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The supplementary information is organized as follows. In Section 1 we detail the asymptotic

expansion used to derive the ENSO model at the interannual timescale. In Section 2 we detail

the model's meridional truncation. In Section 3 we provide additional theoretical details on the

two-state Markov jump process. In Section 4 we detail the algorithm for solving the model. In

Section 5 we present linear solutions of the model.
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1 Asymptotic Expansion

This section provides details on the derivation of the ENSO model used in the article.

We start with the derivation from a more complete model that consists of the skeleton model

in the atmosphere (1) coupled to a shallow water ocean in the long-wave approximation and a SST

budget (2). Intraseasonal timescale t is used for the atmosphere and interannual timescale τ for

the ocean and SST, with τ = εt where ε is the Froude number. The complete starting model is as

follows:

Interannual atmosphere model

(ε∂τ + εdA)u− yv − ∂xθ = 0

yu− ∂yθ = 0

(ε∂τ + εdA)θ − (∂xu+ ∂yv) = Ha− sθ

(ε∂τ + εdA)q +Q(∂xu+ ∂yv) = −Ha+ sq + Eq

ε∂τa = Γqa

(1)

Interannual ocean model

(ε∂τ + ε2dO)U − c1εY V + c1ε∂xH = c1ετx

Y U + ∂YH =
√
c1εδ

2τy

(ε∂τ + ε2dO)H + c1ε(∂xU + ∂Y V ) = 0

(2)

Interannual SST model

ε∂τT = −c1εζEq + c1εηH − c1εα(a− a) (3)

Couplings

Eq = ( qcexp(qe(T + T ))− qcexp(qe(T )) − βqq)/τq

(τx, τy) = γ(u, v)
(4)

In the model, the atmosphere extends over the entire equatorial belt 0 ≤ x ≤ LA, while the

ocean Paci�c extends from 0 ≤ x ≤ LO, with LO < LA. There are periodic boundary conditions

in the atmosphere u(0, y, t) = u(LA, y, t), etc and re�ection boundary conditions in the ocean∫ +∞
−∞ U(0, Y, t)dY = 0 and U(LO, Y, t) = 0 (see e.g. 3, chapter 4). Table S1 provides the de�nition
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and units of all model variables. Table S3 provides the de�nition and values of all model parameters,

while Table S2 provides the de�nition and value of additional parameters used for rescaling.

In order to obtain the ENSO model in its �nal form, we consider the �rst order of an asymptotic

expansion of the above system in orders of powers of ε, with the generic form U =
∑N

n=1 Unε
n +

o(εN), where U = {u, v, θ, a, U, V,H, T}. This asymptotic expansion is performed on the interan-

nual timescale τ only, while �uctuations on the intraseasonal timescale t are omitted. The resulting

system reads:

Interannual atmosphere model

−yv − ∂xθ = 0

yu− ∂yθ = 0

−(∂xu+ ∂yv) = Ha− sθ

Q(∂xu+ ∂yv) = −Ha+ sq + Eq

0 = q

(5)

Interannual ocean model

∂τU − c1Y V + c1∂xH = c1τx

Y U + ∂YH = 0

∂τH + c1(∂xU + ∂Y V ) = 0

(6)

Interannual SST model

∂τT = −c1ζEq + c1ηH − c1α(a− a) (7)

Couplings

Eq = ( qcexp(qe(T + T ))− qcexp(qe(T )) − βqq)/τq

τx = γu
(8)

Finally, several simpli�cations are considered in order to obtain the model in its �nal form.

First, we assume balanced external sources of heating and moistening sθ = sq in the atmosphere,

and combine the rows from equation (5) to eliminate the prognostic variable Ha = (Eq + sq −

Qsθ)/(1 − Q). Second, we linearize latent heating anomalies as Eq = αqT , which is a reasonable

approximation for the planetary and interannual timescales under consideration here. Third, we
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absorb the cloud radiative feedback term α(a − a) of the SST budget that has the same form as

the dissipation term −ζEq.

