
Using Statistical Functionals for Effective Control of Inhomogeneous Complex
Turbulent Dynamical Systems

Andrew J. Majdaa, Di Qia,∗

aDepartment of Mathematics and Center for Atmosphere and Ocean Science, Courant Institute of Mathematical Sciences, New York University,
New York, NY 10012

Abstract

Efficient statistical control strategies are developed for general complex turbulent systems with energy conserving
nonlinearity. Instead of direct control on the high-dimensional turbulent equations concerning a large number of
instabilities, a statistical functional that characterizes the total statistical structure of the complex system is adopted
here as the control object. First the statistical energy equation reduces the control of the complex nonlinear system to a
linear statistical control problem; then the explicit form of the forcing control is recovered through nonlocal inversion
of the optimal control functional using approximate statistical linear response theory for attribution of the feedback.
Through this control strategy with statistical energy conservation, the explicit form of the control forcing is determined
offline only requiring the initial configuration of total statistical energy change and the autocorrelation functions in
the most sensitive modes of the target statistical equilibrium, with no need of knowing the explicit forcing history
and running the complex system. The general framework of the statistical control method can be applied directly
on various scenarios with both homogeneous and inhomogeneous perturbations. The effectiveness of the statistical
control strategy is demonstrated using the Lorenz ’96 system and a turbulent barotropic system with topography and
a large number of instabilities.
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1. Background and Introduction

Control of complex turbulent flows is a general problem that occurs in many areas of science and technology,
for example, in mitigating the effects of climate change and the design of technology in aerodynamic drag reduction
[1, 2, 3]. The problem can be simply stated as: given the initial configuration of the states at time t0, how to characterize
and construct the optimal course of action (control) for driving the dynamical system of interest to approach a desired5

final condition so that a minimum cost function (control cost) can be achieved up to some specific future time T > t0.
The cost function usually consists of a combination of the running time payoff along the controlled trajectory in time
interval (t0,T ), and the terminal state cost at the final control time T constraining the error in the final state. Solving
the control problem in complex turbulent dynamical systems is always challenged by difficulties of large instabilities
and strong nonlinear exchange of energy in different scales [3, 4, 5].10

Dynamic programing offers an important approach to the design of optimal controls by solving a nonlinear PDE
system, i.e. the Hamilton-Jacobi-Bellman (HJB) equations [6, 7]. Given a quadratic cost function in the control
input, the HJB equations can be reduced to a particular PDE system [8, 7]. In solving this HJB PDE directly using
various numerical solvers, the curse of dimensionality appears as one of the major obstacles when the system becomes
genuinely high dimensional [9, 5]. Control of the linearized flow field near a basic mean state is an important and15

well-developed discipline, such as the progress in adaptive control and stabilization of fluid turbulence [3, 10]. On the
other hand, methods for controlling perturbed responses in highly turbulent systems remain a challenging problem due
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to the inherent nonlinearity, high-dimensionality, and time mixing [11, 12, 13]. Most model-based control designs for
nonlinear system are based on the linearization of the evolution equation, then the stabilization of the unstable fixed
point or periodic orbit becomes the central problem [4, 10, 14]. The high dimensional phase space and large number20

of instabilities of the turbulent systems require new effective and efficient control strategies.
In this paper, we discuss an alternative statistical control strategy for inhomogeneous turbulent dynamical systems.

The major goal is to develop an effective control method to drive perturbed statistical solutions of complex turbulent
dynamical system back to the small neighborhood of the original unperturbed target statistical equilibrium state. We
begin with the general setup of turbulent dynamical systems with energy conserving nonlinearity. Instead of deriving25

the HJB PDE of the original system in a high dimensional phase space, the HJB equation is first developed based
on a statistical energy principle where a statistical scalar identity combining the energy in the mean and the total
variance becomes the central object to control. Instability will not appear in this statistical energy equation due
to the symmetry in the nonlinear interactions [15, 16]. Thus the major difficulty in stabilizing many directions of
instability in controlling the original equation is circumvented. The general control strategy is proposed combining30

