A Simple Stochastic Model for El Nino with

Westerly Wind Bursts: Supplementary Information

Sulian Thual V. Andrew J. Majda (Y, Nan Chen”, Samuel N. Stechmann )

(1) Department of Mathematics, and Center for Atmosphere Ocean Science, Courant Institute of
Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012 USA
(2) Department of Mathematics, and Department of Atmospheric and Oceanic Sciences, University
of Wisconsin - Madison, 480 Lincoln Drive, Madison, WI 53706 USA

The supplementary information is organized as follows. In Section 1 we detail the asymptotic
expansion used to derive the ENSO model at the interannual timescale. In Section 2 we detail
the model’s meridional truncation. In Section 3 we provide additional theoretical details on the
two-state Markov jump process. In Section 4 we detail the algorithm for solving the model. In

Section 5 we present linear solutions of the model.



1 Asymptotic Expansion

This section provides details on the derivation of the ENSO model used in the article.

We start with the derivation from a more complete model that consists of the skeleton model
in the atmosphere (1) coupled to a shallow water ocean in the long-wave approximation and a SST
budget (2). Intraseasonal timescale ¢ is used for the atmosphere and interannual timescale 7 for
the ocean and SST, with 7 = et where € is the Froude number. The complete starting model is as
follows:

Interannual atmosphere model

(e0; + eda)u —yv — 0,0 =0

yu — 0,0 =0

(€0, + €da)d — (Opu+ Oyv) = Ha — s° (1)
(€0; + €da)q + Q(Opu + ) = —Ha + 57+ E,

edra = T'qa

Interannual ocean model

(€0, + 2do)U — c1€Y'V + c1€0, H = cyeT,
YU + 0y H = \/c1€6*T, (2)
(€0r + €2 do)H + c1e(0,U + 0y V) =0

Interannual SST model
€0, T = —c1e(E; + crenH — ciea(a — a) (3)
Couplings

By = (qeexp(qe(T + 1)) — qeexp(qe(T)) — B49)/ 7,

(7, 7y) = 7 (u, )

(4)

In the model, the atmosphere extends over the entire equatorial belt 0 < x < L4, while the
ocean Pacific extends from 0 < z < Lo, with Lo < L. There are periodic boundary conditions
in the atmosphere u(0,y,t) = u(La,y,t), etc and reflection boundary conditions in the ocean

fj;o U(0,Y,t)dY =0 and U(Lo,Y,t) =0 (see e.g. 3, chapter 4). Table S1 provides the definition
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and units of all model variables. Table S3 provides the definition and values of all model parameters,
while Table S2 provides the definition and value of additional parameters used for rescaling.

In order to obtain the ENSO model in its final form, we consider the first order of an asymptotic
expansion of the above system in orders of powers of ¢, with the generic form U = 25:1 Une™ +
o(eV), where U = {u,v,0,a,U,V, H,T}. This asymptotic expansion is performed on the interan-
nual timescale 7 only, while fluctuations on the intraseasonal timescale ¢ are omitted. The resulting
system reads:

Interannual atmosphere model

—yv — 0,0 =0
yu — 0,0 =0
—(0,u+ 9yv) = Ha — §° (5)
Q(0pu + Ov) = —Ha + 57 + E,
0=gq
Interannual ocean model
U —-c1YV 40, H =17,
YU +0vH =0 (6)

0. H + c1(0,U + 0yV) =0

Interannual SST model

0, T = —c1(E; + einH — cia(a — a) (7)

Couplings

By = (qeexp(qe(T +T)) — qeexp(qe(T)) — B4q)/ 7

Ty = YU

(8)

Finally, several simplifications are considered in order to obtain the model in its final form.
First, we assume balanced external sources of heating and moistening s’ = s? in the atmosphere,
and combine the rows from equation (5) to eliminate the prognostic variable Ha = (E, + s —
Qs%)/(1 — Q). Second, we linearize latent heating anomalies as E, = o, T, which is a reasonable

approximation for the planetary and interannual timescales under consideration here. Third, we



absorb the cloud radiative feedback term «(a — @) of the SST budget that has the same form as
the dissipation term —(£,.

With the above modifications and with the addition of atmospheric noise, we obtain the model
in final form in the present article. In addition to this, when computing solutions the model is
truncated meridionally to the first parabolic cylinder functions of the ocean and atmosphere, which

is detailed in the next section.