With the above modi�cations and with the addition of atmospheric noise, we obtain the model

in �nal form in the present article. In addition to this, when computing solutions the model is

truncated meridionally to the �rst parabolic cylinder functions of the ocean and atmosphere, which

is detailed in the next section.

Variable unit unit value

x zonal axis [y]/δ 15000km

y meridional axis atmosphere
√
cA/β 1500km

Y meridional axis ocean
√
cO/β 330km

t time axis intraseasonal 1/δ
√
cAβ 3.3 days

τ time axis interannual [t]/ε 33 days
u zonal wind speed anomalies δcA 5ms−1

v meridional wind speed anomalies δ[u] 0.5ms−1

θ potential temperature anomalies 15δ 1.5K
q low-level moisture anomalies [θ] 1.5K

a envelope of synoptic convective activity 1

Ha convective heating/drying [θ]/[t] 0.45K.day−1

Eq latent heating anomalies [θ]/[t] 0.45K.day−1

T sea surface temperature anomalies [θ] 1.5K
U zonal current speed anomalies cOδO 0.25ms−1

V zonal current speed anomalies δ
√
c[U ] 0.56 cms−1

H thermocline depth anomalies HOδO 20.8m

τx zonal wind stress anomalies δ
√
β/cAHOρOc

2
OδO 0.00879N.m−2

τy meridional wind stress anomalies [τx] 0.00879N.m−2

Table S1: Model variables de�nitions and units.

Rescaling parameter value

ε Froude number 0.1
δ long-wave scaling 0.1
δO arbitrary constant 0.1

cA atmosphere phase speed 50ms−1

cO ocean phase speed
√
g′HO = 2.5ms−1

c ratio of ocean/atmosphere phase speed cO/cA = 0.05
c1 modi�ed ratio of phase speed c/ε = 0.5

β beta-plane parameter 2.28 10−11m−1s−1

g′ (reduced gravity) 0.03ms−2

HO mean thermocline depth 208m
ρO ocean density 1000 kg.m−3

Table S2: Model parameters used for rescaling.
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Parameter nondimensional value

c ratio of ocean/atmosphere phase speed 0.05
ε Froude number 0.1

c1 = c/ε 0.5
χA meridional projection coe�cient atmosphere 0.31
χO meridional projection coe�cient ocean 1.38

LA equatorial belt length 8/3
LO equatorial Paci�c length 1.2

H convective heating rate factor 22

Q mean vertical moisture gradient 0.9
sθ external source of cooling 2.2

sq external source of moistening 2.2

αq latent heating factor αq = qcqeexp(qeT )/τq
qc latent heating multiplier coe�cient 7
qe latent heating exponential coe�cient 0.093

τq latent heating adjustment rate 15

T mean SST 16.6
γ wind stress coe�cient 6.53

rW western boundary re�ection coe�cient 0.5
rE eastern boundary re�ection coe�cient 1
ζ latent heating exchange coe�cient 8.7
η pro�le of thermocline feedback η(x) = 1.5 + (0.5 tanh(7.5(x− LO/2))

dp wind burst damping 3.4
sp wind burst zonal structure sp(x) = exp(−45(x− LO/4)2)

σp0 wind burst source of quiescent state 0.2
σp1 wind burst source of active state 2.6

µ01 transition rate quiescent to active state µ01 = 0.125(tanh(2Tw) + 1)
µ10 transition rate active to quiescent state µ10 = 0.25(1− tanh(2Tw))

Table S3: Model parameter de�nitions and values.

2 Meridional Truncation

In order to compute the solutions of the ENSO model, we consider the model in its simplest form

truncated meridionally to the �rst parabolic cylinder functions.