the total statistical energy principle and the linear response theory based on the framework first developed in [17].
The attractive features in this statistical control method include that: i) only the initial total statistical change in the
mean and variance is required for the statistical control regardless of the formal history of the complex system; ii)
a simple scaler equation for total statistical energy in mean and variance is used to monitor the overall changes in
model statistics so that the control of large dimension of instability need not be considered in any detail; iii) simple35

autocorrelation functions of the target statistical equilibrium alone are used to characterize the model sensitivity to
perturbations in leading order with robust performance, so that the specific control forcing can be determined offline
without the need to run the specific complex system to get the response. In addition, even though the control strategy
is first developed in the regime of small perturbations within the linear response theory, the control skill is confirmed
here from various test cases with even larger perturbation amplitudes.40

With the help of the dynamical equation of the total statistical energy [15], instead of tracking the state variables
in a high dimensional phase space we are able to focus on a scalar system with a linear control problem. The time rate
of change of statistical energy has a tendency to decay subject to only the product of the statistical mean and forcing
control. Then the optimal control forcing is recovered by solving a nonlocal inversion problem with linear response
approximation of the mean state. The linear response operator to predict mean response is fit in a simple linear model45

with assumed diagonal structure, thus simple dynamics for the final control forcing can be developed. Model errors
occur in the statistical control model through leading order approximations in both the statistical energy equation and
the linear response prediction for the mean. In the first stage to illustrate the effectiveness of the method, we use a
simple homogeneous perturbation case where only a scalar control forcing is needed. The simple homogeneous case
enables us to investigate the control performance with different parameter values and different control calibrations to50

achieve a thorough understanding about the statistical control method. In the next stage, we move on to consider a
more general case where inhomogeneous perturbations are involved. The dynamical system in this inhomogeneous
perturbation case is still controlled by the same homogeneous control strategy on the uniform mean state as the
previous case. Thus the same set of equations can be easily applied to the more complicated control scenario. While
several levels of model errors are included in the control model, the robustness of the statistical control procedure55

maintains the high skill in the control performance. In the last stage, we compare some generalizations in the control
of the statistical energy equation where second-order nonlinear effects are taken into account.

For the verification of the statistical control method, we apply the developed strategies first to the Lorenz ’96
system (L-96) [18] with both homogeneous and inhomogeneous perturbations. The L-96 model is a 40-dimensional
prototype model which can generate a wide variety of distinct statistical features from highly non-Gaussian to near-60

Gaussian regimes [19], making it a desirable model to test the control performance under various perturbation scenar-
ios. Then the same framework is applied to geophysical turbulence [12], so that the control procedure is generalized
to the barotropic model with topography. This simple model creates a large-scale mean flow with shifting directions
interacting with the vortical modes through topographic stress, and inhomogeneous equilibrium mean state and forc-
ing due to the topography need to be treated [20]. These two representative test models display many typical features65

of nonlinear non-Gaussian structures with a large number of instabilities that are common in the natural systems that
need to be controlled [16].

The structure of the paper is as follows. In Section 2, a general formulation of the statistical control problem is
stated with a description of the nonlinear dynamical system with energy conservation principle and the two-stage pro-
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cedure of the general control strategy is introduced; then a more detailed derivation of the optimal statistical control70

algorithm is developed. In Section 3 the verification of this control performance is first illustrated in a homoge-
neous framework. The control strategy is generalized to the inhomogeneous perturbed case in Section 4 with more
complicated scenarios. We end this paper with a summary and final discussion in Section 5.

