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Abstract

A diffusion with random switching is a Markov process consists of a stochastic
differential equation part Xt and a continuous Markov jump process part Yt. Such
systems have a wide range of applications, where the transition rates of Yt may not
be bounded or Lipschitz. A new analytical framework is developed to understand
the stability and ergodicity of these processes, and allows for genuinely unbounded
transition rates. Assuming the averaged dynamics is dissipative, the first part of this
paper explicitly demonstrates how to construct a polynomial Lyapunov function and
furthermore moment bounds. When the transition rates have multiple scales, this
construction comes interestingly as a dual process of the averaging of fast transitions.
The coefficients of the Lyapunov function can be seen as the potential dissipation of
each regime in different scales, and a comparison principle comes naturally under this
interpretation. On the basis of theses results, the second part of this paper establishes
geometric ergodicity for the joint processes. This can be achieved in two scenarios.
If there is a commonly accessible regime that satisfies the minorization condition, the
geometric convergence to the ergodic measure takes place in the total variation distance.
If there is contraction on average, the geometric convergence takes place in a proper
Wasserstein distance, and is proved through an application of the asymptotic coupling
framework.

1 Introduction

Diffusions with random switching are stochastic processes consisting of two components: a
diffusion process Xt in Rd and a continuous jump process Yt on a finite set F . The dynamics
of Xt follows a stochastic differential equation (SDE)

dXt = b(Xt, Yt)dt+ σ(Xt, Yt)dWt. (1.1)

Throughout, we assume b(x, y) is C1+δ and σ(x, y) is C2+δ in x for some δ > 0. The behavior
of Yt can be described by a transition rate function λ(x, y, ỹ), in other words

P(Yt+h = ỹ|Xt, Yt) =

{
λ(Xt, Yt, ỹ)h+ o(h), ỹ 6= Yt,

1− λ̄(Xt, Yt)h+ o(h), ỹ = Yt.
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We denote the total transition rate as λ̄(x, y) =
∑

ỹ 6=y λ(x, y, ỹ), and the joint process as

Zt = (Xt, Yt), which takes place in the space E = Rd × F .
Diffusion with random switching is widely used for modelling purpose in many areas [1],

and is becoming particularly prominent in the following directions recently:

1) For stochastic lattice models in climate science [2, 3, 4, 5, 6, 7, 8, 9, 10], Xt represents
the dry atmosphere, so (1.1) is the spatial discretization of a fluid equation. Meanwhile,
Yt represents the unresolved behavior of moisture and clouds.

2) In material science [11, 12, 13, 14] and molecular biology [15, 16], Xt represents some
macroscopic quantities such as the transmembrane electronic potential, and Yt stands for
the behavior of some particular clusters, proteins, channels, and cells.

3) As a simulation strategy for complex processes [2, 17], a Markov jump process can be
used as a stochastic parameterization of some sub-grid scale processes. It reduces the
model dimension and preserves most of the statistical quantities. It can be seen as the
Yt part in our joint process.

4) In filtering and predictive modelling [18, 19, 20], diffusions with random switching are
used as test-beds to quantify the uncertainty from model errors.

The popularity of diffusions with random switching comes from its complexity. Even if
(1.1) is an Ornstein Uhlenbeck (OU) process with each fixed valued of Yt, that is

dXt = −γ(Yt)Xtdt+ σ(Yt)dWt, (1.2)

the switching of Yt can generate very rich nonlinear properties, such as polynomial heavy
tails [21, 22] and non-regular invariant measures [23, 24]. In the applications mentioned
above, this flexibility is exploited to capture natural phenomena, while the equation in each
regime is simple enough for intuitive understanding.

With so many applications of diffusions with random switching, the following questions
naturally arise:

• When does the joint process Zt = (Xt, Yt) possess an invariant measure? What kind of
statistics, for example moments of |Xt|, are integrable under the invariant measures?

• Is the invariant measure unique? How does it attract other statistical states?

These questions in practice are often imposed as important sanity checks for stochastic mod-
els. This is because parameters inference and model validation often require the matching of
statistics between nature and simulations, while the well-posedness of these operations re-
quire existence of invariant measures, ergodicity and finite moments for the models [25, 26].

In the last decade, a series of works have been devoted for the questions above [27, 21,
22, 28, 29, 30, 31, 32]. In the simplest setting, the transition rates are constants, λ(x, y, y′) =
λ(y, y′), and Xt is driven by the linear equation (1.2). Both questions above are relatively
well understood in this setting, thanks to an application of Perron Frobenius theorem [21,
22]. These intuitive results can be extended to non-constant transition rates through a
probabilistic coupling argument [29, 32]. However, for this argument to work, the transition
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rates have to be globally bounded and Lipschitz. This restriction excludes many important
applications [5, 33], or imposes additional nonphysical compact requirements on the model
space [15]. This paper intends to bridge this gap by developing a new analytical framework.

In order for the joint process to have an invariant measure and finite moments for |Xt|,
the rough requirement is that the averaged dynamics is dissipative. In the simplest setting
of [21, 22], this condition can be defined as Eγ(Yt) > 0 with γ as in (1.2). It is difficult to
generalize this condition to settings with non-constant, unbounded transition rates. We will
explore two directions for generalization:

1) Inspired by the formulation in [9, 10], we assume there is a |Xt| controlled multiscale
structure in the transition rates λ, while the fast averaging procedures induce a dissi-
pation. It is important to note that the multiple scales here are not introduced by an
auxiliary variable ε as in other standard settings [34, 35].

2) There is a comparison principle in favor of dissipation.

Interestingly, in both directions, the averaged dissipation can be demonstrated by construct-
ing a polynomial Lyapunov functions, V (x, y) =

∑
ai(y)|x|mi . In the multiscale setting, the

construction comes as a dual process of the fast averaging procedures, and ai(y) represents
the potential dissipation of regime y ∈ F in a particular transition scale. To the best of
the authors’ knowledge, this is the first explicit connection between averaging and Lyapunov
functions. Since the ai(y) is interpreted as the potential dissipation, which can roughly be
defined as a renormalization of Ey exp(−

∫ t
0
γ(Ys)ds) for large t, the comparison principle has

an intuitive formulation, and the verification is much more straightforward and general than
the coupling approach used in [29, 32]. This idea of Lyapunov functions construction can be
traced back to [27], while our results generalize and offer new probabilistic interpretations
to the working conditions.

The second part of this paper discusses geometric ergodicity assuming the existence of a
Lyapunov function. Following the frameworks of [36, 37, 38], it suffices to show a version of
the small set argument under a proper distance. This can be achieved in two scenarios:

1) If there is a commonly reachable regime that satisfies the minorization condition, Theorem
3.4 proves geometrically ergodicity in the total variation distance.

2) If there is contraction on average, and the transition rates and their first derivatives are
bounded by the Lyapunov function, Theorem 3.6 shows geometrical ergodicity in a proper
Wasserstein distance.

The unbounded transition rates appear to be an major obstacle in the second scenario as the
coupling method of [29, 32] fail to work. It is resolved by viewing a diffusion with random
switching as an annealed piecewise deterministic Markov processes, and then applying the
asymptotic coupling framework of [37, 38] to the underlying densities. This strategy was
exploited by the authors in [33] to study the piecewise contractive stochastic lattice models
in [9, 10], now we generalize it to the contractive on average setting.

The remainder of this paper is arranged as follow. Section 2 discusses criterions that lead
to dissipation on average, and how to construct a Lyapunov function in different scenarios.
Section 3 gives the precise statements of geometric ergodicity when there is a hypoelliptic
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regime or there is contraction on average. Conditions leading to the second scenario are
briefly discussed and compared with results in Section 2. The proofs of geometric ergodicity
are contained in Section 4, where we also discuss how to verify the accessibility of one regime.
Section 5 summarizes the results and discusses some related questions.

2 Dissipation on average and Lyapunov functions

A simple way to generalize (1.2) to a nonlinear setting is to assume a rate function γ : F 7→ R
measures the dissipation and inflation of each regime in F .

Assumption 2.1. With some strictly positive constants K, ε > 0,

〈b(x, y), x〉 ≤ −γ(y)|x|2 +K, ‖σ(x, y)‖2 ≤ K|x|2−ε. (2.1)

Notice that γ(y) could be negative, which introduces an inverse dissipation or inflation,
and makes the global dissipation problem nontrivial. Given a transition dissipation pair,
(λ, γ), the main objective of this section is to find intuitive criteria that lead to dissipation
on average in different scenarios, and show that there exists a polynomial like Lyapunov
function.

Lyapunov functions are good tools to illustrate dissipation. In this paper, we say a
function V : E 7→ [0,∞) is a Lyapunov function if it has compact sub-level sets, and for
some strictly positive constants γ̄ and K

LV (z) ≤ −γ̄V (z) +K, ∀z = (x, y) ∈ E. (2.2)

By Dynkin’s formula, Grönwall’s inequality and possibly a localization argument, (2.2) leads
to

EzV (Zt) ≤ e−γ̄tV (z) +K/γ̄. (2.3)

If in addition V (z) ≥ |x|m for all sufficiently large x, the m-th moment of |Xt| is bounded
under each invariant measure. Note also that by replacing V with V + 1, (2.2) holds with a
different K. So without lost of generality we can assume V ≥ 1.

To continue our discussion, note that the infinitesimal generator of a diffusion with ran-
dom switching is given by [29]

Lf(x, y) = b(x, y) · ∇xf(x, y) +
1

2
tr[σt(x, y)∇2

xf(x, y)σ(x, y)]

+
∑
y′∈F

λ(x, y, y′)(f(x, y′)− f(x, y)). (2.4)

One naive choice of Lyapunov function that leads to a moment bound is simply V (x, y) =
|x|m. Since Assumption 2.1 indicates LV (z) ≤ −m(γ(y) − ε′)V (z) + K ′ for some positive
constants ε′ and K ′, so with this choice of V , (2.2) holds if γ(y) > 0 for all y. But this is
too restrictive. The limit of this naive choice comes from its ignorance of the Y part, so the
averaging effect from transitions are missing. A natural way to incorporate the information
of Y is considering the following monomial or polynomial form

V (z) = a(y)|x|m, or V (z) =
∑
i≤I

ai(y)|x|mi . (2.5)
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The coefficients ai(y) are strictly positive numbers that represent the potential dissipation,
of which the meaning will be discussed in Remark 2.3. By incorporating this information of
Yt, V captures the global dissipation although L is a local operator.

We will adopt three simplified notations in the following exposition. First, for Lyapunov
functions we only need to be concerned with large x and the constant terms are usually
ignorable. The precise statement is given by Lemma A.2. So we write f(z) . g(z) if there
is a constant K such that f(z) ≤ g(z) +K. Second, we often identify a function a : F 7→ R
as a vector in R|F |, with the y-th coordinate being [a]y = a(y). We also use Λ(x) for the
Markov transition matrix on F , with entries [Λ(x)]y,y′ = 1y′ 6=yλ(x, y, y′)−1y=y′λ̄(x, y). With
this notation, we can separate the first and second lines of (2.4) into the form

Lf(x, y) = LX(y)f( · , y) + [Λ(x)f(x, · )]y, (2.6)

where LX and Λ(x) represent the dynamics of the diffusion part and transition part respec-
tively. Third, |x|m is not C2 when m < 2, and not well defined when m < 0, so rigorously
speaking L can not apply to it. However, as proposed in [22], fm(x) = |x|m+n/(1 + |x|n)
with sufficiently large n is C2, and carries essentially the same dissipation property of |x|m,
that is for any δ > 0

LX(y)fm(x) . (−mγ(y) + δ)fm(x),

see Lemma A.3. So without lost of generality, we assume all |x|m are well defined and C2,
else we just use fm in its place.

