and baroclinic492

modes to dissipate the unresolved small-scale fluctuations.493

In the simulations for the unperturbed system in high-latitude regimes, no external forcing is494

added in either deterministic or stochastic component. Figure 1 displays the two-layer flow struc-495

ture in high-latitude ocean regime. The first row is the snapshots of the barotropic and baroclinic496

vorticity. Homogeneous structure can be observed in both cases while larger scale structures497

appear in the baroclinic mode. It is important to notice the strong correlation in the coherent struc-498

tures in the barotropic and baroclinic field, illustrating the strong energy transfer between the two499

modes. The following part shows time-series of the energy in barotropic and baroclinic mode,500

−∫ ψqψ ,−
∫

τqτ , as well as the potential energy,
∫

k2
dτ2, compared with the meridional heat flux,501

k2
dU
∫

ψxτ . Baroclinic mode appears more active with larger energy in this ocean regime. In Fig-502

ure 2 the results for the two-layer flow in high-latitude atmosphere regime are compared. One503

important feature here is the flow field alternating between blocked and unblocked regimes. In504

the stream functions, it can be observed that in the blocked regime, zonal flow is blocked and505

the field is restricted at separated regimes, while in the unblocked regime strong zonal flow can506

be observed. Strong meridional heat flux can be observed in the blocked regime while the flow507

is in state with lower energy and heat transfer rate in the zonal unblocked regime. In the atmo-508

sphere case, the barotropic energy is larger, while potential energy is dominant in the baroclinic509

energy. For further comparison, the zonally averaged mean flow fields u =−∂yψ in both regimes510

are shown in Figure 3. Again we observe homogeneous statistics in both fields while atmosphere511

regime show larger scale structures. Similar phenomena are observed in many other simulations512

about the two-layer flow (Harlim and Majda 2010; Vallis 2006; Treguier and Hua 1987; Grooms513

and Majda 2013).514
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To understand the energy mechanism in the true model, we check the instability and equilib-515

rium statistical features in both ocean and atmosphere regimes. Each wavenumber includes the516

barotropic and baroclinic mode as a 2×2 block. The linear part, (Lk−Dk)Rk, in the original sta-517

tistical equation (7) illustrates the stable and unstable subspace where baroclinic instability takes518

place. The nonlinear part, QF,k, on the other hand, shows the nonlinear energy transfer mecha-519

nism through the triad modes k = m+n between different scales. In Figure 4, we compare the520

linear growth rate with dissipation and the eigenvalues from the nonlinear flux QF in both high-521

latitude ocean and atmosphere regimes. In both regimes we can observe that the most unstable522

linear modes take place in zonal direction (with ky = 0) and all the meridional modes (kx = 0)523

become stable due to the asymmetric dissipation effects. Correspondingly, the nonlinear flux QF524

has negative eigenvalues in the zonal modes (meaning outflow of energy due to nonlinear inter-525

actions) and positive eigenvalues in the meridional modes (meaning inflow of energy). Therefore526

the energy mechanism can be summarized as that the linear unstable modes increase in energy due527

to the positive growth rate while the nonlinear operator will transfer the additional energy to the528

stable modes (effectively as an additional damping) due to linear instability. Note the wavenum-529

bers with largest linear growth rate takes place in smaller scales than the position of nonlinear flux530

wavenumber with the largest eigenvalues. This illustrates the backward cascade of energy to large531

scales along the energy spectra and transfer of baroclinic energy to barotropic modes in the largest532

scales. Comparing the ocean and atmosphere regime, it is also important to notice that the ocean533

regime contains a wider range of unstable modes with larger amplitude due to the relative large534

deformation frequency kd , while in the atmosphere regime the strongest nonlinear energy transfers535

take place at |k|= 1,2.536

The general steady state statistical structures in the spectral field are shown in Figure 5. As537

implied from the homogeneous statistics, the mean states stay in small values within fluctuation538
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errors in both ocean and atmosphere regimes. From the energy spectra, one observation is that the539

potential energy is dominant in large scales in the baroclinic modes, and the kinetic baroclinic en-540

ergy becomes more important in small scales. More statistical features of the two-layer system can541

be revealed by the autocorrelation functions and the marginal distributions in the most energetic542

modes shown in Figure 6 for ocean and atmosphere regime. In the ocean regime, all the modes are543

mixing quite rapidly with a fast decaying autocorrelation function. The marginal distributions in544

the principal modes all appear like Gaussian with comparable amount of energy in each mode in545

the selected modes. In comparison in the atmosphere regime, the first two modes appear strongly546

non-Gaussian containing much higher energy than the other ones. Also the first two dominant547

modes are mixing for a much longer time with oscillatory autocorrelation functions. Still even548

with Gaussian-like marginal distributions in the ocean case, nonlinear non-Gaussian features in549

higher-order moments are important for the reduced-order methods. Figure 7 displays the joint-550

distributions in the most energetic modes in the ocean (mode (5,2) and (5,3)) and atmosphere551

(mode (1,0) and (0,1)) regime. The first two rows show the joint-distribution in barotropic and552

baroclinic modes in the principal modes. And the second parts show the joint-distributions with553

different wavenumbers between barotropic and baroclinic modes. Within the same wavenumber k,554

as we have observed in the snapshots, the barotropic and baroclinic modes are strongly correlated555

with skewed joint PDFs. Especially in the atmosphere case, non-Gaussian structures can be ob-556

served in the first two modes. However in the joint distributions between different wavenumbers,557

the modes appear decoupled and independent with each other. This further guarantees the assump-558

tion of homogeneous statistics as 〈pm pn〉= 0,m 6= n in the high-latitude regime, and validates the559

feasibility of using quasi-Gaussian approximation in calculating the linear response operators as a560

2×2 blocked system.561
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b. Testing reduced-order model in homogeneous regime562

In the previous section we displayed the unperturbed statistical structures of the two-layer QG563

system in high-latitude regime with important nonlinear non-Gaussian features. The major task564

now is to test the reduced-order model skills in predicting statistical responses to both stochastic565

and deterministic forcing perturbations as prescribed in (22) and (23) using only low-order clo-566

sures. Only the large-scale modes |k|< 10 are calculated here, which cover the regime of most en-567

ergetic directions. And to investigate the model sensitivity in each component, the perturbations in568

barotropic mode and baroclinic mode are applied individually in the tests. Three statistical quanti-569

ties are of special importance in characterizing the two-layer system, that is, the barotropic energy,570

∣∣pψ,k
∣∣2, baroclinic energy

∣∣pτ,k
∣∣2, and the heat flux ikxψ∗k τk. Due to the homogeneous statistics as571

we have shown before, the mean states become zero and thus we can focus on the second-order572

variances in this situation. Therefore we will mainly check the reduced-order method’s ability in573

capturing the responses in these key quantities. Like the Algorithm summarized in Section 3.c, the574

modeling process are decomposed into a training phase for finding optimal model parameters and575

a prediction phase for getting responses to various perturbations.576

1) TRAINING PHASE WITH LINEAR RESPONSE OPERATOR577

EQUILIBRIUM CONSISTENCY FOR THE REDUCED-ORDER METHOD578

In testing the reduced-order models, we need to first guarantee climate consistency with the true579

unperturbed equilibrium in statistical steady state. In the construction of low-order correction in580

Section 3.b, higher-order statistics from equilibrium are combined with additional damping and581

noise corrections. It needs to be emphasized that neither the additional damping and noise (17) nor582

the equilibrium high-order correction (16) is stable on its own even with the climate consistency583

satisfied in (19). Due to the baroclinic instability in the linear operator, energy in the unstable584
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subspace will increase and finally diverge from the true model climate. Instead by combining585

(17) and (16) to form the blended approach in (15), climate consistency can always be reached586

with exact recovery of variance in each mode as illustrated in Section 3.b. To further confirm587

the equilibrium consistency numerically, Figure 8 shows the steady state energy spectra from the588

reduced-order model together with the time convergence in total variance. Exact recovery in each589

individual mode as well as the total variance is observed in the combined scheme.590

TUNING IMPERFECT MODEL RESPONSES THROUGH LINEAR RESPONSE THEORY591

In the training phase before the prediction step, the optimal model parameters dM =
(
dM,ψ ,dM,τ

)
592

are calibrated through the information-theoretic framework (Majda and Qi 2016; Majda and Ger-593

shgorin 2011) combining the statistical response operator (13) and information metric (20). The594

strategies to get the linear response operator in the true signal and the reduced-order model are595

detailed in Appendix B. As an example, Figure 9 shows the linear response operators from the596

truth and imperfect model kicked-response in the high-latitude ocean regime with a stochastic per-597

turbation in the barotropic mode. Since the system is strongly mixing in this high-latitude ocean598

regime, the operators all decay to zero quite rapidly. The reduced-order model only uses first599

two moments to estimate the higher-order interactions, thus some of the nonlinear structure in the600

beginning is missed. Nevertheless the imperfect closure model gets desirable approximation for601

these linear response operators in these leading modes.602

In Figure 10 the tuning process by minimizing the information error in the resolved subspace603

as the model parameters dM changes in value is displayed. To illustrate the effects from the to-604

tal statistical energy correction in (18), the errors with and without the energy scaling factor,605

f1 (E) , f2 (E), are compared. In the right part for the method without using the scaling factor,606

larger information errors appear uniformly among the entire range of parameter values and it is607
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difficult to improve the model prediction skill by only tuning the model parameters. Whereas with608

the proper energy correction, the information error can be effectively reduced with a wide param-609

eter regime with small information errors as shown on the left, which implies the robustness of the610

method. Note again in this training phase only unperturbed equilibrium statistics are used without611

the specific perturbation forms, thus the method with optimal parameters can be used to predict612

system responses to various kinds of specific external forcings. As a further comparison, we show613

the reduced-order model predictions and information error with and without statistical energy cor-614

rection in a typical case by perturbing the barotropic mode with stochastic noise in the ocean615