2. General Formulation of the Statistical Control with Statistical Energy Functional

First we describe the general statistical control strategy for a quadratic system with conservative nonlinear dynam-
ics. In particular, the general turbulent dynamical system can be formulated in the abstract form [16] about the state
variables of interest u ∈ RN in a high dimensional phase space

du
dt

= (L + D) u + B (u,u) + F (t) +
∑

k

σk (u, t) Ẇk,t, (2.1)

where L∗ = −L is a skew-symmetric linear operator; D∗ = D is a negative definite symmetric operator; and the75

quadratic operator B (u,u) conserves energy by itself so that u · B (u,u) = 0. For example in climate models, L could
represent the β-effect of Earth’s curvature, D could represent dissipative processes such as surface drag, radiative
damping, viscosity, etc. Besides, the turbulent system is always subject to climate change forcing effects both from
the large-scale deterministic part F, and from the unresolved small-scale stochastic part σk (u, t) Ẇk,t. Especially,
such systems as (2.1) contain many degrees of instabilities due to the internal nonlinear interactions B (u,u) between80

different scales [21, 22], thus the computational cost in directly controlling this system quickly becomes intractable
as the dimensionality increases [7, 4]. It is useful to consider the statistical behavior of the state variables u with
uncertainty, and we are mostly interested in an efficient control of the leading order statistics (such as mean ū and
variance R) near the original statistical steady state

(
ūeq,Req

)
for dynamical systems in the form of (2.1) due to

unknown forcing perturbations based on a proper statistical energy identity [16, 15].85

Importantly the turbulent dynamical systems (2.1) have a general statistical energy principle due to the symmetry
in the nonlinearity, u · B (u,u) = 0, with many applications [16, 19, 21, 20]. For simplicity in exposition, assume
that the damping operator is a constant multiple of the identity, D = −dI, d > 0. Under suitable general assumptions
detailed in [15], the turbulent dynamical system (2.1) satisfies the total statistical energy conservation principle for the
statistical energy functional,

E =
1
2

ū · ū +
1
2

trR, (2.2)

that combines statistics in mean energy and total variance so that the rate of change in the total statistical energy is
directly linked with the change in the first order statistical mean and forcing-dissipation structure

dE
dt

= −2dE + ū · F + Σ, (2.3)

Above ū = 〈u〉 is the statistical mean of the state variables and R = 〈(u − ū) ⊗ (u − ū)〉 is the covariance matrix;
Σ = 1

2
∑N

k=1 σ
2
k is the total effect of random forcing in the system. On the right hand side of the scalar equation (2.3),

besides the uniform damping the forcing is only applied on the mean state ū. This system (2.3) is stable with statistical
identity E served as a statistical Lyapunov function [16]. The advantage of using this total statistical energy equation
in the control problem is that it effectively avoids the inclusion of complex nonlinear interaction effects B (u,u)90

including various internal instability of the turbulent system in the first stage and makes it possible to concentrate on
the central dominant energy mechanism using only the statistical mean state ū, which is easy to estimate with accuracy
in practice.

In the remainder of this section, we offer an overview of the general statistical control strategy based on the total
statistical energy conservation principle (2.3) and linear response theory, which is first introduced in a recent paper95

[17] in a simple setup. We also include the approximations and detailed formulas for the statistical control algorithm
for general inhomogeneous complex turbulent systems.
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2.1. Statistical control of nonlinear system with linearized statistical energy identity

The two major mathematical tools used in the construction of statistical control strategy is the statistical energy
conservation principle for estimating the total statistical fluctuation in the system and linear statistical response theory100

for predicting leading order responses in the statistical mean state [22, 23, 24]. Applying these two mathematical
tools to the original nonlinear complex systems (2.1), we derive the linearized control equation of the statistical
energy fluctuation for the general control problems.

2.1.1. Linearized statistical energy equation about fluctuation
In order to monitor the evolution of perturbed statistics away from the target statistical equilibrium due to external

forcing, we consider the statistical energy fluctuation by separating the statistical equilibrium state Eeq

E′ (t) = E (t) − Eeq, Eeq = (2d)−1
(
ūeq · F̄eq + Σ

)
, (2.4)

where the statistical equilibrium total energy Eeq = 1
2

∣∣∣ūeq
∣∣∣2 + 1

2 trReq and statistical mean state ūeq are assumed from105

the equilibrium invariant measure of the original unperturbed system (2.1). F̄eq,Σ are the effects of deterministic and
stochastic forcing in unperturbed equilibrium. Eeq can be directly calculated from the energy equation (2.3) where the
left hand side vanishes in statistical steady state. Especially in controlling the statistical energy fluctuation E′ via a
deterministic forcing on the mean state, we automatically succeed in controlling the second order variance fluctuation,
δtrR, once the mean state fluctuation δū is controlled to zero (or a small value).110