2.1 Constant transition rates

In order to build up the intuition, let us first review the classical case studied in [21, 22]
where Λ(x) = Λ is a constant irreducible matrix, and Xt is driven by the linear equation
(1.2). Yt then is an ergodic Markov process on F that does not depend on Xt. Let π be the
unique ergodic measure of Yt, the dissipation on average can be formulated as∑

y∈F

π(y)γ(y) > 0. (2.7)

Suppose that σ ≡ 0, |Xt|m = exp(−m
∫ t

0
γ(Ys)ds)|X0|m. Then by Jensen’s inequality and

Birkhoff ergodic theorem, we see that (2.7) is necessary for the whole dynamics to be dissi-
pative. In fact, it is also sufficient, due to the following theorem, which is a translation of
Theorem 1.5 [22] in our context.

Theorem 2.2. Suppose that Xt follows (1.2) and Yt is an ergodic Markov jump process with
constant transition rate Λ. Suppose also the average dissipation is positive

∑
π(y)γ(y) > 0,

with π being the ergodic measure of Yt. Let Γ be the diagonal matrix with entries γ(y) on
the y, y-th component, then there is an m > 0 such that the spectrum of −mΓ + Λ lies in the
negative half plane, and V (x) = a(y)|x|m is a Lyapunov function. Here a as a vector is the
Perron eigenvector of −mΓ + Λ.
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Proof. According to Assumption 2.1 and Lemma A.3, for V (x) = a(y)|x|m and any fixed
δ > 0,

LV (z) = a(y)LX(y)|x|m + |x|m[Λa]y

. [−(mγ(y)ay − δ) + [Λa]y]|x|m

= ([(−mΓ + Λ)a]y − δ) |x|m. (2.8)

Based on (2.8), if a is a right eigenvector of the matrix −mΓ + Λ associated with a negative
eigenvalue, while a is strictly positive component wise, then V (x) will be a Lyapunov function
in the sense of (2.2). Such a can be found by the following two observations from [22].

First, from the Feynman Kac formula, we find that the y, y′-th component of matrix
exp(−mΓt+ Λt) is

Ey1Yt=y′ exp

(
−
∫ t

0

mγ(Ys)ds

)
> 0, (2.9)

so Perron-Frobenius theorem applies to exp(−mΓt + Λt). As a consequence, if a is the
Perron eigenvector, which is the eigenvector associated to the eigenvalue with maximum real
part, a is strictly positive component wise. Since the spectrum of exp(−mΓt+ Λt) and the
spectrum of −mΓ + Λ clearly has an one to one relation, so a is also the eigenvector of
−mΓ + Λ associated with the eigenvalue of the maximum real part.

Second, at m = 0, the Perron eigenvalue is 0. Through a perturbation analysis of m to
the positive direction, one can show the spectrum of −mΓ + Λ lies in the negative half plane
for small enough m. The details of this results can be found in proposition 4.2 of [22].

Combining these two arguments, we find a strictly positive m, such that the spectrum of
−mΓ + Λ is in the negative half plane, and the Perron eigenvector a of exp(−mΓt + Λt) is
an eigenvector of −mΓ + Λ associated with a negative eigenvalue, while all the components
of a are strictly positive.

Remark 2.3. Let 1 be the vector with one on each component, since a is the Perron eigen-
vector, we can approximate a by normalizing exp(−mΓt+ Λt)1 with t→∞. Because of the
Feynman Kac’s formulation (2.9),

a(y)

a(y′)
= lim

t→∞

Ey exp
(
−
∫ t

0
mγ(Ys)ds

)
Ey′ exp

(
−
∫ t

0
mγ(Ys)ds

) . (2.10)

In other words, a(y) measures the potential dissipation along the whole future. This explains
why V (z) captures the global dissipation: if γ is negative for certain y, then y produces a
weaker potential dissipation comparing with average states, so the transition part in (2.8),
[Λ(x)a]y =

∑
y′ λ(x, y, y′)(a(y′) − a(y)) could be negative and compensate the inflation in

mγ(y).

2.2 Multiscale transitions: one fast scale

When the transition rates are coupled with the diffusion part, so are the trajectories of
Yt and Xt. This makes the notion of dissipation on average no longer as simple as (2.7).
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One way to manifest it is finding multiscale structures controlled by Xt in the transition
rates. Such structures rise naturally in many physical models, as part of Xt represents the
temperature of environment [9, 10] or the electronic potential [15], and controls the speed of
moisture connectivity or chemical reaction. For the simplicity of discussion, we assume in
the following sections that the transition rate matrix has polynomial dependence over |x|:

Λ(x) =
∑

0≤j≤J

Λj|x|nj , (2.11)

where Λj are constant |F | × |F | transition matrices, and 0 ≤ n0 < · · · < nJ . We remark
that it is possible to generalize our methods below to cases where Λ(x) is the sum of other
functions of separate orders. While the discussion below may appear to be abstract in the
first read, the ideas are rather elementary. A concrete example will be illustrated by Figure
2.1 in Section 2.4, the readers can read that section first for the intuition.

Since Lyapunov functions concern only large |x|, see Lemma A.2, it is intuitive that the
highest order transition ΛJ plays a dominating role; and if over the invariant measure of
ΛJ the average of γ is positive, then there should be a Lyapunov function that quantifies
dissipation on average. The complications to this argument may come from two aspects:
1) the support of each Λj may not be the whole state space F , so different subsets of F
may have different transition scales; 2) on the support of each Λj, Λj may not induce an
irreducible Markov chain. Here F ′ ⊂ F is the support of a transition rate matrix Λ if F ′

is the minimal subset such that λ(y, y′) = 0 if y and y′ are not both in F ′. We will leave
the first issue to the next subsection, and focus first on the averaging phenomenon from
multiscale transitions and possible reducible structures.

Irreducibility was a necessary condition in Theorem 2.2, when the transition matrix was
constant, but not anymore if the transition is genuinely fast. Consider the following simple
example on two states

F = {−2, 1}, γ(y) = y, λ(−2, 1) = 1, λ(1,−2) = 0, dXt = −γ(Yt)Xtdt.

Clearly δ1 is the invariant measure for Yt and there is dissipation on average over this measure.
However, Ex,yXt = xEy exp(−

∫ t
0
Ysds), and if we start from y = −2,

Ey exp

(
−
∫ t

0

Ysds

)
≥ exp(2t)Py(Ys = −2, s ≤ t) = exp(t),

so Ex,y|Xt| diverges to infinity. On the other hand, if we replace the transition rates by
λ(−2, 1) = λ(1,−2) = |x| + 1, the time that Yt spend in −2 is much shorter as |Xt| gets
large, so the dynamics is dissipative on average.

To continue our discussion, we need the notion of connected components. Given a tran-
sition rate matrix Λ(x), we say F ′ ⊂ F is an order n maximal connected component of F if
the following hold

1) There is a constant |F ′| × |F ′| matrix ΛF ′ such that Λ(x)|F ′ − |x|nΛF ′ is of order |x|n−δ
for some δ > 0. Here Λ(x)|F ′ is the sub-diagonal matrix of Λ(x) with indices in F ′.

2) For any y, y′ ∈ F ′, there is a path y = y0, y1, . . . , ym = y′ such that for each i, either
λF ′(yi, yi+1) > 0 or λF ′(yi+1, yi) > 0.
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3) F ′ is maximal as there is no strict superset of F ′ that also satisfies the conditions above.

When such an F ′ and ΛF ′ exist, because ΛF ′ |x|n consists of the leading order terms in the
stochastic matrix Λ(x), ΛF ′ itself must also be a stochastic matrix. As a consequence, there
is a Markov jump process with constant rate ΛF ′ on F ′. This is a nice mechanism we will
exploit in our discussion later.

Next we define the irreducible components, which is also called the closed communicating
classes in the literature like [39]. A subset G ⊂ F ′ is an irreducible component , if 1) for
all y, y′ ∈ G, there is a path y = y0, . . . , yn = y′ in G such that λF ′(yi, yi+1) > 0; 2) for all
y ∈ g, y′ /∈ G such a path does not exist. We will use Gc to denote the transient set, which
consists of states in F ′ not being in any irreducible components.

Now we consider the simple case where the highest order component is F itself.

Theorem 2.4. Suppose the whole state space F is a maximal connected component of order
n > 0. Let {Gk} be the irreducible components, and πk be the ergodic measure generated
by ΛF |Gk

. Let γ be the linear dissipation rate function satisfying Assumption 2.1, while∑
y∈Gk

πk(y)γ(y) > 0 for each Gk, then for any m > 0 there is a Lyapunov function of form

V (x, y) = |x|m + a(y)|x|m−n.

Proof. Let V0(z) = |x|m. Directly apply the generator, by Lemma A.3 for any δ > 0

LV0(z) . (−mγ(y) + δ)|x|m.

The right hand side is a polynomial of order m, and for any irreducible component Gk,∑
y∈Gk

πk(y)γ(y) > 0 ∑
y∈Gk

πk(y)(−mγ(y) + δ)|x|m . −2δ|x|m,

if δ is sufficiently small. Applying a Fredhlom alternative type of argument, which is Lemma
2.5 directly below, there is a monomial Q(z) = a(y)|x|m−n with a(y) ≥ 0, such that

[Λ(x)Q(z)]y + (−mγ(y) + δ)|x|m . −δ|x|m.

Then because V (z) = V0(z)+Q(z) is of order m, and LX(y)Q(z) is of order m−n by Lemma
A.3, so LV (z) . −δV (z), and V (z) is a Lyapunov function.

Lemma 2.5. Let F ′ be a maximal connected component of order n > 0, and P (x, y) be a
polynomial of |x| of order m > 0 such that P (x, y) = 0 if y /∈ F ′. Suppose the following holds∑

y∈Gk

πk(y)P (x, y) . 0, ∀x ∈ Rd.

Then we can find a positive monomial Q(z) = q(y)|x|m−n with q(y) ≥ 0 and q(y) = 0 if
y ∈ F/F ′, such that for any ε > 0

Λ(x)Q(z) + P (z) . ε|x|m, y ∈ F ′.
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Proof. First, we will specify the value of q(y) for each non transient y. We assume y ∈ Gk

in the discussion below. Let p(y)|x|m be the maximum order term in P (z), then clearly∑
y′∈Gk

πk(y
′)p(y′) ≤ 0. By the Fredhlom alternative, there is a vector qk with nonzero

components only for indices in Gk, so that

p|Gk
+ ΛF ′qk =

(∑
y′∈Gk

πk(y
′)p(y′)

)
1Gk

. (2.12)

1Gk
stands for the indicator vector of set Gk. Note that ΛGk

1Gk
= 0, we can always replace

qk with qk +κ1Gk
with a proper κ, so it is still a solution to (2.12), but with strictly positive

components. So we can assume qk > 0 component wise. We let q(y) = qk(y) for non transient
y.

Next, for the transient states y ∈ Gc, consider a Markov jump process Y ′t on F ′, driven
by the transition matrix ΛF ′ . Denote the expected time of hitting any one of Gk from any
y as T (y). Clearly T (y) = 0 for y ∈ Gk. By running the one step analysis for the jumps, we
find for y ∈ Gc,

T (y) = λ̄−1
F ′ (y) +

∑
y′

λF ′(y, y
′)

λ̄F ′(y)
T (y′),

recall that λ̄F ′(y) =
∑

y′ 6=y λF ′(y, y
′). As a consequence, for y ∈ Gc,

ΛF ′T (y) =
∑
y′∈F ′

λF ′(y, y
′)(T (y′)− T (y)) = −1.

We will let q(y) = βT (y) with

β > max
y∈F ′
|p(y)|+ (max

y∈F ′
λ̄F ′(y))( max

y∈Gk,∀k
q(y)).