For this, we consider di�erent parabolic cylinder functions in the ocean and atmosphere,

that are shown in Figure S4. The �rst atmospheric parabolic cylinder functions read φ0(y) =

(π)−1/4exp(−y2/2), φ2 = (4π)−1/4(2y2 − 1)exp(−y2/2), while the ocean parabolic cylinder func-

tions read ψm(Y ), identical to the previous expression except depending here on the Y axis. If we

express both the ocean and atmosphere systems as a function of the axis y, we must use instead
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ψm(y) = φm(Y ) where Y = y/
√
c.
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Figure S4: Meridional pro�les of atmosphere parabolic cylinder functions φ0, φ2(red) and ocean
parabolic cylinder functions ψ0, ψ2(blue), as a function of meridional position y (1000km).

The parabolic cylinder functions in the ocean and atmosphere di�er by their meridional ex-

tent, or Rossby radius. Choosing an identical meridional basis in the ocean and atmosphere

would be more rigorous from a mathematical viewpoint: however, when coupling the ocean and

atmosphere, a large number of meridional modes would be necessary, which is avoided here (4).

For instance, as shown below here only four equatorial waves (KA, RA, KO, RO) describe the

atmosphere and ocean coupled dynamics, which keeps the model low-dimensional for simplicity.

In order to couple the ocean and atmosphere, projection coe�cients are introduced that reads

χA =
∫ +∞
−∞ φ0(y)φ0(y/

√
c)dy and χO =

∫ +∞
−∞ ψ0(Y )ψ0(

√
cY )dY .

In the atmosphere we assume a truncation of moisture, activity and external sources to the �rst

parabolic cylinder function φ0, {a, q, sθ, sq} = {a, q, sθ, sq}φ0(y) (with a slight abuse of notations).

This is known to excite only the Kelvin and �rst Rossby atmospheric equatorial waves, of amplitude

KA and RA. In the ocean, we assume a truncation of zonal wind stress forcing to ψ0, τx =

τxψ0. This is known to excite only the the Kelvin and �rst Rossby atmospheric oceanic waves, of
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amplitude KO and RO. Similarly, for the SST model we assume a truncation ψ0,T = Tψ0. The

ENSO model truncated meridionally reads:

Interannual atmosphere model

∂xKA = −χAEq(2− 2Q)−1

−∂xRA/3 = −χAEq(3− 3Q)−1

KA(0, τ) = KA(LA, τ)

RA(0, τ) = RA(LA, τ)

(9)

Interannual ocean model

∂τKO + c1∂xKO = χOc1τx/2

∂τRO − (c1/3)∂xRO = −χOc1τx/3

KO(0, t) = rWRO(0, t)

RO(LO, t) = rEKO(LO, t)

(10)

Interannual SST model

∂τT/c1 = −ζEq + η(KO +RO) (11)

Couplings

Eq = αqT

τx = γ(KA −RA)
(12)

The reconstructed variables reads:

u = (KA −RA)φ0 + (RA/
√

2)φ2

θ = −(KA +RA)φ0 − (RA/
√

2)φ2

U = (KO −RO)ψ0 + (RO/
√

2)ψ2

H = (KO +RO)ψ0 + (RO/
√

2)ψ2

(13)

The absence of dissipation in the atmosphere imposes a peculiar solvability condition of a zero
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equatorial zonal mean of latent heating forcing (5, 6). This reads:

1

LA

∫ LA

0

Eqdx = 0 (14)

This solvability condition is accounted for when solving equation (9) of the above system.

3 Two-state Markov jump process

This section aims at providing a brief theoretical discussion about the two-state Markov jump

process and the intuition of adopting this stochastic parameterization in the ENSO model.