In general the dynamical system is subject to various kinds of perturbations δF (and the external forcing δF could
be inhomogeneous) on top of the equilibrium forcing F̄eq. We focus on controlling the high dimensional turbulent
system through deterministic control on statistical fluctuations about the equilibrium mean state δū = ū − ūeq. By
subtracting the equilibrium state solution (2.4) from the original statistical energy dynamics (2.3) we get the dynamical
equation for the fluctuation component E′

dE′

dt
= −2dE′ + ū · F −

(
ūeq · F̄eq

)
= −2dE′ + ūeq · δF + F̄eq · δū + δF̄ · δū.

The unperturbed system may also subject to a random forcing effect Σ which will not change the fluctuation component
in E′. In controlling the total fluctuation statistical energy E′ we consider the equation linearized in the leading order
expansion due to perturbations by assuming that the forcing and mean perturbation coupling δF̄ · δū = O

(
δ2

)
is a

higher order term. In addition, with the help of the statistical energy equation, once we have the responses in the
mean perturbation, δū, the responses in the total variance δR = R − Req (and equivalently, the single-point variance115

at each grid point) can be recovered from the total statistical energy (2.2), E = 1
2 |ū|

2 + 1
2 trR. Thus by controlling the

perturbation in the first-order mean state through the statistical energy equation, we are able to control the changes in
the one-point second-order variance at the same time.

In controlling the perturbed dynamics (2.1) according to the scalar statistical dynamics (2.3), introduce a truncated
orthonormal basis {ek}

N
k=1 under suitable choice of inner product. For example, ek could be the effective orthogonal

functions (EOF) containing most of the energy in the equilibrium Req is captured. The equilibrium mean state and
external forcing can be expanded by projection to the basis

ūeq =
∑

k

ūeq,kek, F̄eq =
∑

k

F̄eq,kek. (2.5)

The (deterministic) control for the statistical mean state then can be introduced as one additional vector forcing ~κ (t)
through

δF ≡ ~κ (t) =

M∑
k=1

κk (t) ek,

where the control forcing ~κ (t) applies on the selected first M leading modes, which could also include the most
sensitive directions of the system. In general, κ0 (t) controls the uniform mean state ū = 1

N
∑

j ū j in mode e0, and κk (t)
is for the response in the k-th small scale mode ek. Combining all these formulations, the statistical energy fluctuation
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equation with leading order responses in the mean can be written with respect to the forcing perturbation along the
orthonormal modes {ek}

M
k=1

dE
dt

= −2dE (t) +

M∑
k=1

[
ūeq,k · κk (t) + F̄eq,k · δūk

(
t;~κ

)]
, E (0) = E0. (2.6)

Above and later the primes for the fluctuation components are dropped in the statistical energy fluctuation E′, and
E0 is the initial total statistical energy perturbation to be controlled. δūk

(
t;~κ

)
is the mean response in the k-th mode120

subject to the control forcing ~κ. In the dynamical equation (2.6) we only use leading order responses in order O (δ)
by assuming the external forcing perturbation is kept in small amplitude. Through the various numerical tests shown
later in Section 3 and 4 it can be found that this approximation is actually effective for a wide range of perturbations
even with larger amplitudes.

2.1.2. Linear statistical response for mean state125

In the linearized statistical equation (2.6), the statistical response in the mean state, δū, is related with the explicit
form of the external perturbation (or control) ~κ exerted on the system. The computational expense through direct
number simulation of (2.1) to achieve the mean state will soon become unaffordable as the dimensionality of the
system increases. Alternatively, linear response theory based on the fluctuation-dissipation theorem (FDT) [25, 23,
22, 24] offers a convenient way to estimate the leading order responses in statistics. Specifically, the response in the
leading order mean state, δū, subject to the external forcing ~κ (t) can be estimated using the mean response operator

δūk (t) =

N∑
l=1

ˆ t

0
Rū,kl (t − s) κl (s) ds + O

(
δ2

)
.