Now we verify our claim, it suffices to show Λ(x)Q(z) +P (z) has its order m term being less
than 0. Since (Λ(x)− ΛF ′ |x|n)Q(z) is of order strictly less than m, it suffices to show

[ΛF ′q]y + p(y) ≤ 0, ∀y ∈ F ′.

This is clearly the case when y ∈ Gk because it is implied by (2.12). And for y ∈ Gc, this
holds because

[ΛF ′q]y + p(y) =
∑
y′∈F ′

λF ′(y, y
′)(q(y′)− q(y)) + p(y)

=
∑
y′∈Gc

λF ′(y, y
′)β(T (y′)− T (y)) +

∑
k

∑
y′∈Gk

λF ′(y, y
′)(q(y′)− βT (y)) + p(y)

≤ βΛF ′T (y) + λ̄F ′(y) max
y′∈Gk,∀k

q(y′) + p(y) < 0.
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2.3 Multiscale transitions: multiple scaling structures

When F is not the maximal connected component, the transitions inside a maximal con-
nected component F ′ of highest order will be significantly faster than transitions outside.
These fast transitions will average the dissipation of each irreducible component Gk inside
F ′, and also the manner how Yt leaves F ′. In the perspective of the states outside F ′, each
Gk is essentially a single point, and its dissipation rate is the averaged dissipation over πk;
and each transient state y ∈ Gc is an intermediate state that can jump to any of the Gk,
while the time Yt spent on it is ignorable, as long as the rates towards non-irreducible parts,
λ(x, y, y′) with y′ ∈ Gc ∪ F/F ′, are not too strong.

To be more specific, given a transition dissipation pair (Λ(x), γ) with Λ(x) being of
order |x|n, let F ′ be a maximal connected component, G1, . . . , Gk be the irreducible sets,

and Gc be the transient set. We define a new structure (Λ̃(x), γ̃) on the averaged space

F̃ = (F/F ′) ∪ {g1, . . . , gK} as the average of the original structure on F ′. Intuitively, the
new rates are the same for states outside F ′,

γ̃(y) = γ(y), λ̃(x, y, y′) = λ(x, y, y′), y, y′ ∈ F/F ′.

The rates related to gk are given by the following averages:

γ̃(gk) =
∑
y∈Gk

πk(y)γ(y), λ̃(x, gk, y) =
∑
y′∈Gk

πk(y
′)λ(x, y′, y), y ∈ F/F ′,

λ̃(x, y, gk) =
∑
y′∈Gk

λ(x, y, y′) +
∑
y′∈Gc

λ(x, y, y′)pF ′(y, gk), y ∈ F/F ′,

λ̃(x, gj, gk) =
∑
y∈Gj

πj(y)
∑
y′∈Gk

λ(x, y, y′) +
∑
y∈Gj

πj(y)
∑
y′∈Gc

λ(x, y, y′)pF ′(y
′, gk).

(2.13)

In above, πk is the ergodic measure on Gk induced by the matrix ΛF ′ , and pF ′(y, gk) is the
probability that Y ′t ends up in Gk if Y ′t is a Markov chain driven by ΛF ′ and starts from y.

Note that in these averaging procedures, the transition rates from y ∈ Gc to y′ ∈ Gc ∪
F/F ′ are completely wiped out. So we need these rates to be not too strong, else the
averaged structure cannot represent this information. In particular we have the following
non-dominating condition,

Assumption 2.6. For any transient state y and any y′ ∈ Gc∪F/F ′, suppose that pF ′(y, gk) >
0, then there is a y′′ ∈ Gk such that λ(x, y, y′) has at most the same polynomial order in |x|
as λ(x, y′′, y′).

Since there are only finitely many states, there are only finitely many, say mJ , connected
components with the highest order nJ in (2.11). After applying an averaging step on one of
these components, F ′, the transition rates related to F ′ are of order strictly less than nJ ,
and the states after averaging has a smaller cardnality |F̃ | ≤ |F |. So after mJ steps, the
transition rates are of order nJ−1. We can repeat this argument J times, and finally end
up with an averaged transition matrix Λ̃ being a constant matrix. Intuitively, this constant
matrix dictates whether the original system is dissipative on average.
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Theorem 2.7. Let state space F̃ , constant transition rates Λ̃ and dissipation rates γ̃ be
the final result of a sequence of averaging procedures. Suppose at each averaging step, the
transient transition rates follow the non-dominating condition, Assumption 2.6. Then the
original system has a polynomial like Lyapunov function of some order m > 0, if F̃ consists
of only irreducible components of Λ̃, while on each of them the average dissipation of γ̃ is
positive. If in addition γ̃(y) > 0 for all y ∈ F̃ , m can be any positive number.

Theorem 2.4 was a special one averaging step case of the theorem above, and the condi-
tions there were not optimal. But we keep Theorem 2.4 for its simpler intuition.

Proof of Theorem 2.7. Based on Theorem 2.2 it is clear how to find a Lyapunov function
Ṽ (z) for the final averaged dynamics (Λ̃, γ̃). In particular, if γ̃(y) > 0 for all y, then for any
δ > 0,m > 0,

L|x|m . (−mmin
y
{γ̃(y)}+ δ)|x|m,

so |x|m is a Lyapunov function. Then by the induction principle, it suffices to show that,
given an averaging step

(F,Λ, γ)⇒ (F/F ′ ∪ {g1, . . . , gK}, Λ̃, γ̃)

and a polynomial like Lyapunov function Ṽ (z) =
∑
ãi(y)|x|ni for the averaged structure,

how to construct a new polynomial Lyapunov function V (z).

One thing that requires special attention is the order of Lyapunov function Ṽ and the
detailed transitions, defined as

λ̃(x, y, y′)(Ṽ (x, y′)− Ṽ (x, y)).

These polynomials are clearly of order at most m in the final state, since λ̃ are constants
and Ṽ is of order m. We will show this polynomial order is inherited by the constructed
Lyapunov function V (z) of the pre-averaged dynamics.

Denote the maximal order term in Ṽ (z) as ãm(y)|x|m. Because Ṽ is a Lyapunov function,

there is a γ0 > 0 such that the order m terms in L̃Ṽ (z) are

[Λ̃(x)Ṽ (x)]y −mγ̃(y)ãi(m)|x|m . −γ0Ṽ (z), y ∈ F/F ′ ∪ {g1, . . . , gK}, (2.14)

because LX |x|m−δ is of order less than m based on Lemma A.3. To continue, we notice the

dual of the averaging step produces the following function on Rd × F based on Ṽ :

V0(x, y) =


Ṽ (x, y), y ∈ F/F ′;
Ṽ (x, gk), y ∈ Gk;∑

k pF ′(y, gk)Ṽ (x, gk), y ∈ Gc.

Decompose the transition rates into two parts Λ(x) = ΛF ′ |x|n + Λc(x), where Λc is of order
n− δ for some δ > 0. With some technical verification in Lemma A.4, the following duality
equations hold {

[Λ̃(x)Ṽ (x, · )]y = [Λ(x)V0(x, · )]y, y ∈ F/F ′;
[Λ̃(x)Ṽ (x, · )]gk =

∑
y∈Gk

πk(y)[Λ(x)V0(x, · )]y.
(2.15)

11



We claim that the detail transitions of V0 induced by Λ(x) is of order at most m. The

detail transition of V0 from a y ∈ Gk to a y′ ∈ F/F ′ is λ(x, y, y′)(Ṽ (x, gk) − Ṽ (x, y′)). A
combination of y′ ∈ Gk is

λ̃(x, gk, y
′)(Ṽ (x, gk)− Ṽ (x, y′)) =

(∑
y∈Gk

πk(y)λ(x, y, y′)

)
(Ṽ (x, gk)− Ṽ (x, y′)).

The left hand side is of order at most m from inductions; on the right hand, the coefficients
follow λ(x, y, y′) ≥ 0, πk(y) > 0. So λ(x, y, y′)(Ṽ (x, gk) − Ṽ (x, y′)) is of order at most m.
Likewise, because

λ̃(x, gk, gj)(Ṽ (x, gj)− Ṽ (x, gk))

=
∑
y∈Gk

πk(y)

∑
y′∈Gc

λ(x, y, y′)
∑
j

pF ′(y
′, gj) +

∑
y′∈Gj

λ(x, y, y′)

 (Ṽ (x, gj)− Ṽ (x, gk)),

we can conclude the detail transition of V0 from y ∈ Gk to y′ ∈ Gj or Gc is of order at most
m. With the same argument, the detail transition of V0 from y ∈ F/F ′ to other y′ are all of
order at most m. For y ∈ Gc, the detail transition to any y′ will be

λ(x, y, y′)(V0(x, y′)− V0(x, y)) = λ(x, y, y′)
∑
k

pF ′(y, gk)(V0(x, y′)− V0(x, yk)),

where yk is any element in Gk. Then because of the non-dominating condition Assumption
2.6, and that λ(x, yk, y

′)(V0(x, y′)−V0(x, yk)) is of order at most m, so is λ(x, y, y′)(V0(x, y′)−
V0(x, y)).

If we let V (z) = V0(x, y), the Lyapunov dissipation will be inherited for y ∈ F/F ′, but
there will be an order m error term for y ∈ F ′, and we will apply Lemma 2.5 to fix this with
a monomial. In particular, the image of V0 through L is

LV0(z) . P (x, y) := −mγ(y)ãm(y)|x|m + [Λ(x)V0(x)]y.

The average of P (x, y) over any Gk, by the second duality equation, is∑
y∈Gk

πk(y)([Λ(x)V0(x, · )]y − γ(y)ãm(gk)|x|m) = [Λ̃(x)Ṽ (x)]gk − γ̃(gk)ãm(gk)|x|m

which is bounded by (2.14). Since the P (x, y) is of order at most m, by the Fredhlom
alternative Lemma 2.5, there is a positive monomial Q(z) of order less than m−n, such that
if we let V (z) = V0(z) +Q(z), then for all y ∈ F ′

−γ(y)ãm(gk)|x|m + [Λ(x)(Q(z) + V0(z))]y . −γ0V0(z).

Since the order of Q(z) is less than m−n, and LX(y)Q(z) produces a term of order at most
m− n, we find that LV (z) . −γ0V (z) if y ∈ F ′.

As for y ∈ F/F ′,

LV (z) . −γ̃(y)ãm(gk)|x|m + [Λ̃(x)Ṽ (x)]y + [Λ(x)Q(z)]y.

12



Notice the first two parts are bounded by (2.14). [Λ(x)Q(z)]y = [Λc(x)Q(z)]y because F ′ is
the connected component of ΛF . Then notice Q(z) is of order at most m − n, while Λc(x)
is of order strictly less than n, therefore [Λc(x)Q(z)]y is of order strictly less than m, so
LV (z) . −1

2
γ0V (z).

Lastly, we notice the detail transition of V (z) is the sum of detail transition of V0(z) and
Q(z), the first part is of order m from previous discussion, and λ(x, y, y′)(Q(x, y′)−Q(x, y))
is of order at most m as well. So the detail transitions of V (z) are of order at most m.

Remark 2.8. Once we finish the construction of V =
∑
ai(y)|x|mi and look back, we can

see ai(y) captures the potential dissipation with the transition rates of order |x|mI−mi, and
within a maximal connected component of that order. And for y in this maximal connected
components, aj(y) are of identical value for j ≥ i. In other words, from the value of the
sequence {ai(y)}i≤I , we can actually tell which connected component of what order does y
belong to. The following subsection gives a simple and concrete example.

2.4 A multiscale transition example

In this section, we consider one concrete example with multiscale transitions, where the
averaging steps mentioned in the previous section can be discussed explicitly. In subplot 1)
of Figure 2.1, a Markov process is defined on four states F = {a, b, c, d} with the transition
rates given along the arrows. The dissipation rates are given by

γ(a) = −1, γ(b) = 2, γ(c) = −1, γ(d) = −1.