regime. This shows the essential role of the scaling factor to improve model sensitivity. Without616

the correction from total statistical energy, the response energy spectrum is highly underestimated617

with much larger information error compared with the method with energy correction due to the618

insufficient characterization in the higher-order interactions. The statistical energy correction then619

will always be applied in the following parts.620

2) PREDICTION SKILL OF REDUCED-ORDER MODEL621

MODEL RESPONSES TO STOCHASTIC FORCING IN BAROTROPIC AND BAROCLINIC MODE622

In this first place, we test the model sensitivity to random stochastic perturbations as described623

in (22). We consider the perturbations in barotropic and baroclinic mode individually so that the624

contributions from each component can be identified. Usually, the baroclinic energy transfers to625

barotropic modes in the large scales and the nonlinear energy cascade alters the energy structure626

in the entire spectrum despite only the large scale modes are perturbed. The challenge here is627

whether the nonlinear responses can be captured with accuracy using reduced-order models where628

only corrections from low-order moments (that is, mean and variance) are used.629
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The high-latitude ocean regime responses in barotropic and baroclinic energy and heat flux in630

large-scale wavenumbers to stochastic perturbations are first shown in Figure 11. The perturbation631

amplitude is chosen as δσ2
0 = 0.5 of the equilibrium energy in the stochastic forcing (22) so that632

the response is large and nonlinear. We compare the responses in perturbing only the barotropic633

mode and baroclinic mode. The most energetic and most sensitive scales take place at wavenum-634

bers |k|= 4,5,6. Both barotropic and baroclinic perturbations can lead to large changes in a wide635

spectrum in both barotropic and baroclinic component due to the strong coupling between the636

modes. In the reduced-order methods, only the first large-scale modes |k|< 10 are resolved, while637

the responses in these dominant modes are all captured with accuracy in both perturbation cases638

though the complicated higher-order interactions with small-scale modes are not computed explic-639

itly. Further the time-series with the total statistical energy from the equation (21) are compared.640

The dashed black lines mark the level of energy in unperturbed and perturbed case. In this regime,641

the total statistical energy can also be recovered exactly with little error. This in turn explains the642

high skill of the reduced-order models in predicting this regime. Instead, if we only consider the643

energy in the resolved subspace shown by blue lines, a large gap can be observed compared with644

the total energy. Figure 12 shows the results in the high-latitude atmosphere regime. Alternating645

blocked and unblocked structures appear in this regime and generate quite complicated statistical646

features. The leading mode |k| = 1 contains most of the energy and becomes highly sensitive to647

perturbations. The reduced-order method keeps the skill in capturing the responses in the most648

sensitive directions in this difficult regime. Also it is observed that the baroclinic perturbation case649

becomes a little less accurate in both spectra and total statistical energy. This might be due to the650

stronger nonlinear energy interactions from baroclinic to barotropic mode.651

A further test requires to check the model’s robustness in predicting perturbations with different652

amplitudes. Figure 13 displays the prediction results with changing stochastic forcing amplitude653
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δσ2
0 in the barotropic modes. The reduced-order model maintains the skill in predicting responses654

with various forcing strength, and the nonlinear trends in the total resolved barotropic and baro-655

clinic energy as well as the heat flux are captured compared with the linear prediction in the FDT656

shown by dashed lines.657

MODEL RESPONSES TO THE PERTURBED MEAN SHEAR δU658

In checking the model responses to deterministic forcing, we introduce the forcing perturbation659

by changing the background jet strength U as in (23). The same perturbation is tested in Sapsis and660

Majda (2013a) for a more complicated reduced-order modified quasi-Gaussian closure (RoMQG),661

and we test the same perturbation form here under our systematic reduced-order modeling frame-662

work. Note that the deterministic perturbation in (23) forms a more difficult test case compared663

with the stochastic forcing (22) because the forcing is applied along all wavenumbers with stronger664

mean-fluctuation interactions involved. On the other hand, for the reduced order methods, only665

the perturbations at the limited resolved modes are quantified. This gives the inherent difficulty666

for applying the reduced order models to this kind of perturbations since we have no knowledge of667

the unresolved modes where large amount of energy is contained. Therefore the statistical energy668

equation (21) plays a crucial role.669

The results with mean flow perturbations δU = ±0.05 in the ocean regime and perturbations670

δU = 0.02,−0.01 in the atmosphere regime are shown in Figure 14 and 15 separately. The per-671

turbation accounts for about 5%-10% of the original shear strength U , and the corresponding672

responses in both energy and heat flux spectra are large due to this global perturbation at every673

wavenumber and nonlinear energy cascade. In the ocean regime, a wide waveband of modes674

|k| = 3,4,5,6 becomes sensitive to the perturbations; while in the atmosphere regime, the first675

dominant mode |k| = 1 is especially sensitive according to even small perturbations. This il-676
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lustrates the strong nonlinear interactions between the high and low wavenumber modes. The677

reduced-order method displays uniform skill in capturing the sensitive responses in the large-scale678

modes for both positive and negative perturbation cases with only first 10× 10 spectral modes679

resolved compared with the 256×256 full resolution model.680

5. Reduced-order model with inhomogeneous jet flow681

In mid or low latitude regimes, both the ocean and atmosphere are distinctly inhomogeneous682

on large scales. The existence of large-amplitude meandering zonal jets in these regimes suggests683

regional metastable equilibria, while the large-scale forced perturbations may lead to regular or684

irregular fluctuations in some extent. Following the same systematic information-theoretic proce-685

dure, we test the prediction skill of the reduced-order method in this inhomogeneous regime with686

anisotropic jets in this section.687

a. True model results with anisotropic jets688

The set-up of the two-layer system in this low/mid latitude case is kept exactly the same as689

previous in Section 4. The parameters used for low/mid latitude ocean and atmosphere regime are690

listed in Table 2. Larger β -effect is applied in this regime, and the Ekman friction has a smaller691

value. Compared with the high latitude case, the first unstable wavenumber takes place at larger692

values in smaller scales, and the linear growth rate is weaker than that in the high latitude.693

Flow snapshots in both ocean and atmosphere regime in low/mid latitude are plotted in Figure694

16. In the ocean regime, multiple steady jets can be observed and the jets can be persistent for a695

long time; in the atmosphere regime, there appears one dominant jet meandering in time. The jet696

structures are illustrated in more detail in Figure 17 for the time-series of the zonally average mean697

flow, u =−∂yψ . Linear analysis and nonlinear flux eigenvalues can be found in Figure 18. In this698
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low/mid latitude case, especially for the ocean regime, due to the strong zonal jets in wavenumber699

ky = 6, zonal modes with kx = 5,6 become active due to the nonlinear interactions.700

Unperturbed statistical steady state energy spectra in mean and variance are displayed in Figure701

19. The mean states stay in small values except for the active meridional modes in both ocean and702

atmosphere regimes. One dominant mode (ky = 6 for ocean and ky = 1 for atmosphere) appears703

representing the zonal jet structure. This illustrates the stronger mean-fluctuation interactions in704

this regime, and a more challenging test case for the reduced-order schemes. Most of the energy705

and variances are contained in the first 20 modes in both barotropic and baroclinic component706

in the ocean regime, while in the atmosphere regime the first mode contains most energy of the707

system. The autocorrelation functions and the marginal distributions in the most energetic modes708

are also shown in Figure 20 for low/mid latitude ocean and atmosphere regime. In the ocean709

regime, all the modes are mixing relatively faster with highly oscillating autocorrelation functions.710

The marginal distributions in the principal modes all appear like Gaussian with comparable amount711

of energy in each dominant mode with zonal wavenumber kx = 6. In comparison in the atmosphere712

regime, there exist two meridional modes (0,1) and (0,2) with highly non-Gaussian structure and713

extremely long decorrelation time. The other energetic modes are mixing relatively faster in the714

autocorrelation functions, and the distributions appear more like Gaussian. This extremely long715

mixing time in the meridional modes illustrates the persistent single zonal jet in long time scale.716

Still weaker stochasticity with strong non-Gaussian features is generated in the low/mid-latitude717

regime making it a quite challenging regime for the statistical closure methods.718

b. Predictions with reduced-order model719

Again we check the reduced-order model skill in capture stochastic perturbations in this in-720

homogeneous situation. We propose the random forcing perturbation with variance proportional721
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to the unperturbed equilibrium steady state statistics as in (22), and only the large-scale modes,722

1 ≤ |k| ≤ 10, are perturbed. In the atmosphere regime, one important observation is that with723

small random perturbation added, one persistent single zonal jet structure is generated like the724

assumed radiative equilibrium in Pavan and Held (1996). It is observed that similar structure can725

be generated through a random forcing in the two-layer model. Considering these observations,726

we use the following test cases for testing the reduced-order methods for low/mid latitude ocean727

and atmosphere regimes:728

• In the ocean regime, we use the case with no stochastic forcing σ2
0 = 0 as the unperturbed729

equilibrium climate, and the perturbed case is to use random perturbation with noise σ2
0 = 0.2;730

• In the atmosphere regime, we use the case with small random forcing σ2
0 = 0.2 as the un-731

perturbed equilibrium climate, and the perturbed case is to use stronger random forcing with732

noise σ2
0 = 0.4.733

Like the previous case, the perturbation amplitude is large enough to generate strong nonlinear734

responses in the statistical energy in each mode. In the reduced-order model, only the modes735

with wavenumbers |k| ≤ 10 are calculated. Thus the resolved subspace is 102 compared with the736

full dimensionality of the system of 2562. Note from the stability analysis in Table 2, the resolved737

spectrum is even smaller than the total number of unstable modes, that is, there are also unresolved738

unstable modes that have positive growth rate. Again, the first step should make sure the reduced739

methods keep the ability to reproduce the exact statistics in the unperturbed equilibrium, and get740

optimal reduced-order model parameters in the training phase. The exact same procedure as in741

