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Abstract Statistical bounds controlling the total fluctuations in mean and variance about a basic steady6

state solution are developed for the truncated barotropic flows over topography. Statistical ensemble predic-7

tion is an important topic in weather and climate research. Here the evolution of an ensemble of trajectories8

is considered in the statistical instability analysis and is compared and contrasted with the classical deter-9

ministic instability for the growth of perturbations in one pointwise trajectory. The maximum growth of the10

total statistics in fluctuations is derived relying on the statistical conservation principle of the pseudo-energy.11

The saturation of the statistical mean fluctuation and variance in the unstable regimes with non-positive-12

definite pseudo-energy is achieved by linking with a class of stable reference states and minimizing the stable13

statistical energy bounds. Two cases with dependence on initial statistical uncertainty and on external forc-14

ing and dissipation are compared and unified with a consistent statistical stability framework. The flow15

structures and statistical stability bounds are illustrated and verified by numerical simulations among a16

wide range of dynamical regimes, where subtle transient statistical instability exists in general with positive17

short-time exponential growth rate in the statistical covariance even when the pseudo-energy is positive-18

definite. In the various scenarios illustrated below, there are strong forward and backward cascades of energy19

between large and small flow scales which are estimated by the rigorous statistical bounds.20

Keywords Statistical stability analysis · topographic barotropic equations · statistical energy conservation21

1 Introduction22

In many instances in the turbulent dynamical systems, like flows in the atmosphere and ocean, the fluid23

develops large-scale, coherent, and essentially two dimensional patterns [15,17,16,28]. Situations of obvious24

importance occur when smaller-scale motions have a significant feedback and interaction with a larger-scale25
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mean flow [10,17]. The feedback and interaction induce instability that can make the steady large-scale flow26

very sensitive to even small changes in perturbations. The stability theory for a time-independent steady27

state solution in such two-dimensional turbulent systems is of interest not only in theoretical investigations28

but also in many experimental and observational studies [14,28,3,16,9,2].29

The classical deterministic stability analysis seeks the maximum amplitude that the growing disturbance30

can reach in one perturbed flow trajectory near the stationary steady state [3,6,9,17]. Rigorous bounds of the31

growth in one unstable flow solution have also been derived based on the nonlinear saturation of instabilities32

[17,29]. On the other hand, the turbulent nature of the dynamical systems characterized by a large number33

of positive Lyapunov exponents requires a probabilistic description for the flow state variables [28,15,12,30].34

Because of the statistical ensemble prediction [1,4,5,8,13,24], it is more reasonable to investigate the growth35

in statistics during the evolution of a probability distribution. Linear analysis of the covariance equations36

shows positive growth rates in the transient state even for perturbations about a stable mean state [20,27].37

Statistical stability concerns the saturation of the statistical instability in fluctuations in the final stationary38

state. In practice, the probability distribution can be characterized by an ensemble of trajectories and the39

statistical stability can be described by tracking the evolution of the statistical mean in fluctuation and the40

variance.41

In this paper, we discuss the statistical stability theory with special attention given to the interaction42

between small scale eddies and a dynamically evolving large-scale mean flow. The simplest set of equations43

that meaningfully describes the motion in geophysical flows is given by the quasi-geostrophic barotropic44

equations over topography with beta-effect [28,25,17]. Canonical equilibrium based on energy and enstrophy45

conservation predicts a Gaussian invariant measure of the topographic barotropic model with the mean46

potential vorticity proportional to the mean stream function in the stable regime [17,3,6]. A set of statistical47

steady state solutions with a large-scale steady mean flow can be assumed based on the linear dependence48

of potential vorticity and stream function. One interesting question in ensemble prediction is whether the49

mean steady state structures can persist with perturbations from initial uncertainty (due to initial mean50

bias and variance) and external instabilities (due to external forcing). Unlike the deterministic nonlinear51

stability, the statistical stability expects an ensemble initial distribution starting near a prescribed steady52

state to remain near it in all the time. In particular, we hope to obtain the optimal saturation bounds on the53

finite amplitude growth in the statistical mean and variance of the ensemble of trajectories. This is rigorous54

uncertainty quantification in this context, and to our knowledge we provide the first result in the present55

paper.56

In order to focus on the dynamics in the fluctuation components away from the mean steady state,57

corresponding fluctuation equations of the truncated barotropic flow are introduced to define the pseudo-58

energy [17,27]. The positive-definiteness of the pseudo-energy separates the steady state solutions into59

stable and unstable regimes according to the linear dependence parameter of potential vorticity and stream60

function. Nonlinear stability theory guarantees the stability of the stable states with minimum enstrophy61

[3,6,17], and here we are interested in finding the optimal estimation about the maximum increase in62
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the statistical fluctuations in the unstable solutions. The saturation bound of the unstable state can be63

reached by linking it to a class of reference states in the stable regime. Especially we are interested in the64

dynamical evolution of the statistical mean and variance of the state variables. The total statistical pseudo-65

energy combining the statistics in mean fluctuation and the total variance is governed by the statistical66

energy conservation principle introduced in [16,18]. Then the saturation bounds in both statistical mean67

fluctuation and the total variance in the unstable regimes are achieved through minimization among the68

conserved statistical energy over the class of stable reference states using the similar idea for deterministic69

stability in [29].70

In the structure of the paper, we begin with a brief review about the statistical features of the topographic71

barotropic flow in stable and unstable regimes in Section 2. The turbulent flow structures are illustrated72

through numerical simulations in different regimes where the statistical bounds will be derived next. First73

in the stable regime, equilibrium statistical mechanics [3,17] predicts a Gaussian invariant measure in the74

statistical steady state; while in the unstable regimes, negative coefficients in the pseudo-energy forces us75

to separate the system into a stable and unstable subspace. The statistical bounds for fluctuations about76

the stable steady state are derived in Section 3 directly following the statistical energy conservation. For77

the unstable regimes, the following two sections develop the statistical saturation bounds based on the78

kinetic energy with two classes of flow disturbances. Section 4 develops the statistical bounds subject to79

the initial configuration of the ensemble distribution without forcing and dissipation; and Section 5 finds80

the saturation bounds due to external forcing and damping effects. With some additional constraints in the81

forms of damping and forcing operators, it can be shown that the saturation bound can be unified in a82

consistent framework for the two classes of perturbations.83

Additional discussion for the statistical bounds with some interesting settings with forcing on a large-84

scale eigenmode and with upper and lower statistical bounds using the statistical enstrophy is investigated85

in Section 6 as special application of the general statistical stability analysis method. Especially if we look86

at the eddy statistics excluding the large-scale mean flow in the enstrophy, a lower statistical bound can also87

be discovered together with the upper bound that could offer a tight estimation about the statistical energy88

band constraining the range of the varying fluctuations. Finally the results are discussed in the summary in89

Section 7. In addition, despite the finite saturation bounds found in the main part of the paper, Appendix90

A shows from transient statistical analysis that strong instability exists generally with positive growth rates91

in the linearized covariance equation in both the stable and unstable statistical steady state solutions.92

2 Statistical Properties of the Truncated Barotropic Flow over Topography and the93

Fluctuation Equations94

The model of interest here is the barotropic quasi-geostrophic flow over topography on a beta-plane [25,28,95

17]. We consider a finite-dimensional formulation of the barotropic system with a Galerkin projection for96

wavenumbers within the range |k| ≤ Λ. Assuming a periodic boundary condition on the domain [−π, π] ×97
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[−π, π], the state variables can be expanded under the Fourier modes aΛ ≡ PΛa =
∑

1≤|k|≤Λ âke
ik·x. The98

general topographic barotropic flow is given through the truncated relative vorticity ωΛ and the large-scale99

mean flow U as100

∂ωΛ
∂t

+ PΛ (vΛ · ∇qΛ) + U (t)
∂qΛ
∂x

+ β
∂ψΛ
∂x

= −D (∆)ωΛ + FΛ, (2.1a)

dU

dt
+

 
∂hΛ
∂x

ψΛ (t) = −D0U + F0, (2.1b)

with the divergence free velocity field vΛ ≡ ∇⊥ψΛ = (−∂yψΛ, ∂xψΛ), the potential vorticity qΛ = ωΛ +hΛ,101

and the relative vorticity and stream function related by ωΛ = ∆ψΛ. There exists a scale separation between102

the small-scale eddies (2.1a) and the large-scale uniform zonal flow (2.1b). The topography hΛ plays the role103

that mediates the energy transfer between the eddies and the mean flow. In addition, the external damping104

and forcing effects are introduced in the general form as105

D (∆) =
L∑
j=0

dj (−1)j ∆j , FΛ =
∑

1≤|k|≤Λ

F̂k (t) eik·x + Ẇkσ̂k (t) eik·x, F0 = F0 + Ẇ0σ0 (t) ,

where L defines different orders of dissipation. D0,F0 are scalars for the damping and forcing on the uniform106

mean flow field U . We also include stochastic components in the external forcing F ,F0 to represent the107

unresolved small-scale effects. Importantly, the dynamics on the left hand sides of the above equations (2.1)108

without forcing and dissipation conserve both the kinetic energy E and the large-scale enstrophy E [17]109

EΛ =
1

2
U2 +

1

2

 
|∇ψΛ|2 , EΛ = βU +

1

2

 
q2
Λ. (2.2)

It will be shown that these quadratic invariants have a crucial role in the analysis of nonlinear stability110

theory and the statistical conservation principle discussed below [16,3,6].111

2.1 Deterministic nonlinear stability without forcing and dissipation112

First we review the deterministic nonlinear stability properties [17,6,3] about the evolution of one trajectory113

in the inviscid system (2.1). The stability theory concerns about the perturbations of variables away from114

a presumed basic state. The quantities of interest are then decomposed into a time-averaged steady mean115

state (denoted by upper case letters) and the statistical fluctuations about the mean (denoted by lower case116

letters with tildes) in both large-scale zonal flow and small-scale eddies117

ψΛ (x, t) = Ψ (x) + ψ̃ (x, t) , qΛ (x, t) = Q (x) + ω̃ (x, t) , U (t) = V + Ũ (t) . (2.3)

We focus on a special set of exact solutions with linear dependence in the Q-Ψ relation (in general, we can118

assume Q and Ψ are functionally related, f (Q) = Ψ [17,6]). The linear dependence between the stream119
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function and potential vorticity defines the exact steady state solution120

Qµ = µΨµ = ∆Ψµ + h, Vµ = −β/µ. (2.4)

The parameter µ is taken to represent the linear dependence (that is, we take the functional f = µ−1 = const.121

in the general Q-Ψ relation). µ thus can be viewed as the eigenvalue of the elliptic operator with associated122

eigenfunction given by Ψµ. Vµ represents the large-scale mean jet flow velocity. In the northern hemisphere123

with β > 0, a positive µ > 0 represents westward large-scale mean jet, and a negative µ < 0 represents a east-124

ward jet. Especially for the spectral modes under Fourier basis, steady state stream function and potential125

vorticity modes are determined through the topographic mode ĥk in the corresponding wavenumber126

Ψ̂µ,k =
ĥk

µ+ |k|2
, Q̂µ,k =

µĥk

µ+ |k|2
. (2.5)

With the existence of topography, in general, solvable solution exists only if µ is not eigenvalues of the127

Laplacian operator ∆ in the non-zero topographic mode wavenumber. In this way, the nonlinear interaction128

in (2.1a), ∇⊥Ψ ·∇Q, is eliminated. Indeed, if we substitute the relations back to the original equations (2.1),129

it is easy to check (Vµ, Qµ) forms an exact steady state solution of the equations for any values of µ.130

The total kinetic energy and large-scale enstrophy in (2.2) in the steady state solution (2.4) then can be131

calculated as a function of the parameter µ132

ELµ =
1

2
µ−2β2 +

1

2

∑
1≤|k|≤Λ

(
µ+ |k|2

)−2
|k|2 |ĥk|2,

ELµ =− µ−1β2 +
1

2

∑
1≤|k|≤Λ

(
µ+ |k|2

)−2
µ2|ĥk|2.

Based on the above two quadratic invariants, one given steady state kinetic energy ELµ offers multiple133

stationary solutions with different enstrophy ELµ . Nonlinear stability theory [17,6] proves stability for the134

branch of solutions with µ > 0, where the enstrophy ELµ is minimized given energy ELµ from the variational135

principle. With deterministic stability we would expect the perturbations
(
Ũ , ω̃

)
in one trajectory starting136

near the stable branch (Vµ, Qµ) with µ > 0 to remain bounded near it in all the time t > 0, that is,137

|Ũt|2 + ‖ω̃t‖22 ≤ C
(
|Ũ0|2 + ‖ω̃0‖22

)
,

under the L2-norm for the eddies with some constant C > 0. The nonlinear stability can also be explained138

from the conservation of the pseudo-energy in fluctuations shown later in (2.8). Especially for the large-139

scale mean flow in northern hemisphere, the westward jet Vµ = −β/µ < 0 is stable while the eastward jet140

becomes unstable due to the topographic effect. On the other hand the nonlinear stability result implies141

nothing about the solutions in the other branches µ < 0. The nonlinear saturation of the unstable solution142

is investigated in [29] by linking it with a class of stable solutions. Rigorous upper bound in perturbations143

of one unstable trajectory is obtained there for their deterministic nonlinear stability bounds.144
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From another view point, equilibrium statistical theory [17,6,28] predicts that there exists one invariant145

Gibbs measure for the truncated barotropic equation (2.1) with no dissipation and forcing, which is a product146

of Gaussian distributions with large and small scale mean, (Vµ, Qµ), satisfying the linear relation in (2.4)147

peq (U, q;µ) = C−1 exp

{
−
σ−2

eq

2

[
µ (U − Vµ)2 +

∑
k

(
1 + µ |k|−2

)
|q̂k − Q̂µ,k|2

]}
, (2.6)

with σeq defining the equilibrium energy amplitude. The invariant measure is also constructed based on148

the kinetic energy and enstrophy invariants. One issue about the above invariant distribution in (2.6) is149

still that when µ < 0, the equilibrium measure becomes unrealizable and is no longer valid as an invariant150

measure.151

2.2 Statistical energy conservation principle of the pseudo-energy in fluctuations152

In the deterministic nonlinear stability, the evolution of perturbations in one realization of the turbulent153

flow trajectory is investigated. Motivated by practical statistical ensemble prediction for many situations [5,154

30,13], the statistical stability that concerns the evolution of an ensemble of trajectories using the crucial155

statistically conserved quantities forms another group of important questions. Especially here we ask: i)156

whether the statistical mean state stays near the basic steady solution in (2.4) with initial and external157

perturbations; and ii) how the uncertainty in the fluctuations characterized by the variance amplifies in158

time. In the remaining sections we focus on the statistics in the fluctuation components
(
Ũ , ω̃

)
in (2.3), and159

leave the ‘tildes’ and the subscripts ‘Λ’ for Galerkin projection in these components for cleaner notation.160

In deriving the fluctuation equations, we first concentrate on the linear and nonlinear interaction parts161

in fluctuations without the inclusion of dissipation and external forcing terms. The fluctuation equations162

can be derived by separating the disturbances about the steady state solution (2.4) according to the linear163

dependence relation164

∂ω

∂t
+∇⊥ψ · ∇ω +∇⊥Ψµ · ∇ (ω − µψ)

+U
∂

∂x
(Qµ + ω) + Vµ

∂

∂x
(ω − µψ)