F is the maximal connected component of order 2. It has two irreducible components {a, b}
and {d}. The induced invariant measure on {a, b} is π(a) = 1

3
, π(b) = 2

3
. c is the only

transient state. Starting from c and driven by the maximal order transition ΛF , it is equal
likely to end up in {a, b} and {d}.

After one averaging step, we have a two-state Markov chain in subplot 2). The states
represent the irreducible components in the original system. The dissipation rates are given
by

γ̃(ab) = π(a)γ(a) + π(b)γ(b) = 1, γ̃(d) = γ(d) = −1.

The transition rates are given by

λ̃(x, ab, d) = π(b)λ(x, b, d) = |x|, λ̃(x, d, ab) = pF (c, ab)λ(x, d, c) = 2|x|.

So the chain is of order 1, while invariant measure driven by the dynamics of this order is
π̃(ab) = 2

3
, π̃(d) = 1

3
.

With the final step of averaging, we end up with one state in 3), so the transition matrix
is the constant matrix of zero. The dissipation rate is given by π̃(ab)γ̃(ab)+π̃(d)γ̃(d) = 1

3
. So

the whole system is dissipative on average, Theorem 2.7 applies, and the Lyapunov function
can be of any order.

In particular, for the trivial Markov process described by subplot 3), |x|m with any m > 0
is a Lyapunov function. The procedure in the proof of Theorem 2.7 indicates this Lyapunov
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function can be pulled back into Lyapunov functions for the Markov processes described by
2) and 1):

|x|m + a2(y)|x|m−1 + a1(y)|x|m−2 ⇐= |x|m + ã2(y)|x|m−1 ⇐= |x|m.

Where ã2(ab) = 0, ã2(d) = 2
3
m; a2(a) = a2(b) = 0, a2(c) = 1

3
m, a2(d) = 2

3
m, a1(a) =

2
3
m, a1(b) = 0, a1(c) = 3

2
m, a1(d) = 0, assuming m ≥ 4 so |x|m−2 is C2.

1) a b

c d

2|x|2

|x|2

|x|2 3
2
|x|

4|x|

|x|2

=⇒

2) ab

d

|x|2|x| =⇒

3)

abd

Figure 2.1: Averaging multiscale transition rates. Subplot 1) is the original system, 2) and 3)
are the systems after one and two averaging steps. The leading order transitions are marked
by solid arrows, and the lower order transitions are marked by dashed arrows.

In order to illustrate Assumption 2.6, we consider one modification of 1) in Figure 2.1
that violates Assumption 2.6. Suppose there is another state e, and

λ(x, a, e) = λ(x, b, e) = λ(x, d, e) = 1, λ(x, c, e) = |x|.

If one averages again like Figure 2.1, the strong transition from c to e will be ignored, because
c is a transient state in the averaging procedure.

2.5 Comparison principle

The other way to deal with non-constant transition rate is through a comparison principle. To
be specific, suppose (Λ(x), γ) is dissipative on average, which may be established by Theorem

2.2 or Theorems 2.4, 2.7. Suppose also in another transition dissipation pair (Λ̃(x), γ̃), the
dissipation is stronger in all regimes, while the regime transitions are more favorable for
dissipation, then intuitively (Λ̃(x), γ̃) would also admits a dissipation on average.

The only vagueness of the previous argument is how to determine that the regime transi-
tions are more favorable for dissipation. In our contexts, since the coefficients ai(y) in (2.5)

characterize the potential dissipation, see Remark 2.3, so intuitively, we would say (Λ̃(x), γ̃)
has more favorable dissipation than (Λ(x), γ) if

γ̃(y) ≥ γ(y), (λ̃(x, y, y′)− λ(x, y, y′))(ai(y
′)− ai(y)) ≤ 0, ∀i.

In this interpretation, the comparison principle is straightforward and can be generalized to
dynamics on different spaces, where the state space F can be countable.

14



Theorem 2.9. Let P be a mapping from F to F ′. Suppose the transition dissipation pair
(Λ′(x), γ′) on F ′ admits a Lyapunov function of polynomial form V (x, y) =

∑
i≤I ai(y)|x|mi

with ai ≥ 0. Suppose (Λ(x), γ) on F is more favorable for dissipation in the sense that for
any i ≤ I and q ∈ F, y ∈ F ′

γ(q) ≥ γ(P (q)),

 ∑
P (q′)=y

λ(x, q, q′)− λ′(x, P (q), y)

 (ai(y)− ai(P (q))) ≤ 0. (2.16)

Then V (x, P (q)) will be a Lyapunov function for (Λ(x), γ).

Proof. Let mI be the maximum polynomial order, the fact that V is a Lyapunov function
for (Λ′(x), γ′) indicates that ∀y ∈ F ′

−mIaI(y)γ′(y)|x|mI +
∑
i≤I

[Λ′(x)ai]y|x|mi . −γ̄aI(y)|x|mI (2.17)

for a γ̄ > 0. According to Assumption 2.1 and Lemma A.3, for any δ > 0 the following holds

LV (x, P (q)) . (−mIγ(q) + δ)aI(P (q))|x|mI +
∑
q′∈F ′

λ(x, q, q′)
∑
i≤I

(ai(P (q′))− ai(P (q)))|x|mi .

Note that∑
q′∈F ′

λ(x, q, q′)(ai(P (q′))− ai(P (q))) =
∑
y∈F

 ∑
P (q′)=y

λ(x, q, q′)

 (ai(y)− ai(P (q)))

≤
∑
y∈F

λ′(x, P (q), y)(ai(y)− ai(P (q))).

Combine both inequalities above and compare it with (2.17), LV . (−γ̄aI(y)+δ)|x|mI . Since
δ can be arbitrarily small, it can further be bounded by −γ̄′aI(y)|x|mI hence also −γ̄′V for
some γ̄′ > 0.

The simplicity of this proof comes from our interpretation of dissipation on average
through polynomial Lyapunov functions. On the other hand, comparison principles can
also be demonstrated by coupling methods when the transition rates are bounded. [29, 32]
have shown dissipation on average in the following birth-death scenario through proofs of
considerate length, while it is only a special case of Theorem 2.9.

Corollary 2.10 (Birth-death type criterion). Suppose there is a partition of regimes F =
F1 ∪ · · · ∪ Fn, and there is an increasing sequence of dissipation rates β1, . . . , βn. Suppose

λ(x, y, y′) = 0 if y, y′ are not in neighboring Fi,

and γ(y) ≥ βk if y ∈ Fk, where γ is the linear dissipation rate as in Assumption 2.1. For
k = 1, . . . , n, denote

bk = inf
x∈E

inf
y∈Fk

∑
y′∈Fk+1

λ(x, y, y′), dk = sup
x∈E

sup
y∈Fk

∑
y′∈Fk−1

λ(x, y, y′), νk =
k∏
i=1

bk
dk
.

Then the transition dissipation pair (Λ(x), γ) has a monomial Lyapunov function if
∑n

k=1 βkνk >
0.
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Proof. Let F ′ = {1, . . . , n}, and Y ′t be a birth-death process on F ′ with birth rate bk and
death rate dk. Using the detailed balance relation, it is easy to see νk is a multiple of the
invariant measure of Y ′t . So if X ′t follows (1.2) with γ(Y ′t ) = βY ′t , Theorem 2.2 applies, and
there is a monomial Lyapunov function a(y)|x|m. Meanwhile, let Y ′′t be another birth-death
process on F ′ with the same rates, we couple Y ′t and Y ′′t so that they jump independently
before they are of the same value, then we make them do the same jumps simultaneously.
Then if Y ′0 ≥ Y ′′0 , we have for all t > 0, βY ′t ≥ βY ′′t . Since the ratio a(k)/a(k′) can be given
by (2.10), it is clear that a(k) ≥ a(k′) if k ≤ k′. Then we apply Theorem 2.9 with P : y → k
if y ∈ Fk to see the original transition dissipation pair has a Lyapunov function. Condition
(2.16) holds because if we let

b(q, k) =

 ∑
P (q′)=k

λ(x, q, q′)− λ′(x, P (q), k)

 (ai(k)− ai(P (q))),

then b(q, k) = 0 if q ∈ Fj, k /∈ {j − 1, j + 1}. And if q ∈ Fj

b(q, j − 1) =

 ∑
P (q′)=j−1

λ(x, q, q′)− dj

 (aj−1 − aj) ≤ 0

and likewise b(q, j + 1) ≤ 0.

3 Geometric ergodicity

In Section 2, Lyapunov functions are constructed for diffusions with random switching when
the dynamics is dissipative on average. Because these Lyapunov function are in the form of
polynomials, E|Xt|m is bounded uniformly for a proper m. Then by the Krylov-Bogoliubov
Theorem[40], there is at least one invariant measure for the joint process Zt = (Xt, Yt). It is
natural to ask whether this invariant measure is unique, and how does the law of Zt converge
to the unique invariant measure π.

For many stochastic processes, this question is answered by geometric ergodicity. Namely,
let d be a distance for probability measures, and P ∗t µ be the law of Zt given that Z0 ∼ µ,
then there is a γ > 0, Cµ,ν such that

d(P ∗t µ, P
∗
t ν) ≤ e−γtCµ,ν .

By letting µ be an invariant measure, the bound above indicates there is only one invariant
measure and all other statistical states are attracted to it geometrically fast.

In a series of important works on this subject [36, 41, 37, 38], a general framework has
been developed to verify geometric ergodicity, assuming that a Lyapunov function exists. In
the following we will apply this framework and show Zt is geometric ergodic

1) in total variation distance if there is a commonly reachable minorization regime;

2) in a proper Wasserstein distance if there is contraction on average.
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The Lyapunov function V will play a regularizing role in our discussion. In order to
show geometric ergodicity for unbounded rates, we will replace the globally bounded or
Lipschitz conditions in [29, 32] with weaker requirements that the transition rates or their
derivatives are bounded by the Lyapunov function V . One important consequence is that
an explosion, that is |Xt| reaches infinity or Yt has infinitely many jumps in finite time, is no
longer possible. To see this, let Tt be the number of jumps in Ys≤t, then a space-time version
of (2.4) shows that LTt = λ̄(z). If λ̄(z) ≤MV (z) for a constant M , then applying Dynkin’s
formula to the stopping time τN , which is the first time either |Xt| = N or Tt = N ,

E [Tt∧τN + V (Zt∧τN )] ≤ E
∫ t∧τN

0

(λ̄(Zs)− γV (Zs) +K)ds

≤
∫ t

0

E(MV (Zs) +K)ds ≤ tM(EV (Z0) +K/γ) +Kt.

By letting N → ∞, we find Tt < ∞, V (Zt) < ∞ a.s. Since V has compact sub-level sets,
|Xt| <∞ a.s. We have not mentioned this technical issue till now for two reasons: 1)if it is
mentioned in the beginning of Section 2, it is unclear how to find the Lyapunov function V ;
2) both L and (2.2) are well defined without this condition, so it was safe for Section 2 to
work without this condition.

3.1 Convergence in total variation with a minorization regime

The classical notion of ergodicity is often illustrated in the total variation norm, which is
defined as

‖µ− ν‖tv = sup
|f |≤1

∫
fdµ−

∫
fdν.

This norm is also called the L1 distance, because if µ and ν have densities p and q, ‖µ−ν‖tv =∫
|p − q|dx. Geometric ergodicity in total variation is well studied and understood in the

finite dimensional Markov chain and SDE [36, 41]. A classical formulation can be found in
Theorem 1.5 of [38] or Theorem 2.10 of [29], here we present it using our notation:

Theorem 3.1. Let Pt be a Markov semigroup admitting a Lyapunov function V . Suppose the
minorization condition holds, in the sense that for a sufficiently large C, there is a probability
measure ν and ε, t0 > 0, such that

‖P ∗t0δz − P
∗
t0
δz′‖tv > 2− ε, ∀z, z′ : V (z), V (z′) ≤ C.