Above Rū,kl (t) ≡ Rl
ū (t) ek is called the linear response operator for the contribution of the l-th component of the

forcing κl to the statistical mean state δūk in k-th component, where a linear leading order approximation is valid.
FDT states that the linear response operator can be calculated only requiring information from the target equilibrium
statistics

Rū (t) = 〈u (t) B [u (0)]〉eq , B (u) = −divu
(
wpeq

)
/peq, (2.7)

with δF = w (u) δ f (t). In general the linear response operator is difficult to calculate considering the complicated and
unaccessible equilibrium distribution, and various approximation techniques have been proposed [26, 27, 23, 22].

Especially if we make quasi-Gaussian approximation for the invariant measure of the system in (2.7), that is, set

peq ∝ exp
[
− 1

2

(
u − ueq

)T
R−1

eq

(
u − ueq

)]
and w (u) = el for each perturbed direction, the linear response operator for

the mean becomes a combination of time-lagged correlation functions [22, 23]

Rū,kl (t) =
〈(

uk (t + s) − ūk,eq

)
el · R−1

eq

(
u (s) − ūeq

)〉
. (2.8)

As shown in the quasi-Gaussian approximation (2.8), the linear response operator Rū (t) should include various feed-
backs from different scales due to nonlinear interactions between modes [26, 27]. While they can have model errors
at long time response, judicious simple linear regression models [23, 28, 29] for approximating the mean statistical130

response are an attractive option here.
In practice if we choose EOFs as the orthonormal basis {ek}, the equilibrium covariance Req = diag

{
req,1, · · · , req,N

}
in (2.8) is diagonalized under the EOF basis, where req,k is the equilibrium variance for the uncertain coefficient of
mode ek and cross-covariances between different mode vanish. We ignore lagged cross-correlations in this EOF basis.
Then the N-by-N linear response operator Rū (t) can also be built as a diagonal matrix with diagonal components as
scalar autocorrelations in each mode

Rū (t) = diag
{
r1

ū (t) , · · · , rN
ū (t)

}
, N × N diagonal response matrix, (2.9)

with the response operator in k-th mode rk
ū (t) = r−1

eq,k 〈uk (t) uk (0)〉. With the simplification in (2.9) the mean responses
in mode ek can be calculated just based on the autocorrelation function of the coefficient on the k-th mode

δūk (t) ≡ Lū,k (t) =

ˆ t

0
Rū,k (t − s) κk (s) ds, Rū,k (t) = 〈uk (t) uk (0)〉 /req,k. (2.10)
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In this way, the linear response in each direction δūk gets decoupled with each other only related with the forcing
on the corresponding mode κk. This enables us to solve the optimal control forcing κk (t) componentwise with much
efficiency as we can see next. In the special case when diagonal linear Gaussian models are used to approximate the
system, this above linear response operator approximation becomes exact for predicting the responses in mean state.135

Further we assume no additional random noise perturbation adding on the fluctuation equation in the first stage purely
for simplicity. Similar response operators for random perturbations can also be derived in a similar way as in (2.7).

Efficient statistical control strategy from leading order statistical energy fluctuation and mean response
Using the linearization in both the statistical energy equation and the leading order mean response, the control

problem of the statistical energy fluctuation becomes linear involving equilibrium statistics
(
ūeq, F̄eq

)
and autocorre-

lation functions Rū (t) representing the memory in the state variable. The task then is to find proper formula for the
ideal optimal control forcing ~κ (t) on the mean state to drive the perturbed energy fluctuation E back to zero (or close
to zero) efficiently with minimum cost. Combining both the approximations in (2.6) and (2.10), the statistical control
equation in leading order responses can be rewritten from the original statistical dynamics as

dE
dt

= −2dE (t) +

M∑
k=1

[
ūeq,k · κk (t) + F̄eq,k ·

ˆ t

0
Rū,k (t − s) κk (s) ds

]
, E (0) = E0. (2.11)