Section 4.b.1 can be followed and we neglect the detailed tuning regime results here.742

In Figure 21 and 22, we compare the model responses in both low/mid-latitude ocean and at-743

mosphere regimes. In this inhomogeneous regime with anisotropic jets, the statistical variables744
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combine the responses in the mean and variance, p∗1,k p2,k = p̄∗1,k p̄2,k + p′∗1,k p′2,k, to display the745

total effect from the perturbation. In the ocean regime, we use the unperturbed case with no ran-746

dom forcing, and for the perturbed case forcing is added with white noise variance σ2
0 = 0.2. The747

dominant mode with largest sensitivity is at wavenumber |k| = 6 due to the zonal jet structure.748

The sensitivity is captured with accuracy in the reduced-order method. Also we compare the time749

evolution of the total resolved energy and heat flux. The prediction is also good with small error.750

In the atmosphere regime, the unperturbed case is with random forcing σ2
0 = 0.2 and the pertur-751

bation is added with σ2
0 = 0.4. The first mode k = (0,1) has a large mean state representing the752

zonal mean flow. Thus |k| = 1 mode gets the largest statistical energy and is most sensitive to753

perturbations. One important feature is the large change in the heat flux in the first two modes,754

representing the exchange of energy in the dominant barotropic and baroclinic mode. Still the755

responses can be captured with accuracy in each mode in the spectra as well as the total energy756

and heat flux profile with only 102 modes resolved. Note that in both cases, the heat flux is weak757

due to the strong zonal jets.758

6. Summary759

In this paper, we discuss the development of efficient low-dimensional reduced-order models for760

the two-layer quasi-geostrophic turbulence to capture statistical responses to external perturbations761

in various dynamical regimes. The computational cost is reduced through a systematic approxi-762

mation about the expensive nonlinear higher-order interactions following the generic framework763

developed in Majda and Qi (2016); Qi and Majda (2016). Additional nonlinear damping and noise764

corrections are proposed to replace the third-order moments, and the model errors are calibrated765

through an information-theoretic framework using information theory as in Majda and Gershgorin766

(2011). Two successive steps are then carried out in the algorithm concerning model consistency767
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in unperturbed equilibrium and sensitivity to external perturbations. Note that imperfect models768

with statistical equilibrium fidelity still suffer inherent information barrier in model sensitivity to769

perturbations, linear response operators involving only unperturbed equilibrium statistics are pro-770

posed to fit the model parameters in a training phase to achieve optimal model prediction skill. The771

imperfect model sensitivity is further improved using the total statistical energy equation (Majda772

2015) for the two-layer baroclinic flow. The total statistical energy characterizes the entire energy773

structure in the system according to specific external perturbations despite the inhomogeneity, and774

introduces one global scaling factor that offers more detailed model calibration for the unresolved775

higher-order interactions. The additional computational cost only requires solving one additional776

scalar dynamical equation.777

The feasibility of the reduced-order models is tested on various dynamical regimes in the two-778

layer QG system in response to both stochastic and deterministic perturbations. Distinct statistical779

structures can be generated as the model parameters change. Homogeneous statistics with zero780

mean state can be observed in the high-latitude regime, while anisotropic jets become represen-781

tative in the low/mid-latitude regime (Grooms and Majda 2013; Panetta 1993; Treguier and Hua782

1987). Also atmosphere regime shows more large-scale structures and ocean regime contains more783

small-scale eddies in the vorticity field. These dynamical regimes offer desirable testbeds for test-784

ing the robustness of the reduced-order model skill in treating different types of statistical features.785

To simulate the various external effects that drive the atmosphere/ocean flow, the forcing pertur-786

bation is decomposed into the barotropic and baroclinic component. The reduced-order method is787

developed in the uniform framework for predicting all the dynamical regimes with different kinds788

of external forcing and perturbation. High prediction skill is displayed in the reduced-order model789

among the various test regimes in capturing model responses for both the mean and variance in790

principal modes with only about 0.15% of the full resolution modes calculated explicitly. In con-791
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trast, FDT performs well in the linear regime with small perturbation amplitude, but loses its skill792

as stronger nonlinearity takes place in the model (Lutsko et al. 2015; Gritsun et al. 2008) and often793

for nonlinear observables like the variance.794

Finally, the systematic approach we develop in this paper shows potential to be applied to more795

realistic climate models. Also, passive tracer advected by the geophysical turbulent flow contains796

a number of attractive features and is worth investigating under this framework. It is worthwhile797

to pursue similar analysis and application of the reduced-order models about turbulent tracer ad-798

vection in the geophysical flow.799
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APPENDIX A803

Detailed explicit formulations about the two-layer QG flow804

Here we list the explicit formulations about the statistical dynamics (7) of the two-layer QG805

equations described in (4)806

dpk
dt

= Bk (pk,pk)+(Lk−Dk)pk +Fk, pk =
(

pψ,k, pτ,k
)T

. (A1)

The nonlinear interactions include the energy conserving quadratic forms between barotropic and807

baroclinic modes808

Bk (pk,pk) =




∑m+n=k
m⊥·n
|k|

(
|n|
|m| pψ,m pψ,n +

√
|n|2+k2

d
|m|2+k2

d
pτ,m pτ,n

)

∑m+n=k
m⊥·n√
|k|2+k2

d

(√
|n|2+k2

d
|m| pψ,m pτ,n +

|n|√
|m|2+k2

d

pτ,m pψ,n

)


 ; (A2)

and the linear operators are decomposed into the non-symmetric part Lk and dissipation part Dk809

for Ekman friction (we neglect the additional terms for hyperviscosity), together with the forcing810
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Fk combining deterministic component and stochastic component811

Lk =




ikxβ
|k|2 − ikxU√

1+(kd/|k|)2

−ikxU
1−(kd/|k|)2
√

1+(kd/|k|)2

ikxβ
|k|2+k2

d


 ,Dk =

κ
2




−1 1√
1+(kd/|k|)2

1√
1+(kd/|k|)2

− 1
1+(kd/|k|)2


 ,Fk =




fψ,k
|k| +

σψ,kẆψ,k
|k|

fτ,k√
|k|2+k2

d

+
στ,kẆτ,k√
|k|2+k2

d


 .

(A3)

The statistical dynamical equations concern about the variances in both barotropic and baro-812

clinic mode,
∣∣pψ,k

∣∣2 and
∣∣pτ,k

∣∣2, together with the covariance between the modes within the same813

wavenumber, p∗ψ,k pτ,k,814

d
dt

∣∣pψ,k
∣∣2 +2Re

ikx |k|U√
|k|2 + k2

d

p∗ψ,k pτ,k +Qψ,k = κ


−

∣∣pψ,k
∣∣2 + |k|√

|k|2 + k2
d

Rep∗ψ,k pτ,k


+

σ2
ψ,k

|k|2
,

d
dt

∣∣pτ,k
∣∣2 +2Re

ikxU√
|k|2 + k2

d

|k|2− k2
d

|k| pψ,k p∗τ,k +Qτ,k = κ


 |k|√

|k|2 + k2
d

Repψ,k p∗τ,k−
|k|2

|k|2 + k2
d

∣∣pτ,k
∣∣2

+

σ2
τ,k

|k|2 + k2
d

,

d
dt

p∗ψ,k pτ,k +
ikxβ
|k|2

p∗ψ,k pτ,k−
ikxU√
|k|2 + k2

d

∣∣pτ,k
∣∣2 +Qc,k =−κ

2


p∗ψ,k pτ,k−

|k|√
|k|2 + k2

d

∣∣pτ,k
∣∣2



− ikxβ
|k|2 + k2

d

p∗ψ,k pτ,k +
ikxU√
|k|2 + k2

d

|k|2− k2
d

|k|
∣∣pψ,k

∣∣2 +
κ
2


− |k|2

|k|2 + k2
d

p∗ψ,kψτ,k +
|k|√
|k|2 + k2

d

∣∣pψ,k
∣∣2

 .

(A4)

where the first terms on the left hand sides represent the linear interactions as (Lk−Dk)Rk in (7);815

Qψ,k,Qτ,k,Qc,k are from higher-order moments as well as the terms due to the mean-covariance816

interactions. Importantly, these nonlinear flux terms QF represent the nonlinear interactions be-817

tween different wavenumbers due to the advection term. The explicit form will include third-order818
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moments so that819

Qψ,k = ∑
m+n=k

m⊥ ·n
|k|


 |n|
|m| p

∗
ψ,k pψ,m pψ,n +

√√√√ |n|
2 + k2

d

|m|2 + k2
d

p∗ψ,k pτ,m pτ,n


 ,

Qτ,k = ∑
m+n=k

m⊥ ·n√
|k|2 + k2

d




√
|n|2 + k2

d

|m| p∗τ,k pψ,m pτ,n +
|n|√
|m|2 + k2

d

p∗τ,k pτ,m pψ,n


 ,

Qc,k = ∑
m+n=k

m⊥ ·n
|k|


 |n|
|m| pτ,k p∗ψ,m p∗ψ,n +

√√√√ |n|
2 + k2

d

|m|2 + k2
d

pτ,k p∗τ,m p∗τ,n




+ ∑
m+n=k

m⊥ ·n√
|k|2 + k2

d




√
|n|2 + k2

d

|m| p∗ψ,k pψ,m pτ,n +
|n|√
|m|2 + k2

d

p∗ψ,k pτ,m pψ,n


 .