Then (Pt)t≥0 has a unique invariant measure π, and for some positive constants D and β,

‖P ∗t δz − π‖tv ≤ De−βt(1 + V (z)).

When F consists of only one regime, Xt is simply an SDE on Rd. In this context,
following the arguments in [41], the minorization conditions of Theorem 3.1 can be verified
by the hypoellipticity and reachability conditions below:

Assumption 3.2. Let dXt = f(Xt)dt + σ(Xt) ◦ dWt be a diffusion process in Rd, where ◦
denotes the Stratonovich integral,

17



1. Hypoellipticity condition: let L be the Lie algebra generated by the vector fields

{f, σ1, . . . , σm}

with σi being the columns of σ, and L0 is the ideal in L generated by {σ1, . . . , σm},
assuming L0 spans Rd at all points.

2. Reachability condition: there is a point xh ∈ Rd such that for any compact set C and
ε > 0, there is a t0 such that from any x ∈ C there is a piecewise constant process wt
such that the solution to the following ODE

dxt = [b(xt) + σ(xt)wt]dt, x0 = x,

satisfies |xt0 − xh| ≤ ε.

Theorem 3.4 below indicates that for diffusions with random switching, it suffices to check
minorization condition for one particular regime, using say Assumption 3.2, and show this
regime is commonly accessible and satisfies a mild growth condition for V (Zt). In particular,
we define

Definition 3.3. A regime y∗ ∈ F is commonly accessible, if for all z ∈ Rd × F there is
a t > 0 such that Pz(Yt = y∗) > 0. We say it has polynomial growth for a function V , if
there is a constant Kt with polynomial growth in t, such that the following holds for the SDE
dX ′t = b(X ′t, y

∗)dt+ σ(X ′t, y
∗)dWt,

ExV (X ′t, y
∗) ≤ Kt(V (x, y∗) + 1). (3.1)

Theorem 3.4. Let Zt = (Xt, Yt) be a diffusion with random switching that admits a Lya-
punov function V . Suppose the transition rates satisfy λ̄(z) ≤ MV (z), moreover there is a
regime yh ∈ F such that it is commonly accessible and has polynomial growth for V . Then
if the SDE given by dX ′t = b(X ′t, yh)dt+σ(X ′t, yh)dWt satisfies the minorization condition in
Theorem 3.1, the diffusion Zt has an invariant measure π and is geometrically ergodic under
the total variation distance.

The proof is located in Section 4, where we will also show a simple way to verify the
common accessibility of one regime.

3.2 Wasserstein metric convergence with contraction on average

Another mechanism that may generate geometric ergodicity is contraction. Contraction
can be formulated through the Lyapunov exponents of stochastic flows. Recall that in the
diffusion part, b is required to be C2+δ and σ is required to be C1+δ in x, and there is
no explosion. As a consequence, the solution to the SDE with Yt = y can be written as
Xt = Ψy,ω

t X0, where Ψy,ω
t is a diffeomorphism [42]. We say ρ : F 7→ R is a contraction rate

function, if
‖DxΨ

y,ω
t x‖ ≤ exp(−ρ(y)t), ∀(x, y) ∈ Rd × F, a.s. (3.2)
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Here ω can be seen as a realization of the Wiener process in (1.1), and we denote its law as
PW . One way to verify (3.2) is imposing the following requirement on (1.1):

(x− x′) · (b(x, y)− b(x′, y)) ≤ −ρ(y)|x− x′|2, σ(x, y) = σ(y).

[29, 32] and the references within also suggest other method to establish (3.2) under possibly a
different norm, our method below is possible for generalization in those scenarios as well. We
will say the joint process admits a contraction on average, if there are constants m, ρ̄, Cρ > 0
such that

Ez exp

(
−m

∫ t

0

ρ(Ys)ds

)
≤ Cρ exp(−ρ̄t). (3.3)

The next subsection will discuss how to verify (3.3) given the contraction rates ρ.
The total variation norm is often too stringent to capture contraction. For example,

consider a trivial deterministic process in R, dXt = −ρXtdt. The invariant measure is
obviously δ0, a point mass at the origin, and it attracts other points. Yet, starting from any
nonzero point, the distribution of Xt is a point mass at e−ρtX0, which has total variation
distance 2 from δ0.

A more suitable distance for our purpose is the Wasserstein distance, which is also used
in previous works for models with bounded or Lipschitz transition [22, 28, 29, 33]. For any
distance d on a space E, the associated Wasserstein distance between two measures µ, ν on
E is defined as:

d(µ, ν) := inf
Γ∈C(µ,ν)

∫
d(x, x′)Γ(dx, dx′) (3.4)

Here C(µ, ν) is the set of all coupling measures between µ and ν.
The distance function here can be very flexible. One remarkable discovery in [37, 38]

is that by properly incorporating the Lyapunov function into d, the corresponding Wasser-
stein distance can characterize relatively weak convergence. This is known as the asymptotic
coupling framework. As for diffusions with random switching, this framework allows us to
generalize geometric ergodicity results to cases where the transition rates and their deriva-
tives are bounded only by the Lyapunov function.

Similar to the situation with dissipation, the notion of contraction on average is essential
for our discussion. The precise statement is the following:

Theorem 3.5. Let Zt = (Xt, Yt) be a diffusion with random switching that admits a Lya-
punov function V . Suppose the following four conditions hold

1) V (x, y) has polynomial growth in x, so there are n,M such that

V (x+ u, y) ≤M(V (x) + |u|n) and V (x, y) ≥ 1

M
|x|

1
n .

2) The transition rates and their derivatives are bounded by MV with a constant M > 0

λ̄(z) ≤MV (z),
∑
y′

|∇xλ(x, y, y′)| ≤MV (z).
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3) Each regime admits a contraction rate ρ in the sense of (3.2), the averaged dynamics is
contractive as there are Cρ,m, ρ̄ > 0:

Ez exp

(
−m

∫ t

0

ρ(Ys)ds

)
≤ Cρ exp(−ρ̄t).

4) There is a commonly accessible regime yc, such that ρ(yc) > 0 and V has at most poly-
nomial growth in the sense of Definition 3.3.

Then Zt has a unique invariant measure π, moreover the distribution of Zt converges to π
geometrically fast in the Wasserstein distance generated by m(z, z′) = 1y=y′ ∧|x−x′|+1y 6=y′.
In particular the following bound holds with come C, β > 0,

m(P ∗t δz, P
∗
t δz) ≤ Ce−βt(1 + V (z)).

3.3 Contraction on average

Given the contraction rates ρ in each regime, the contraction on average condition (3.3) can
be verified using arguments similar to the ones of dissipation on average in Section 2. Yet,
there is an important difference. When we construct a Lyapunov function, it suffices to
consider the transitions for large |x|, and upper bounds suffice to hold modulo a constant,
see Lemma A.2. This is no longer the case for contraction on average, and we will need
the “.” inequalities in Section 2 to hold with “≤”. As a consequence, the spectrum and
comparison arguments still work with a variant, but the scaling argument no longer works.

The following theorem is the contraction version of Theorem 2.2, while the transition
rates are allowed to be non-constant.

Theorem 3.6. If there are constants m, ρ̄ > 0 and a vector a with strictly positive compo-
nents such that the following holds

−mρ(y)a(y) + [Λ(x)a]y ≤ −ρ̄a(y) (3.5)

for all (x, y) ∈ E, then the contraction on average (3.3) also holds. In particular, if Λ(x) is
a constant irreducible transition matrix, and over its invariant measure π,

∑
π(y)ρ(y) > 0,

then the conditions mentioned above hold.

Proof. Consider an auxiliary scalar process dUt = −mρ(Yt)Utdt with U0 = 1 then clearly

Ut = exp

(
−m

∫ t

0

ρ(Ys)ds

)
> 0.

Now consider a joint function V (z, u) = a(y)u, which satisfies the following for any u > 0,

LV (z, u) = −mρ(y)a(y)u+ [Λ(x)a]yu ≤ −ρ̄a(y)u = −ρ̄V (z, u).

As a consequence, EUt ≤ e−ρ̄tmaxy a(y)

miny a(y)
.

Following the representation (2.10), we can see a(y) in (3.5) as the potential contraction
of one regime. Therefore, the comparison principle can be formulated as follow:
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Proposition 3.7. Let (ρ,Λ(x)) satisfies (3.5) with a strictly positive vector a, then (ρ̃, Λ̃(x))
satisfies the same inequality, if it is more favorable for contraction in the sense:

ρ̃(y) ≥ ρ(y), (λ(x, y, y′)− λ̃(x, y, y′))(a(y)− a(y′)) ≥ 0.

The proof is a direct verification and ignored here. On the other hand, contraction on
average will require the contraction to hold homogenous inside Rd, but not just for large
enough |x|. This is probably an intrinsic requirement due to the following example:

Example 3.8. Let F = {1,−1}, and dXt = −YtXtdt to be a scalar process, while

λ(x, 1,−1) = x2 + 3, λ(x,−1, 1) = 3x2 + 1.

With a simple application of Theorem 2.4, it is easy to see this system has dissipation on
average. Indeed, the transition rates favor contraction when |x| is large. However, when |x|
is close to 0, the transition favors inverse contraction. As a consequence, although 1

4
δ(0,1) +

3
4
δ(0,−1) is clearly an invariant measure, starting from any x0 6= 0, xt will never reach 0. In

fact, there is at least another invariant measure on R+ with density:

p(x, 1) = p(x,−1) = x exp(−x2), x > 0.

The invariance can be verified by the Fokker Planck equation, which is the dual of L. On the
other hand, if we replace the ODE of Xt with dXt = −ytXtdt + dWt, the noise will connect
the invariant measures, so the process becomes ergodic due to Theorem 3.4.

4 Geometric ergodicty through random PDMPs

4.1 Random PDMPs

Piecewise deterministic Markov processes (PDMP) are special cases of diffusions with random
switching, as they require the SDEs of Xt to be ODEs, in other words, σ(Zt) ≡ 0. In this
case, assuming Ys stays in regime y up to time t, the value of Xt is given by a diffeomorphism
Xt = Ψy

s,tXs for any s ≤ t. A PDMP can be defined, based on Ψy
s,t and transition rates

λ(x, y, y′). In fact, Xt is completely govern by the jumps of Yt: if Yt has jumps at time
t = (t1, . . . , tn) with a jump sequence y = (y1, . . . , yn), then Xt is given by

Xt = Ψ(X0, t,y, t) := Ψyn
tn,t ◦Ψ

yn−1

tn−1,tn ◦ · · · ◦Ψy0
0,t1
X0. (4.1)

Moreover, the probability density of such event, that is having n jumps before time t with
jump times τk and jumps going to yk, is given by formula 3.10 of [43]

pz0,tn,t,ydt := 1t1<t2<···<tn exp

(
−
∫ t

0

λ̄(zs)ds

) n∏
i=1

(λ(zti−, yti)dti). (4.2)

In (4.2), the X part of zs is given by (4.1), and zs− = lim zr with r approaches s from left.
On the other hand, diffusions with random switching can be viewed as random PDMPs.

As noted in Section 3.2, the solution of the SDE in a fixed regime can be written as Xt =
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Ψy,ω
s,t Xs, where ω denotes the realization of the Wiener process Ws, and we denote the law of

ω as PW . Therefore, if we condition on each realization ω, a diffusion with random switching
is simply a PDMP. Following the nomenclature of statistical physics [44], this PDMP will
be called a quenched process, as it is the conditioning of the original joint process Zt, on one
realization of random outcome ω. In contrast, the original process without conditioning will
be called the annealed process. We will adopt this simple terminology.