= 0, (2.7a)

dU

dt
+

 
∂h

∂x
ψ = 0, (2.7b)

with ω = ∆ψ (see [17]). The variables (ω, ψ, U) represent the fluctuation components subtracting the steady165

state mean (Qµ, Ψµ, Vµ) in (2.4) depending on the parameter µ. In the first line of (2.7a), ∇⊥ψ · ∇ω is the166

familiar nonlinear interaction term between the fluctuation modes (this quadratic interaction conserves both167

energy and enstrophy and satisfies a detailed triad symmetry), and the second part ∇⊥Ψµ · ∇ (ω − µψ) is168

a linear operator reflecting the steady mean flow advection (this term can be viewed as a skew-symmetric169

operator). Besides the advection terms, two additional effects enter the fluctuation equation due to the170

large-scale flow fluctuation U and the rotational beta-effect as the second line in (2.7a). The first term171

represents the effect from the large-scale mean fluctuation U , which is balanced by the total topographic172
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stress in the mean flow equation (2.7b). The second term is due to steady state mean flow advection related173

with the β-effect, which forms a skew-symmetric operator that conserves both energy and enstrophy.174

The most important aspect of the fluctuation equation is the development of conserved quantities. Unlike175

the original system (2.1) that conserves both energy and enstrophy, neither the kinetic energy E nor the176

enstrophy E stays conserved in the fluctuation component [17]. This is due to the additional mean steady177

state advection from Vµ and Ψµ introduced to the fluctuation equations. Nevertheless we can manage to find178

one quadratic invariant through these two quantities in the fluctuation part. The pseudo-energy is suggested179

as a combination of the energy and enstrophy180

dEµ
dt
≡ 0, Eµ = E + µE =

µ

2
U2 +

1

2

 (
ω2 + µ |∇ψ|2

)
, (2.8)

which is conserved in the fluctuation dynamics (2.7). Notice that the pseudo-energy Eµ only includes181

the energy in fluctuations (E, E) subtracting the previous steady state energy
(
ELµ , ELµ

)
. The fluctuation182

equations together with the conserved pseudo-energy are discussed in detail in [16,17].183

2.2.1 Statistical stability in fluctuations about steady state solutions184

For statistical stability we consider the statistical formulation of the pseudo-energy Eµ for bounds in both the185

energy in the mean fluctuation and the second-order variance. We can decompose the fluctuation variables186

further into the statistical mean state and the disturbance about the statistical mean (here and after we use187

overbar • to denote ensemble averages)188

U = Ū + U ′, ω = ω̄ + ω′, ψ = ψ̄ + ψ′, U ′ = ω′ = ψ′ = 0.

The statistical mean
(
Ū , ω̄

)
measures the statistical bias in the fluctuation mean from the assumed steady189

state solution (Vµ, Qµ); and the disturbance
(
U ′, ω′

)
is the mean zero random process with their variance190

describing the uncertainty in the ensemble of particles during the statistical evolution of the system. Together191

the statistical mean and variance calibrate the total uncertainty (instability) in the fluctuation states about192

a steady state solution related with µ. Therefore as a combination of the energy in the mean and the193

variance, we introduce the notion for statistical energy in each fluctuation mode in the form194

Estat
k ≡

〈
|ωk|2

〉
≡ |ω̄k|2 + |ω′k|

2, Estat
U ≡

〈
U2
〉

= Ū2 + U ′2. (2.9)

We use 〈•〉 in (2.9) to represent the statistics combining the energy in the mean and the variance. For195

the fluctuation component in each wavenumber mode, the variance is independent of the choice of mean196

steady states, |ω′k|2 = |qk|2; and ω̄k is the statistical mean deviation from the steady state solution, ω̄k =197

q̄k − Qµ,k, thus depends on the parameter value of µ. Finally we can define the total statistical energy198
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in fluctuations through the original pseudo-energy (2.8) as a combination of mean and variance199

Estat
µ ≡ µ

2
Estat
U +

1

2

∑
1≤|k|≤Λ

(
1 + µ |k|−2

)
Estat

k . (2.10)

It is useful to investigate the ensemble statistics in the first two moments rather than a single trajectory200

realization since they not only characterize the deviations from the steady state mean, but also illustrate the201

evolution of uncertainty (variance) for this mean estimation. Thus the ensemble performance offers more202

reasonable and detailed characterization of the system especially when it becomes increasingly turbulent.203

It can be implied from the conservation of pseudo-energy (2.8) that the statistical energy Estat
µ for204

fluctuation is also invariant in time205

d

dt
Estat
µ = 0, (2.11)

in the case with no dissipation and external forcing. This is concluded from the symmetry in the nonlinear206

interactions in the fluctuation dynamics (2.7) and the linear operators are skew-symmetric with no explicit207

contribution to the statistical energy. Details about the conditions and derivation of the statistical energy208

conservation principle are discussed in [18,16]. Especially statistical nonlinear stability can be concluded209

from the statistical energy in fluctuation components consistent with the deterministic stability results210

before. The stability can be determined through the sign in the statistical energy Estat
µ spectral components211

(2.10) depending on the value of the parameter µ:212

– Stable regime: If µ > 0, the statistical energy in fluctuation Estat
µ is uniformly positive-definite in213

each vortical mode and large scale mean flow U . The nonlinear stability about the mean and variance214

perturbations can be analyzed all together for the total variability from the conservation of the total215

statistical energy;216

– Unstable mean flow : If −1 < µ < 0, the statistical energy in the mean flow component U is negative217

while all the other vortical modes stay positive with 1 + µ |k|−2 > 0 for all k. In this case, we need to218

separate the statistical energy into the large-scale mean flow energy Estat
U and all the other smaller-scale219

eddy energy Estat
ω to analyze them separately;220

– Unstable regime: If µ < −1, the positive-definite property of the statistical energy in all the vortical modes221

is also not guaranteed. Both the mean flow U and large-scale vortical modes with 1+µ |k|−2 < 0 become222

unstable. The total statistical energy needs to be decomposed into a positive-definite and negative-223

definite part and analyzed separately (see details in Section 4).224

Transient statistical instability with positive growth rate in the covariance among all the regimes It needs to225

be emphasized that subtle statistical instability can be generated showing a large number of positive internal226

growth rates in general in the turbulent flow in both the statistically stable and unstable regimes above227

throughout all the parameter values. The variance of an ensemble of particles beginning from a Gaussian228

distribution could suffer strong exponential growth in the starting time from transient statistical stability229

analysis. See Appendix A and [17,7,14] for more details about the general large uncertainty inside the230
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system. In the following sections, we will begin with the simple stable regime µ > 0 with positive-definite231

statistical energy; then we will turn to the non-positive-definite regime µ < 0 for energy balance between232

the small and large scales. Especially it is an interesting case in regime −1 < µ < 0 with explicit interaction233

between the unstable mean flow U and small-scale flow eddies through topographic stress. Next we consider234

the effect of external damping and forcing to the total statistical energy.235

2.2.2 Forced-dissipative case with Ekman damping and forcing236

In general the dissipation and forcing on the right hand sides of the original flow dynamics (2.1) introduce237

additional source and sink terms to the statistical energy dynamics. The pseudo-energy Eµ in (2.8) becomes238

no longer conserved, and so is the statistical fluctuation due to the pseudo-energy. For simplicity in rep-239

resentation we take uniform Ekman damping as the dissipation effect, that is, let D = dI in the general240

dissipation in (2.1). The Ekman damping is common in geophysical flows [17,28]. In addition we assume241

the deterministic forcing contains a first component from the equilibrium steady state. Therefore, on the242

right hand sides of the flow equations (2.1), forcing and dissipation terms are applied in the simplified form243

small scale : − dω + dω̄eq + F (x) + σkẆk,

large scale : − dU + dŪeq + F0 + σ0Ẇ0.

(2.12)

Above the equilibrium mean states
(
ω̄eq, Ūeq

)
are determined from the steady state solutions in (2.5)244

depending on the parameter value µ, ω̄eq,k = − |k|2 Ψ̂µ,k and Ūeq = Vµ. Therefore linear damping is245

applied on the fluctuation components in both small and large scale variables ω̃ = ω − ω̄eq, Ũ = U − Ūeq.246

We also assume additional deterministic forcing (F, F0) and stochastic white noise forcing with amplitude247

(σ, σ0) on both small and large scales. Accordingly the statistical energy equation with forcing and Ekman248

damping [16,18,27] becomes249

dEstat
µ

dt
= −2dEµ + µF0 · Ū + 〈ω̄, F 〉µ +Qσ,µ. (2.13)

Above the inner product is defined through the metric in the pseudo-energy (2.10)250

〈ω̄, F 〉µ =
∑

1≤|k|≤Λ

(
1 + µ |k|−2

)
F̂ ∗k · ω̄k,

and the entire contribution from the stochastic white noises forcing is represented as251

Qσ,µ =
1

2
µσ2

0 +
1

2

∑
1≤|k|≤Λ

(
1 + µ |k|−2

)
σ2
k,

Especially in the unstable regime µ < 0, both the deterministic and stochastic forcing can introduce negative252

effects to the statistical energy changing rate on the right hand side of (2.13). As a further comment, only253

the statistical mean is included in the contribution to the total statistical energy change due to the exerted254

external forcing. Thus the dynamics of the total statistical energy combining mean and variance in (2.13)255
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is determined through only the change in first order mean state together with the external forcing and256

dissipation effects. The statistical energy dynamical equations are formulated with detail in [18,16,27].257

Remark. In fact, for the general dissipation form D, we can always find a constant lower bound Cd of the258

entire damping effect independent of wavenumber k as259

Cd ≡
L∑
j=0

dj ≤ D
(
− |k|2

)
=

L∑
j=0

dj |k|2j , ∀ |k| ≥ 1.

Thus the above statistical energy conservation law (2.13) just becomes a dynamical inequality260

dEstat
µ

dt
≤ −2CdEµ + µŪ · F0 + 〈ω̄, F 〉µ +Qσ,µ.

Then the same strategy can apply for statistical stability analysis.261

2.3 Illustration of flow structures and statistics with numerical simulations262

We first illustrate the typical flow structures through direct numerical simulations in various parameter263

regimes where the rigorous statistical bounds will be derived in the next sections. Throughout this paper,264

we will always refer to the following model setup to test the statistical stability in fluctuations according to265

different steady state solutions and different deterministic and stochastic forcing scenarios with parameter266

µ. A relatively small truncation size |k| ≤ Λ = 12 is used so that we can concentrate on the major large-267

scale structures while the effects of nonlinear feedbacks are also maintained. To capture the statistics in268

the state variables, we run a Monte-Carlo simulation of the original topographic barotropic system (2.1)269

with an ensemble size N = 1000. More numerical simulations with larger ensemble size has confirmed that270

N = 1000 is large enough to capture the essential statistical mean and variance with accuracy. For the271

topography, we assume a zonal structure on the largest scale mode with perturbations added in smaller272

scales such that273

h = H (sinx+ cosx) +H
∑

2≤|k|≤Λ

|k|−2 ei(k·x−θk). (2.14)

In the simulations we take the topographic strength H = 3
√

2/4 and uniform phase shift θk = π
4 . This274

topography structure is an analog to a long north-south ridge and has been used for various uncertain275

quantification problems [17,22,27,21,11]. Here the beta-effect is set as β = 1 in most of the test cases.276

We will mostly consider the evolution of statistical ensemble uncertainties in the following two different277

perturbation scenarios:278

– Model dependence on initial ensemble statistics without forcing and dissipation: We consider the evolution279

of an ensemble of particles beginning with a Gaussian distribution. The initial mean of the ensemble280

is set the same as steady state solution (Vµ, Qµ) in (2.5), and uniform initial variances are introduced281

σU,0 = 1, σun,0 = 1 but only on the mean flow U and the unstable vortical modes ω̂k, µ+ |k|2 < 0. All282

the other modes are set with zero initial variances;283
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– Model dependence on energy source and sink from external forcing and dissipation: Linear Ekman damp-284

ing with different rates d as in (2.12) is used. The deterministic forcing is chosen according to the steady285

state solution of large and small scale variables, Ūeq = Vµ and ω̄eq = − |k|2 Ψ̂µ,k, and the stochastic white286

noise forcing is taken with uniform amplitude only applied on the mean flow U and the the unstable287

vortical modes. The amplitude σ is taken so that d−1σ2 = 1.288

In the first case without damping and forcing the initial statistics in fluctuation will be persistent for the289

entire time; while with damping and forcing the initial configuration will decay and become irrelevant in the290

final steady state distribution. In both cases, all statistical energy in fluctuation is injected in the unstable291

large scales in the beginning, and gets amplified and cascaded down to the smaller scales which contain no292

initial uncertainty or are not being forced. All the statistics are calculated after the model has reached the293

equilibrium statistical steady state.294

2.3.1 Invariant measure and ergodicity in the statistically stable regime295

In the first place, we test the flow field with no forcing and dissipation on the right hand sides of (2.1) in the296

regime µ > 0. Here we use the parameter value µ = 1 to illustrate the flow structure in statistical steady297

state. From the nonlinear stability and equilibrium statistical mechanics the flow statistics will converge298

to the Gaussian invariant measure in (2.6) with stable mean and variance determined by the topography299

h, beta-effect β, and parameter µ. Furthermore the numerical ergodicity of the system confirms that the300

invariant measure is unique so that the ensemble statistics in steady state (which are estimated at the final301

time with ensemble average) is in agreement with the time-averaged result (which are averaged along one302

single trajectory of the solution). To keep tracking the evolution of statistical mean and variance at the303

same time, we use an ensemble approximation to get the statistics in the system rather than just run a304

single trajectory simulation for long time averages.305

In Figure 2.1 we show the snapshot of relative vorticity in fluctuation in steady state and the statistical306

mean stream function in final equilibrium with parameter µ = 1. The relative vorticity fluctuates away307

from the steady state solution Qµ and is isotropic in the spectral domain. Even in this stable regime, many308

small scale vortices are generated in the vorticity field due to nonlinear interactions and transient statistical309

growth in uncertainty (see Appendix A). Also we plot the full flow vector field including the large-scale310

mean flow U and small-scale stream function. The mean stream function and flow field is determined by the311

topography and beta-effect µΨµ = ∆Ψµ + h, Vµ = −β/µ in (2.4). A steady westward mean jet is generated312

as predicted from the steady state solution. The consistency in the mean flow is also shown in Table 1 for313

the stable regime. We will discuss the statistical bounds in fluctuation mean and variance in the stable314

regime µ > 0 next in Section 3.315
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Fig. 2.1: Snapshots of the relative vorticity in fluctuation component ω̃ and the statistical mean stream
function ψ (without the large-scale flow U) together with the entire flow vector field (including large-scale
flow U) with parameter µ = 1 at equilibrium steady state.
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Fig. 2.2: The fluctuation statistical energy spectra for typical values of regimes −2 < µ < −1 and −1 < µ <
0. The modes are ordered in the descending order in energy.