Note that mean-covariance interactions (like p̄k p′m p′∗n ) and third-order moments (like p′k p′m p′∗n )820

with triad modes m+n = k are both included in the nonlinear flux representing the nonlinear821

energy transfer between small and large scales.822

Finally we give the explicit form of the total statistical energy equation in (10) as823

d
dt

E + k2
dU ∑

1≤|k|≤N
ikxψ∗kτk =−κE +

κ
2 ∑

1≤|k|≤N

(
k2

d|τk|2 +2 |k|2 ψ∗kτk

)

∑
1≤|k|≤N

−ν |k|2s
(∣∣pψ,k

∣∣2 +
∣∣pτ,k

∣∣2
)
+

1
2

(
σ2

ψ,k

|k|2
+

σ2
τ,k

|k|2 + k2
d

)
,

(A5)

where E = 1
2 ∑1≤|k|≤N

(∣∣pψ,k
∣∣2 +

∣∣pτ,k
∣∣2
)

defines the total total statistical energy. The second824

term on the left hand side is due to the heat flux from baroclinic instability, and the terms on the825

right hand side are from dissipation as well as the total external forcing effects in the last term.826

APPENDIX B827

Linear response theory for stochastic perturbation828
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We derive the detailed formulas for the linear response operators with stochastic perturbation in829

this part (the deterministic perturbation case can be derived in a similar way as in Majda and Wang830

(2010)). In this case, we focus on the system perturbation induced by a stochastic noise term. In831

general we consider the perturbed system832

du
dt

= F(u)+
(

σ0 +
√

δσ
)

Ẇ. (B1)

The linear response calculation for the stochastic perturbation in (B1) assumes that the perturbed833

distribution has the decomposition834

pδ = peq +δ p+O
(
δ 2) .

In the leading order Fokker-Planck equation for the perturbation in probability density δ p we have835

the dynamics836

∂δ p
∂ t

=−∇ · (δ pF)+
1
2

∇∇ ·
(

σ0σT
0

√
δ p
)

+
1
2

∇∇ ·
[(

σ0
√

δσT +
√

δσσT
0 +δσσT

)
peq

]
.

Here we assume the unperturbed system is deterministic σ0 ≡ 0 (that is consistent with the two-837

layer model we are using in most applications in the main text). This is why we assume the per-838

turbation is in the order O
(√

δ
)

, and the Fokker-Planck operator corresponding to the stochastic839

perturbation to the deterministic unperturbed system becomes840

Lσ p =
1
2

∇∇ ·
[
σσT p

]
.

Therefore we find the linear response operator corresponding to the stochastic perturbation to the841

deterministic unperturbed system842

Rσ ,A = 〈A(u(t))Bσ (u(0))〉 , Bσ (u) =
Lσ peq

peq
. (B2)

843
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In the two-layer system, the exact form of unperturbed equilibrium distribution peq is still un-844

available and may always include non-Gaussian statistics. However, it is useful to make the quasi-845

Gaussian approximation about each spectral mode and assume independence between modes with846

different wavenumbers (Majda et al. 2005; Abramov and Majda 2012)847

peq ∼∏exp
(
−1

2
pk
∗R−1

k pk

)
, pk =

(
pψ,k, pτ,k

)T
. (B3)

Above pk is the scaled state variable including the barotropic and baroclinic mode in the same848

wavenumber as in the main text. The Gaussian approximation in (B3) is reasonable, and the joint-849

distributions in Figure 7 in main text also show that the state variables in the spectral domain are850

correlated majorly between barotropic and baroclinic mode with the same wavenumber and decou-851

pled in different wavenumber mode. Substitution of (B3) into the linear response formula (B2) will852

give us the explicit formulation about the linear response operator. First note that using A(p) = p,853

the responses to the first-order moment are vanishing to the stochastic perturbations consistent854

with the equation predictions. Then we need to focus on the linear responses in the second order855

moments A(p) = p2. Second derivatives of the equilibrium measure peq are required, and the forth856

moments are needed for calculating the linear response operators. Further in this case, we assume857

the contribution from the modes with different wavenumbers are negligible,
〈

p2
k (t) p2

l (0)
〉
∼ 0.858

Thus we get the approximation for the linear response operators in the barotropic Rσ ,ψ,k and859

baroclinic Rσ ,ψ,k mode in each wavenumber k due to a barotropic perturbation with white noise860

variance δσ2
ψ,k861

Rσ ,ψ,k =
δσ2

σ ,k
2

[
−akrψ,k +

(
a2

k
∣∣pψ,k

∣∣2 (t)
∣∣pψ,k

∣∣2 (0)+ |ck|2
∣∣pψ,k

∣∣2 (t)
∣∣pτ,k

∣∣2 (0)+2Reck
∣∣pψ,k

∣∣2 (t) p∗ψ,k pτ,k (0)
)]

,

Rσ ,τ,k =
δσ2

σ ,k
2

[
−akrτ,k +

(
a2

k
∣∣pτ,k

∣∣2 (t)
∣∣pψ,k

∣∣2 (0)+ |ck|2
∣∣pτ,k

∣∣2 (t)
∣∣pτ,k

∣∣2 (0)+2Reck
∣∣pτ,k

∣∣2 (t) p∗ψ,k pτ,k (0)
)]

.

(B4)
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with entries of the inverse of covariance matrix assumed as862

R−1
k =




ak ck

c∗k bk


 .

The lagged forth-order moments in (B4) can be achieved through averaging along a trajectory in863

statistical steady state due to the ergodicity of the two-layer model.864

In real simulations, the true linear response operators can be calculated directly from (B4), while865

for the reduced-order models the kicked response strategy (Majda et al. 2005; Majda and Qi 2016)866

is adopted. We summarize the strategies in achieving the linear response operators in both true867

system and the reduced-order models as follows:868

• True linear response operator from equilibrium statistics: The true linear response opera-869

tor is calculated through the formula derived in (B4). The lagged forth-order moments are870

calculated exactly by averaging over a long simulation trajectory in statistical steady state;871

• Imperfect model response operator from kicked response of the variance: kicked response872

for the second moments is applied to get the imperfect model response operator. In the873

initial value, the variance is kicked from equilibrium value by a small amplitude, Rk,init =874

Rk,eq + δRk. Then the unperturbed system is used with this perturbed initial variance. The875

linear response operator can be approximated from the model response in the second-order876

moments.877
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TABLE 1. Model parameters for ocean and atmosphere dynamical regimes in high latitude. N is the model

resolution, β ,kd are the rotation parameter and the deformation frequency, U is the background mean shear

flow, κ is the Ekman drag in the bottom layer, and the hyperviscosity is measured by the operator −ν∇2s. The

last three columns display the unstable waveband from linear analysis. (kmin,kmax) shows the range of unstable

wavenumbers; σmax is the largest linear growth rate; and (kx,ky)max is the position of the mode with maximum

growth rate.
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964

965

966

regime N β kd U κ ν s (kmin,kmax) σmax (kx,ky)max

ocean regime, high lat. 256 10 10 1 9 1.2×10−15 4 (2.25,14.61) 0.411 (4, 0)

atmosphere regime, high lat. 256 1 4 0.2 0.2 5×10−15 4 (1.58,6.78) 0.099 (2, 0)
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TABLE 2. Model parameters for ocean and atmosphere dynamical regimes in low/mid latitude. N is the model

resolution, β ,kd are the rotation parameter and the deformation frequency, U is the background mean shear

flow, κ is the Ekman drag in the bottom layer, and the hyperviscosity is measured by the operator −ν∇2s. The

last three columns display the unstable waveband from linear analysis. (kmin,kmax) shows the range of unstable

wavenumbers; σmax is the largest linear growth rate; and (kx,ky)max is the position of the mode with maximum

growth rate.
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regime N β kd U κ ν s (kmin,kmax) σmax (kx,ky)max

ocean regime, low/mid lat. 256 100 10 1 1 1.2×10−15 4 (7.14,15.63) 0.104 (2, 8)

atmosphere regime, low/mid lat. 256 2.5 4 0.2 0.05 5×10−15 4 (2.51,7.06) 0.053 (3, 0)
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4 Reduced-order models with homogeneous mean flow 12
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(b) time-series of energy and heat flux

Fig. 4.1: Snapshots of the unperturbed system in high-latitude ocean regime with no external forcing terms. The
barotropic and baroclinic vorticity in steady state are plotted. Time-series of energy in barotropic and baro-
clinic modes, as well as potential energy, are compared with the heat flux.

(a) snapshots of stream function
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(b) time-series of energy and heat flux

Fig. 4.2: Snapshots of the unperturbed system in high-latitude atmosphere regime with no external forcing terms.
The barotropic stream functions in blocked and unblocked state are plotted. The time-series for barotropic,
baroclinic, and potential energy are compared with the heat flux in the following part.

FIG. 1. Snapshots of the unperturbed system in high-latitude ocean regime with no external forcing terms. The

barotropic and baroclinic vorticity in steady state are plotted. Time-series of energy in barotropic and baroclinic

modes, as well as potential energy, are compared with the heat flux.
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Fig. 4.1: Snapshots of the unperturbed system in high-latitude ocean regime with no external forcing terms. The
barotropic and baroclinic vorticity in steady state are plotted. Time-series of energy in barotropic and baro-
clinic modes, as well as potential energy, are compared with the heat flux.
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Fig. 4.2: Snapshots of the unperturbed system in high-latitude atmosphere regime with no external forcing terms.
The barotropic stream functions in blocked and unblocked state are plotted. The time-series for barotropic,
baroclinic, and potential energy are compared with the heat flux in the following part.

FIG. 2. Snapshots of the unperturbed system in high-latitude atmosphere regime with no external forc-

ing terms. The barotropic stream functions in blocked and unblocked state are plotted. The time-series for

barotropic, baroclinic, and potential energy are compared with the heat flux in the following part.
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FIG. 3. Time-series of zonal mean flow in high-latitude regime.
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Fig. 4.4: Stability from linear analysis and nonlinear flux in ocean (upper) and atmosphere (lower) regime using param-
eters in Table 1. The growth rate from linear analysis including Ekman damping effect, and the eigenvalues
of the nonlinear flux trQF,k in each wavenumber combining barotropic and baroclinic mode are displayed in
the two-dimensional spectral domain. The last column shows the radial averaged growth rate and nonlinear
flux eigenvalues in positive and negative components.

and validates the feasibility of using quasi-Gaussian approximation in calculating the linear response operators as a
2⇥2 blocked system.