Viewing a diffusion with random switching as a random PDMP gives us two explicit
formulas. First, given the jump times t and jumps y, Xt is given by Ψω(X0, t,y, t), which is
defined in (4.1) with Ψy

s,t replaced by Ψy,ω
s,t . Second, if pz0,t,ωn,t,y denotes the density (4.2) with

the diffeomorphisms being Ψy,ω
s,t , then the law of the annealed process can be recovered by

averaging over PW :

Pz0(Zs≤t ∈ A) =

∫
PW (dω)

∞∑
n=0

∑
y∈Fn

∫
[0,t]n

dtpz0,t,ωn,t,y 1zs≤t∈A, (4.3)

where zs has its x part given by xs = Ψω(x0, t,y, s) and ys = yk if tk ≤ s ≤ tk+1. These
explicit formulas will be instrumental for our proofs below.

4.2 Accessibility analysis

In both the minorization and contraction on average scenarios, we need a good regime to
be commonly accessible. In this section we will discuss the consequence of this assumption
and also provide a simple way to verify in Lemma 4.2. Most derivations here are relatively
standard and may have a simpler version in [31, 28, 29] when the transition rates are bounded.
We provide the complete proofs here to be self-contained.

Lemma 4.1. Suppose Zt admits a Lyapunov function V , Λ(x) is continuous in x while
λ̄ ≤MV for some M > 0.

1) If Pz(Yt = ỹ) > 0, then Pz(Yt+s = ỹ) > 0 for any s ≥ 0;

2) For each z and t > 0, there exists a neighbor of x, Ox ⊂ Rd, such that

Px′,y(Yt = ỹ) ≥ 1

2
Pz(Yt = ỹ), ∀x′ ∈ Ox;

3) If there is a ỹ ∈ F that is commonly accessible, then for any fixed compact set C, there
exists some t0,m0 > 0 such that

Pz(Yt0 = ỹ) ≥ m0, ∀z ∈ C.

Proof. Claim 1) Our condition implies pz,t,ωn,t,y > 0 with yn = ỹ for certain ω, t,y. Then
observe that,

pz,t+s,ωn,t,y = pz,t,ωn,t,y exp

(
−
∫ s

0

λ̄(Ψyn,ω
t,t+rxt, yn)dr

)
.
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The exponential term above is nonzero for PW -a.s. ω, because (2.3) leads to∫ s

0

∫
PW (dω)λ̄(Ψyn,ω

t,t+rxt, yn)dr ≤M

∫ ∫ s

0

PW (dω)V (Ψyn,ω
t,t+rxt, yn)dr

≤ sKsM(V (xt, yn) + 1) <∞.

So for PW -a.s. ω, pz,t,ωn,t,y > 0 implies pz,t+s,ωn,t,y > 0, and annealing (4.3) produces our claim.

Claim 2) By formula (4.2), pz0,ω,tn,t,y depends continuously on xs≤t, which depends continuously

on x0 because of (4.1). Thus pz0,ω,tn,t,y depends continuously on x0, and claim 2) follows by
applying Fatou’s lemma to the following annealing formula over any sequences z′ → z.

Pz′(Yt = ỹ) =

∫
PW (dω)dt

∑
n,y:yn=ỹ

pz
′,t,ω
n,t,y .

Claim 3) By claim 2) and the fact that C is compact, we can find a finite cover of C,
{Oi}i=1,...,n, and a sequence of time ti such that

Pz′(Yti = ỹ) > 0 ∀z′ ∈ Oi.

Let t0 = max{ti}, we have Pz(Yt0 = ỹ) > 0 for all z ∈ C by claim 1). Then using the
compactness again with claim 2), we can find a uniform lower bound m0 for the transition
probability.

The following Lemma provides an easy verification that a regime y∗ is commonly acces-
sible.

Lemma 4.2 (Burst mechanism). Under the same conditions of Lemma 4.1, fix any z0 ∈ E
and a sequence in F y0, y1, . . . , yn such that

λ(x0, yi, yi+1) > 0, i = 0, 1, . . . , n− 1. (4.4)

Then for any t > 0, Pz0(Yt = yn) > 0. Therefore, if there is a y∗ ∈ F such that for any
z0 ∈ E, there is a sequence y0, . . . , yn = y∗ such (4.4) holds, then y∗ is commonly accessible.

Proof. By claim 1) of Lemma 4.1, it suffices to show our claim for sufficiently small t. Since
λ is continuous in x, so we can find 0 < δ < 1 and an M > 0 such that the following holds:

λ(x, yi, yi+1) > 0, λ̄(x, yi) < M, ∀‖x− x0‖ ≤ δ, i = 0, 1, . . . , n− 1.

Then for PW -a.s. realization of ω, because Ψy,ω
s,t x is continuous in s, t and x, by induction

there is a sequence of measurable functions εk(ω) ≤ δ, k = 0, 1, . . . , n such the following
holds:

|Ψyk−1,ω
s,t x− x0| < εk(ω), ∀x : |x− x0| < εk−1(ω), s ≤ t ≤ εk(ω),

where εn(ω) = δ. Then pick any ε such that PW (ε0(ω) > ε) > 0, and consider any fixed jump
time sequence t = (t1, t2, . . . , tn) with tn < ε and the generated process xs = Ψω(x0, t,y, s).
with y = (y1, . . . , yn). It is easy to verify that if ε0(ω) > ε, then |xs − x0| < δ for all s ≤ ε,
therefore pz0,ω,εn,y,t > 0 for these ω. This completes the proof by the annealing formula (4.3).
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4.3 Ergodicity with a minorization regime

Due to Theorem 3.1, the proof of Theorem 3.4 is a relative standard verification of the small
set condition for the full Markov semigroup Pt.

Proof of Theorem 3.4. In order to apply Theorem 3.1, it suffices for us to show the minoriza-
tion condition. By the equivalence between total variation and coupling measures, this is
equivalent to building a coupling of Zt and Z ′t such that P (Zt = Z ′t) ≥ ε, if V (Z0), V (Z ′0) ≤ C.
Our strategy will be showing there are t0 > 0 and δ > 0,

Pz(Yt0 = yh, V (Zt0) ≤ C) > δ, ∀z ∈ U, (4.5)

and then use the fact that Yt is possible to stay as yh, while the minorization in regime h
can be used to build a coupling.

Since yh is commonly accessible, by Lemma 4.1 3), there are t0,m0, such that Pz(Yt0 =
yh) > m0 for all z ∈ Rd×F . Because V is a Lyapunov function, Ez(V (Zt0)) ≤ e−γt0C+K/γ
for all C. By picking a large C, we can make

Pz(V (Zt0) > C) ≤ EzV (Zt0)

C
≤ 1

2
m0,

hence (4.5) holds with δ = 1
2
m0. By Lemma A.1, there is a coupling of Zt0 and Z ′t0 with law

Qz such that

Qz((Zt0 , Z
′
t0

) ∈ A1) > δ, A1 := {(z, z′) : y = y′ = yh, V (z), V (z′) ≤ C}.

By our assumption, y = yh satisfied the minorization condition. This means there are t1 > 0
and ε > 0, so that for any x, x′ that V (x, yh), V (x′, yh) ≤ C, there is a coupling of PW (ω)
and PW (ω′), denoted by QW (dω, dω′) such that

Ex,x′yh
(Xt1 = X ′t1) =

∫
QW (dω, dω′)1

Ψ
yh,ω
0,t1

x=Ψ
yh,ω′
0,t1

x′
≥ ε. (4.6)

Now we extend Qz from time t0 to T = t0 + t1 by coupling ω, ω′ as QW after time t0. Then
Markov property yields

Qz(ZT = Z ′T ) ≥ Qz(Yt0≤s≤T = Y ′t0≤s≤T = yh, V (Zt0), V
′(Zt0) ≤ C,XT = X ′T )

≥ 1

2
m0 inf

(z,z′)∈A1

∫
QW (dω, dω)pz,t1,ω0,∅,∅ p

z′,t1,ω′

0,∅,∅ 1
Ψ

yh,ω
0,t1

x=Ψ
yh,ω′
0,t1

x
.

It suffices to show the density that there are no jumps till time t1, which is pz,t1,ω0,∅,∅ p
z′,t1,ω′

0,∅,∅ , is

bounded from below on a set of probability more than 1− 1
2
ε, then union bound with (4.6)

will yield our claim. For this purpose, note

p
(x,yh),t1,ω
0,∅,∅ = exp

(
−
∫ t1

0

λ̄(xs, yh)ds

)
,

while by polynomial growth of V within regime yh,∫
PW (dω)

∫ t1

0

λ̄(xs, yh)ds ≤M

∫
PW (dω)

∫ t1

0

V (xs, yh)ds ≤Mt1Kt1(V (x0) + 1).
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So by Markov’s inequality, there is an N such that

PW

(
pz,t1,ω0,∅,∅ ≤ exp(−N)

)
≤ PW

(∫ t1

0

λ̄(xs, yh)ds ≥ N

)
≤ 1

4
ε.

Then because QW is a coupling, by union bound,

QW

(
pz,t1,ω0,∅,∅ p

z′,t1,ω′

0,∅,∅ ≤ exp(−2N)
)
≤ 1

2
ε.

4.4 Ergodicity with contraction on average

The proof of Theorem 3.5 uses the asymptotic coupling mechanism introduced by [45, 38].
Theorem 4.8 of [38] presented below, formulates our application of this mechanism.

Theorem 4.3. Let Pt be a Markov semigroup over a Polish space E admitting a continuous
Lyapunov function V , so EV (Zt) ≤ e−γtEV (Z0) + K. Suppose there exists a distance-like
function d : E × E 7→ [0, 1] and a time t such that

1) Pt is locally contracting in d:

d(P ∗t δz, P
∗
t δz′) ≤

1

2
d(z, z′), ∀d(z, z′) < 1.

2) Smallness: for any two z, z′ such that V (z), V (z′) ≤ K, d(P ∗t δz, P
∗
t δz′) ≤ 1− ε.

Then Pt can have at most one invariant probability measure π. Furthermore, let d̃(z, z′) =√
d(z, z′)(1 + V (z) + V (z′)), there exists a t > 0 such that d̃(P ∗t µ, P

∗
t ν) ≤ 1

2
d̃(µ, ν) for any

probability measures µ, ν on E.

In [38], d : E × E 7→ R+ is distant-like if it is symmetric, lower semicontinuous, and
d(z, z′) = 0 ⇔ z = z′. Its associated Wasserstein-1 distance is also denoted by d for
notational simplicity. In other words, for two probability measures µ and ν,

d(µ, ν) := inf
Γ

∫
d(z, z′)Γ(dz, dz′),

where the infimum is taken over all coupling measures of µ and ν.
The reason that 1) is called a local contraction, is that in most applications, d(z, z′) = 1

unless z and z′ are very close. Theorem 4.3 essentially extends a local contraction to a global
one.

4.4.1 Contracting distance

For the construction of a contracting distance, we have the following lemma. It is a variant
of Lemma 4.13 in [38] which uses a Lyapunov function instead of a super Lyapunov function.
The proof goes very similar.
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Proposition 4.4. Under the conditions of Theorem 3.5, the following distance with any
positive r ≤ min{m

2
, 1

2
} is locally 1

2
-contracting for PT with a proper T and δ < 2−

1
r :

d(z, z′) = 1y 6=y′ + 1y=y′ ∧ δ−1

(
inf

θ:x→x′

∫ 1

0

V (θ(s), y))|θ̇(s)|ds
)r
. (4.7)

Here the infimum is taken over all the C1 paths θ : [0, 1] 7→ Rd that connects x and x′.

Before we move on to the proof of Proposition 4.4, we need two pieces of arguments. The
first one indicates d(z, z′) ≈ 1y 6=y′ + 1y=y′ ∧ δ−1(V (z)|x− x′|)r.