The control system (2.11) is linear but involves nonlinear statistical functionals as coefficient from the target unper-
turbed equilibrium measure. Note that the linear response operator Rk introduces non-Markovian forcing into the140

system through the convolution, thus the history in the forcing control ~κ (t) also matters. Linearization errors from
the above system come from i) the higher-order mean-forcing interaction, δū · δF; and ii) the higher-order corrections
for the linear response of the mean, δū. The statistical control on the nontrivial system (2.1) through (2.11) only
requires initial statistical data E (0) = E0 that can be determined through observations or perfect and low-order model
simulations, and the autocorrelation functions Rū only on the most sensitive perturbed directions [22, 23].145

2.2. Effective statistical control strategy in two steps

Here we derive the formulas for solving the general statistical control problem with the energy fluctuation identity
E (t). For controlling the statistical energy through the equation, we introduce a local statistical control C (t) as a
nonlocal functional of the scalar control forcing ~κ (t) containing all the perturbed feedbacks in the statistical energy
fluctuation in (2.11). The statistical control C (t) is defined from the statistical feedbacks in each controlled direction
as

C (t) =

M∑
k=1

Ck =

M∑
k=1

[
ūeq,k · κk (t) + F̄eq,k ·

ˆ t

0
Rū,k (t − s) κk (s) ds

]
. (2.12)

In this way, we need just focus on this statistical control operator C (t) for total statistical energy E (t) in the first step
regardless of the explicit forms of the mean state and specific forcing perturbations or exact equilibrium statistics.
Therefore the general statistical control procedure can be decomposed into the following two consecutive steps:

i) find the optimal statistical control strategy for C (t) through dynamic programming in the total statistical energy150

equation (2.11);

ii) invert the (nonlocal) functional C (t) to get the explicit forcing control strategy for κ (t) using the leading order
mean responses in (2.12).

2.2.1. Optimal control on statistical energy identity
In the first step of constructing statistical control C (t), the linear statistical control problem can be solved directly

following dynamic programming [6, 9] by solving the Hamilton-Jacobi-Bellman (HJB) equation. In this linear scalar
control problem, the statistical control C (t) can be purely determined by the dissipation of the original dynamical
system, and the HJB equation becomes the Riccati equation [8, 17]. We first construct the linear statistical control
problem by proposing a proper cost function to optimize. With the statistical control C (t) =

∑
k Ck defined with a
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combination of the contributions from each mode ek in (2.12), the control system becomes the linear scalar dynamical
equation between time interval [t,T ]

dE
ds

= −2dE (s) +
∑

k

Ck (s) , E (t) = x, t ≤ s ≤ T, (2.13)

regardless of the specific structure in the functional C (t). We attempt to minimize the cost function as a quadratic
combination of the energy fluctuation E and control functional in each mode Ck

Fα [Ck (·)] ≡
ˆ T

t

E2 (s) +

M∑
k=1

αkC
2
k (s)

 ds + kT E2 (T ) , (2.14)

so that the optimal control solution C∗ (t) is reached at the minimum value of the cost function minC Fα [C (·)]. The155

cost function (2.14) is defined in the simplest form as a quadratic combination about the statistical energy E (t) and
the statistical control C (t). The weighting parameter αk > 0 is introduced to add a balancing factor between the
control efficiency (due to E) and the control expense (due to Ck). Larger value of αk adds more constraint on the
control component so weaker control is introduced to the direction ek. Besides, the additional parameter kT sets the
importance weight of the end value of the total energy E (T ). It calibrates how large error is concerned at the final160

controlled state of the energy fluctuation. It is useful when we want fast restoration in a short control time.
We derive the optimal control solution C∗ (t) for control time window [0,T ] with cost functions Fα in (2.14)

depending on parameter values {αk, kT }. It is known that the control problem with a quadratic cost function in the
linear system (2.13) can be solved by the HJB equation through dynamic programing [8, 7]. The optimal value
function then can be introduced as the minimized cost function

v (x, t) = min
C
Fα [C (·)] , v (x,T ) = kT E2 (T ) .