4.2 Testing reduced-order models in homogeneous regime

In the previous section we displayed the unperturbed statistical structures of the two-layer QG system in high-latitude
regime with important nonlinear non-Gaussian features. The major task now is to test the reduced-order model skills
in predicting statistical responses to both stochastic and deterministic forcing perturbations as prescribed in (4.1) and
(4.2) using only low-order closures. Only the large-scale modes |k| < 10 are calculated here, which cover the regime of
most energetic directions. And to investigate the model sensitivity in each component, the perturbations in barotropic
mode and baroclinic mode are applied individually in the tests. Three statistical quantities are of special importance

in characterizing the two-layer system, that is, the barotropic energy,
��py,k

��2, baroclinic energy
��pt,k

��2, and the heat
flux ikxy⇤

k tk. Due to the homogeneous statistics as we have shown before, the mean states become zero and thus we
can focus on the second-order variances in this situation. Therefore we will majorly check the reduced-order method’s
ability in capturing the responses in these key quantities. Like the Algorithm summarized in Section 3.3, the modeling
process are decomposed into a training phase for finding optimal model parameters and a prediction phase for getting
responses to various perturbations.

4.2.1 Training phase with linear response operator

Equilibrium consistency for the reduced-order methods

In testing the reduced-order models, we need to first guarantee climate consistency with the true unperturbed equilib-
rium in statistical steady state. In the construction of low-order correction in Section 3.2, higher-order statistics from
equilibrium are combined with additional damping and noise corrections. It needs to be emphasized that neither the
additional damping and noise (3.7) nor the equilibrium high-order correction (3.6) is stable on its own even with the

FIG. 4. Stability from linear analysis and nonlinear flux in ocean (upper) and atmosphere (lower) regime

using parameters in Table 1. The growth rate from linear analysis including Ekman damping effect, and the

eigenvalues of the nonlinear flux trQF,k in each wavenumber combining barotropic and baroclinic mode are

displayed in the two-dimensional spectral domain. The last column shows the radial averaged growth rate and

nonlinear flux eigenvalues in positive and negative components.
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Fig. 4.5: Time-averaged statistics (in radial average) in mean and second-order moments in high-latitude regime. The

first row compares the statistical mean states. The following two rows show the variances,
��qy,k

��2,
��qt,k

��2,

and statistical energy, |k|2 |yk|2,
⇣
|k|2 + k2

d

⌘
|tk|2, in barotropic and baroclinic modes, as well as the potential

energy k2
d |tk|2.

0 1 2 3 4 5
-1

0

1
mode (5,2)

0 1 2 3 4 5
-1

0

1
mode (5,3)

0 1 2 3 4 5
-1

0

1
mode (5,1)

-20 -10 0 10 20
0

0.1

0.2
mode (5,2)

-20 -10 0 10 20
0

0.1

0.2
mode (5,3)

-20 -10 0 10 20
0

0.1

0.2
mode (5,1)

(a) ocean regime

0 10 20 30 40
-1

0

1
mode (0,1)

0 10 20 30 40
-1

0

1
mode (1,0)

0 10 20 30 40
-1

0

1
mode (1,1)

-2 -1 0 1 2
0

0.5

1
mode (0,1)

-2 -1 0 1 2
0

0.5

1
mode (1,0)

-2 -1 0 1 2
0

0.5

1

1.5
mode (1,1)

(b) atmosphere regime

Fig. 4.6: Autocorrelation functions and the probability distribution functions in high-latitude ocean (left) and atmo-
sphere (right) regime. The first three most energetic baroclinic modes are displayed. In the autocorrelations,
the solid lines show the real part while the dashed lines are the imaginary part of the functions. In the pdfs,
the corresponding Gaussian distributions with the same variance are also plotted in dashed black lines.

FIG. 5. Time-averaged statistics (in radial average) in mean and second-order moments in high-latitude

regime. The first row compares the statistical mean states. The following two rows show the variances,
∣∣qψ,k

∣∣2,
∣∣qτ,k

∣∣2, and statistical energy, |k|2 |ψk|2,
(
|k|2 + k2

d

)
|τk|2, in barotropic and baroclinic modes, as well

as the potential energy k2
d |τk|2.
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Fig. 4.5: Time-averaged statistics (in radial average) in mean and second-order moments in high-latitude regime. The

first row compares the statistical mean states. The following two rows show the variances,
��qy,k

��2,
��qt,k

��2,

and statistical energy, |k|2 |yk|2,
⇣
|k|2 + k2

d

⌘
|tk|2, in barotropic and baroclinic modes, as well as the potential

energy k2
d |tk|2.
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Fig. 4.6: Autocorrelation functions and the probability distribution functions in high-latitude ocean (left) and atmo-
sphere (right) regime. The first three most energetic baroclinic modes are displayed. In the autocorrelations,
the solid lines show the real part while the dashed lines are the imaginary part of the functions. In the pdfs,
the corresponding Gaussian distributions with the same variance are also plotted in dashed black lines.

FIG. 6. Autocorrelation functions and the probability distribution functions in high-latitude ocean (left) and

atmosphere (right) regime. The first three most energetic baroclinic modes are displayed. In the autocorrelations,

the solid lines show the real part while the dashed lines are the imaginary part of the functions. In the pdfs, the

corresponding Gaussian distributions with the same variance are also plotted in dashed black lines.

1092

1093

1094

1095

60



4 Reduced-order models with homogeneous mean flow 16

mode (5,2)

-15 -10 -5 0 5 10 15

baroclinic

-5

0

5

b
a

ro
tr

o
p

ic

mode (5,3)

-15 -10 -5 0 5 10 15

baroclinic

-5

0

5

b
a

ro
tr

o
p

ic

joint barotropic

-10 -5 0 5 10

mode (5,2)

-10

0

10

m
o

d
e

 (
5

,3
)

joint baroclinic

-20 -10 0 10 20

mode (5,2)

-20

0

20

m
o

d
e

 (
5

,3
)

(a) ocean

mode (0,1)

-5 0 5

baroclinic

-4

-2

0

2

4

b
a

ro
tr

o
p

ic

mode (1,0)

-5 0 5

baroclinic

-4

-2

0

2

4

b
a

ro
tr

o
p

ic

joint barotropic

-6 -4 -2 0 2 4 6

mode (0,1)

-5

0

5

m
o

d
e

 (
1

,0
)

joint baroclinic

-10 -5 0 5 10

mode (0,1)

-10

0

10

m
o

d
e

 (
1

,0
)

(b) atmosphere

Fig. 4.7: Joint-distributions in the most energetic modes in the ocean (mode (5,2) and (5,3)) and atmosphere (mode
(1,0) and (0,1)) regime. The first two rows show the joint-distribution in barotropic and baroclinic modes
in the principal modes. And the second parts show the joint-distributions between barotropic and baroclinic
modes with different wavenumbers.

climate consistency satisfied in (3.9). Due to the baroclinic instability in the linear operator, energy in the unstable
subspace will increase and finally diverge from the true model climate. Instead by combining (3.7) and (3.6) to form
the blended approach in (3.5), climate consistency can always be reached with exact recovery of variance in each mode
as illustrated in Section 3.2. To further confirm the equilibrium consistency numerically, Figure 4.8 shows the steady
state energy spectra from the reduced-order model together with the time convergence in total variance. Exact recovery
in each individual mode as well as the total variance is observed in the combined scheme.

Tuning imperfect model responses through linear response theory

In the training phase before the prediction step, the optimal model parameters dM =
�
dM,y ,dM,t

�
are calibrated through

the information-theoretic framework [19, 17] combining the statistical response operator (3.3) and information metric
(3.10). The strategies to get the linear response operator in the true signal and the reduced-order model are detailed in
Appendix B. As an example, Figure 4.9 shows the linear response operators from the truth and imperfect model kicked-
response in the high-latitude ocean regime with a stochastic perturbation in the barotropic mode. Since the system is
strongly mixing in this high-latitude ocean regime, the operators all decay to zero quite rapidly. The reduced-order
model only uses first two moments to estimate the higher-order interactions, thus some of the nonlinear structure in the
beginning is missed. Nevertheless the imperfect closure model gets desirable approximation for these linear response
operators in these leading modes.

In Figure 4.10 the tuning process by minimizing the information error in the resolved subspace as the model pa-
rameters dM changes in value is displayed. To illustrate the effects from the total statistical energy correction in (3.8),
the errors with and without the energy scaling factor, f1 (E) , f2 (E), are compared. In the right part for the method
without using the scaling factor, larger information errors appear uniformly among the entire range of parameter val-
ues and it is difficult to improve the model prediction skill by only tuning the model parameters. Whereas with the
proper energy correction, the information error can be effectively reduced with a wide parameter regime with small
information errors, which implies the robustness of the method. Note again in this training phase only unperturbed
equilibrium statistics are used without the specific perturbation forms, thus the method with optimal parameters can be
used to predict system responses to various kinds of specific external forcings. As a further comparison, we show the

FIG. 7. Joint-distributions in the most energetic modes in the ocean (mode (5,2) and (5,3)) and atmosphere

(mode (1,0) and (0,1)) regime. The first two rows show the joint-distribution in barotropic and baroclinic modes

in the principal modes. And the second parts show the joint-distributions between barotropic and baroclinic

modes with different wavenumbers.
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Fig. 4.8: Equilibrium consistency for the reduced-order models. The first row is the unperturbed equilibrium spectra
for the variances and cross-covariances between barotropic and baroclinic mode in radial averaged mode.
And the time series of the total variances and covariances are followed. The true model results are shown in
black, while the reduced-order model results are in red.
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Fig. 4.9: Linear response operator (radial averaged) in high-latitude ocean regime in barotropic and baroclinic mode
when the barotropic mode is randomly perturbed. The black lines are the truth from the formula (B.4) using
equilibrium statistics, and the red lines are the kicked-responses from the imperfect model.

reduced-order model predictions and information error in these two cases in a typical case by perturbing the barotropic
mode with stochastic noise in the ocean regime. This shows the essential role of the scaling factor to improve model
sensitivity. Without the correction from total statistical energy, the response energy spectrum is highly underestimated
with much larger information error compared with the method with energy correction due to the insufficient charac-
terization in the higher-order interactions. The same set of optimal model parameter values will be used for all the
following predictions and the statistical energy correction will always be applied in the following parts.

