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Particle adjustment matrix A

We describe how to find the adjustment matrix A of Eq. (9). As each observation yj , j =
1, 2, ..., Nobs updates only one cluster Cj , we suppress the observation and cluster indices
for simplicity. Note that we consider update of xk which is in the sub-state RNstate/Nobs .

From the prior particles {xf
k , k = 1, 2, ...,K} and weight {ωf

k > 0, k = 1, 2, ...,K}, we
first compute the prior mean

xf =
∑
k

ωkx
f
k (1)

and covariance
Rf =

∑
k

ωk(xf
k − xf )(xf

k − xf )T = UUT (2)

where U ∈ R
Nstate
Nobs

×K
is the perturbation matrix whose k-th column is given by

√
ωk(xf

k − xf ) (3)

Now our goal is to find a matrix A such that the posterior covariance Ra can be represented
by

Ra = ARfAT = AUUAT

so that the adjusted particles
xa
k = xa +A(xf

k − x) (4)

satisfies the posterior mean and covariance from the Kalman update formula.
First of all, using the particle perturbation matrix U , the Kalman gain Gcan be repre-

sented as follows

G = RfHT (HRfHT +Ro)
−1

= RfHT (HUUTHT +Ro)
−1

= UUTHT (HUUTHT +Ro)
−1

= U(I + UTHT (Ro)
−1HU)−1UTHTR−1

o .

(5)
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Now we use this representation of G for the posterior covariance

Ra = (I −GH)Rf

=
(
I − U(I + UTHTR−1

o HU)−1UTHTR−1
o

)
UUT from (5)

= U(I − (I + UTHTR−1
o HU)−1UTHTR−1

o U)UT

= U(I + UTHTR−1
o HU)−1UT

=
(

(Rf )−1 +HTR−1
o H

)−1

(6)

As the prior covariance and observation covariance matrices are symmetric and positive
definite, we have the following eigenvalue decomposition

Rf = V Σ2V T (7)

and the following matrix
ΣV THTR−1

o HV Σ = WDW T (8)

with unitary matrices V and W and diagonal matrices Σ and D. Using V,W,Σ and D,
the posterior covariance is further represented by

Ra = V ΣWW TΣ−1V T
(

(Rf )−1 +HTR−1
o H

)−1
AΣ−1WW TΣV T

= V ΣW
(
W TΣV T (Rf )−1V ΣW +W TΣV THTR−1

o HV ΣW
)−1

W TΣV T

= V ΣW (I +D)−1W TΣV T

= V ΣW (I +D)−1/2 (I +D)−1/2W TΣV T

= V ΣW (I +D)−1/2 Σ−1V TRfV Σ−1 (I +D)−1/2W TΣV T

= AUUTA =
∑
k

ωkA(xf
k − xf )(xf

k − xf )TAT

(9)

where A = V ΣW (I +D)−1/2 Σ−1V T is the adjustment matrix for particles.

Soft threshold version clustered particle filter

In addition to the hard threshold version, we can also use a soft threshold clustered parti-
cle filter using innovation statistics. The soft version uses the statistics of the innovation
{Hxf

Cj
− yj} which are the difference between the predicted observations and real obser-

vation. The innovation statistics are widely used to avoid catastrophic filter divergence of
ensemble based methods (31) and increase filter accuracy (32) by adaptively inflating the
prior covariance. In the soft version clustered particle filter, the innovation statistics are
used to determine the tigger of the particle adjustment. The criterion used for the soft
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version clustered particle filter is to check the innovation error, that is, the distance be-
tween the predicted observation Hxf

Cj
and the real observation yj and trigger the particle

adjustment if the innovation error is larger than a threshold value α
√
ro, α ≥ 1.

Soft version criterion for particle adjustment :

|Hxf
Cj
− yj | ≥ α

√
ro, α ≥ 1 (10)

In addition to the new criterion for the particle adjustment, the soft version clustered
particle filter uses a multiplicative covariance inflation

xf
k ← xf

k + (1 + λ)(xf
k − xf ), λ ≥ 0 (11)

before the assimilation step to account for variance underestimation, sampling errors and
rank deficiency. As we use covariance inflation, we do not add the additional noise after
resampling in our soft version. See Fig. S2 for the results of the hard and soft threshold
version clustered particle filters applied for the 40-dim Lorenz 96 with F = 8 and 10
observations.

Soft Threshold Version Clustered Particle Filter Algorithm - one step
assimilation

Given :
1) Nobs observations {y1, y2, ..., yNobs}
2) prior K particles {xf

Cj ,k
, k = 1, 2, ...,K} and weight vectors {ωf

l,k, k = 1, 2, ...,K} for
each cluster Cl, l = 1, 2, .., Nobs

For yj from j = 1 to Nobs

Inflate the prior covariance Eq. (11)
If The soft threshold criterion Eq. (10) is satisfied.

Update the prior particles using Eq. (9) to satisfy the Kalman update Eq. (10)
and Eq. (11)

Else Use particle filtering
Update {ωf

j,k} using Eq. (8)

If Keff = 1∑
k(ω

a
l,k)

2 <
K
2

Do resampling
End If

End If
End For
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Fig. S1: Lorenz 96 F=8. Time series of RMS errors of EAKF using tuned parameters.
Localization radius is 8 and covariance is 20%. Dash-dot line is observation error 0.22. 50
ensemble members are used.
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Fig. S2: Lorenz 96 F=8 with 10 observations. Time series of RMS errors of the hard and
soft version clustered particle filters. Dash-dot line is observation error 0.22 and dash line
is the climatological error 3.64. 200 ensemble members and particles are used. The hard
version particle filter does not show any filtering skill with RMS errors comparable to or
larger than the climatological error. The soft version clustered particle filter, which uses
innovation statistics, has significantly improved skill with RMS errors smaller than the
climatological error.
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Fig. S3: Lorenz 96 F=5. Time series of RMS errors of the localized particle filter (LocPF).
Dash-dot line is the observation error 0.22 and dash line is the climatological error 2.35.
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Fig. S4: Lorenz 96 F=5. Time series of RMS errors of EAKF using tuned parameters.
Localization radius is 6 and covariance is 20%. Dash-dot line is the observation error 0.22.
50 ensemble members are used.
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Fig. S5: MMT. Large-scale imaginary part forecast PDF (left) and forecast error PDF
(right) using 64 observations.
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