2.3.2 Flow statistics depending on initial ensemble distribution in unstable regimes316

Next we show the statistical evolution of initial fluctuations in the two typical nonlinear unstable regimes317

µ < −1 and −1 < µ < 0 without forcing and dissipation. Especially in regime −1 < µ < 0 with only318

the mean flow U unstable, we change the beta-effect to β = −µ to increase the flow fluctuations near the319

limit µ→ 0 (see Appendix A). In Figure 2.2 the statistical energy spectra in the fluctuation component at320

statistical steady state are compared for several typical values of µ. The modes are ordered in a descending321

order, which in this case is basically from the largest scales to the smaller scales. In the steady spectra among322

values −2 < µ < −1, the statistical energy in each mode with intermediate value µ = −1.5 is relatively small;323

while in the other two cases, µ = −1.9 and µ = −1.1, larger statistical energy fluctuations get generated324

especially among the small modes in the tails. This suggests larger instability as the parameter approaches325

the two limits, µ → −1,−2. In the spectra of the case −1 < µ < 0 the steady state statistical energy in326

each mode gets smaller monotonically as the parameter µ approaches zero. This implies no instability in327

fluctuations any more near the limit µ→ 0 even though it gets a large mean steady state Vµ = −β/µ from328

the equilibrium statistical mechanics and the invariant measure (2.6).329

We show the flow structures in steady state for the test cases. Figure 2.3 compares the relative vorticity330

in fluctuations when the parameter values change from µ = −0.5,−1.1,−1.5,−1.9. The vorticity fields in331

fluctuation depict the deviation from the assumed steady state flow solution Qµ. The color scales of the332

plots are normalized to the same range for comparison. Obviously in the vorticity field with µ = −1.9 and333
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Fig. 2.3: Snapshots of the relative vorticity field in fluctuation component ω̃ with parameters µ = −0.5,
µ = −1.1, µ = −1.5, and µ = −1.9. The mean stream function (without mean flow U) and the entire flow
vector field (with mean flow U) for the parameter values are shown in the second row.

µ -1.9 -1.5 -1.1 -0.9 -0.5 -0.1 0.5 1

Ū -0.8222 -2.4816 -2.9737 0.3401 0.2282 0.6974 -2.0498 -1.1617

−β/µ 0.5263 0.6667 0.9091 1 1 1 -2 -1

Table 1: Statistical mean large-scale flow Ū in statistical steady state without damping and forcing compared
with the assumed steady state solution Vµ = −β/µ.

µ = −1.1, larger small-scale structures are induced with stronger fluctuations compared with the µ = −1.5334

and µ = −0.5 cases. Notice that the initial statistics only sets the non-zero ensemble variance in the largest335

scales |k| = 1, thus the vortical fluctuations in smaller scales are generated from the internal instability336

producing a direct cascade of enstrophy. Also we compare the statistical mean field of the stream functions337

and the entire flow vector field. The large-scale zonal flow shifts from a weak eastward jet (µ = −0.5) to338

strong westward jets (µ < −1) as µ decreases. Especially westward mean flow Ū < 0 is always developed in339

steady state for µ < −1 starting from the eastward initial state Vµ = −β/µ > 0 with small perturbations340

in the ensemble.341

Besides, we list the steady state statistical mean of the large-scale flow Ū as the parameter µ varies in342

Table 1. In the stable regime µ > 0, the theoretical steady state solution Vµ = −β/µ gives accurate prediction343

in agreement with the numerical results of steady state mean flow Ū . This implies little statistical instability344

in the flow field in this regime. On the other hand, with µ < −1 the steady state mean flow Ū gets the345

opposite direction compared with the assumed steady state solution Vµ. This implies the strong instability346

that adds large deviations to the mean flow field through topographic stress. In the regime −1 < µ < 0,347

Ū and Vµ also have difference in value but stay in the same direction. This corresponds to the weaker348

instability only in the large scale flow U . The statistical saturation bounds for flows in the various unstable349

regimes without forcing and dissipation will be developed next in Section 4.350
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d 0.05 0.1 0.25

µ -1.1 -1.5 -1.9 -1.1 -1.5 -1.9 -1.1 -1.5 -1.9

Ū 0.2326 -0.4457 -1.4331 0.4026 -0.1213 -1.1408 0.7771 0.2724 -0.4737

U ′2 0.8194 0.3853 1.0750 1.0695 0.6129 1.7450 1.2188 0.6267 2.3040

Table 2: Statistical mean and variance in large-scale flow U in statistical steady state with changing µ and
damping rate d.

2.3.3 Flow equilibrium statistics depending on external forcing and dissipation351

In the final test case we consider the effects from linear damping and forcing in the form (2.12) in the flow352

field as described before. Effects with different Ekman damping d are considered. The deterministic forcing353

is first taken purely from the steady mean state, F0 = dVµ and F̂k = −d |k|2 Ψ̂µ,k. The the mean stream354

function and the entire flow vector fields including mean flow with changing values of µ are shown in Figure355

2.4. Stronger forcing and damping drive the flow closer to the exact steady state solution in the equilibrium,356

while the weaker forcing and damping cases introduce larger fluctuations. In the steady state mean flow as357

the parameter µ changes, the background mean flow shifts from a eastward jet to blocked circulations and358

finally to a westward flow in a similar way as the previous case. Numerical simulations show a eastward359

jet when µ = −0.5, and the eastward flow becomes weaker and finally a westward jet gets developed as µ360

decreases to −1.1,−1.5,−1.9. Table 2 lists the equilibrium mean and variance in the large-scale flow U with361

different damping rates d and parameter values µ. The mean flow shifts from eastward (Ū > 0) to westward362

(Ū < 0) as µ changes from −1 to −2, and the variance increases as µ approaches near the two boundaries363

and stays small in the intermediate values of µ. The statistical saturation bounds in the forced-dissipated364

case will be discussed in Section 5. In addition Figure 2.5 adds another large-scale forcing on first eigenmode365

|k| = 1 with different strengths δf . This special case is also of its own interest and details will be discussed366

in Section 6.367
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Fig. 2.4: Mean stream function in small scales (dashed contours) and the entire flow vector field including
mean flow (vector field) are shown with different damping rates d = 0.1, 0.25 and parameter values µ =
−0.5,−1.1,−1.5,−1.9. The flow field shifts from eastward to blocked circulations to strong westward jet as
the parameter µ changes.

mean stream function  = -1.1 dF = 0.5  U = 0.53

-3 -2 -1 0 1 2 3

X

-3

-2

-1

0

1

2

3

Y

mean stream function  = -1.5 dF = 0.5  U = -0.11

-3 -2 -1 0 1 2 3

X

-3

-2

-1

0

1

2

3

Y

mean stream function  = -1.9 dF = 0.5  U = -0.78

-3 -2 -1 0 1 2 3

X

-3

-2

-1

0

1

2

3

Y

mean stream function  = -1.1 dF = 1   U = -0.49

-3 -2 -1 0 1 2 3

X

-3

-2

-1

0

1

2

3

Y

mean stream function  = -1.5 dF = 1  U = -0.62

-3 -2 -1 0 1 2 3

X

-3

-2

-1

0

1

2

3

Y

mean stream function  = -1.9 dF = 1  U = -1.08

-3 -2 -1 0 1 2 3

X

-3

-2

-1

0

1

2

3

Y

Fig. 2.5: Mean stream function in small scales (dashed contours) and the entire flow vector field including
mean flow (vector field) with additional large-scale eigenmode forcing on the mean flow U and the ground
shell |k| = 1 with strength δF = 0.5, 1. The steady state mean flow Ū is listed on the title.
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3 Statistical Stability with Uncertainties from Initial Distributions in the Stable Regime368

We first consider the statistical stability bounds of the barotropic flow due to the initial configuration of369

the ensemble distribution using the statistical energy equation for fluctuations. With the interaction of370

the large-scale flow and small-scale eddies, from the derivation before, we find the conserved statistical371

pseudo-energy in fluctuations (2.10)372

Estat
µ (t) =

µ

2

〈
U2
〉
t

+
1

2

∑
1≤|k|≤Λ

(
1 + µ |k|−2

)〈
|ωk|2

〉
t
.

The subscript ‘t’ refers to the ensemble average at time t. Remember that here U represents the fluctuations373

from the steady state mean flow Vµ = −β/µ, and ω represents the fluctuations away from the steady state374

vorticity Qµ. Without external forcing and damping effects, the statistical pseudo-energy Estat
µ is conserved375

in time as shown in (2.11). Therefore the total statistical energy Estat
µ in the later time can be determined376

from the initial statistics in the mean fluctuation and variance, while the non-positive-definiteness of the377

total statistical energy forms another issue in the unstable regimes with negative coefficients. In this section,378

we first consider the simple case with µ > 0, so that the coefficients in each component of the total statistical379

energy are all positive.380

3.1 Statistical energy bound in fluctuations without forcing and dissipation381

We begin with the simple case in the stable regime µ > 0 and no damping and forcing terms on the right hand382

side of (2.7). Assume initial perturbations in the mean flow and eddies, U (0) = Ū0 + U ′0, ω (0) = ω̄0 + ω′0,383

where Ū0, ω̄0 are the initial bias in fluctuation mean states away from the steady state Vµ, Qµ, and U ′0, ω′0384

characterize the uncertainty (that is, ensemble variance) in the initial ensemble members. According to the385

steady state (Vµ, Qµ) with initial statistical energy in perturbation, the initial statistical energy can be386

expressed as387

Estat
µ (0) =

µ

2
EU,0 +

1

2

∑
1≤|k|≤Λ

(
1 + µ |k|−2

)
Ek,0,

with EU,0 = Ū2
0 + U ′20 , and Ek,0 = |ω̄0,k|2 + |ω′0,k|2. Especially we have the initial uncertainty from388

variance |ω′0,k|2 = |q′0,k|2 independent of the steady state, and the initial mean deviation for the fluctuation389

component with |ω̄0,k|2 = |Qµ,k − q̄0,k|2 and Ū2
0 =

∣∣Vµ − V̄0

∣∣2. Therefore due to the conservation of total390

statistical energy (2.11) we have the first statistical energy conservation relation391

∑
1≤|k|≤Λ

µk

〈
|ωk|2

〉
t

+ µ
〈
U2
〉
t
≤

∑
1≤|k|≤Λ

µkEk,0 + µEU,0, (3.1)

with µk = 1 + µ |k|−2 the weighting coefficients due to the energy conserving inner-product metric. In fact392

in (3.1) equality can be reached in the case without forcing and dissipation, while the inequality is valid393

for cases with also damping terms included in the system. Notice that the above relation is valid for all the394
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values of µ, whereas the statistics in the statistical fluctuations
〈
|ωk|2

〉
(and in fact only in the statistical395

mean fluctuation part |ω̄k|2) will change accordingly with different values of µ due to different values of the396

presumed mean state Qµ. We can summarize the first statistical energy bound for the stable regime µ > 0397

as follows:398

Theorem 1. (Statistical energy conservation of fluctuations in stable regime µ > 0) Consider the system399

of fluctuation equations away from the steady state solution (Vµ, Qµ). For any parameter values µ > 0400

in the stable regime with Eµ > 0, the total statistical variability in the mean fluctuation and variance,401 〈
U2
〉
≡ Ū2 + U ′2,

〈
|ωk|2

〉
≡ |ω̄k|2 + |ω′k|

2, can always be controlled by its initial statistical variability402

including initial mean and total variance as in the inequality (3.1). Especially, if there is no statistical mean403

perturbations in the initial time, V̄0 = Vµ, q̄0 = Qµ, the total statistical energy of the system in the entire404

time can be controlled by the initial ensemble variances σ2
k,0 = |ω′0,k|2 and σ2

U,0 = U ′2405

∑
1≤|k|≤Λ

(
1 + µ |k|−2

)〈
|ωk|2

〉
t

+ µ
〈
U2
〉
t
≤

∑
1≤|k|≤Λ

(
1 + µ |k|−2

)
σ2
k,0 + µσ2

U,0. (3.2)

Furthermore, we can see both the statistical mean fluctuation and the variance are bounded by their initial406

variability in this stable regime with the inclusion of dissipation d > 0.407

Still the statistical bounds in (3.1) and (3.2) based on the pseudo-energy Estat
µ directly is inconvenient to408

use since the coefficients on the left hand sides of the inequalities are dependent on the parameter values µ.409

As a further implication of the above inequalities, we can find the statistical bounds for the total enstrophy,410

ffl 〈
ω2
〉
, and the total kinetic energy, U2 +

ffl 〈
|∇ψ|2

〉
. For the statistical enstrophy in the stable regime µ > 0,411

there exists the lower bound among all the positive coefficients for any wavenumber k with truncation Λ412

(
1 + µ |k|−2

)〈
|ωk|2

〉
≥
(

1 + µΛ−2
)〈
|ωk|2

〉
;

and for the statistical kinetic energy for any wavenumber k the lower bound of the coefficients becomes413

(
|k|2 + µ

)〈
|k|2 |ψk|2

〉
≥ µ

〈
|k|2 |ψk|2

〉
.

Therefore the general bounds for the total statistical enstrophy
ffl 〈
ω2
〉
≡
∑〈
|ωk|2

〉
and the total statistical414

kinetic energy
〈
U2
〉

+
ffl 〈
|∇ψ|2

〉
≡
〈
U2
〉

+
∑〈
|k|2 |ψk|2

〉
can be determined by their initial conditions as415

∑
1≤|k|≤Λ

〈
|ωk|2

〉
t
≤

∑
1≤|k|≤Λ

1 + µ |k|−2

1 + µΛ−2
Eqk,0 +

µ

1 + µΛ−2
EU0 ,

〈
U2
〉
t

+
∑

1≤|k|≤Λ

〈
|k|2 |ψk|2

〉
t
≤

∑
1≤|k|≤Λ

µ−1
(
|k|2 + µ

)
|k|2Evk,0 + EU0 ,

(3.3)

where the right hand sides are from the initial enstrophy/energy in the mean fluctuation and variance416

Eqk,0 = |Qµ,k − q̄0,k|2 + |q′0,k|2, E
v
k,0 =

∣∣Ψµ,k − ψ̄0,k

∣∣2 + |ψ′0,k|2, E
U
0 =

∣∣Vµ − Ū0

∣∣2 + U ′20 ;
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and on the left hand side the statistical enstrophy does not include the energy in the mean flow U while it is417

still dependent on the initial configuration of the flow statistics EU0 due to the large-small scale interaction.418

The above bounds in (3.3) imply the stability in statistical mean and variance in each fluctuation mode419

under both the statistical enstrophy and kinetic energy metric in the stable regime with µ > 0. Especially420

the variance U ′2, |ω′k|2, independent of the choices of the steady mean state Vµ, Qµ, is one positive-definite421

component in the total statistical energy including mean and variance. The above statistical bounds il-422

lustrates that the total uncertainty in the ensemble variance (or it can be described as the ‘spread’ of the423

ensemble of trajectories) can always be controlled by the ‘initial noises’ from the initial ensemble uncertainty424

(|q′0,k|2 or |ψ′0,k|2) and the initial deviation in the statistical mean from the steady state solution Vµ, Qµ,k.425

3.2 Numerical verification of the statistical bounds in the stable regime426

Here we offer some simple numerical results to illustrate the statistical bounds in (3.2) and (3.3) in the427

stable regime µ > 0. For simplicity, we assume there is no bias in the initial mean state, V̄0 = Vµ, q̄0 = Qµ.428

And we propose two initial variance configurations in the ensembles. The first only gets non-zero initial429

variance only in the large scale mean flow σU = 1; and the second case assigns initial variance in the mean430

flow U and first ground modes |k| = 1, σU = 1, σ1 = 1. The bounds in total statistical pseudo-energy (3.2)431

together with the statistical kinetic energy in (3.3) then can be simplified in the test cases as432

∑
1≤|k|≤Λ

(
1 + µ |k|−2

)〈
|ωk|2

〉
t

+ µ
〈
U2
〉
t

= 4 (1 + µ)σ2
1 + µσ2

U , µσ
2
U ;

〈
U2
〉
t

+
∑

1≤|k|≤Λ

〈
|k|2 |ψk|2

〉
t
≤ 4 (1 + µ)σ2

1/µ+ σ2
U , σ

2
U ;

Above on the right hand sides, the first term is for the bounds with initial variance in σU , σ1 and the second433

term is for the bounds with only initial variance in the mean flow σU . Notice that in the first relation above434

equality is actually reached since the total statistical energy is conserved in this case with no damping and435

forcing. Besides according to the equilibrium statistical mechanics, if the invariant measure (2.6) is reached436

at the final equilibrium with ergodicity [23] the above statistical estimates 〈·〉t at equilibrium get zero mean437

in the fluctuation component and variances proportional to, rU ∼ 1/µ, rk ∼ 1/
(
1 + µ |k|−2), according to438

the Gaussian invariant measure.439

Figure 3.1 shows the results in the total statistical pseudo-energy and statistical kinetic energy with440

changing values of µ. The statistical pseudo-energy conservation from numerical calculations is confirmed on441

the left panel exactly in agreement with the theoretical bounds from initial statistics with linear dependence442

on µ. The bounds for the total statistical kinetic energy are also displayed with different initial conditions443

in right panel. The the steady flow structure and vorticity snapshot with parameter µ = 1 have already444

been plotted in Figure 2.1 in Section 2.3. The kinetic energy bound from the pseudo-energy conservation in445

general can offer an accurate estimation about the maximum amplitude of statistical quantities as it changes446

with the steady state parameter µ. We also compare the statistical mean and variance separately in the plots.447
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Fig. 3.1: Statistical energy bounds in statistical equilibrium with 0 < µ < 10. The solid lines are the
numerical simulation results and the dashed lines are from the theoretical bounds. In the right panel, the
upper row is for the case with initial variance in U, ω1 and the lower row is the case with initial variance in
U only. Also the energy in the mean fluctuation and variance are compared separately. The value for the
flow field shown in Figure 2.1 with µ = 1 is marked with a red cross.