4.2.2 Prediction skill of reduced-order models

Model responses to stochastic forcing in barotropic and baroclinic mode

In this first place, we test the model sensitivity to random stochastic perturbations as described in (4.1). We consider
the perturbations in barotropic and baroclinic mode individually so that the contributions from each component can
be identified. Usually, the baroclinic energy transfers to barotropic modes in the large scales and the nonlinear energy
cascade alters the energy structure in the entire spectrum despite only the large scale modes are perturbed. The chal-
lenge here is whether the nonlinear responses can be captured with accuracy using reduced-order models where only

FIG. 8. Equilibrium consistency for the reduced-order models. The first row is the unperturbed equilibrium

spectra for the variances and cross-covariances between barotropic and baroclinic mode in radial averaged mode.

And the time series of the total variances and covariances are followed. The true model results are shown in

black, while the reduced-order model results are in red.
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Fig. 4.8: Equilibrium consistency for the reduced-order models. The first row is the unperturbed equilibrium spectra
for the variances and cross-covariances between barotropic and baroclinic mode in radial averaged mode.
And the time series of the total variances and covariances are followed. The true model results are shown in
black, while the reduced-order model results are in red.
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Fig. 4.9: Linear response operator (radial averaged) in high-latitude ocean regime in barotropic and baroclinic mode
when the barotropic mode is randomly perturbed. The black lines are the truth from the formula (B.4) using
equilibrium statistics, and the red lines are the kicked-responses from the imperfect model.

reduced-order model predictions and information error in these two cases in a typical case by perturbing the barotropic
mode with stochastic noise in the ocean regime. This shows the essential role of the scaling factor to improve model
sensitivity. Without the correction from total statistical energy, the response energy spectrum is highly underestimated
with much larger information error compared with the method with energy correction due to the insufficient charac-
terization in the higher-order interactions. The same set of optimal model parameter values will be used for all the
following predictions and the statistical energy correction will always be applied in the following parts.

4.2.2 Prediction skill of reduced-order models

Model responses to stochastic forcing in barotropic and baroclinic mode

In this first place, we test the model sensitivity to random stochastic perturbations as described in (4.1). We consider
the perturbations in barotropic and baroclinic mode individually so that the contributions from each component can
be identified. Usually, the baroclinic energy transfers to barotropic modes in the large scales and the nonlinear energy
cascade alters the energy structure in the entire spectrum despite only the large scale modes are perturbed. The chal-
lenge here is whether the nonlinear responses can be captured with accuracy using reduced-order models where only

FIG. 9. Linear response operator (radial averaged) in high-latitude ocean regime in barotropic and baroclinic

mode when the barotropic mode is randomly perturbed. The black lines are the truth from the formula (B4)

using equilibrium statistics, and the red lines are the kicked-responses from the imperfect model.
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Fig. 4.10: Tuning imperfect model parameters in the training phase. The information errors with varying model pa-
rameters, dM =

�
dy ,dt

�
, are plotted for stochastic barotropic perturbation case. The errors using total

energy as scalar factor from the statistical equation and method without the scaling factor are compared.
The prediction skill and information error with and without using the total energy correction are compared
in the last row for a typical test case of perturbing the barotropic mode.

corrections from low-order moments (that is, mean and variance) are used.
The high-latitude ocean regime responses in barotropic and baroclinic energy and heat flux in large-scale wavenum-

bers to stochastic perturbations are first shown in Figure 4.11. The perturbation amplitude is chosen as ds2
0 = 0.5 of the

equilibrium energy in the stochastic forcing (4.1) so that the response is large and nonlinear. We compare the responses
in perturbing only the barotropic mode and baroclinic mode. The most energetic and most sensitive scales take place at
wavenumbers |k| = 4,5,6. Both barotropic and baroclinic perturbations can lead to large changes in a wide spectrum
in both barotropic and baroclinic component due to the strong coupling between the modes. In the reduced-order meth-
ods, only the first large-scale modes |k| < 10 are resolved, while the responses in these dominant modes are all captured
with accuracy in both perturbation cases though the complicated higher-order interactions with small-scale modes are
not computed explicitly. Further the time-series with the total statistical energy from the equation (3.11) are compared.
The dashed black lines mark the level of energy in unperturbed and perturbed case. In this regime, the total statistical
energy can also be recovered exactly with little error. This in turn explains the high skill of the reduced-order models
in predicting this regime. Instead, if we only consider the energy in the resolved subspace shown by blue lines, a large
gap can be observed compared with the total energy. Figure 4.12 shows the results in the high-latitude atmosphere
regime. Alternating blocked and unblocked structures appear in this regime and generate quite complicated statistical
features. The leading mode |k| = 1 contains most of the energy and becomes highly sensitive to perturbations. The
reduced-order method keeps the skill in capturing the responses in the most sensitive directions in this difficult regime.
Also it is observed that the baroclinic perturbation case becomes a little less accurate in both spectra and total statistical
energy. This might be due to the stronger nonlinear energy interactions from baroclinic to barotropic mode.

A further test requires to check the model’s robustness in predicting perturbations with different amplitudes. Figure
4.13 displays the prediction results with changing stochastic forcing amplitude ds2

0 in the barotropic modes. The
reduced-order model maintains the skill in predicting responses with various forcing strength, and the nonlinear trends
in the total resolved barotropic and baroclinic energy as well as the heat flux are captured compared with the linear
prediction in the FDT shown by dashed lines.

FIG. 10. Tuning imperfect model parameters in the training phase. The information errors with varying model

parameters, dM =
(
dψ ,dτ

)
, are plotted for stochastic barotropic perturbation case. The errors using total energy

as scalar factor from the statistical equation and method without the scaling factor are compared. The prediction

skill and information error with and without using the total energy correction are compared in the last row for a

typical test case of perturbing the barotropic mode.
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Fig. 4.11: Reduced-order model predictions to stochastic perturbations with amplitude ds2
0 = 0.5 in barotropic (left)

and baroclinic (right) mode in high-latitude ocean regime. The spectra for the resolved modes 1  |k| < 10
are compared. Black lines with circles show the perturbed model responses in the normalized variables,��py,k

��2 (barotropic energy),
��pt,k

��2 (baroclinic energy), and ikxy⇤
k tk (heat flux). The dashed black lines are

the unperturbed statistics. And the reduced order model predictions are in red lines. The last row shows the
model prediction of the energy equation in red lines and the energy in the resolved subspace shown in blue
lines. For comparison, the unperturbed and perturbed total energy from the true system is shown in dashed
black lines.

FIG. 11. Reduced-order model predictions to stochastic perturbations with amplitude δσ2
0 = 0.5 in barotropic

(left) and baroclinic (right) mode in high-latitude ocean regime. The spectra for the resolved modes 0 < |k|< 10

are compared. Black lines with circles show the perturbed model responses in barotropic energy (
∣∣pψ,k

∣∣2),

baroclinic energy (
∣∣pτ,k

∣∣2), and heat flux (ikxψ∗k τk). The dashed black lines are the unperturbed statistics. And

the reduced order model predictions are in red lines. The last row shows the model prediction from the energy

equation in red lines and the energy in the resolved subspace in blue lines. For comparison, the unperturbed and

perturbed total energy from the true system are shown in dashed black lines.

1112

1113

1114

1115

1116

1117

1118

65



4 Reduced-order models with homogeneous mean flow 20

0 1 2 3 4 5 6 7 8 9
0

5

10

barotropic energy

unperturbed
perturbed truth
red. model

0 1 2 3 4 5 6 7 8 9
0

2

4

baroclinic energy

0 1 2 3 4 5 6 7 8 9

wavenumber

-0.2

-0.1

0
heat flux

0 1 2 3 4 5 6 7 8 9
0

5

10
barotropic energy

unperturbed
perturbed truth
red. model

0 1 2 3 4 5 6 7 8 9
0

2

4
baroclinic energy

0 1 2 3 4 5 6 7 8 9

wavenumber

-0.2

-0.1

0
heat flux

0 50 100 150 200

time

2

4

6

8

time-series of total energy, barotropic perturbation

resolved

total

truth

(a) barotropic perturbation

0 50 100 150 200

time

3

4

5

6

7
time-series of total energy, baroclinic perturbation

resolved

total

truth

(b) baroclinic perturbation

Fig. 4.12: Reduced-order model predictions to stochastic perturbations with amplitude ds2
0 = 0.5 in barotropic (left)

and baroclinic (right) mode in high-latitude atmosphere regime. The spectra for the resolved modes 1 
|k| < 10 are compared. The last row shows the model prediction of the energy equation in red lines and the
energy in the resolved subspace shown in blue lines. For comparison, the unperturbed and perturbed total
energy from the true system is shown in dashed black lines.
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Fig. 4.13: Imperfect model predictions to responses with changing perturbation amplitude ds2
0 in the high-latitude

ocean regime (with barotropic perturbation). In the first part on the left we the predicted spectra with three
different perturbation amplitude, ds2

0 = 0.1,0.5,0.8, are shown. On the right the responses in total energy
and heat flux with changing amplitudes ds2

0 2 [0,0.8] are plotted. For clarification in display, we only plot
reduced model predictions by red markers and the truth is in black lines.