Lemma 4.5. Assuming condition 1) of Theorem 3.5, fix any y ∈ F , x, x′ ∈ Rd and a C1

path θ : [0, 1] 7→ Rd that connects x and x′ so that

inf
θ:x→x′

∫ 1

0

V (θ(s), y)|θ̇(s)|ds ≤ 1

2
,

then
1

2M
|x− x′|V (z) ≤ inf

θ:x→x′

∫ 1

0

V (θ(s), y)|θ̇(s)|ds ≤ 2M |x− x′|V (z).

Proof. Recall that we can always assume that V ≥ 1, so our condition leads to |x− x′| ≤ 1
2
.

Because of the polynomial growth of V in x, when |u| ≤ 1, V (x + u, y) ≥ M−1V (x, y) − 1,
so

V (x+ u, y) ≥ 1

2
[(M−1V (x, y)− 1) + 1] =

1

2M
V (x, y), ∀|u| ≤ 1.

Therefore for any C1 path θ that connects x with x′, while |x− x′| ≤ 1
2
, if it completely lies

in Bx(1) = {x+ u : |u| ≤ 1}, then∫ 1

0

V (θ(s), y)|θ̇(s)|ds ≥ 1

2M
V (z)

∫ 1

0

|θ̇(s)|ds ≥ 1

2M
V (z)|x− x′|.

In the other case, if θ has a part lying outside Bx(1), then there is an exiting time of Bx(1),
τ = inf{s : θ(s) /∈ Bx(1)}. By definition θ([0, τ ]) is a C1 path of length at least 1, hence∫ 1

0

V (θ(s), y)|θ̇(s)|ds ≥
∫ τ

0

V (θ(s), y)|θ̇(s)|ds ≥ 1

2M
V (z) ≥ 1

2M
V (z)|x− x′|.

For the other side of the bound, we only need to show it holds for θ(s) = x+s(x−x′), which
is the following by polynomial growth:

|x− x′|
∫ 1

0

V (θ(s), y)ds ≤M |x− x′|(V (z) + 1).

The second lemma gives a bound on the perturbation of measures caused by perturbation
on the initial condition:
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Lemma 4.6. Under the conditions of Theorem 3.5, for any fixed T there is a constant DT

such that ∫
PW (dω)

∑
n,y

∫
[0,T ]n

dt‖Dxp
z,ω,T
n,t,y ‖ ≤ DT (V (z) + 1).

Proof. Recall that the density function is

pz,ω,Tn,t,y = 1t1<···<tn<T exp

(
−
∫ T

0

λs(zs)ds

) n∏
i

(λ(zti−, yti)dti).

Applying Fréchet derivative and the chain rule, we have∫
PW (dω)

∑
n,y

∫
[0,T ]n

dt‖Dxp
z,ω,T
n,t,y ‖

≤
∫
PW (dω)

∑
n,y

∫
[0,T ]n

dtpz,ω,Tn,t,y

∫ T

0

‖DxΨω(x, t,y, s)∂xλ(xs, ys)‖ds

+

∫
PW (dω)

∑
n,y

∫
[0,T ]n

dtpz,ω,Tn,t,y

n∑
k=1

‖DxΨω(x, t,y, tk)‖
‖∂xλ(zttk− , ytk)‖
λ(ztk−, ytk)

. (4.8)

We will bound the two parts separately in below. Since for tk ≤ s < tk+1 and every ω

‖DxΨω(x, t,y, s)‖ = ‖DxΨ
yk,ω
tk,s
◦Ψ

yk−1,ω
tk−1,tk

◦ · · · ◦Ψy0,ω
0,t1

x0‖ ≤ exp

(
−
∫ s

0

ρ(ys)ds

)
≤ exp(MρT ).

Here Mρ := maxy{−ρ(y)} <∞. Using condition 2) of Theorem 3.5, the first part of (4.8) is
bounded by the following

M

∫
PW (dω)

∑
n,y

∫
dtpz,ω,Tn,t,y

∫ T

0

exp(MρT )V (zs)ds = M exp(MρT )Ez
∫ T

0

V (Zs)ds,

which is bounded further by KTV (z) with a proper KT since V is a Lyapunov function. The
equality above holds as we recognize the probabilistic meaning of the integrals and then use
that V is a Lyapunov function. For the second part of (4.8), according to condition 2) of
Theorem 3.5, it is clearly bounded by

M exp(MρT )

∫
PW (dω)

∑
n,y

∫
[0,T ]n

dtpz,ω,Tn,t,y

n∑
k=1

V (ztk−1
)

λ(ztk−, ytk)
= M exp(MρT )Ez

∑
k:τk≤T

V (zτk−)

λ(Zτk−, Yτk)
,

where τk are the sequential jump times. Apply formula 31.18 in [46] with b(z′, z) = V (z)
λ(z,y′)

on
the quenched PMDP, and then annealing, we find

Ez
∑
k:τk≤T

V (zτk−)

λ(Zτk−, Yτk)
= Ez

∫ T

0

V (Zt)dt,

which is bounded further by KTV (z) with a proper KT since V is a Lyapunov function.
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We are finally at the position to prove Proposition 4.4:

Proof of Proposition 4.4. By the definition of contracting metric, it suffices for us to show
that d(P ∗T δz, P

∗
T δz′) ≤ 1

2
d(z, z′) when d(z, z′) < 1. This implies that y = y′, and |x− x′| ≤ 1

2
.

Since the spaces here are Polish, by the Kantorovich-Rubinstein Theorem (Theorem 11.8.2
of [47]),

d(P ∗T δz, P
∗
T δz′) = sup

ϕ

{
P x,y
T ϕ− P x′,y

T ϕ

∣∣∣∣‖ϕ‖Lip(d) ≤ 1

}
.

‖ϕ‖Lip(d) denotes the Lipschitz norm, in other words, for any z, z′ ∈ E, ϕ(z) − ϕ(z′) ≤
‖ϕ‖Lip(d)d(z, z′). Hence, to prove this lemma we only need to show for any ϕ, ‖ϕ‖Lip(d) ≤ 1,

P x,y
T ϕ− P x′,y

T ϕ ≤ 1

2δ

(
inf

r:x→x′

∫ 1

0

V (r(s), y)|ṙ(s)|ds
)r
. (4.9)

However, if ϕ has its d-Lipschitz norm less than 1, its maximum variation is less than 1, we
can replace ϕ by ϕ − c such that ‖ϕ‖∞ ≤ 1

2
, yet

∫
ϕdQx,y − ϕdQx′,y remains invariant. So

without loss of generality, we assume ‖ϕ‖∞ ≤ 1
2
.

Consider splitting P x,y
T ϕ − P x′,y

T into the difference caused by the initial condition, and
the difference caused by the underlying probability measure:

|P x,y
T ϕ− P x′,y

T ϕ| = |Ex,yϕ(Ψω(x, Ys≤T , T ), YT )− Ex′,yϕ(Ψω(x′, Ys≤T , T ), YT )|
≤ |Ex,yϕ(Ψω(x, Ys≤T , T ), YT )− Ex,yϕ(Ψω(x′, Ys≤T , T ), YT )| (4.10)

+ |Ex,yϕ(Ψω(x′, Ys≤T , T ), YT )− Ex′,yϕ(Ψω(x′, Ys≤T , T ), YT )|. (4.11)

The quantity Ex,yϕ(Ψω(x′, Ys≤T , T ), YT ) has its probability initialized from point (x, y) but
the stochastic flow is initialized at x′, in other words:

Ex,yϕ(Ψω(x′, Ys≤T , T ), YT ) =

∫
PW (dω)

∑
n,y

pz,ω,Tn,t,y

∫
[0,T ]n

dtϕ(Ψω(x′,y, T ), yT ).

Since ϕ is d-Lipschitz, so the first part is bounded as below by Lemma 4.5

(4.10) ≤ Ezd((Ψω(x, Ys≤T , T ), YT ), (Ψω(x′, Ys≤T , T ), YT ))

≤ Ez1 ∧ δ−1

(
inf
θ

∫ 1

0

V (θ(s), YT )‖θ̇(s)‖ds
)r

≤ Ezδ−1(2M)rV (ZT )r|uT |r,

where uT = Ψω(x′, Ys≤T , YT )−XT . By Cauchy Schwartz,

EzV (ZT )r|uT |r ≤
√
EzV (ZT )2r

√
Ez|uT |2r.

Notice Ez|uT |2r ≤ [Ez|uT |m]
2r
m , and by contraction on average:

E|uT |m ≤ Ez|x− x′|m exp

(
−
∫ T

0

mρ(Ys)ds

)
≤ Cρ|x− x′|m exp(−ρ̄T ).
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Likewise, Ez|V (ZT )|2r ≤ [EzV (ZT )]2r ≤ C0V (z)2r for a constant C0. As a consequence, there
is a constant C1 such that

(4.10) ≤ C1 exp(−2r
m
ρ̄T )|x− x′|rV (z)r,

which further leads to the following by Lemma 4.5 for a constant C2:

(4.10) ≤ δ−1C2 exp(−2r
m
ρ̄T )

(
inf

θ:x→x′

∫ 1

0

V (θ(s), y))‖θ̇(s)‖ds
)r
.

In the following, we will fix a T such that C2 exp(−2r
m
ρ̄T ) ≤ 1

4
. In order to bound (4.11), by

definition:

(4.11) =

∣∣∣∣ ∫ PW (dω)
∑
n,y

(pz,ω,Tn,t,y − p
z′,ω,T
n,t,y )

∫
[0,T ]n

dtϕ(Ψω(x′, t,y, T ), yT )

∣∣∣∣
≤ ‖ϕ‖∞

∫
PW (dω)

∑
n,y

∫
[0,T ]n

dt
∣∣pz,ω,Tn,t,y − p

z′,ω,T
n,t,y

∣∣
≤ 1

2

∫
PW (dω)

∑
n,y

∫
[0,T ]n

dt

∫ 1

0

‖Dxp
zs,ω,T
n,t,y ‖|θ̇(s)|ds.

where z′ = (x′, y) and zs = (θ(s), y), and θ is any C1 path from x to x′. By Lemma 4.6,
there is a constant DT such that∫

PW (dω)
∑
n,y

∫
[0,T ]n

dt‖Dxp
zs,ω,T
n,t,y ‖ ≤ DTV (zs).

Hence for any C1 path θ that connects x and x′ while
∫ 1

0
V (zs)|θ̇(s)|ds ≤ 1, because r < 1,

(4.11) ≤ DT

2

∫ 1

0

V (zs)|θ̇(s)|ds ≤
DT

2

(∫ 1

0

V (zs)|θ̇(s)|ds
)r
.

So combine the bounds for (4.10) and (4.11), we have

Ex,yϕ(ZT )− Ex′,yϕ(ZT ) ≤
(

1

4δ
+
DT

2

)(∫ 1

0

V (zs)|θ̇(s)|ds
)r
,

it suffice to take δ ≤ D−1
T in (4.9) for this proposition to hold.

4.4.2 Small set verification

Verification of condition 2) of Theorem 4.3 is given by the following

Lemma 4.7. Under the condition of Theorem 3.5, for any fixed strictly positive C, there
are some T, ε > 0 such that:

d(P ∗T δz, P
∗
T δz′) ≤ 1− ε, ∀z, z′ : V (z), V (z′) ≤ C.