With smaller values of µ, the invariant measure prediction in (2.6) is quite accurate. The fluctuation mean is448

near zero (thus the initial steady state solution (Vµ, Qµ) is maintained) and the variance in each mode is in449

consistent with the equilibrium measure prediction. As µ becomes larger, there gradually develops a non-zero450

mean fluctuation. This implies a new equilibrium steady state in the statistical mean, and correspondingly451

the variances in the system drop a little due to the transfer of energy to the mean state.452

4 Statistical Saturation Bounds with Initial Uncertainties in Unstable Regimes453

In the statistically stable regime µ > 0 discussed above, the total statistical energy is positive-definite so454

the statistical bounds can be derived directly from the conservation of statistical energy. However in the455

statistically unstable regime with µ < 0, the coefficients in the total statistical energy Estat
µ in (2.10) are456

no longer uniformly positive. In this case, between two adjacent wave numbers −Λ2
µ+1 < µ < −Λ2

µ (in this457

notation, Λ2
µ and Λ2

µ+1 are two adjacent integer energy shells, while Λµ, Λµ+1 could be non-integers)458

1 + µ |k|−2 > 0, |k| ≥ Λµ+1,

1 + µ |k|−2 < 0, |k| ≤ Λµ.
(4.1)

Therefore, the total statistical energy Estat
µ needs to be decomposed into two parts with a positive-definite459

component and a negative-definite component460

Estat
µ = −ELµ + ESµ

ELµ =
1

2

∑
1≤|k|≤Λµ

∣∣∣1 + µ |k|−2
∣∣∣ 〈|ωk|2

〉
+
|µ|
2

〈
U2
〉
,

ESµ =
1

2

∑
|k|≥Λµ+1

(
1 + µ |k|−2

)〈
|ωk|2

〉
.

(4.2)
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Above in (4.2) ELµ is the large scale statistical energy with negative coefficients, and ESµ is the rest statistical461

energy in small scales with positive coefficients. Especially in regime −1 < µ < 0, only the large scale mean462

flow U is contained in ELµ . This is an interesting case where the interactions between the large mean flow463

U and small vortical modes ω become important through topographic stress.464

In general, ESµ will contain many more modes with high wavenumbers and ELµ usually only gets the465

modes in the largest scales (which also usually are of more interest). This implies the possible instability466

between the low wavenumber and high wavenumber modes in this regime. Still without the external damping467

and noise terms the total statistical energy conservation from (2.11) is valid,468

Estat
µ (t) = Estat

µ (0) .

Suppose negative initial statistical energy E0 = ESµ,0 − ELµ,0 < 0, that is, at initial time t = 0469

∑
|k|≥Λµ+1

(
1 + µ |k|−2

)〈
|ωk|2

〉
0
≤

∑
|k|≤Λµ

∣∣∣1 + µ |k|−2
∣∣∣ 〈|ωk|2

〉
0

+ |µ|
〈
U2
〉

0
. (4.3)

This implies larger initial perturbations (both in mean and noise) in the unstable larger scales, and this470

should be a natural case that is easy to satisfy in many realistic scenarios [17,22]. As a result, the conservation471

law of the total statistical energy in fluctuation predicts that the perturbed mean and variance in all the472

high wavenumber modes are ‘slaved’ by the low wavenumber large-scale perturbations in mean and variance473

during all the time474

∑
|k|≥Λµ+1

(
1 + µ |k|−2

)〈
|ωk|2

〉
t
≤

∑
|k|≤Λµ

∣∣∣1 + µ |k|−2
∣∣∣ 〈|ωk|2

〉
t

+ |µ|
〈
U2
〉
t
. (4.4)

Still this inequality cannot guarantee the general statistical stability in the total energy in mean and variance475

since both sides of (4.4) could grow (or decay) without bound at the same time [17]. In the remainder of476

this section, we consider the saturation bounds of the total statistical mean and variance specially in the477

unstable regime µ < 0 using the similar idea for deterministic saturation bounds in [29]. No external forcing478

and dissipation is assumed here so that the problem is to determine how the statistics in the system evolve479

in time according to the steady state solution (Vµ, Qµ) from the initial ensemble distribution.480

4.1 Statistical energy saturation bounds without forcing and dissipation481

In deriving the statistical bounds in the unstable regimes, we make use of the positive-definite conserved482

statistical functional in Section 3 to find the saturation of instability in the topographic barotropic flow. In483

order to apply the previous result, we propose a class of statistically stable ‘reference states’ with parameters484

α > 0. Thus about the reference steady state (2.4) in the potential vorticity, stream function, and large485

scale mean flow486

Qα,k =
αĥk

α+ |k|2
, Ψα,k =

ĥk

α+ |k|2
, Vα = −β

α
,
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the total statistical energy in fluctuation (2.10) about the reference state stays conserved depending on the487

initial state statistics, that is,488

Estat
α (t) =

α

2

〈
(U − Vα)2

〉
t

+
1

2

∑
1≤|k|≤Λ

(
1 + α |k|−2

)〈
|qk −Qα,k|2

〉
t
≡ Estat

α (0) . (4.5)

Therefore the previous statistical bound in (3.1) is still valid according to the reference state for all α > 0.489

In this way the coefficients in each component of the total statistical energy Estat
α again become uniformly490

positive. Now we turn to the steady state solutions in the unstable regime µ < 0 so that we get two sets of491

decompositions with the real steady state with µ and the reference state with α492

U (t) = Vµ + Ũ (t) = Vα + Û (t) , q (t) = Qµ + ω̃ (t) = Qα + ω̂ (t) .

Thus we can rewrite the statistics in the fluctuation components
(
Ũ , ω̃

)
about the steady state solution493

(Vµ, Qµ) according to the previous stable reference state with parameter α as494

〈
(U − Vα)2

〉
=
(
Vµ − Vα + Ū

)2
+ U ′2,〈

|qk −Qα,k|2
〉

= |Qµ,k −Qα,k + ω̄k|2 + |ω′k|
2,

where we can define the constants between the steady state and the reference state as495

Vµ,α ≡ Vµ − Vα =
α− µ
α

Vµ, Qµ,α,k ≡ Qµ,k −Qα,k =
(µ− α) |k|2

α+ |k|2
Ψµ,k. (4.6)

Then we get the statistical energy bound for the fluctuation component
(
Ũ , ω̃

)
based on the conservation496

of the positive-definite total statistical energy Estat
α (t) = Estat

α (0) according to the reference state with497

parameter α > 0. The initial statistical energy can be calculated as in (4.5) with the initial mean fluctuation498 (
Ū0, ω̄0

)
and the initial variance

(
U ′20 , |ω′0|2

)
in large scale mean flow and small vortical modes. The previous499

argument is based on the fact that the topographic barotropic system without forcing and dissipation always500

conserves the total statistical energy for any values of the parameter α, thus we have the additional freedom501

to choose the optimal parameter value α in the conservation relation (4.5) for the saturation of statistical502

instability in the unstable regime.503

The goal here is to find the statistical bound of fluctuations about the steady state solution (Vµ, Qµ)504

in the unstable regime µ < 0. Again we propose the initial state with zero perturbation in statistical mean505

about the steady state solution and prescribed variances in each mode506

Ū0 = 0, ω̄0 = 0, U ′20 = σ2
U,0, |ω′k,0|2 = σ2

k,0. (4.7)

Without the inclusion of external forcing and dissipation, the problem is to track the evolution and ampli-507

fication of the fluctuations in the ensemble of particles beginning with an unbiased initial steady state and508

proper amount of uncertainty among the ensemble of particles. Then by applying the conservation of total509
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statistical energy (4.5) the mean fluctuation and variance can be determined by the initial configuration of510

variance and the difference with the reference state511

α
[(
Vµ,α + Ūt

)2
+ U ′2t

]
+

∑
1≤|k|≤Λ

(
1 + α |k|−2

) [
|Qµ,α,k + ω̄k,t|2 + |ω′k,t|2

]
= α

[
V 2
µ,α + σ2

U,0

]
+

∑
1≤|k|≤Λ

(
1 + α |k|−2

) [
|Qµ,α,k|2 + σ2

k,0

]
.

(4.8)

The above equality is valid for all the values of α > 0. Instead of the slaving relation (4.4) that separates512

the whole system into a stable and an unstable subspace with µ < 0, the relation in (4.8) gets uniformly513

positive coefficients in every component of the statistical energy in the mean fluctuation and variance. The514

evolution of the combined statistics in mean and variance in the future time are determined purely by the515

initial statistical configuration in mean difference (Vµ,α, Qµ,α,k) and ensemble spread (σU,0, σk,0). Therefore516

immediately we get the statistical stability in each component of the fluctuation mean and variance that517

they will stay finite and stable as the system evolves in time since the right hand side in the initial value is518

finite with positive coefficients. That is, when we run an ensemble with initial steady state (Vµ, Qµ) with519

statistical uncertainties in particles, the bias in the mean state and the spread of the ensemble will always520

stay finite in amplitude without unbounded growth. On the other hand, still the conservation relation in521

(4.8) is not convenient in calculating the statistical bounds since it is combined with the difference in the522

reference state Vµ,α and Qµ,α and the reference parameter α. Next we try to find the saturation bound for523

the statistics in fluctuation mean and variance by minimizing the right hand side among all the values of524

α > 0. Especially we consider the saturation bounds for the total statistical kinetic energy in the mean,525

Ū2+
ffl
|∇ψ̄|2, and in the variance, U ′2+

ffl
|∇ψ′|2 as a representative example. In a similar way the saturation526

bounds for enstrophy can also be achieved (see Section 6 for an example of the statistical enstrophy bound).527

Saturation bound for total variance based on the kinetic energy528

In the first place we can look at the saturation bound for the second order moments. To consider the variance529

in the kinetic energy from the conservation relation (4.8), we can just leave the leading order parts involving530

the mean states with positive coefficients in the total statistical energy. Then for all values α > 0 we have531

U ′2t +
∑
|k|2

∣∣∣ψ′k,t∣∣∣2 ≤ [(Vµ,α + Ūt
)2

+ U ′2t

]
+
∑(

α−1 |k|2 + 1
)
|k|2

[∣∣Ψµ,α,k + ψ̄k,t

∣∣2 +
∣∣∣ψ′k,t∣∣∣2] , (4.9)

where the left hand side above defines the total statistical kinetic energy in the variance, U ′2 +
ffl
|∇ψ′|2,532

and the right hand side is just a reorganization of the total statistical pseudo-energy α−1Eα writing in533

the form of stream functions, ψk = − |k|−2 ωk. Using the conservation relation in (4.8) to relate the right534

hand side of the above inequality with the initial data and noting that the above inequality is valid for all535

values α > 0, the saturation bound for the total statistical kinetic energy variance (4.9) can be reached by536

minimizing the second row of (4.8) including initial state information among all the possible values of α so537
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that we define538

Cvµ = min
α>0

[
(α− µ)2

α2
V 2
µ + σ2

U,0

]
+

∑
1≤|k|≤Λ

[
(α− µ)2 |k|2

α
(
α+ |k|2

) |Ψµ,k|2 +
(
|k|−2 + α−1

)
σ2
k,0

]
,

with Vµ = −β/µ and Ψµ,k = ĥk/
(
µ+ |k|2

)
the steady state solutions and the initial ensemble statistics539

based on (4.7). The differences with reference states Vµ,α, Qµ,α in (4.6) are substituted into the initial values540

in the second row of (4.8) to get an explicit formulation of the upper bound. The total variance of the flow541

fluctuation in both large scale mean flow and small vorticity thus are controlled by the saturation bound542

U ′2t +
∑

1≤|k|≤Λ

|k|2
∣∣∣ψ′k,t∣∣∣2 ≤ Cvµ (h, β, σ0, Λ) , (4.10)

where the bound Cvµ is dependent on the truncation size Λ, topographic structure h, the beta-effect β, and543

the initial noise in each mode σ0. The saturation bound Cvµ estimates the maximum amount of energy in544

variance the system could reach depending on the initial statistical configuration. Indeed more generally545

Cvµ also gives the upper bound for the right hand side of (4.9) directly from the conservation principle in546

(4.8). Especially as we will see later, the bound in variance Cvµ is also useful in estimating a (non-optimal)547

upper bound for the statistical energy in the mean fluctuation, and it is also adapted to estimate a bound548

for a combination of the mean and variance together. Thus the saturation bound Cvµ plays a central role in549

estimating the flow statistical instability.550

Remark. Here we choose the statistical kinetic energy as the quantity of interest for the saturation bound551

since it offers a natural combination of large scale mean flow U and vortical modes ω to characterize the552

total statistical structure in the system. In a similar fashion we can also get the estimation for the total553

statistical enstrophy based on the conservation relation (see Section 6 for one example with statistical554

enstrophy). Indeed since each component in the first row of (4.8) is positive definite, we can even find the555

saturation bound for any particular spectral band containing a fraction of the total wavenumbers. Therefore556

the relation in (4.8) is a quite useful tool to find the saturation bounds according to the required quantity557

of interest in real applications.558

In Figure 4.1, we plot the saturation bounds Cvµ with changing values of µ for the statistical kinetic559

energy by minimization among values in the stable regime α > 0. The model parameters are kept the same560

with the previous setup in Section 2.3 with β = 1, Λ = 12, and h the topography with decaying spectrum561

in (2.14). In the figure we use non-zero topography up to wavenumber |k| = 5 as an illustration. Initial562

variance is only set to be non-zero among the mean flow σU,0 = 1 and the ground modes |k| = 1 with563

variance σ1,0 = 1. The saturation bound Cvµ goes to infinity at the discrete resonance points at µ = − |k|2564

with non-zero ‘excited’ topographic mode ĥk 6= 0, and stays in finite constraint values between the points.565