‘ Variable ‘ unit ‘ unit value ‘
x zonal axis ly]/0 15000km
y meridional axis atmosphere Vea/B 1500km
Y meridional axis ocean Veo/B 330km
t time axis intraseasonal 1/6v/cap 3.3days
7 time axis interannual [t]/€ 33 days
u zonal wind speed anomalies dca 5ms1
v meridional wind speed anomalies d[ul 0.5ms™!
0 potential temperature anomalies 150 1.5K
q low-level moisture anomalies 0] 15K
a envelope of synoptic convective activity 1
Ha convective heating/drying 10]/[t] 0.45 K.day™"
E, latent heating anomalies 160]/[t] 0.45 K.day™"
T sea surface temperature anomalies 0] 15K
U zonal current speed anomalies codo 0.25ms~!
V zonal current speed anomalies 5+/c|U] 0.56 cms™!
H thermocline depth anomalies Hooo 20.8m
7, zonal wind stress anomalies 6v/B/ca Hopochdo | 0.00879 N.m =2
7, meridional wind stress anomalies 7] 0.00879 N.m ™2

Table S1: Model variables definitions and units.

Rescaling parameter ‘ value ‘
€ Froude number 0.1
0 long-wave scaling 0.1
do arbitrary constant 0.1
ca atmosphere phase speed 50 ms1
co ocean phase speed Vi Ho =25ms™!
c ratio of ocean/atmosphere phase speed co/ca =0.05
¢1 modified ratio of phase speed c/e =0.5
3 beta-plane parameter 228107 1m~ts7t
g (reduced gravity) 0.03 ms2
Hp mean thermocline depth 208 m
po ocean density 1000 kg.m =3

Table S2: Model parameters used for rescaling.



Parameter \ nondimensional value

c ratio of ocean/atmosphere phase speed 0.05
e Froude number 0.1
c =cle 0.5
X4 meridional projection coefficient atmosphere 0.31
Xo meridional projection coefficient ocean 1.38
L 4 equatorial belt length 8/3
Lo equatorial Pacific length 1.2
H convective heating rate factor 22
() mean vertical moisture gradient 0.9
s? external source of cooling 2.2
s? external source of moistening 2.2
a, latent heating factor oy = q.q.exp(q.T) /7,
q. latent heating multiplier coefficient 7
q. latent heating exponential coefficient 0.093
7, latent heating adjustment rate 15
T mean SST 16.6
~v wind stress coefficient 6.53
rw western boundary reflection coefficient 0.5
rg eastern boundary reflection coefficient 1
¢ latent heating exchange coefficient 8.7
n profile of thermocline feedback n(x) = 1.5+ (0.5 tanh(7.5(x — Lo /2))
d, wind burst damping 3.4
s, wind burst zonal structure sp(z) = exp(—45(x — Lo/4)?)
opo wind burst source of quiescent state 0.2
op1 wind burst source of active state 2.6
o1 transition rate quiescent to active state tor = 0.125(tanh(27,,) + 1)
f1o transition rate active to quiescent state p1o = 0.25(1 — tanh(27,,))

Table S3: Model parameter definitions and values.

2 Meridional Truncation

In order to compute the solutions of the ENSO model, we consider the model in its simplest form
truncated meridionally to the first parabolic cylinder functions.

For this, we consider different parabolic cylinder functions in the ocean and atmosphere,
that are shown in Figure S4. The first atmospheric parabolic cylinder functions read ¢g(y) =
(7)Y exp(—y?/2), ¢o = (47)"Y4(2y? — 1)exp(—y?/2), while the ocean parabolic cylinder func-
tions read v,,,(Y"), identical to the previous expression except depending here on the Y axis. If we

express both the ocean and atmosphere systems as a function of the axis y, we must use instead



Y (y) = o (Y) where Y = y/+/c.
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Figure S4: Meridional profiles of atmosphere parabolic cylinder functions ¢g, ¢o(red) and ocean
parabolic cylinder functions v, 12(blue), as a function of meridional position y (1000km).

The parabolic cylinder functions in the ocean and atmosphere differ by their meridional ex-
tent, or Rossby radius. Choosing an identical meridional basis in the ocean and atmosphere
would be more rigorous from a mathematical viewpoint: however, when coupling the ocean and
atmosphere, a large number of meridional modes would be necessary, which is avoided here (4).
For instance, as shown below here only four equatorial waves (K4, R4, Ko, Ro) describe the
atmosphere and ocean coupled dynamics, which keeps the model low-dimensional for simplicity.
In order to couple the ocean and atmosphere, projection coefficients are introduced that reads
Xa= [ do(y)do(y//e)dy and xo = [77 4ho(Y)tbo(v/Y)dY .