3.1 A brief theoretical discussion about two-state Markov jump process

Suppose a stochastic process Xt can take only one of the two values corresponding to the two

states (7),

Xt =


s0 for state 0

s1 for state 1

(15)

where the subscript t of Xt represents time and those 0 and 1 of s represent the two states. The

process remains in one state before it changes to another at some random time t. We consider a

process with Markov property

P (Xt = si|Xs≤r) = P (Xt = si|Xr) (16)

and time-homogeneity

P (Xt = si|Xs = sj) = P (Xt−s = si|X0 = sj) (17)

where i, j ∈ {0, 1}. Due to these two properties the process is fully determined by the transition

probabilities P (Xt = si|X0 = sj). Next, we de�ne µ01 and µ10 as the transition rates from state 0
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to state 1 and from state 1 to 0, respectively. These two rates de�ne the following local transition

probabilities for small ∆t:

P (Xt+∆t = s1|Xt = s0) = µ01∆t+ o(∆t)

P (Xt+∆t = s0|Xt = s1) = µ10∆t+ o(∆t)

P (Xt+∆t = s0|Xt = s0) = 1− µ01∆t+ o(∆t)

P (Xt+∆t = s1|Xt = s1) = 1− µ10∆t+ o(∆t)

(18)

where o(∆t) denotes a function smaller than ∆t, i.e. o(∆t)/∆t→ 0 as ∆t→ 0.

The transition probability from state 0 to state 1 is p01(t) = P (X(t) = s1|X(0) = s0), which

can be written down explicitly,

pt+∆t(s0, s1) = pt(s0, s1)p∆t(s1, s1) + pt(s0, s0)p∆t(s0, s1) (19)

or alternatively

pt+∆t(s0, s1) = pt(s0, s1)(1− µ10∆t) + pt(s0, s0)µ10∆t+ o(∆t). (20)

Regrouping terms lead to

pt+∆t(s0, s1)− pt(s0, s1)

∆t
= −µ10pt(s0, s1) + µ01pt(s0, s0) + o(1). (21)

In the limit ∆t→ 0, the following di�erential equation is obtained:

∂tpt(s0, s1) = −µ10pt(s0, s1) + µ01pt(s0, s0). (22)

The equations for all other transition probabilities can be obtained in a similar way. Combine

the transition probabilities into the transition probability matrix

Pt =

 pt(s0, s0) pt(s0, s1)

pt(s1, s0) pt(s1, s1)

 (23)
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Then the di�erential equation for the matrix Pt is given by

∂Pt
∂t

= PtA, (24)

where the matrix A has the rates of change from one state to another

A =

 −µ01 µ01

µ10 −µ10

 . (25)

3.2 Application to the wind burst amplitude ap.

Recall the governing wind burst amplitude ap,

dap
dτ

= −dpap + σp(TW )Ẇ (t). (26)

The noise coe�cient σp(TW ), that depends on SST anomalies in the western Paci�c TW , is

modeled by a two-state Markov jump process as described above. Depending on TW , σp(TW )

switches between a quiescent state (of low energy) and an active state (of high energy):

σp(TW ) =


σp0 = 0.2 for state 0 (quiescent)

σp1 = 2.6 for state 1 (active)

(27)

Due to the fact that an increase of the SST in the western Paci�c leads to an enhanced wind

burst activity, the active state corresponds to the instance when the western Paci�c SST is high

(TW ≥ 0). On the other hand, since no strong westerly wind burst is observed with a reduced SST

in the western Paci�c, a negative anomaly TW ≤ 0 is linked with the quiescent state. Given these

physical intuitions, the following transition rates are used:

State 1 to 0: µ10 = 1
4
(1− tanh(2Tw))

State 0 to 1: µ01 = 1
8
(tanh(2Tw) + 1)

(28)

Note that we can add complexity and alternatively consider a three-state Markov jump process
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to describe the wind burst activity in the model. Despite slightly more natural transitions between

El Niño and La Niña events due to the introduction of an intermediary state, the results are not

found to be signi�cantly di�erent from the ones with the above two-state Markov jump process

(not shown).

4 Numerical Algorithm for the Model

This section describes the numerical solution procedure for the ENSOmodel. The model is spatially

discretized on the grid i = 1, ..., nO in the ocean (nO = 28), and i = 1, ..., nA (nA = 64) in the

atmosphere, which reads T (xi) = Ti, etc with xi = i∆x and ∆x = 625 km. The ocean derivatives

are discretized using upwind schemes depending on the direction of propagation, [∂xKO]i = (KOi−

KOi−1)/∆x, [∂xRO]i = (ROi+1 − ROi)/∆x, with re�ection boundary conditions accounted for as

[∂xKO]1 = (KO1 − rwRO1)/∆x and [∂xRO]nO
= (rEKOnO

−ROnO
)/∆x.