For values of µ near these saturation points, the large values of the bound Cvµ indicate instability with566

potential large increase in the total variances in the fluctuation component from the initial uncertainty. On567

the other hand for values away from the resonance points the total statistical variance can be controlled568
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Fig. 4.1: Saturation bound Cvµ for the total variance in kinetic energy (4.10). Initial variance is only set to
be non-zero among the mean flow σU,0 = 1 and the ground modes |k| = 1 with variance σ1,0 = 1. The left
panel shows the bounds in regimes −2 < µ < 0 used for numerical verifications.

within relatively small values, implying restricted variability in the statistical ensemble with stability. In the569

numerical verification for the statistical bound, we will mostly focus on two typical regimes with parameters570

changing among the ranges −2 < µ < −1 and −1 < µ < 0 shown in the left panel of Figure 4.1. We point571

out here in advance that the total statistical energy in fluctuation near µ → 0 actually will not increase572

in reality since there is actually no instability near this point (see Appendix A with transient statistical573

stability). Therefore instead in the regime −1 < µ < 0 we choose the β-effect in the constant ratio β/µ = −1,574

so that stronger variability in the state variables can be generated near the limit µ→ 0.575

Saturation bound for total statistical fluctuations in a combination of energy in the mean and variance576

The above saturation bound about the total variance (4.10) could be tight if the deviation in the statistical577

mean |Qµ,α,k + ω̄k| is small (for example, when there is only weak topographic stress in small amplitude,578

h ∼ 0). Still the error due to the previous neglected statistical mean from the term Qµ,α needs to be579

addressed, and it is difficult to estimate the energy in the statistical mean fluctuation ω̄ directly from the580

previous inequalities. Especially when there are some values of |k|2 close to −µ, the errors from Qµ,α could581

be huge (due to the singularity in Qµ,k). There is the possibility that large amount of energy could cascade582

from the variances back to the statistical mean state due to the nonlinear interactions and drive the mean583

state ω̄ away to another distinct state as the system evolves in time. Next we find a more general saturation584

bound for the combined fluctuation statistical mean and variance through proper estimation about the error585

in the mean.586

In general we have the inequality to separate the statistical mean fluctuation and the additional difference587

term Qµ,α as588

|Qµ,α,k + ω̄k|2 = |Qµ,α,k|2 + |ω̄k|2 − 2Re
(
Qµ,α,k · ω̄∗k

)
≥
(

1− ε−1
)
|Qµ,α,k|2 + (1− ε) |ω̄k|2 ,
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where Cauchy’s inequality is used for the cross term, Qµ,α,k ·ω̄∗k, with ε > 0 as a control parameter. Similarly589

for the large scale flow U we have the inequality to separate the mean fluctuation and the difference term590

Vµ,α as591 (
Vµ,α + Ū

)2 ≥ (1− ε−1
)
V 2
µ,α + (1− ε) Ū2.

Substituting the above inequalities for each mode back into the total statistical energy conservation relation592

(4.8), we have the bound for total statistical energy depending on the initial value593

[
(1− ε) Ū2

t + U ′2t

]
+
∑(

α−1 |k|2 + 1
) [

(1− ε) |k|2
∣∣ψ̄k,t

∣∣2 + |k|2 |ψ′k,t|2
]

≤
[
ε−1V 2

µ,α + σ2
U,0

]
+
∑(

α−1 + |k|−2
) [
ε−1 |Qµ,α,k|2 + σ2

k,0

]
.

(4.11)

In the first row above we use the statistical kinetic energy representation as in (4.9). Still we assume594

that initial statistical mean of the ensemble has no bias in the steady state mean (Vµ, Qµ) and the initial595

ensemble variance has spectrum for mean flow and small scale modes U ′20 = σ2
U,0, |ω′k,0|2 = σ2

k,0 as before.596

Fortunately the difference terms |Qµ,α,k|2 and V 2
µ,α appear on both sides of the above inequality and get597

cancelled with each other. The inequality is valid for all the values with ε > 0, α > 0. Then we get the598

bounds for combinations of statistical mean fluctuation and the variance with a ratio 1 − ε. Especially if599

we take ε = 1 only the statistical energy in variance is left and we come back to the original case (4.10).600

However ε can not reach the value zero (then the right hand side will diverge). Thus instead of a total601

statistical energy combining the mean and variance as Em +Ev, the saturation bound can only be reached602

for the combination θEm + Ev with a weighting parameter θ = 1 − ε−1 < 1. To get the total statistical603

kinetic energy, further reduce the coefficients in the above inequality (4.11), α−1 |k|2 + 1 ≥ 1, to a uniform604

lower bound. We find the general saturation bound combining the statistical mean fluctuation and variance605

as606

Cθµ = min
α>0

1

1− θ

[
(α− µ)2

α2
V 2
µ +

∑ (α− µ)2 |k|2

α
(
α+ |k|2

) |Ψµ,k|2]+
[
σ2
U,0 +

∑(
|k|−2 + α−1

)
σ2
k,0

]
.

The combined statistical energy in the mean fluctuation and variance with a weighting parameter θ < 1607

can be estimated by this total saturation bound608

θEm (t) + Ev (t) ≤ Cθµ (h, β, σ0, Λ) , (4.12)

where Em is the statistical energy in the mean fluctuation and Ev is the statistical variance609

Em = Ū2 +

 ∣∣∇ψ̄∣∣2 = Ū2 +
∑
|k|2

∣∣ψ̄k

∣∣2 ,
Ev = U ′2 +

 
|∇ψ′|2 = U ′2 +

∑
|k|2 |ψ′k|

2.

Comparing (4.12) with (4.10), Cθµ differs with Cvµ only with one additional coefficient (1− θ)−1 and it610

reduces to the variance bound Cvµ when the parameter θ → 0 with consistency. Unfortunately we cannot611

reach the total statistical energy bound for θ = 1 in the above saturation bound Cθµ. Notice that in (4.12)612
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we can even have θ < 0, then the inequality describes that the total variance in second order moments in613

the system can actually be controlled by the total energy in the first order mean state.614

Further a non-optimal bound for the statistical mean state purely can be found through further ap-615

proximation in the combined statistical energy. By leaving the variance part in the inequality, θEm ≤616

θEm+Ev ≤ Cθµ, from the above total statistical bound (4.12), then the energy in the mean fluctuation Em617

can be estimated by the previous total variance bound so that618

Ū2
t +

∑
1≤|k|≤Λ

|k|2
∣∣ψ̄k,t

∣∣2 ≤ Cmµ = min
θ<1

θ−1 (1− θ)−1 Cvµ = 4Cvµ. (4.13)

The above inequality is through a crude approximation by leaving the total variance Ev on the left side of619

(4.12) entirely, thus could introduce large errors in the bound of total mean fluctuation Em. Nevertheless620

Cmµ offers an estimation for the deviation in statistical mean from the original steady state solution instead621

of including the errors in the variances.622

In the above argument we offer three levels of estimations. The first inequality in (4.11) actually offers a623

most general bound directly from the conservation of total statistical pseudo-energy including the coefficients624

1 + α |k|−2. Through this relation we can derive the saturation bound based on any specific quantity of625

interest in practical applications. The next inequality (4.12) considers a proper combination of the total626

statistical mean fluctuation and total variance with a balance parameter θ according to the kinetic energy.627

This saturation bound Cθµ is a general result for total statistical kinetic energy including both information628

in the mean and variance. The pure saturation bound for total variance Cvµ in (4.10) can be derived from629

Cθµ by setting θ = 0. However notice that larger value of θ near 1 (then more emphasis on the stability in630

statistical mean) leads to a larger weight 1/ (1− θ) in the bound Cθµ. This shows that Cθµ may not be so631

desirable if we want to add more emphasis on the mean fluctuation. In the last inequality (4.13), we separate632

the statistical mean state. It shows that the total statistical mean fluctuation also can not increase without633

bound with a largest amplitude Cmµ = 4Cvµ, while this bound is not optimal since Cvµ could become huge.634

Theorem 2. (Statistical saturation bound for total statistical mean fluctuation and variance) For any gen-635

eral values of µ (and especially for the unstable case µ < 0) in the topographic barotropic system without636

forcing and dissipation, assume zero initial statistical mean fluctuation and a general initial ensemble vari-637

ance as (4.7). A saturation bound for a combination of the statistical mean and variance, θEm+Ev, with a638

ratio parameter θ ∈ (0, 1) can be reached from (4.12). Especially the total variance in the kinetic energy, Ev,639

can be controlled with a saturation bound Cvµ from (4.10); and for the total statistical energy in the mean640

fluctuation only, a (non-optimal) estimation of the saturation bound Cmµ = 4Cvµ can be found as (4.13).641

4.2 Numerical verification of the saturation bounds in unstable regimes642

In the final part of this section, we verify these saturation bounds for both the variance and the mean state643

through numerical simulations. The model parameters for the numerical simulations are taken the same as644
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in Section 2.3. We test two typical regimes for the parameter −2 < µ < −1 and −1 < µ < 0 with the645

saturation bounds shown in Figure 4.1. The complexity of the flow structures in these test regimes with646

strong instability and shifting directions of jets has already been illustrated in Figure 2.3 and Table 1.647

Instead of comparing the statistical energy in mean and variance separately, here we consider the saturation648

bound Cθµ for the combination of mean fluctuation and variance θEm (t) +Ev (t) with changing values of θ.649

4.2.1 Saturation bound in the unstable regime µ < −1650

First we check the saturation bound for total variance and mean in the unstable regime with parameter651

values changing among −2 < µ < −1. The flow field structures in this regime can be found in Figure 2.3652

for typical values µ = −1.9,−1.5,−1.1. Figure 4.2 illustrates the bounds of a combined mean fluctuation653

and variance with the parameter θ from the inequality (4.12). θ sets the weight in the statistical mean654

state. We check two parameter values θ = 0.5 and θ = 0.2. With θ = 0.5 the mean fluctuation part makes655

more contribution in the total statistical energy, while with θ = 0.2 the statistical energy in the variance is656

dominant. First the dotted-dashed black lines illustrate the theoretical saturation bounds Cθµ with changing657

values of µ. As expected from the theoretical results, instability with infinite maximum total statistics will658

take place at the resonance points µ = −1,−2. From the numerical results, the saturation bound Cθµ sets659

a tight upper bound in general and instability increases when µ approaches near the two end points in660

both cases. Especially in the case with θ = 0.2 where the variance part is dominant, from the expanded661

plot in results near µ→ −2 the saturation bound becomes extremely tight for the combined statistics. This662

shows the accuracy in the upper bound Cθµ for estimating the maximum statistical fluctuations in this highly663

unstable regime. With larger weight in the mean fluctuation, the larger value of θ = 0.5 raises the saturation664

bound Cθµ as shown in (4.12). Still an accurate upper bound can be achieved especially for quantifying the665

variability in the statistical mean state. For the intermediate values of µ the maximum statistical energy666

is relatively low and the saturation bound still serves as a proper estimation for the maximum statistical667

energy in mean and variance. Furthermore, we can observe that the instability increases faster near the left668

side boundary than that near the right side. This might be related with the stronger linear instability in669

the left limit (see the Appendix A).670

4.2.2 Saturation bound in the regime with unstable mean flow −1 < µ < 0671

In the second case, we check the saturation bound in regime −1 < µ < 0 with only an unstable mean flow672

U . We use smaller beta-effect β = |µ| to reduce the stabilizing effect from β as the parameter approaches673

zero µ → 0. This is considering the weaker variability in the flow fluctuation as µ decreases (as we can674

see from the linear analysis in Appendix A, when µ approaches zero with a fixed stabilizing beta-effect675

the exponential growth rate decreases to zero). With the small adaption in this case, the saturation bound676

near zero changes without large instability compared with the bound in Figure 4.1 with fixed β = 1.677

Figure 4.3 shows the comparison between the numerical simulation results with the theoretical prediction678
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Fig. 4.2: Saturation bound in unstable regime −2 < µ < −1 for statistical mean and variance combined
with parameter θ. The combined statistical energy θEm + Ev is compared with different ratio parameters
θ = 0.5, 0.2. The values for the typical flow fields in Section 2.3 with µ = −1.9,−1.5,−1.1 are marked with
a red cross.
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Fig. 4.3: Saturation bound in unstable regime −1 < µ < 0 for statistical mean and variance combined
with parameter θ. The combined statistical energy θEm + Ev is compared with different ratio parameters
θ = 0.5, 0.2. The beta-effect is taken as β = |µ|. The values for the typical flow fields in Section 2.3 with
µ = −0.9,−0.5,−0.1 are marked with a red cross.

as the parameter value changes. The theoretical saturation bound Cθµ gives overall good estimation for679

the maximum statistical fluctuations that the system can reach with instability. Similar with the previous680

case, the saturation bound becomes extremely tight near the unstable point µ = −1. With θ = 0.5 the681

mean fluctuation gets more weight, and with θ = 0.2 the variance is dominant and the bound becomes even682

tighter in estimating the total statistical variance in the ensemble. Near the other limit µ→ 0 the instability683

vanishes. This is consistent with the linear analysis (see Appendix A) that no unstable growth takes place684

as µ → 0. The system can be stabilized from the interactions between the large and small scales through685

topographic stress at this point µ = 0. Then the fluctuations in both statistical mean and variance decrease686

to small amount near this stable limit.687
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5 Statistical Saturation Bounds with Forcing and Dissipation688

In our previous discussion, we focus on the the statistical bounds in mean fluctuation and variance dependent689

on the initial statistical configuration of the system without any external forcing and dissipation effects.690

Thus the total statistical energy is controlled by the initial state statistical mean and variance through691

the energy conservation principle. On the other hand, for the performance of the energy in the mean and692

variance in the long time limit, geometric ergodicity for the truncated topographic barotropic model (2.1) is693

proved under dissipation, inhomogeneous deterministic forcing and minimal stochastic forcing [23,16]. Thus694

there exists an invariant measure that attracts all the solutions in the long time limit regardless of the initial695

values. In this section, we consider the statistical instability in this case with forcing and dissipation effects.696

Then the total statistical energy becomes no longer conserved due to the effect of forcing and dissipation.697

We will first consider the statistical energy equation in the stable regime µ > 0, next the saturation bound698

can be found in a similar fashion as before.699

5.1 The effects of additional deterministic and random external forcing in the stable regime700

In the stable regime µ > 0, we consider the effects from external forcing and damping to the total statistical701

energy dynamics in the mean and variance. In general, there could be a deterministic component and a702

stochastic component represented by Gaussian white noise in the forcing on both large mean flow and the703

vortical modes as in (2.12). The total statistical energy Eµ in fluctuation (2.10) then follows the dynamics704

(2.13) due to the Ekman damping and forcing effects705

dEµ
dt

= −2dEµ + µŪ · F0 +
∑(

1 + µ |k|−2
)
F̂ ∗k · ω̄k +Qσ,µ,

with the deterministic part applying on the statistical mean state and the stochastic part offering the706

combined contribution through Qσ,µ. Now to find the upper bound of the total statistical energy during its707

evolution in time due to the external forcing, we need to separate the deterministic forcing with the mean708

state. First we have the inequality in the interaction terms with the statistical mean by applying Cauchy’s709

inequality with parameter λ > 0710

(
1 + µ |k|−2

)
F ∗k · ω̄k =

∣∣∣1 + µ |k|−2
∣∣∣1/2 F ∗k · ∣∣∣1 + µ |k|−2

∣∣∣1/2 ω̄k

≤ 1

4λ

∣∣∣1 + µ |k|−2
∣∣∣ |ω̄k|2 + λ

∣∣∣1 + µ |k|−2
∣∣∣ |Fk|2

<
1

4λ

∣∣∣1 + µ |k|−2
∣∣∣Ek + λ

∣∣∣1 + µ |k|−2
∣∣∣ |Fk|2 .