In the atmosphere we assume a truncation of moisture, activity and external sources to the first
parabolic cylinder function ¢g, {a,q, %, 57} = {a, q, s, s7}¢o(y) (with a slight abuse of notations).
This is known to excite only the Kelvin and first Rossby atmospheric equatorial waves, of amplitude
K4 and R4. In the ocean, we assume a truncation of zonal wind stress forcing to vy, 7, =

TzYo. This is known to excite only the the Kelvin and first Rossby atmospheric oceanic waves, of



amplitude Ko and Rp. Similarly, for the SST model we assume a truncation vg,7" = Ty. The
ENSO model truncated meridionally reads:

Interannual atmosphere model

0. K4 = —xaE,(2 —2Q)™"
—0,Ra/3 = —xaE,(3—3Q)7"
Ka(0,7) = Ka(La,T)
RA(0,7) = Ra(La,T)

Interannual ocean model

0. Ko + 10, Ko = xoc1T+/2
aTRO — (61/3)81RO = —XoClTx/3

(10)
Ko(0,t) = rwRo(0,1)
Ro(Lo,t) = rgKo(Lo,t)
Interannual SST model
0:T/er = —CE; +n(Ko + Ro) (11)
Couplings
E,=a, T
q q (12)
7o = V(KA — Ra)
The reconstructed variables reads:
u=(Ka— Ra)po+ (Ra/V2)p2
0 =—(Ka+ Ra)po — (Ra/V2)b2 13)

U = (Ko — Ro)to + (Ro/V2)1s
H = (Ko + Ro)t + (Ro/V2)s

The absence of dissipation in the atmosphere imposes a peculiar solvability condition of a zero



equatorial zonal mean of latent heating forcing (5, 6). This reads:

1 [Fa

— E,dr=0 14
LA 0 q ( )

This solvability condition is accounted for when solving equation (9) of the above system.

3 Two-state Markov jump process

This section aims at providing a brief theoretical discussion about the two-state Markov jump

process and the intuition of adopting this stochastic parameterization in the ENSO model.

3.1 A brief theoretical discussion about two-state Markov jump process

Suppose a stochastic process X; can take only one of the two values corresponding to the two

states (7),

so for state 0
sy for state 1

where the subscript ¢ of X; represents time and those 0 and 1 of s represent the two states. The
process remains in one state before it changes to another at some random time t. We consider a

process with Markov property
P(X; = 5i| Xs<r) = P(X: = 5| X)) (16)
and time-homogeneity
P(X, = si|Xs = 55) = P(Xi—s = 54| Xo = 55) (17)

where i,j € {0,1}. Due to these two properties the process is fully determined by the transition

probabilities P(X; = s;|Xo = s;). Next, we define po; and j19 as the transition rates from state 0



to state 1 and from state 1 to 0, respectively. These two rates define the following local transition

probabilities for small At:

P Xt—l—At = 81|Xt = So) — ,uolAt + O(At)

he)

p10At + o( At) a8)

)

(

(Xirar = S0l X = $1
( 1 — po1 At + o(At)
(

)
)
Xt—i—At = 30|Xt = 30)
)

P XtJrAt = 81|Xt =S81) = 1— ,uloAt + O(At)

where o(At) denotes a function smaller than At, i.e. o(At)/At — 0 as At — 0.
The transition probability from state 0 to state 1 is po1(t) = P(X(t) = s1|X(0) = s¢), which

can be written down explicitly,
Perac(S0, 51) = Pe(S0, 51)pac(s1,51) + pe(S0, S0)Pat(s0, 51) (19)
or alternatively

Perat(So, 51) = pe(So0, 51)(1 — p10At) + pi(So, So) 10At + o( At). (20)

Regrouping terms lead to

pt—l—At(SOa 81) _pt(307 51)
At

= —Mlopt(so, 31) + M01Pt(307 50) + 0(1)- (21)

In the limit At — 0, the following differential equation is obtained:

Ot (50, 51) = —p1ope(So, $1) + Ho1pe(So, So)- (22)

The equations for all other transition probabilities can be obtained in a similar way. Combine
the transition probabilities into the transition probability matrix

P pe(S0, 50)  Pe(So, 51) (239

pe(s1,80) pe(si, $1)



Then the differential equation for the matrix P, is given by

0P,

Zt_pA 24
3t t41, ( )

where the matrix A has the rates of change from one state to another

N B (25)

Mo —HMio

3.2 Application to the wind burst amplitude a,,.

Recall the governing wind burst amplitude a,,

da .
d—T” = —dya, + o, (Tw )W (1). (26)

The noise coefficient o,(Ty ), that depends on SST anomalies in the western Pacific Ty, is
modeled by a two-state Markov jump process as described above. Depending on Ty, o,(Tw)

switches between a quiescent state (of low energy) and an active state (of high energy):

o0 = 0.2 for state 0 (quiescent)
op(Tw) = (27)
op1 = 2.6 for state 1 (active)

Due to the fact that an increase of the SST in the western Pacific leads to an enhanced wind
burst activity, the active state corresponds to the instance when the western Pacific SST is high
(Tw > 0). On the other hand, since no strong westerly wind burst is observed with a reduced SST
in the western Pacific, a negative anomaly Ty < 0 is linked with the quiescent state. Given these

physical intuitions, the following transition rates are used:

State 1 to 0: u19 = 7(1 — tanh(273,))

1
: (28)
State 0 to 1: pg = §(tanh(2T,) + 1)

Note that we can add complexity and alternatively consider a three-state Markov jump process
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to describe the wind burst activity in the model. Despite slightly more natural transitions between
El Nino and La Nina events due to the introduction of an intermediary state, the results are not
found to be significantly different from the ones with the above two-state Markov jump process

(not shown).