FIG. 12. Reduced-order model predictions to stochastic perturbations with amplitude δσ2
0 = 0.5 in barotropic

(left) and baroclinic (right) mode in high-latitude atmosphere regime. The spectra for the resolved modes 0 <

|k| < 10 are compared. The last row shows the model prediction from the energy equation in red lines and the

energy in the resolved subspace in blue lines. For comparison, the unperturbed and perturbed total energy from

the true system are shown in dashed black lines.
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Fig. 4.12: Reduced-order model predictions to stochastic perturbations with amplitude ds2
0 = 0.5 in barotropic (left)

and baroclinic (right) mode in high-latitude atmosphere regime. The spectra for the resolved modes 1 
|k| < 10 are compared. The last row shows the model prediction of the energy equation in red lines and the
energy in the resolved subspace shown in blue lines. For comparison, the unperturbed and perturbed total
energy from the true system is shown in dashed black lines.
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Fig. 4.13: Imperfect model predictions to responses with changing perturbation amplitude ds2
0 in the high-latitude

ocean regime (with barotropic perturbation). In the first part on the left we the predicted spectra with three
different perturbation amplitude, ds2

0 = 0.1,0.5,0.8, are shown. On the right the responses in total energy
and heat flux with changing amplitudes ds2

0 2 [0,0.8] are plotted. For clarification in display, we only plot
reduced model predictions by red markers and the truth is in black lines.

FIG. 13. Imperfect model predictions to responses with changing perturbation amplitudes δσ2
0 in the high-

latitude ocean regime (with barotropic perturbation). In the first part on the left the predicted spectra with three

different perturbation amplitudes, δσ2
0 = 0.1,0.5,0.8, are shown. On the right the responses in total energy and

heat flux with changing amplitudes δσ2
0 ∈ [0,0.8] are plotted. For clarification in display, we plot reduced model

predictions in red markers and the truth in black lines.
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Fig. 4.14: Reduced-order model predictions to mean shear flow perturbation dU = ±0.05 (that is, 5% of the original
value U0) in the ocean regime. The spectra for the resolved modes 1  |k| < 10 are compared. Black lines
with circles show the perturbed model responses in the normalized barotropic energy, baroclinic energy, and
heat flux. The dashed black lines are the unperturbed statistics. And the reduced order model predictions
are in red lines.

Model responses to the perturbed mean shear dU

In checking the model responses to deterministic forcing, we introduce the forcing perturbation by changing the back-
ground jet strength U as in (4.2). The same perturbation is tested in [24] for a more complicated reduced-order modified
quasi-Gaussian closure (RoMQG), and we test the same perturbation form here under our systematic reduced-order
modeling framework. Note that the deterministic perturbation in (4.2) forms a more difficult test case compared with
the stochastic forcing (4.1) because the forcing is applied along all wavenumbers with stronger mean-fluctuation in-
teractions involved. On the other hand, for the reduced order methods, only the perturbations at the limited resolved
modes are quantified. This gives the inherent difficulty for applying the reduced order models to this kind of perturba-
tions since we have no knowledge of the unresolved modes where large amount of energy is contained. Therefore the
statistical energy equation (3.11) plays a crucial role.

The results with mean flow perturbations dU = ±0.05 in the ocean regime and perturbations dU = 0.02,�0.01 in
the atmosphere regime are shown in Figure 4.14 and 4.15 separately. The perturbation accounts for about 5%-10% of
the original shear strength U , and the corresponding responses in both energy and heat flux spectra are large due to
this global perturbation at every wavenumber and nonlinear energy cascade. In the ocean regime, a wide waveband of
modes |k| = 3,4,5,6 becomes sensitive to the perturbations; while in the atmosphere regime, the first dominant mode
|k| = 1 is especially sensitive according to even small perturbations. This illustrates the strong nonlinear interactions
between the high and low wavenumber modes. The reduced-order method displays uniform skill in capturing the
sensitive responses in the large-scale modes for both positive and negative perturbation cases with only first 10⇥ 10
spectral modes resolved compared with the 256⇥256 full resolution model.

5 Reduced-order models with inhomogeneous jet flow

In mid or low latitude regimes, both the ocean and atmosphere are distinctly inhomogeneous on large scales. The
existence of large-amplitude meandering zonal jets in these regimes suggests the regional metastable equilibria, while
the large-scale forced perturbations may lead to regular or irregular fluctuations in some extent. Following the same
systematic information-theoretic procedure, we test the prediction skill of the reduced-order method in this inhomoge-
neous regime with anisotropic jets in this section.

FIG. 14. Reduced-order model predictions to mean shear flow perturbations δU = ±0.05 (that is, 5% of the

original value U0) in the ocean regime. The spectra for the resolved modes 0 < |k| < 10 are compared. Black

lines with circles show the perturbed model responses in the normalized barotropic energy, baroclinic energy,

and heat flux. The dashed black lines are the unperturbed statistics. And the reduced order model predictions

are in red lines.
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Fig. 4.15: Reduced-order model predictions to mean shear flow perturbation dU = 0.02,�0.01 (that is, 5%-10% of the
original value U0) in the atmosphere regime. The spectra for the resolved modes 1  |k| < 10 are compared.
Black lines with circles show the perturbed model responses in barotropic energy, baroclinic energy, and
heat flux. The dashed black lines are the unperturbed statistics. And the reduced order model predictions
are in red lines.

regime N b kd U k n s (kmin,kmax) smax (kx,ky)max

ocean regime, low/mid lat. 256 100 10 1 1 1.2⇥10�15 4 (7.14,15.63) 0.104 (2, 8)

atmosphere regime, low/mid lat. 256 2.5 4 0.2 0.05 5⇥10�15 4 (2.51,7.06) 0.053 (3, 0)

Tab. 2: Model parameters for ocean and atmosphere dynamical regimes in low/mid latitude. N is the model resolution,
b ,kd are the rotation parameter and the deformation frequency, U is the background mean shear flow, k is
the Ekman drag in the bottom layer, and the hyperviscosity is measured by the operator �n—2s. The last
three columns display the unstable waveband from linear analysis. (kmin,kmax) shows the range of unstable
wavenumbers; smax is the largest linear growth rate; and (kx,ky)max is the position of the mode with maximum
growth rate.

5.1 True model results with anisotropic jets

The setting-up of the two-layer system in this low/mid latitude case is kept exactly the same as previous in Section
4. The parameters used for low/mid latitude ocean and atmosphere regime are listed in Table 2. Larger b -effect is
applied in this regime, and the Ekman friction is in smaller value. Compared with the high latitude case, first unstable
wavenumber takes place at larger values in smaller scales, and the linear growth rate is weaker than the high latitude.

Flow snapshots in both ocean and atmosphere regime in low/mid latitude are plotted in Figure 5.1. In the ocean
regime, multiple steady jets can be observed and the jets can be persistent for a long time; in the atmosphere regime,
there appears one dominant jet meandering in time. The jet structures are illustrated in more detail in Figure 5.2 for the
time-series of the zonally average mean flow, u = �∂yy . Linear analysis and nonlinear flux eigenvalues can be found
in Figure 5.3. In this low/mid latitude case, especially for the ocean regime, due to the strong zonal jets in wavenumber
ky = 6, zonal modes with kx = 5,6 become active due to the nonlinear interactions.

Unperturbed statistical steady state energy spectra in mean and variance are displayed in Figure 5.4. The mean
states stay in small values except for the active zonal modes in both ocean and atmosphere regimes. One dominant
mode (ky = 6 for ocean and ky = 1 for atmosphere) appears representing the zonal jet structure. This illustrates the
stronger mean-fluctuation interactions in this regime, and a more challenging test case for the reduced-order schemes.
Most of the energy and variances are contained in the first 20 modes in both barotropic and baroclinic component in the
ocean regime, while in the atmosphere regime the first mode contains most energy of the system. The autocorrelation

FIG. 15. Reduced-order model predictions to mean shear flow perturbations δU = 0.02,−0.01 (that is, 5%-

10% of the original value U0) in the atmosphere regime. The spectra for the resolved modes 0 < |k| < 10 are

compared. Black lines with circles show the perturbed model responses in barotropic energy, baroclinic energy,

and heat flux. The dashed black lines are the unperturbed statistics. And the reduced order model predictions

are in red lines.
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(a) ocean regime

(b) atmosphere regime

Fig. 5.1: Snapshots of the unperturbed system in low/mid-latitude ocean (upper) and atmosphere (lower) regime. The
barotropic and baroclinic vorticity in steady state are plotted. Steady zonal jets can be observed in both
regimes.

functions and the marginal distributions in the most energetic modes are also shown in Figure 5.5 for low/mid latitude
ocean and atmosphere regime. In the ocean regime, all the modes are mixing relatively faster with a highly oscillating
autocorrelation function. The marginal distributions in the principal modes all appear like Gaussian with comparable
amount of energy in each dominant mode with zonal wavenumber kx = 6. In comparison in the atmosphere regime,
there exist two meridional modes (0,1) and (0,2) with highly non-Gaussian structure and extremely long decorrelation
time. The other energetic modes are mixing relatively faster in the autocorrelation functions, and the distributions
appear more like Gaussian. This extremely long mixing time in the meridional modes illustrates the persistent single
zonal jet in long time scale. Still weaker stochasticity with strong non-Gaussian features is generated in the low/mid-
latitude regime making it a quite challenging regime for the statistical closure methods.

5.2 Predictions with reduced-order models

Again we check the reduced-order model skill in capture stochastic perturbations in this inhomogeneous situation.
We propose the random forcing perturbation with variance proportional to the unperturbed equilibrium steady state
statistics as in (4.1), and only the large-scale modes, 1  |k|  10, are perturbed. In the atmosphere regime, one
important observation is that with small random perturbation added, one persistent single zonal jet structure is generated
like the assumed radiative equilibrium in [21]. It is observed that similar structure can be generated through a random
forcing in the two-layer model. Considering these observations, we use the following test cases for testing the reduced-
order methods for low/mid latitude ocean and atmosphere regimes:

• In the ocean regime, we use the case with no stochastic forcing s2
0 = 0 as the unperturbed equilibrium climate,

and the perturbed case is to use random perturbation with noise s2
0 = 0.2;

• In the atmosphere regime, we use the case with small random forcing s2
0 = 0.2 as the unperturbed equilibrium

climate, and the perturbed case is to use stronger random forcing with noise s2
0 = 0.4.