µF0 · Ū ≤
1

4λ
|µ| Ū2 + λ |µ|F 2

0 <
1

4λ
|µ|EU + λ |µ|F 2

0 .

The above inequalities only hold for the stable regime µ > 0 so that the coefficients on the right hand711

sides are always positive. Notice that Ek =
〈
|ωk|2

〉
and EU =

〈
U2
〉
represent the total statistical energy712

including both mean fluctuation and variance in the vortical mode and the mean flow. The last inequality713
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adds the variance to the original term containing purely the statistical mean. Thus the inflation at the last714

inequality could be large if the total variance makes a major contribution to the combined statistical energy.715

Therefore we can define the effective statistical forcing QF,µ combining the contributions in deterministic716

and stochastic forcing all together717

QF,µ (λ) = µ

(
λF 2

0 +
1

2
σ2

0

)
+
∑(

1 + µ |k|−2
)(

λ |Fk|2 +
1

2
σ2
k

)
, µ > 0;

and the effective dissipation in the statistical energy equation can be determined by changing the parameter718

value λ. The original system (2.13) already contains the Ekman damping −2dEµ, thus we can choose the719

parameter λ > 0 so long as there still exist a negative damping effect in the total statistical energy dynamics720

d̄F (λ) = 2d− (2λ)−1 > 0, λ > (8d)−1 .

For simplicity we could just take 2λ = d−1 so that d̄F = d. With all these arrangements we have the721

differential inequality for the total statistical energy Eµ from (2.13)722

dEµ
dt
≤ −d̄FEµ +QF,µ.

Using Grönwall’s inequality to the above relation we get the upper bound for the total statistical energy723

Eµ due to the effect of damping and external forcing724

Eµ (t) ≤ Eµ (0) e−d̄F t +

ˆ t

0

e−d̄F (t−s)QF (s) ds

≤ εT + d̄−1
F QF,µ. (5.1)

Above the first inequality is for the general time-dependent case with the forcing effect, and the second one725

is under the further assumption of a constant forcing in time. The first component on the right hand side726

εT = Eµ,0 exp
(
−d̄FT

)
gives one approximated decay rate of the initial statistics. If we just want to focus727

on the long time performance, the first term with initial statistics can be made arbitrarily small at the long728

time limit t > T , thus we need only focus on the second term above, that is,729

QF,µ = µ

(
1

2d
F 2

0 +
1

2
σ2

0

)
+
∑(

1 + µ |k|−2
)( 1

2d
|Fk|2 +

1

2
σ2
k

)
.

The stability can be developed in this forced-damped case in a similar way as before based on the inequality730

(5.1). Therefore we can summarize the stability result in the following theorem:731

Theorem 3. (Statistical energy bound with forcing and dissipation in the stable regime µ > 0) Consider the732

forced-dissipated system (2.12) of fluctuations about the steady state solution (Vµ, Qµ). For any parameter733

value µ > 0 the total statistical energy in the mean fluctuation and variance can be bounded by the inequality734

(5.1). Especially in the statistical steady state, the initial statistics get dissipated and the total statistical735
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energy is determined by the external forcing and damping effects as736

Eµ (t) ≤ µ

2

((
d−1F0

)2
+ d−1σ2

0

)
+

1

2

∑(
1 + µ |k|−2

)(∣∣∣d−1Fk

∣∣∣2 + d−1σ2
k

)
. (5.2)

Notice that (5.2) can be compared with the bound (3.1) from the non-forced non-damped case, where the737

deterministic forcing d−1F acts the similar role as the initial mean deviation and the stochastic forcing σ2
738

acts as the role of the initial variance in the ensemble. The total statistical energy bound in long time limit739

can be calculated based on the forcing and damping parameters. Above in (5.2), we assume for simplicity740

that the deterministic forcing F and stochastic forcing σ are both independent in time. It should be easy741

to generalize the above bound to the time-dependent case.742

5.2 Saturation bounds with forcing and dissipation in unstable regimes743

In the unstable regime with µ < 0, just consider the special case of linear damping and forcing in the special744

form of (2.12) using equilibrium steady state without any additional terms F0 = 0, F = 0745

small scale : − dω + dω̄eq + σkẆk,

large scale : − dU + dŪeq + σ0Ẇ0.

(5.3)

The forcing structure above from equilibrium steady solution ω̄eq,k = − |k|2 Ψ̂µ,k and Ūeq = Vµ is dependent746

on the parameter µ. The statistical bound (5.2) for the stable regime µ > 0 enables us to carry out the same747

argument for initial state dependence in Section 4 to the forced-dissipated system in the same way. Again748

we can consider the saturation bound using a class of ‘reference states’ with parameters α > 0. Especially749

it is important to notice that the linear damping is applied on the fluctuation component according to the750

reference state −dEα. Using the reference state with parameter α but with the forcing in the form (5.3)751

with parameter µ, the following additional forcing effects need to be added to the dynamical equation of752

Eα based on the reference state with parameter α in the mean flow and vortical modes753

F0 = d (Vµ − Vα) ≡ dVµ,α, Fk = d (Qµ,k −Qα,k) ≡ dQµ,α,k.

Assuming there is no additional forcing besides the above terms and using the inequality in (5.2), the754

statistical energy based on the reference state (4.5) can be recovered in this forced-dissipated case755

2Eα (t) = α
[(
Vµ,α + Ūt

)2
+ U ′2t

]
+
∑(

1 + α |k|−2
) [
|Qµ,α,k + ω̄k,t|2 +

∣∣∣ω′k,t∣∣∣2]
≤ 2d̄−1

F QF,α = α
(
V 2
µ,α + d−1σ2

0

)
+
∑(

1 + α |k|−2
)(
|Qµ,α,k|2 + d−1σ2

k

)
.

(5.4)

This becomes a similar case with the previous non-forced non-damped situation in (4.8) with dependence756

on initial values. It is useful to notice that the random white noise forcing amplitude (σ0, σk) plays the757

same role as the initial ensemble variance in the unforced case; while the additional deterministic forcing758
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with the equilibrium mean
(
Ūeq, ω̄eq

)
plays the role of the initial mean deviation in the previous unforced759

case (4.8). Therefore we can again find the saturation bound in the forced-damped case following the exact760

procedure as in Section 4.761

Saturation bound for total variance based on the kinetic energy762

The saturation bound for the total variance in the kinetic energy can be calculated by minimizing the right763

hand side of (5.4) among all the possible values of α > 0 so that764

Cvµ = min
α>0

[
(α− µ)2

α2
V 2
µ + d−1σ2

0

]
+

∑
1≤|k|≤Λ

[
(α− µ)2 |k|2

α
(
α+ |k|2

) |Ψµ,k|2 +
(
|k|−2 + α−1

)
d−1σ2

k

]
,

with Vµ = −β/µ and Ψµ,k = ĥk/
(
µ+ |k|2

)
the steady state solutions. The maximum total variance in the765

flow fluctuation with forcing and dissipation can be reached at766

U ′2t +
∑

1≤|k|≤Λ

|k|2 |ψ′k,t|2 ≤ C
v
µ (h, β, d, σ, Λ) , (5.5)

where the bound Cvµ is dependent on the truncation size Λ, topographic structure h, the beta-effect β,767

Ekman friction rate d, and the stochastic forcing in each mode σ. Comparing this saturation bound Cvµ768

with the previous case (4.10) in Section 4 with dependence on initial value, we find that the similar form769

can be reached in this forced-dissipated case. The deterministic forcing from the steady state solution can770

be compared with the initial mean state in the previous case, and the effective stochastic forcing amplitude771

d−1σ2 can be compared with the initial variance in the ensemble members.772

Saturation bound for total statistical fluctuations in a combination of energy in the mean and variance773

Similarly for the mean state including the differences in states Vµ,α, Qµ,α we have the estimation from774

Cauchy’s inequality775 (
Vµ,α + Ū

)2 ≥ (1− ε−1
)
V 2
µ,α + (1− ε) Ū2,

|Qµ,α,k + ω̄k|2 ≥
(

1− ε−1
)
|Qµ,α,k|2 + (1− ε) |ω̄k|2 .

Substituting the above back to the original inequality (5.4), we can derive the saturation bound for a776

combination of the statistical mean fluctuation and variance777

Cθµ = min
α>0

1

1− θ

[
(α− µ)2

α2
V 2
µ +

∑ (α− µ)2 |k|2

α
(
α+ |k|2

) |Ψµ,k|2]+ d−1
[
σ2
U,0 +

∑(
|k|−2 + α−1

)
σ2
k,0

]
.

Then the combined statistical energy in the mean fluctuation and variance in the damped and forced case778

can be controlled by the upper bound Cθµ779

θEm (t) + Ev (t) ≤ Cθµ (h, β, σ0, Λ) , (5.6)
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with θ = 1− ε−1 < 1. Especially we can find the non-optimal bound for the statistical mean state as780

Ū2
t +

∑
1≤|k|≤Λ

|k|2
∣∣ψ̄k,t

∣∣2 ≤ Cmµ = min
θ<1

θ−1 (1− θ)−1 Cvµ = 4Cvµ. (5.7)

Especially still in (5.6) we can even take θ < 0 to control the total variance in second order moments in the781

system from the totally energy in the mean fluctuation of the first order moments.782

Theorem 4. (Saturation bound for statistical mean and variance with damping and random forcing) With783

the special form of linear damping and forcing as in (5.3), the combined statistical mean fluctuation and784

variance, θEm +Ev, with the ratio parameter θ < 1 can be controlled as in (5.6) with saturation bound Cθµ.785

Similarly the total variance in the flow fluctuation, Ev, is bounded by the saturation bound Cvµ as in (5.5);786

and the total statistical energy in mean fluctuation, Em, is bounded by the (non-optimal) bound Cmµ = 4Cvµ.787

5.3 Numerical verification of the saturation bounds in the forced-dissipated case788

Here again we check the saturation bounds derived in (5.5), (5.6), and (5.7) using numerical simulations in789

the statistically unstable regimes −2 < µ < −1. The basic setup is still kept the same as before with the790

same set of parameters in Section 2.3. Especially to make the bounds in the forced-dissipated case stay in the791

same form with the previous case, we apply the random forcing only on the mean flow U and ground modes792

with |k| = 1 with noise amplitude and damping rate always in the consistent relation d−1σ2 ≡ σ2
eq = 1. So793

exactly the same saturation bounds can be used in this case. Besides we compare the mean and variance794

in statistical equilibrium state with different damping rates d = 0.05, 0.1, 0.25. Typical flow structures in795

this forced-dissipated case has also been discussed in Figure 2.4 and Table 2 previous in Section 2.3. Notice796

that different damping and forcing strength can lead to distinct steady flow structures and statistics (for797

example, sometimes with opposite jet directions).798

First in Figure 5.1 we show the statistical energy in the mean fluctuation and total variance separately799

with the the saturation bounds found in (5.5) and (5.7). Still the theoretical saturation bound provides800

proper estimation about the maximum statistical energy in both statistical mean and variance for all the801

different forcing and damping strengths especially near the resonance points µ → −2,−1. With larger802

uniform damping rate d along all the scales (accordingly with larger stochastic forcing since we set σ2 =803

d) the total variance in the system increases; while the statistics in the mean decreases as the damping804

rate increases to suppress the mean fluctuation. This observation is consistent with intuition since the805

larger damping dissipates the mean fluctuation strongly to guarantee convergence to the mean steady state806

solution; and accordingly stronger random forcing injects more energy in the largest scales and then cascades807

throughout the scales. Correspondingly larger mean fluctuation and smaller variance will be induced with808

smaller damping rate d and stochastic forcing σ.809

Next Figure 5.2 compares the combined mean fluctuation and variance bounds with ratio parameter810

θ found in (5.6). In the combination of mean and variance together, unlike the previous plots with mean811
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Fig. 5.1: Saturation bound with damping and forcing in the unstable regime −2 < µ < −1 for statistical
mean and variance separately. Results with different damping rates d = 0.05, 0.1, 0.25 are shown. The left
panel compares the total variance Ev and the right panel is the statistical energy in mean fluctuation Em

(in solid lines) with the theoretical bounds Cvµ, Cmµ (in dotted-dashed lines).
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Fig. 5.2: Saturation bound with damping and forcing in the unstable regime −2 < µ < −1 for statistical
mean and variance combined with different θ. The combined statistical energy θEm +Ev is compared with
different ratio parameters θ = 0.5, 0.2. Results with different damping rates d = 0.05, 0.1, 0.25 are shown.
The values for the typical flow fields in Section 2.3 are marked with a red cross.

and variance separately, despite the differences in the statistical mean and variances with different damping812

rates, the total statistical energy in the three cases with different damping d become near to each other and813

are close to the theoretical saturation bound uniformly. Similarly with the previous case we can observe the814

instability near µ→ −2 is stronger than that near the other boundary µ→ −1.815

6 Further Discussion about the Statistical Bounds with Large-scale eigenmode Forcing and816

with the Total Enstrophy817

We have derived the saturation bounds for the topographic barotropic flow depending on the initial statistics818

or on the external forcing and damping in a unified manner. Especially in the case with deterministic and819

stochastic forcing, we tested the bounds with deterministic forcing purely from the equilibrium steady state820

and the stochastic forcing on the largest scales as in (5.3). In this section, we offer some extensions about821

the previous statistical saturation bounds. First we discuss a more generalized forcing form with additional822

large-scale eigenmode forcing and random stochastic forcing on large scale modes; then both upper and823

lower saturation bounds are derived according to the statistical enstrophy in the vortical modes depending824

on the initial statistics.825
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6.1 The effect with eigenmode forcing on large scales826

Here we consider a special and interesting form of the forced-dissipated system (2.12) with additional827

deterministic and stochastic forcing only applied on the largest spectral scales828

small scale : − dω + dω̄eq + F1,

large scale : − dU + dŪeq + F0.

(6.1)

Above the additional (F0,F1) in (6.1) are introduced as the large-scale eigenmode forcing [17] by adding829

both deterministic and random Gaussian components on the large scale mean flow U and the vortical mode830

on ground energy shell with |k| = 1831

F1 =
∑
|k|=1

[
Fk (t) + Ẇkσk (t)

]
eik·x, F0 = F0 (t) + Ẇσ0 (t) .

This is the same form as tested in [27] for reduced order models. Under this large-scale forcing, energy832

is injected in the largest scales and then gets transferred down spectrum through the nonlinearity to the833

smaller scales to reach a final statistical steady state. In [17], deterministic nonlinear stability has been834

shown for the flow with the eigenmode forcing and linear damping without topographic stress. Here we835

discuss the statistical saturation bound with this large-scale eigenmode forcing and topography following836

the previous general framework.837

In this case with additional deterministic forcing, the saturation bound in (5.4) will include one more838

term due to the injection of energy from (F0, F1) on the largest scales. Therefore the total statistical energy839

based on the reference state Eα in (4.5) with α > 0 follows the inequality840

2Eα (t) ≤ α
(
Vµ,α + d−1F0

)2
+
∑
|k|=1

(1 + α)
(
|Qµ,α,k + d−1F1|2 + d−1σ2

1

)
+αd−1σ2

0+
∑
|k|2≥2

(
1 + α |k|−2

)(
|Qµ,α,k|2

)
.