4 Numerical Algorithm for the Model

This section describes the numerical solution procedure for the ENSO model. The model is spatially
discretized on the grid i = 1,...,np in the ocean (npo = 28), and i = 1,...,n4 (na = 64) in the
atmosphere, which reads T'(x;) = T}, etc with x; = iAx and Az = 625 km. The ocean derivatives
are discretized using upwind schemes depending on the direction of propagation, [0, Ko|; = (Ko; —
Koi—1)/Az, [0.Ro)i = (Roit1 — Roi)/Ax, with reflection boundary conditions accounted for as
[0.Ko)1 = (Ko1 — rwRo,)/Az and [0, Roln, = (rEKon, — Rong )/ Ax.

The atmospheric response to latent heating anomalies is computed as follows on the spatial

grid:

(Waitr — Was) —3X4 E Ax
dAWa; + = — Ei_E E,— 29
AT Az 2(1—@)( T T, 29)

where K4 = (1/3)Wy4 and R4 = (—2/3)W4. Solving the atmospheric response in equation (29) is
akin to solving a matrix system AX = B, where X = {Way,...,Wa,,}. The zonal mean of E, is
removed in order to satisfy the solvability condition from equation (14), and the small dissipation
ds = 107® ensures that the matrix A is invertible without affecting solutions.

For numerical simulations, the system is further discretized in time with a timestep of 17h. We
use a splitting method to update the system over each time step, where the deterministic model
component is solved using an Euler method and the two-state Markov jump process is solved
using a Gillespie algorithm (7). The initial conditions are an ocean at rest with a SST profile

corresponding roughly to anomalies of 0.5 (-0.5) C in the eastern (western) Pacific (not shown).
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5 Linear Solutions

In this section we analyze the linear solutions of the ENSO model. The leading mode in terms
of growth/decay rate is a pair of oscillating eigenmodes, of the form X = Aexp(—iwt), w =
w, + iw; with interannual frequency w, = +0.22yr~! (4.5 years oscillation period) and negative
growth /decay rate w; = —0.5yr~! (2 years decay period). This pair has the characteristics of the
ENSO in nature, and is called hereafter the ENSO linear solution. The other linear solutions of
the system are much more dissipated (with a growth/decay rate inferior to —4yr~!) and therefore
are of lesser importance.

Figure S5 shows space-time hovmollers for the ENSO linear solution, X = Aexp(—iw,t) with
the growth/decay w; omitted in the reconstruction. It consists of SST anomalies in the eastern
Pacific, along with a tilted structure of thermocline anomalies and zonal currents in the central
Pacific. Between El Nino and La Nina events, thermocline depth anomalies H are of same sign

along the equator, which corresponds to a maximal/minimal heat content or warm water volume,

Z

1000kﬂ1

-i-

Y)’IQI

as in nature.

year

Figure S5: Hovmollers for the ENSO linear solution, variables at equator as a function of zonal
position z (1000km) and time (years): winds u (ms™!), currents U (ms™'), thermocline depth H
(m), and sea surface temperature 7' (K). Growth/Decay rate w; is omitted for the reconstruction.
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Figure S6: Scatterplot of Frequency w, (yr—!) and Growth/Decay w; rate (yr—!) for the ENSO
linear solution. This is for solutions obtained with either reference parameter values (black circle
and cross) or modified parameter values: ¢ varied up to £1 of its reference value (red circles),
varied up to £1 of its reference value (blue crosses), and «, varied up to £0.15 of its reference
value (purple crosses).

Figure S6 shows sensitivity of the ENSO linear solution to some parameter changes. Varying
¢ or v for example substantially modifies the growth/decay rate of the system, while varying o,
substantially modifies its frequency. Note in particular that ¢ is the main source of dissipation
in the model (although there are also dissipation losses due to reflections at ocean boundaries).
There are obviously some uncertainty in the exact value of those parameter, as is usually the case
in ENSO models, such that in practice values are chosen within a plausible range according to a
desired model behavior.

The modified parameter values in Figure S6 could for example render the ENSO mode unstable
(with positive growth rate). In such case, the ENSO cycle would have to be limited by system
nonlinearities, for example reaching a limit cycle. In the present article, we rather assume that
the ENSO linear solution is slightly dissipated, such that the ENSO cycle has to be maintained by

wind burst activity.
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