FIG. 16. Snapshots of the unperturbed system in low/mid-latitude ocean (upper) and atmosphere (lower)

regime. The barotropic and baroclinic vorticity in steady state are plotted. Steady zonal jets can be observed in

both regimes.
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FIG. 17. Time-series of zonal mean flow in low/mid-latitude regime.
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Fig. 5.2: Time-series of zonal mean flow in low/mid-latitude regime.
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Fig. 5.3: Stability from linear analysis and nonlinear flux in ocean (upper) and atmosphere (lower) regime using pa-
rameters in Table 2. The growth rate from linear analysis including Ekman damping, and the eigenvalues of
the nonlinear flux trQF in each wavenumber are displayed in the two-dimensional domain. The last column
shows the radial averaged growth rate and eigenvalues in positive and negative components.

FIG. 18. Stability from linear analysis and nonlinear flux in ocean (upper) and atmosphere (lower) regime

using parameters in Table 2. The growth rate from linear analysis including Ekman damping, and the eigenvalues

of the nonlinear flux trQF in each wavenumber are displayed in the two-dimensional domain. The last column

shows the radial averaged growth rate and eigenvalues in positive and negative components.
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Fig. 5.4: Time-averaged statistics (in radial average) in mean and second-order moments in low/mid-latitude regime.
The first row compares the statistical mean states. The following two rows show the variances, and statistical
energy, in barotropic and baroclinic modes, as well as the potential energy.
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Fig. 5.5: Autocorrelation functions and the probability distribution functions in low/mid-latitude ocean and atmo-
sphere regime. The first three most energetic baroclinic modes are displayed. In the autocorrelations, the
solid lines show the real part while the dashed lines are the imaginary part of the functions. In the pdfs, the
corresponding Gaussian distributions with the same variance are also plotted in dashed black lines.

FIG. 19. Time-averaged statistics (in radial average) in mean and second-order moments in low/mid-latitude

regime. The first row compares the statistical mean states. The following two rows show the variances, and

statistical energy, in barotropic and baroclinic modes, as well as the potential energy.
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Fig. 5.4: Time-averaged statistics (in radial average) in mean and second-order moments in low/mid-latitude regime.
The first row compares the statistical mean states. The following two rows show the variances, and statistical
energy, in barotropic and baroclinic modes, as well as the potential energy.
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Fig. 5.5: Autocorrelation functions and the probability distribution functions in low/mid-latitude ocean and atmo-
sphere regime. The first three most energetic baroclinic modes are displayed. In the autocorrelations, the
solid lines show the real part while the dashed lines are the imaginary part of the functions. In the pdfs, the
corresponding Gaussian distributions with the same variance are also plotted in dashed black lines.

FIG. 20. Autocorrelation functions and the probability distribution functions in low/mid-latitude ocean and

atmosphere regime. The first three most energetic baroclinic modes are displayed. In the autocorrelations, the

solid lines show the real part while the dashed lines are the imaginary part of the functions. In the PDFs, the

corresponding Gaussian distributions with the same variance are also plotted in dashed black lines.
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Fig. 5.6: Model responses in low/mid-latitude ocean regime with random forcing perturbation s2
0 = 0.2 (while no

stochastic forcing for the unperturbed case). The left panel shows the spectra for the barotropic and baroclinic
energy as well as the heat flux. Only first 10 modes are resolved in the reduced-order method. The right panel
is the time-series of the (resolved) total energy and heat flux. The truth is shown in black lines.

Like the previous case, the perturbation amplitude is large enough to generate strong nonlinear responses in the sta-
tistical energy in each mode. In the reduced-order model, only the modes with wavenumbers |k|  10 are calculated.
Thus the resolved subspace is 102 compared with the full dimensionality of the system of 2562 (⇠ 65000). Note from
the stability analysis in Table 2, the resolved spectrum is even smaller than the total number of unstable modes, that
is, there are also unresolved unstable modes that have positive growth rate. Again, the first step should make sure
the reduced methods keep the ability to reproduce the exact statistics in the unperturbed equilibrium, and get optimal
reduced-order model parameters in the training phase. The exactly same procedure as in Section 4.2.1 can be followed
and we neglect the detailed tuning regime results here.

In Figure 5.6 and 5.7, we compare the model responses in both low/mid-latitude ocean and atmosphere regimes.
In this inhomogeneous regime with anisotropic jets, the statistical variables combine the responses in the mean and
variance, p⇤1,k p2,k = p̄⇤1,k p̄2,k + p0⇤1,k p02,k, to display the total effect from the perturbation. In the ocean regime, we
use the unperturbed case with no random forcing, and the perturbed is added with white noise variance s2

0 = 0.2.
The dominant mode with largest sensitivity is at wavenumber |k| = 6 due to the zonal jet structure. The sensitivity
is captured with accuracy in the reduced-order method. Also we compare the time evolvement of the total resolved
energy and heat flux. The prediction is also good with small error. In the atmosphere regime, the unperturbed case
is with random forcing s2

0 = 0.2 and the perturbation is added with s2
0 = 0.4. The first mode k = (0,1) has a large

mean state representing the zonal mean flow. Thus |k| = 1 mode gets the largest statistical energy and is most sensitive
to perturbations. One important feature is the large change in the heat flux in the first two modes, representing the
exchange of energy in the dominant barotropic and baroclinic mode. Still the responses can be captured with accuracy
in each mode in the spectra as well as the total energy and heat flux profile with only 102 modes resolved. Note that in
both cases, the heat flux is weak due to the blocking effect from strong zonal jets.

6 Summary

In this paper, we discuss the development of efficient low-dimensional reduced-order models for the two-layer quasi-
geostrophic turbulence to capture statistical responses to external perturbations in various dynamical regimes. The
computational cost is reduced through a systematic approximation about the expensive nonlinear higher-order interac-
tions following the generic framework developed in [19, 22]. Additional damping and noise corrections are proposed
to replace the third-order moments, and the model errors are calibrated through an information-theoretic framework
using information theory as in [17]. Two successive steps are then carried out in the algorithm concerning model
consistency in unperturbed equilibrium and sensitivity to external perturbations. Noted that imperfect models with sta-
tistical equilibrium fidelity still suffer inherent information barrier in model sensitivity to perturbations, linear response
operators involving only unperturbed equilibrium statistics are proposed to fit the model parameters in a training phase
to achieve optimal model prediction skill. The imperfect model sensitivity is further improved using the total statistical

FIG. 21. Model responses in low/mid-latitude ocean regime with random forcing perturbation σ2
0 = 0.2 (while

no stochastic forcing for the unperturbed case). The left panel shows the spectra for the barotropic and baroclinic

energy as well as the heat flux. Only first 10 modes are resolved in the reduced-order method. The right panel is

the time-series of the (resolved) total energy and heat flux. The truth is shown in black lines.
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Fig. 5.7: Model responses in low/mid-latitude atmosphere regime with random forcing perturbation s2
0 = 0.4 (while

stochastic forcing s2
0 = 0.2 for the unperturbed case). The first mode k = (0,1) has a large mean state

representing the zonal mean flow. The left panel shows the spectra for the barotropic and baroclinic energy
as well as the heat flux. Only first 10 modes are resolved in the reduced-order method. The right panel is the
time-series of the (resolved) total energy and heat flux. The truth is shown in dashed black lines.

energy equation[16] for the two-layer baroclinic flow. The total statistical energy characterizes the entire energy struc-
ture in the system according to specific external perturbations despite the inhomogeneity, and introduces one global
scaling factor that offers more detailed model calibration for the unresolved higher-order interactions. The additional
computational cost only requires solving one additional scalar dynamical equation.

The feasibility of the reduced-order models is tested on various dynamical regimes in the two-layer QG system
in response to both stochastic and deterministic perturbations. Distinct statistical structures can be generated as the
model parameters change. Homogeneous statistics with zero mean state can be observed in the high-latitude regime,
while anisotropic jets become representative in the low/mid-latitude regime [6, 20, 27]. Also atmosphere regime shows
more large-scale structures and ocean regime contains more small-scale eddies in the vorticity field. These dynamical
regimes offer desirable testbeds for testing the robustness of the reduced-order model skill in treating different types
of statistical features. To simulate the various external effects that drive the atmosphere/ocean flow, the forcing per-
turbation is decomposed into the barotropic and baroclinic component. The reduced-order method is organized in the
uniform framework for predicting all the dynamical regimes with different kinds of external forcing and perturbation.
High prediction skill is displayed in the reduced-order model among the various test regimes in capturing model re-
sponses in principal modes with only about 0.15% of the full resolution modes calculated explicitly. In contrast, FDT
performs well in the linear regime with small perturbation amplitude, but loses its skill as stronger nonlinearity takes
place in the model [11, 5].

Finally, the systematic approach we develop in this paper shows potential to be applied to more realistic climate
models. Also, passive tracer advected by the geophysical turbulent flow contains a number of attractive features and is
worth investigating under this framework. It is worthwhile to pursue similar analysis and application of the reduced-
order models about turbulent tracer advection in the geophysical flow.
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FIG. 22. Model responses in low/mid-latitude atmosphere regime with random forcing perturbation σ2
0 = 0.4

(while stochastic forcing σ2
0 = 0.2 for the unperturbed case). The first mode k = (0,1) has a large mean state

representing the zonal mean flow. The left panel shows the spectra for the barotropic and baroclinic energy as

well as the heat flux. Only first 10 modes are resolved in the reduced-order method. The right panel is the

time-series of the (resolved) total energy and heat flux. The truth is shown in dashed black lines.
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