Above the first line contains the effects from the deterministic forcing on the large scale mean flow U and841

the ground energy shell |k| = 1. The second line is the contribution from all the other smaller scale modes842

the same as the previous case. Notice here in (6.1) we assume no random forcing on smaller scale modes843

σk ≡ 0, |k| > 1. Again remember that the total statistical energy Eα contains the differences with the844

reference states in the statistical mean so that we have the lower bound estimation as before in (4.11)845

to separate the statistical mean disturbance
(
Ū , ω̄

)
with the reference states difference (Vµ,α, Qµ,α). In a846

similar way following the previous strategy as in (5.6) by minimizing among all the possible reference states847

with α > 0, we find the saturation bound for the combination of the statistical energy in mean fluctuation848

Em and the total variance Ev including the eigenmode forcing849

θEm + Ev ≤ min
α>0

[
CF0 + 4

(
α−1 + 1

)
CF1 + C2

]
, (6.2)
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with θ < 1. In the above inequality the first two constants CF0 and CF1 are related with the contributions850

from the large scale flow U and the vortical ground modes subject to the eigenmode forcing in following851

explicit expressions852

CF0 =
(
Vµ,α + d−1F0

)2
+ θ (1− θ)−1 V 2

µ,α + d−1σ2
0 ,

CF1 =
∣∣∣Qµ,α,1 + d−1F1

∣∣∣2 + θ (1− θ)−1 |Qµ,α,1|2 + d−1σ2
1 ;

(6.3)

and the last term C2 is due to the contributions from all the other smaller scale modes without additional853

forcing in the consistent form with the saturation bound in the previous case854

C2 =
1

1− θ
∑
|k|2≥2

(α− µ)2 |k|2

α
(
α+ |k|2

) |Ψµ,k|2 .
Comparing (6.2) with the previous saturation bounds in (5.6) without the eigenmode forcing, additional855

deterministic forcing effects (F0, F1) adds contribution to the steady mean differences (Vµ,α, Qµ,α). The856

ratio parameter θ < 1 offers a weight in the total statistical mean component. With θ = 0 the right hand857

side of (6.2) offers a saturation bound for the total variance; while as θ approaches 1 the second term on858

the right hand side of (6.3) goes up to infinity.859

Previously in the saturation bounds, statistical instability always takes place at the resonance values860

µ = − |k|2, where the mean state differences (Vµ,α, Qµ,α) diverge to infinity as the parameter µ approaches861

the values − |k|2 for some wavenumber with ĥk 6= 0. One interesting special choice of the eigenmode forcing862

is863

F0 = −dVµ, F1 = −dQµ,1, (6.4)

according to the steady state solution and making use of the steady differences, Vµ,α = Vµ − Vα, Qµ,α =864

Qµ−Qα. Then the singularities in the first terms on the right hand sides of (6.3) in CF0 and CF1 get cancelled865

as
(
Vµ,α + d−1F0

)2
= V 2

α , and
∣∣Qµ,α,1 + d−1F1

∣∣2 = |Qα,1|2 without any divergence of the upper bounds at866

the resonance point at µ = −1. As a result the system gets stabilized due to this eigenmode forcing in the867

special form (6.4). Especially if we take θ = 0 in (6.2) only the total variance is left on the left hand side.868

The total variance in the system with the special forcing (6.4) gets the saturation bound869

U ′2t +
∑
|k|2 |ψ′k,t|2 ≤ min

α>0

[(
V 2
α + d−1σ2

0

)
+ 2

(
α−1 + 1

)(
|Qα,1|2 + d−1σ2

1

)
+ C2

]
. (6.5)

Above on the right hand side of (6.5) the terms related with the steady state solution (Vµ, Qµ,1) get cancelled870

entirely. Thus infinite saturation bound no longer exists at the limit µ → −1 with the additional balance871

forcing (6.4). The total variance Ev gets a finite bound near the boundary as µ goes to −1. On the other872

hand with θ 6= 0, there still exist singularities from the second terms on the right hand sides of (6.3). And873

the bounds blow up as a value of θ goes near 1. This implies that the total energy in mean fluctuations Em874

is still unbounded as µ approaches −1 even though we have finite variances Ev in this case.875
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Fig. 6.1: Saturation bound for statistical mean and variance combined with the eigenmode forcing on the
ground shell in the forms (6.6). The first line is with fully balanced forcing with strength δf = 1 and the
second line is with δf = 0.5. The values for typical flow fields in Figure 2.5 with µ = −1.9,−1.5,−1.1 are
marked with a red cross.

6.1.1 Numerical verification of the saturation bounds with large-scale eigenmode forcing876

In testing the saturation bound (6.2) and (6.5) with the large-scale eigenmode forcing, we still keep random877

white noise forcing only on the mean flow U and ground modes with |k| = 1 with noise amplitude and878

damping rate always in the relation d−1σ2 ≡ σ2
eq = 1; and we use intermediate linear damping rate d = 0.1.879

Especially we introduce the additional forcing in the form based on the steady state solution880

F0 = δf (−dVµ) , F1 = δf (−dQµ,1) . (6.6)

If we take the forcing strength δf = 1 this becomes the case in (6.4) that reduces the singularity at µ = −1;881

and as a comparison we also test the case with δf = 0.5. The statistics from numerical simulations with882

N = 1000 particles are compared with the theoretical saturation bound in Figure 6.1. With θ = 0 for the883

total variance in the system, near the limit µ = −2 there still exists instability with the saturation bound884

goes to infinity due to the non-zero mode ĥ(1,1) and no additional eigenmode forcing on this mode. Near the885

other boundary at µ = −1, the total variance stays in finite bound as predicted in (6.5) due to the balancing886

effect from the eigenmode forcing with δf = 1. In comparison with δf = 0.5, not all the singularity in the887

|k| = 1 modes gets cancelled, thus the total variance increases again near µ = −1 as shown in the second888

row of Figure 6.1. As we use non-zero value of θ the contribution from the statistical mean fluctuation is889

included, and the total statistics rise again near the boundary at µ = −1 with δf = 1. This implies the890

instability in the mean fluctuation away from the original steady state solution (Vµ, Qµ) while the variance891

can be controlled in finite amount. Overall the saturation bounds still offer accurate estimation for the892

maximum amount of energy that the system can achieve due to the eigenmode forcing.893
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6.2 Upper and lower saturation bounds in statistical enstrophy894

As another interesting special case we consider the statistical bounds in the eddy fluctuation modes ω only.895

In the statistics of the relative vorticity ω̂k (compared with the stream functions ψ̂k = − |k|−2 ω̂k) larger896

emphasis is added on fluctuations in smaller scales. Especially if we want to calibrate the total statistics in897

mean and variance based on the enstrophy, E =
ffl 〈
ω2
〉
, only the statistics among the vortical modes are898

included. Notice that with the inclusion of mean flow interactions, the relative enstrophy is not conserved899

in the system and the large scale mean flow U still has a crucial impact on the total statistical structure900

by transferring energy between different scales [17]. In this subsection we derive the statistical bounds for901

all the vortical modes based on the enstrophy E . With no concern about the fluctuations in the large-scale902

mean flow, we can develop a lower bound on the total statistical enstrophy as well as the upper bound903

as before. Nevertheless the same strategy is also valid for the total kinetic energy E used in the previous904

discussions.905

Now we come back to the case depending on initial statistics with no external forcing and dissipation906

as in Section 4. Then the total statistical enstrophy E =
∑

1≤|k|≤Λ |ω̄k|2 + |ω′k|2 can be written according907

to the energy in the mean fluctuation and the variance in each model in the truncated system. Again the908

total statistical energy conservation (4.8) relates the statistics in the initial time with total energy in the909

later evolutions910

Estat
α (t) = α

[(
Vµ,α + Ū

)2
+ U ′2

]
+
∑(

1 + α |k|−2
) [
|Qµ,α,k + ω̄k|2 + |ω′k|2

]
= Estat

α (0) .

In fact the equality above is valid for all the values of α, but the positive-definite condition for Estat
α might911

be violated when α < 0. Previously we search among the solutions with α > 0 so that Estat
α keeps positive912

definite. Now instead only the vortical modes ω̂k are concerned so that we can extend to two parameter913

regimes α > 0 and −1 < α < 0. In these two regimes still the coefficients before the small scale modes ωk are914

all kept positive, 1+α |k|−2 > 0 for all wavenumbers k. Therefore we find the bounds for the total statistical915

energy conservation in statistical mean and variance among the vortical modes from two directions916

∑(
1 + α |k|−2

) [
|Qµ,α,k + ω̄k,t|2 + |ω′k,t|2

]
≤ Estat

α (0) , α > 0,∑(
1 + α |k|−2

) [
|Qµ,α,k + ω̄k,t|2 + |ω′k,t|2

]
≥ Estat

α (0) , −1 < α < 0.

(6.7)

Above the first row in (6.7) is valid for α > 0 and the second row is for −1 < α < 0 since the sign in the917

large scale flow statistics α
〈
U2
〉
switches in the two regimes. On the right hand side the initial statistics918

Estat
α (0) still contain both information form the large scale mean flow U and all the other vortical modes ω919

from the initial configuration of the ensemble920

Estat
α (0) = α

[
V 2
µ,α + σ2

U,0

]
+
∑(

1 + α |k|−2
) [
|Qµ,α,k|2 + σ2

k,0

]
.
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In this way by focusing on the statistical energy in all the vortical modes only excluding the mean flow921

U (and the statistics in the mean flow can be estimated from the saturation bounds in Section 4), we922

get the estimations of upper and lower bounds through (6.7). One final issue in the statistical mean part923

|Qµ,α,k + ω̄k,t|, we need to separate the statistics in mean fluctuation from the steady state solution Qµ by924

applying Cauchy’s inequality once again to get the upper and lower bounds so that925

(
1− ε−1

)
|Qµ,α,k|2 + (1− ε) |ω̄k,t|2 ≤ |Qµ,α,k + ω̄k,t|2 ≤

(
1 + ε−1

)
|Qµ,α,k|2 + (1 + ε) |ω̄k,t|2 ,

for any ε > 0. At last with α > −1 the coefficients in front of each mode are all positive, 1 + α |k|−2 > 0,926

and especially we can find the bounds in the coefficients 1+α |k|−2 ≥ 1+αΛ−2 for α > 0 and 1+α |k|−2 ≤927

1+αΛ−2 for −1 < α < 0, with |k| ≤ Λ the maximum truncation in the wavenumber. Combining everything928

together and following the same steps as in Section 4, the saturation bounds in the total statistical enstrophy929

can be developed as a combination in the statistical mean fluctuation and total variance according to the930

steady state with parameter µ931 ∑
(1− ε) |ω̄k|2 + |ω′k|

2 ≤ CUµ ,∑
(1 + ε) |ω̄k|2 + |ω′k|

2 ≥ CLµ .
(6.8)

Above CUµ , CLµ are the upper and lower saturation bounds and ε > 0 is the weighting parameter controlling932

the statistical mean state. The upper bound is through the minimization of all α > 0 based on the first row933

of (6.7) and the lower bound is through the maximization of all −1 < α < 0 on the second row,934

CUµ = min
α>0

V 2
µ,α + σ2

U,0

α−1 + Λ−2
+
∑ 1 + α |k|−2

1 + αΛ−2

(
ε−1 |Qµ,α,k|2 + σ2

k,0

)
,

CLµ = max
−1<α<0

V 2
µ,α + σ2

U,0

α−1 + Λ−2
+
∑ 1 + α |k|−2

1 + αΛ−2

(
−ε−1 |Qµ,α,k|2 + σ2

k,0

)
.

Again unfortunately we cannot reach ε = 0 in the above estimations due to the term ε−1 in the saturation935

bounds. It is important to notice that on the right hand side of the upper bound CUµ every component is936

positive; while in the lower bound CLµ there is a negative term related with |Qµ,α,k|. Therefore the lower937

bound could become negative in value then has no control of the minimum amount of the statistical energy.938

Still as we will see in the numerical simulations next, in many situations a positive lower bound CLµ can be939

achieved thus it can serve as a tight estimation for the total statistical enstrophy in the system from the940

upper and lower estimation.941

6.2.1 Numerical verification of the upper and lower saturation bounds in statistical enstrophy942

Finally we illustrate the upper and lower saturation bounds (6.8) in the total statistical enstrophy through943

numerical simulations. In this case without external forcing and damping the final statistics are again944

dependent on the initial statistical setup. As in the tests in Section 4 we assume no bias in the initial mean,945

Ū0 = 0, ω̄0 = 0, from the steady state solution (Vµ, Qµ); and the initial ensemble variance is added to the946
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Fig. 6.2: Statistical saturation bounds compared with numerical simulations for total statistical enstrophy
E =

ffl 〈
ω2
〉
in regimes −2 < µ < −1 and −1 < µ < 0. We choose ε = 0.5 in the upper and lower bounds

CUµ , C
L
µ .

stable small scale modes this time with amplitudes947

σk = σeq

(
1 + µ |k|−2

)−1
, if 1 + µ |k|−2 > 0.

The noise amplitudes σk are determined according to the equilibrium invariant measure (2.6) in the stable948

regime. Here we test the unstable regime with µ < 0. Thus there exists inverse cascades of the statistical949

energy to the large scales due to nonlinear interactions. In this setup of the initial statistics the contribution950

from the random noise is larger compared with the negative component ε−1 |Qµ,α,k|2 in the lower bound951

CLµ so that it is easier to find a positive lower bound. Furthermore we use the single-mode topography952

h = H (sinx+ cosx) without smaller scale structures.953

In Figure 6.2 we compare the upper and lower saturation bounds in total enstrophy with numerical954

simulations among test regimes −2 < µ < −1 and −1 < µ < 0. We choose ε = 0.5 in (6.8) for the tests, so955

0.5Em + Ev is bounded from the upper side with CUµ and 1.5Em + Ev is bounded from the lower side with956

CLµ . Notice due to numerical dissipation in the system, the numerical results may become smaller than the957

real total statistics in the system with no explicit damping and forcing. First an extremely tight bound from958

upper and lower side can be achieved near µ = −2. The total statistical energy in enstrophy is constrained959

inside the small band predicted by the saturation bounds in both directions. Among a wide range of values960

away from the singular points µ = −2,−1, the saturation bounds offer good and tight estimates from above961

and below, setting a general accurate prediction for the maximum and minimum amount of energy the962

system can achieve according to different reference states with µ. At last the lower bound goes to negative963

values at the resonance point µ = −1 thus cannot offer a good estimation from below. But still the upper964

bound gives an accurate maximum total statistics bound in the enstrophy in both regimes.965
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7 Summary966

In this paper, we developed rigorous statistical bounds for the saturation of instabilities about fluctuations967

in statistical mean and variance in the truncated barotropic equations over topography. Different from the968

deterministic nonlinear stability [6,3,17] that tracks the development of perturbations in time along one969

trajectory realization of the turbulent flow solutions, the statistical stability in uncertainty quantification970

takes into account the time evolution of both statistical mean fluctuation and variance from an ensemble971

representation. The statistical description about the system can offer a more comprehensive characterization972

about the nonlinear instabilities in ensemble statistics rather than only a pointwise quantification about973

the fluctuations in time around the steady state attractor. Direct numerical simulations as well as the974

transient statistical instability analysis about the linearized covariance equation (in Appendix A) reveal975

strong turbulent and unstable phenomena in the topographic barotropic flows, such as changing directions976

of the westward to eastward zonal jets, in general among a wide range of parameter regimes.977

The statistical stability analysis is based on the statistical energy conservation principle [16,18,17] about978

the pseudo-energy in the fluctuation equations of the barotropic turbulence about steady state basic flows.979