The atmospheric response to latent heating anomalies is computed as follows on the spatial

grid:

dAWAi +
(WAi+1 −WAi)

∆x
=
−3χA

2(1−Q)
(Eqi −

nA∑
i=1

Eqi
∆x

LA
) (29)

where KA = (1/3)WA and RA = (−2/3)WA. Solving the atmospheric response in equation (29) is

akin to solving a matrix system AX = B, where X = {WA1, ...,WAnA
}. The zonal mean of Eq is

removed in order to satisfy the solvability condition from equation (14), and the small dissipation

dA = 10−8 ensures that the matrix A is invertible without a�ecting solutions.

For numerical simulations, the system is further discretized in time with a timestep of 17h. We

use a splitting method to update the system over each time step, where the deterministic model

component is solved using an Euler method and the two-state Markov jump process is solved

using a Gillespie algorithm (7). The initial conditions are an ocean at rest with a SST pro�le

corresponding roughly to anomalies of 0.5 (-0.5) C in the eastern (western) Paci�c (not shown).
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5 Linear Solutions

In this section we analyze the linear solutions of the ENSO model. The leading mode in terms

of growth/decay rate is a pair of oscillating eigenmodes, of the form X = Aexp(−iωt), ω =

ωr + iωi with interannual frequency ωr = ±0.22 yr−1 (4.5 years oscillation period) and negative

growth/decay rate ωi = −0.5 yr−1 (2 years decay period). This pair has the characteristics of the

ENSO in nature, and is called hereafter the ENSO linear solution. The other linear solutions of

the system are much more dissipated (with a growth/decay rate inferior to −4 yr−1) and therefore

are of lesser importance.

Figure S5 shows space-time hovmollers for the ENSO linear solution, X = Aexp(−iωrt) with

the growth/decay ωi omitted in the reconstruction. It consists of SST anomalies in the eastern

Paci�c, along with a tilted structure of thermocline anomalies and zonal currents in the central

Paci�c. Between El Niño and La Niña events, thermocline depth anomalies H are of same sign

along the equator, which corresponds to a maximal/minimal heat content or warm water volume,

as in nature.
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Figure S5: Hovmollers for the ENSO linear solution, variables at equator as a function of zonal
position x (1000km) and time (years): winds u (ms−1), currents U (ms−1), thermocline depth H
(m), and sea surface temperature T (K). Growth/Decay rate ωi is omitted for the reconstruction.
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Figure S6: Scatterplot of Frequency ωr (yr
−1) and Growth/Decay ωi rate (yr−1) for the ENSO

linear solution. This is for solutions obtained with either reference parameter values (black circle
and cross) or modi�ed parameter values: ζ varied up to ±1 of its reference value (red circles), γ
varied up to ±1 of its reference value (blue crosses), and αq varied up to ±0.15 of its reference
value (purple crosses).

Figure S6 shows sensitivity of the ENSO linear solution to some parameter changes. Varying

ζ or γ for example substantially modi�es the growth/decay rate of the system, while varying αq

substantially modi�es its frequency. Note in particular that ζ is the main source of dissipation

in the model (although there are also dissipation losses due to re�ections at ocean boundaries).

There are obviously some uncertainty in the exact value of those parameter, as is usually the case

in ENSO models, such that in practice values are chosen within a plausible range according to a

desired model behavior.

The modi�ed parameter values in Figure S6 could for example render the ENSO mode unstable

(with positive growth rate). In such case, the ENSO cycle would have to be limited by system

nonlinearities, for example reaching a limit cycle. In the present article, we rather assume that

the ENSO linear solution is slightly dissipated, such that the ENSO cycle has to be maintained by

wind burst activity.
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