29



Proof. The proof is exactly the same as Theorem 3.4, and a coupling will be constructed
through two steps. We first couple Yt0 , Y

′
t0

to yc, which follows exactly the same com-
monly accessible argument as in the proof of Theorem 3.4. Then we keep the value of Y
to be the same afterwards, until the contracting dynamics brings the X part close enough.
For this part, it suffices to show that there is a t1 such that from any two x and x′ with
V (x, yc), V (x′, yc) ≤ C, there is a coupling QW of PW (dω) and PW (dω′), such that∫

QW (dω, dω′)d((Ψyc,ω
t1 x, yc), (Ψ

yc,ω′

t1 x′, yc)) ≤ 1− ε. (4.12)

Then (4.12) replaces (4.6), while the remainder of the proof of Theorem 3.4 can be used
again.

By Lemma 4.5, for all ω,

d((Ψyc,ω
t x, yc), (Ψ

yc,ω
t x′, yc)) ≤ δ−1(2M)r exp(−rρ(yc)t)V ((Ψyc,ω

t x), yc)
r|x− x′|r.

Note that V (x, yc), V (x′, yc) ≤ C implies |x− x′| is bounded, so for a t large enough,

d((Ψyc,ω
t x, yc), (Ψ

yc,ω
t x′, yc)) ≤

exp(−1
2
rρ(yc)t)

2C
V ((Ψyc,ω

t x), yc)
r ≤

exp(−1
2
rρ(yc)t)

2C
V ((Ψyc,ω

t x), yc).

Therefore, if we let ω = ω′, that is QW (dω, dω′) = P (dω)δω′=ω, the left hand side of (4.12)
is bounded by (3.1)

exp(−1
2
rρ(yc)t)

2C

∫
PW (dω)V ((Ψyc,ω

t x), yc) ≤ exp(−1
2
rρ(yc)t)Kt.

Since Kt has at most polynomial growth, a large t = t1 would produce (4.12).

4.4.3 Proof of Theorem 3.5

With the conditions of Theorem 4.3 verified, it is rather elementary to show Theorem 3.5.

Proof. By the existence of Lyapunov function, and Krylov-Bogouliubov’s Theorem, there
exists an invariant measure π with EπV =

∫
π(dz)V (z) <∞. Let d be as in Proposition 4.4

and d̃ be defined by Theorem 4.3, then

d̃(P ∗ntδz, P
∗
ntπ) ≤ 1

2
d̃(P ∗(n−1)tδz, P

∗
(n−1)tπ) ≤ · · · ≤ 1

2n
d̃(δz, π).

By Lemma 4.5, for some constant C0

d̃(δz, π) ≤
∫
π(dz′)

√
(1 + V (z) + V (z′))(2M)rδ−1|x− x′|rV (z)r

≤ C0 + C0V (z)
r+1
2

∫
π(dz′)|x− x′|

r
2 + C0V (z)

r
2

∫
π(dz′)|x− x′|

r
2V (z′)

1
2 .

Since V (z′) ≥ M−1|x| 1n , using the bound above, we can pick r < 2
n

in the beginning such
that

d̃(δz, π) ≤ C0(1 + 2V (z)EπV ).
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On the other hand, by Lemma 4.5 and that 1 ∧ ur ≥ 1 ∧ u for any u ≥ 0,

d̃(z, z′) ≥ 1y=y′ ∧
|x− x′|r

(2M)r
V (z)r + 1y 6=y′ ≥ 1y=y′ ∧

|x− x′|
2M

+ 1y 6=y′ ≥
1

2M
m(z, z′).

Combining the inequalities above, we have our claim.

5 Conclusion and discussion

Diffusions with random switching is a general class of stochastic processes with applications
in many different areas. Such system consists of a diffusion process part Xt and a Markov
jump part Yt, and their dynamics can be fully coupled. The stability and ergodicity of such
processes remain open questions if the transition rates are not bounded or Lipschitz. This
paper closes this gap by developing a new analytical framework.

The first part of this paper constructs polynomial type Lyapunov functions when there
is dissipation on average. These functions can be used to derive moment bounds on the
diffusion part. The incorporation of potential dissipation of each regime is found to be an
efficient way to capture averaged dissipation. This idea can be easily applied to the classical
case where the transition rates are constants as Theorem 2.2. It also leads to a simple
illustration of comparison principles, Theorem 2.9. Moreover, with a Fredhlom alternative
argument, we demonstrate how can the Lyapunov function be inductively constructed, as a
dual process of the averaging procedure, Theorems 2.4, 2.7, assuming the transition rates
have a multiscale structure.

The second part of this paper is devoted to the geometric ergodicity of diffusions with
random switching, assuming a Lyapunov function exists. If there is a commonly accessible
regime that satisfies the minorization condition, Theorem 3.4 proves geometric ergodicity
under total variation distance. When there is contraction on average, using the asymptotic
coupling framework of [37, 38], Theorem 3.6 demonstrates geometric ergodicity under a
proper Wasserstein distance.

There are a few interesting ideas came to the authors when this paper is written. We
share them in below to inspire further research.

1. The authors conjecture that the results here hold in a similar form if the regime process
Yt is instead a continuous stochastic process. One way to see this is taking the limit
of a jump process on grid points of vanishing size. But the authors suspect that
an independent mechanism can be setup for these processes without little change of
the proofs. Such theory will be applicable to many nonlinear models that exhibits
intermittency, for example [48].

2. The attraction or contraction rates used in this paper provides a uniform control over
each component of Xt. A more general situation is that each component of Xt has a
different regime based attraction rate, in other words, the attraction rate is given by
a matrix. A simple example will be dXt = A(Yt)Xtdt, where A is a matrix valued
function. It is known such system is very sensitive to the switching even if A has
all eigenvalues of negative real parts [49]. It will be interesting if our results can be
generalized to this case.
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3. Theorem 3.4 can probably be generalized. [30] shows that a PDMP is geometric ergodic
in total variation despite that each regime is degenerate. The proofs there only require
a Hörmander type of condition on the vector fields generated by different regimes. The
authors conjecture that for diffusions with random regime switching, in order to have
geometric ergodicity, it suffices to have the Lie algebra generated by stochastic flows
of all regimes spanning Rd. But this requires a completely different set of techniques,
and Assumption 3.2 should be general enough to cover most applications.
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A Proofs for miscellaneous claims

Lemma A.1. For two probability measures µ, ν on a polish space, assume that µ(X ∈ A) ≥ p
and ν(Y ∈ B) ≥ p, then there exists a coupling Γ of µ and ν such that Γ(X ∈ A, Y ∈ B) ≥ p.

Proof. This is also Lemma A.1 in [33].

Lemma A.2. Suppose the generators of two processes, L and L′, are the same outside a
compact set C. Suppose V is a Lyapunov function of the generator L, so LV ≤ −γV + K.
Then V is also a Lyapunov function for L′ if L′V and V are bounded in C, since

L′V ≤ −γV +K + sup
z∈C
{|γV −K|+ L′V }.

Lemma A.3. Under the linear regime dissipation Assumption 2.1, with any m ∈ R and

n ≥ max{2, 2 − m}, the function fm(x) = |x|m+n

1+|x|n is C2, fm(x) ≤ |x|m. Moreover, for any
δ > 0

LX(y)fm(x) . −(mγ(y)− δ)fm(x).

Proof. The C2 regularity of fm and that fm(x) ≤ |x|m can be verified directly. The gradient
of fm is

∇fm(x) =
m|x|m+n−2x

1 + |x|n
+
n|x|m+n−2x

(1 + |x|n)2
,

from which we can conclude that the Hessian ∇2fm . M |x|m−2 with a constant M . Then
from Assumption 2.1, we find

LX(y)fm(x) =
m|x|m+n−2〈b(x, y), x〉

1 + |x|n
+O(|x|m+n−ε).

Then by Young’s inequality, for any δ > 0 we have LX(y)fm(x) . −(mγ(y)− δ)fm(x).

Lemma A.4. Based on the definition of averaging procedures and V0, the duality equations
(2.15) hold.
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Proof. For the first duality equation, simply check

[Λ̃(x)Ṽ (x, · )]y =
∑
y′∈F̃

λ̃(x, y, y′)[Ṽ (x, y′)− Ṽ (x, y)]

=
∑

y′∈F/F ′
λ̃(x, y, y′)[Ṽ (x, y′)− Ṽ (x, y)] +

∑
k

λ̃(x, y, gk)[Ṽ (x, gk)− Ṽ (x, y)].

The first summation above is
∑

y′∈F/F ′ λ(x, y, y′)[V0(x, y′) − V0(x, y)]. Based on (2.13), the
k-th term in the second summation can be written as∑

y′∈Gc

λ(x, y, y′)pF ′(y
′, gk)[Ṽ (x, gk)− V0(x, y)] +

∑
y′∈Gk

λ(x, y, y′)[V0(x, gk)− V0(x, y)].

If we sum the first term above over all k, it is
∑

y′∈Gc λ(x, y, y′)[V0(x, y′)−V0(x, y)]. Putting

these back to the decomposition of [Λ̃(x)Ṽ (x, · )]y, we can conclude the first duality equation
holds.

Likewise, the left hand of the second duality equation can be written as

[Λ̃(x)Ṽ (x, · )]gk =
∑

y′∈F/F ′
λ̃(x, gk, y

′)[Ṽ (x, y′)− Ṽ (x, gk)]+
∑
j 6=k

λ̃(x, gk, gj)[Ṽ (x, gj)− Ṽ (x, gk)].

Based on (2.13), for y′ ∈ F/F ′, each term in the first summation is

λ̃(x, gk, y
′)[Ṽ (x, y′)− Ṽ (x, gk)] =

∑
y∈Gk

πk(y)λ(x, y, y′)[V0(x, y′)− V0(x, y)].

And each term in the second summation can be written as

∑
j 6=k

∑
y∈Gk

πk(y)
∑
y′∈Gj

λ(x, y, y′) +
∑
y∈Gk

πk(y)
∑
y′∈Gc

λ(x, y, y′)pF ′(y
′, gj)

 [Ṽ (x, gj)− Ṽ (x, gk)]

=
∑
y∈Gk

πk(y)

 ∑
y′∈Gj ,∀j

λ(x, y, y′)[V0(x, y′)− V0(x, y)] +
∑
y′∈Gc

λ(x, y, y′)[V0(x, y′)− V0(x, y)]

 .

If we sum the second term on the right hand side over all k, it is
∑

y′∈Gc λ(x, y, y′)[V0(x, y′)−
V0(x, y)]. Therefore, we can conclude the second duality equation holds.
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Probabilités de Saint-Flour XXXI - 2001, volume 1837 of Lecture Notes in Mathematics.
Springer, 2004.

[45] M Hairer and J C Mattingly. A theory of hypoellipticity and unique ergodicity for
semilinear stochastic PDEs. Electron. Commun. Probab., 16(23):658–738, 2011.

[46] M H A Davis. Markov Models and Optimization. Monographs on Statisitics and Applied
Probability. Chapman & Hall, 1993.

[47] R M Dudley. Real Analysis and Probability. Cambridge Studies in Advanced Mathe-
matics. Cambridge University Press, 2004.

[48] A J Majda and Y Lee. Conceptual dyanmical models for turbulence. Proc. Natl. Acad.
Sci., 111(18):6548–6533, 2014.

[49] S D Lawley, J C Mattingly, and M C Reed. Sensitivity to switching rates in stochastically
switched odes. Communiations in Mathematical Sciences, 12(7):1343–1352, 2014.

36


	Introduction
	Dissipation on average and Lyapunov functions
	Constant transition rates
	Multiscale transitions: one fast scale
	Multiscale transitions: multiple scaling structures
	A multiscale transition example
	Comparison principle

	Geometric ergodicity
	Convergence in total variation with a minorization regime
	Wasserstein metric convergence with contraction on average
	Contraction on average

	Geometric ergodicty through random PDMPs
	Random PDMPs
	Accessibility analysis
	Ergodicity with a minorization regime
	Ergodicity with contraction on average
	Contracting distance
	Small set verification
	Proof of Theorem 3.5


	Conclusion and discussion
	Proofs for miscellaneous claims