The steady state solutions can be categorized into a statistically stable regime where the total statistical980

energy is positive-definite with a direct upper bound; and a statistically unstable regime where only a slaving981

principle for relations between statistical energy between small and large scale modes is available [17]. The982

focus is on finding a uniform saturation bound especially among the statistically unstable regimes. Using the983

idea in the saturation of deterministic instability from [29], we derive the statistical saturation bounds for984

both statistical mean fluctuation and variance in the unstable regimes by referring to a class of statistically985

stable states with explicit statistical upper bounds due to statistical energy conservation. The saturation986

bounds then can be achieved by minimization among all the bounds from the stable solutions. Typically two987

different types of uncertainties are discussed: the first case considers the dependence on the initial ensemble988

mean bias and the ensemble variance for a system without external forcing and dissipation; the second989

case instead includes Ekman damping and additional deterministic and random white noise forcing to the990

system and investigates the saturation bounds in the statistical equilibrium. With simple restrictions on the991

structure of the deterministic forcing, the saturation bounds in the two situations are developed under a992

uniform framework based on the statistical energy conservation of fluctuations. As some further applications993

of the general statistical stability analysis method, we also discuss special saturation bounds with the effect994

of large-scale eigenmode forcing where the instability in the total variance at the largest scale mode can be995

suppressed with proper choice of the forcing; and with the upper and lower bounds in the total statistical996

enstrophy for the statistics in small scale eddies to offer a tight constraint for the statistical variability997

from both sides. Overall the theoretical saturation bounds offer accurate estimation about the maximum998

statistical fluctuations in all the test regimes. At last, the extension of the present statistical bounds to999

more general systems for turbulence on the sphere or multilayer models with baroclinic instability [15,26,1000

17,9] creates additional challenges in future works.1001
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A Transient Statistical Instability of the Barotropic System with Topography1005

In this appendix we illustrate the transient statistical instability existing generally in the topographic barotropic flows from1006

the linearized statistical equations. It can be seen that the system contains strong internal growth of uncertainty among1007

a wide parameter regimes despite the saturated statistical stability bounds achieved in the main text. In the transient1008

statistical stability analysis, we calculate the maximum growth rate in the covariance equation near a statistically steady1009

state solution. The positive growth rate characterizes the increase in uncertainty represented by the ensemble variance.1010

Typically this can illustrate the exponential growth of the ensemble ‘spread’ in the transient state with a Gaussian initial1011

distribution assigned to the group of particles.1012

In the barotropic flow with topography, the instability is mainly due to the energy transfer between the large-scale flow1013

U and the small-scale eddies ω. For simplicity in analysis it is useful to consider the layered topographic modes [17] only1014

along x-direction1015

h =
N∑

k=−N
ĥke

ikx, ω =
N∑

k=−N
ω̂ke

ikx.

The above layered modes with wavenumbers k = (k, 0) form a closed system. The quadratic nonlinear interactions in (2.7)1016

between small-scale layered modes, ∇⊥ψ · ∇ω and ∇⊥Ψ · ∇ (ω − µψ), are eliminated since all the wavenumbers are along1017

the same direction. This simplification enables us to focus on the interactions between the large mean flow and small scale1018

modes due to topographic stress and beta-effect. Therefore the original fluctuation equation can be effectively simplified in1019

the spectral domain as1020

dω̂k

dt
= iβ

µ+ k2

µk
ω̂k − i

µk

µ+ k2
ĥkU (t)− ikω̂kU (t) ,

dU

dt
=

N∑
k=−N

ĥ∗k
ik
ω̂k.

(A.1)

Notice that the state variables (U, ω) in (A.1) are already the fluctuation components about the steady state solution1021

(Vµ, Qµ) defined in (2.4). The nonlinear coupling between the mean flow and vortical modes is from the last term in the1022

first equation. The chaotic dynamics with deterministic instability in the layered model is discussed in Chapter 5 of [17].1023

Next we consider the statistical growth rate in the transient state from an Gaussian initial distribution due to the instability1024

from topography using the layered model (A.1).1025

A.1 Transient statistical instability in the layered model1026

We investigate the statistical instability from the statistical formulation of the layered system (A.1), where no nonlinear1027

interactions between small scale modes are included. Thus the only source of instability is from the interaction between1028

large and small scales due to the topographic stress h. For a better formulation of the linearized system, we decompose the1029

complex spectral modes into the real and imaginary part1030

ω̂k = ak + ibk, ĥk = hrk + ihik, k = 1, · · · , N,
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with ω̂−k = ω̂∗k, ĥ−k = ĥ∗k. Thus the state variables of interest form the vector u = (a1, b1, · · · , aN , bN , U)T of length1031

2N + 1. From the layered equation (A.1) the deterministic dynamics of each wavenumber k can be written as1032

dak

dt
= −β

µ+ k2

µk
bk +

µk

µ+ k2
hikU + kbkU,

dbk

dt
= β

µ+ k2

µk
ak −

µk

µ+ k2
hrkU − kakU, (A.2)

dU

dt
= 2

N∑
k=1

k−1
(
hrkbk − h

i
kak

)
.

The small scale spectral modes (ak, bk) are decoupled with each other in (A.2), while the mean flow U combines all the1033

feedbacks from small scales through the topographic stress. The only nonlinearity of the above system comes from the mean1034

flow and vortical modes interactions, (akU, bkU).1035

To consider the statistical evolution of uncertainty in the system (A.2), it is useful to derive the dynamical equation of1036

the covariance matrix R =
〈
u′u′T

〉
for fluctuations u′ away from a statistically steady mean state ūk =

(
āk, b̄k, Ū

)
. The1037

exponential growth rate of the linearized covariance R illustrates how the uncertainty from the initial data grows due to1038

the instability in the system; and the statistical mean state is the fixed point that a steady state solution can be reached.1039

The linearized part of the covariance dynamics for R can be written abstractly as1040

dR

dt
= LūR+RLTū + h.o.t., R = RT =



. . .
...

a′2k a′kb
′
k

b′ka
′
k b′2k

· · ·
a′kU

′

b′kU
′

...
. . .

...

· · · U ′a′k U ′b
′
k
· · · U ′2


(2N+1)×(2N+1)

.

Above h.o.t. represents the third-order moment feedbacks to the covariance (see details as in [19,20]). In the linear statistical1041

stability analysis, we assume a Gaussian distribution in the initial ensemble so the third-order moments are zero initially,1042

and observe the growth in the covariance matrix in the transient state. Thus the effects of higher order moments are small in1043

the beginning time. The linearized coefficient Lū related with the statistical mean state ū can be written in a block-diagonal1044

structure in the small scale modes1045

Lū =



. . . 0
...

0 −β µ+k2

µk
+ kŪ

β µ+k2

µk
− kŪ 0

· · ·
µk
µ+k2

hik + kb̄k

− µk
µ+k2

hrk − kāk

0
...

. . .
...

· · · −2k−1hik 2k−1hrk · · · 0


(2N+1)×(2N+1)

. (A.3)

Therefore the linear instability can be characterized by the positive eigenvalues of the linearized coefficient matrix Lū.1046

The positive eigenvalues illustrate the exponential growth rate of the uncertainty in covariance from the initial Gaussian1047

ensemble around the presumed steady state statistical mean ū =
(
āk, b̄k, Ū

)
(a relation in the mean states is proposed next1048

based on the steady state mean equations). Large growth rate implies that the growing uncertainty in variances may drive1049

the system to diverge from the original statistical mean ū. Especially if we set zero mean state āk = b̄k = Ū = 0, the1050

eigenvalues of the above matrix Lū are the same with the local Lyapunov exponents of the original linearized system (A.2)1051

that characterize the separation rate of two trajectories with close initial states.1052
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A.1.1 Transient growth rate in single mode interaction1053

We begin with the simple setup that there is one single non-zero topographic mode ĥk and small scale mode (ak, bk)1054

interacting with the mean flow U . Then all the other modes (al, bl) with l 6= k remain zero for all the time from the1055

decoupled dynamics in (A.2) (see Chapter 5 of [17]). Therefore the linearized coefficient matrix Lū,k becomes just a 3× 31056

matrix1057

Lū,k =


0 −β µ+k2

µk
+ kŪ µk

µ+k2
hik + kb̄k

β µ+k2

µk
− kŪ 0 − µk

µ+k2
hrk − kāk

−2k−1hik 2k−1hrk 0

 .
Furthermore, we consider a special form of topography with only non-zero imaginary part1058

hrk ≡ 0, hik = H ⇒ āk ≡ 0, b̄k =

µk
µ+k2

Ū

β
µ
µ+k2

k
− kŪ

H.

The coefficient matrix Lū,k first has one zero eigenvalue λ = 0, and the other two eigenvalues can be solved by1059

λ2 = −
(
β

µ

k2 + µ

k
− kŪ

)2

− 2H

(
µ

k2 + µ
H + b̄k

)
= 2H2

[
k2Ū/β −

(
1 + µ−1k2

)]−1 −
(
β

µ

k2 + µ

k
− kŪ

)2

.

(A.4)

Statistical instability takes place when the right hand side above is positive. We can first find an immediate result that a1060

necessary condition for the existence of linear instability occurs when1061

k2Ū/β −
(
1 + µ−1k2

)
> 0 ⇔ Ū + Vµ > βk−2,

in the northern hemisphere β > 0. This shows a lower bound for the total mean flow Ū + Vµ to induce instability. The1062

growth rate with single mode interaction will also be illustrated through numerical results next.1063

As one specific example, we consider the case with zero steady mean state, āk = b̄k = Ū = 0. The eigenvalues (Lyapunov1064

exponents) in (A.4) can be simplified as1065

λ2 = −
2H2

1 + µ−1k2
− β2

(
k

µ
+

1

k

)2

.

Explicitly we can calculate the regime of linear instability among the values of1066

−k2 < µ < −

(2H2

β2

) 1
3

k−4/3 + k−2

−1

≡ µc. (A.5)

The growth rate λ→∞ as µ→ −k2; and the growth rate λ→ 0 as µ→ µc. Obviously the beta-effect works as a stabilizing1067

effect so that larger value of β makes smaller regime of instability. On the other hand, the larger values of the topographic1068

strength H will induce stronger instability into the system when the system becomes unstable. (A.5) is consistent with the1069

deterministic linear instability discussed in Chapter 5 of [17].1070

A.1.2 Relations in the statistical steady mean state1071

Here we propose a special set of values in the statistical mean
(
āk, b̄k, Ū

)
for calculating the transient growth rate from1072

the steady state solution of the mean equations. The statistical mean dynamics can be derived by taking ensemble average1073
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about the original equations (A.2) so that1074

dāk

dt
= −β

µ+ k2

µk
b̄k +

µk

µ+ k2
hikŪ + kb̄kŪ + kb′kU

′,

db̄k

dt
= β

µ+ k2

µk
āk −

µk

µ+ k2
hrkŪ − kākŪ − ka′kU ′,

dŪ

dt
= 2

N∑
k=1

k−1
(
hrk b̄k − h

i
kāk

)
.

In statistical steady state, the time derivatives on the left hand side vanish. Especially, we assume a statistical steady state1075

under the homogeneous assumption that there is no cross-covariance in the steady state and the mean flow dynamics vanish1076

at each mode1077

hikāk = hrk b̄k, a′kU
′ = b′kU

′ = 0,

which can also be guaranteed automatically from the initial setup. The above relations assume a homogeneous steady state1078

without cross-covariances between modes in different scales. With the assumptions, the statistical mean of each small-scale1079

mode can be determined by the large-scale flow mean Ū ,1080

āk =

µk
µ+k2

Ū

β
µ
µ+k2

k
− kŪ

hrk, b̄k =

µk
µ+k2

Ū

β
µ
µ+k2

k
− kŪ

hik, (A.6)

The group of steady state means (A.6) from the homogeneous assumption may not be unique. We adopt this kind of1081

solutions to illustrate the instability features of the system as a typical example.1082

A.2 Numerical illustration of the statistical instability with exponential growth rate1083

In this part, we further illustrate the transient statistical instability analyzed above with simple numerical results. We1084

compare the exponential growth rates from both the single topography interaction and the full linearized coefficient matrix1085

Lū in (A.3) where mean flow interaction with multiple small scale spectral modes is included.1086

A.2.1 Transient growth rate with zero mean fluctuation1087

First we consider the case with zero steady mean fluctuation, āk = b̄k = Ū = 0. The exponential growth here illustrates the1088

increase in the variance from an initial Gaussian distribution with no bias in the mean. Figure A.1 shows the exponential1089

growth rates from interactions with the leading four wavenumbers k = 1, 2, 3, 4. The layered topographic is taken as1090

ĥk = Hk−2e−iθk in each spectral mode with uniform phase shift θk = π
4
in the same zonal structure as in the main text.1091

In the single mode interaction case, consistent with the analysis result in (A.5), large exponential growth will be induced1092

when the parameter µ reaches the resonance points −k2, and instability vanishes after the critical value µc. Also notice1093

that there exists overlap between the unstable regimes of different wavenumbers.1094

We also compute the maximum eigenvalue directly from the full linearized coefficient matrix (A.3) in the dotted-dashed1095

line in Figure A.1. In this case, the feedbacks to the mean flow from each small scale mode are combined together. Again1096

the growth rate becomes large near the resonance points µ = −k2. And the growth rate gets reduced among the overlapped1097

regimes of different single mode instability. In the regime −1 < µ < 0 interactions with other smaller scale modes has little1098

effect on the final growth rate with single mode interaction. Especially note that the unbounded growth rate is one-sided.1099

Positive growth rate only appear when µ approaches −k2 from the right side, while weaker instability is generated from the1100

left side. Similar phenomena can be observed from the model simulations for statistical instability in the main text.1101

The effect with different values of β in the linear stability is shown in the right panel in Figure A.1. Here we test different1102

values β = 0, 0.1, 0.5, 1, 5. Consistent with the results before, the beta-effect can serve as a stabilizing factor. As the value1103
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Fig. A.1: Transient growth rate from the largest positive eigenvalue of the linearized coefficient matrix in
the covariance equation with β = 1, Ū = 0. The four solid lines are the growth rates from single mode inter-
action with wavenumber k = 1, 2, 3, 4 separately as in (A.4). The dotted-dashed line is from the combined
interaction of the full matrix (A.3) of all first four modes. The right panel shows results with different values
of β = 0, 0.1, 0.5, 1, 5.

of β increases, the size of the unstable regime with a positive growth rate gets reduced, while the entire regime −1 < µ < 01104

is unstable when β = 0.1105

A.2.2 Transient growth rate with non-zero mean fluctuation1106

Further we show the statistical growth rate with non-zero mean state Ū 6= 0. In Figure A.2a, as a further comparison,1107

we show the exponential growth rate of multiple modes interaction with dependence on steady state mean flow value Ū .1108

Compared with the previous case with zero mean state Ū = 0, positive exponential growth rates are also induced in the1109

statistically nonlinear stable regime µ > 0. The various regimes of positive growth rates show the large instability existing1110

with the topographic barotropic flow in the general sense.1111

Further in Figure A.2b, we plot the regimes of unstable growth rates with different steady mean values Ū and parameter1112

µ. As the wavenumber k increases, the unstable regime becomes narrower. As the steady mean state
∣∣Ū ∣∣ increases, the1113

instability reduces and finally vanishes. And especially in regime Ū > 0, there exist two separated regimes for µ > 0 and1114

µ < 0 with positive growth rates. Comparing with the single mode k = 1 case, the unstable regime with positive exponential1115

growth rate gets narrowed down by including multiple small-scale mode interactions. Still the two branches of transient1116

statistical unstable regimes exist.1117
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Fig. A.2: Transient growth rates from the largest positive eigenvalue of the linearized coefficient matrix in
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