In the above optimal value function v (x, t), t is the initial time when the control starts, and x is the initial perturbation
in the total statistical energy x = E (t). The final time T can be determined as the time when the final fluctuation
energy is small enough, E (T ) � 1. Assuming the value function v ∈ C1, the value function v (x, t) satisfies the HJB
equation

vt (x, t) + max
c1,··· ,ck

∑
k

(
αkc2

k + vxck

)
+

(
x2 − 2dxvx

)
= 0, 0 ≤ t < T,

v (x,T ) = kT x2.

(2.15)

The form of the solution v (x, t) can be guessed also in a quadratic form due to the linear dynamics (2.13) and the
quadratic cost function, so suppose

v (x, t) ≡ K (t) x2.

After simple calculation by substituting the quadratic form of v (x, t) back into (2.15), the solution of the above HJB
equation can be found by solving a Riccati equation for K (t), that is,

dK
dt

=
∑

k

α−1
k K2 + 4dK − 1, 0 ≤ t < T,

K (T ) = kT .

(2.16)

This is a backward equation in time about K (t). With the solution of the Riccati equation K (t), the optimal feedback
control C∗k (t) together with the optimal control statistical equation for E∗ can be found by the maximum value from
the second term of (2.15)

C∗k (t) = − α−1
k K (t) E∗ (t) , k = 1, · · · ,M,

dE∗

dt
= −

2d +
∑

k

α−1
k K (t)

 E∗ (t) ,
(2.17)
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with the initial condition of fluctuation energy E∗ (0) = E0. Above −α−1
k K (t) E∗ (t) defines the feedback control

due to the minimum cost constraint. It works as one additional damping effect that drives the total statistical energy
fluctuation E (t) back to zero in an efficient way.

As a final comment, in the cost function Fα different parameters αk are introduced for each controlled direction
ek. Usually the more energetic modes become more sensitive to external perturbations according longer mixing time
in the autocorrelations and linear response, thus smaller penalty is added in the more energetic directions in the cost
function Fα. Therefore we may propose a further simplification for the general control weights so that,

αk = αw−1
k , wk =

req,k∑
k req,k

. (2.18)

where α > 0 becomes the single weighting parameter to be determined and the difference between the controlled165

modes are determined from the equilibrium variance req. In this way, more energetic modes will be assigned with
stronger control so that balanced control is introduced along each direction. As we will see in Section 4, this choice
of model parameters makes the general control Riccati equation for K and energy equation E (2.16) and (2.17) stay
exactly the same form as the special homogeneous case in (3.3) and (3.2). It will offer convenience for the numerical
implementations in a consistent framework. We will show more of the solution features in the optimal statistical170

solution with examples in Section 3.1. Of course, if (economic) cost considerations matter the general form can be
easily adopted below.

2.2.2. Attribution of the optimal statistical control
Next assume that we have solved the optimal statistical control Ck (t) in each direction ek through controlling the

general statistical energy identity. The second step of the problem is about finding the optimal control forcing κk (t)
to apply on the corresponding perturbed mode ek through the nonlinear inversion about the implicit relation in (2.12).
In fact, we can always consider each component Ck in (2.12) separately in this step of statistical control attribution
since each Ck has been recovered in (2.17) in the explicit formula, and the linear response in mean is decoupled with
forcing perturbation κk in each direction thanks to the diagonalized autocorrelations in (2.9). Then the final solution
~κ (t) =

∑
k κkek can be combined with all the control feedbacks that are solved individually. In addition, the coefficients

by projection to mode ek could take complex values depending on the choice of a complex valued orthonormal basis
(for example, the Fourier basis in periodic boundary condition). Therefore the attribution of the optimal statistical
control becomes the non-Markovian inversion problem in each of the controlled directions ek due to convolution with
the linear response factor Rū including memories

C (t) = ūeqκ
∗ (t) + F̄∗eqLū (t) ≡ ūeqκ

∗ (t) + F̄∗eq

ˆ t

0
Rū (t − s) κ (s) ds, (2.19)

where the inner-product in (2.12) needs to include complex conjugate of the coefficients all decomposed into real and
imaginary parts for a general complex case

ūeq = ūr + iūi, F̄eq = F̄r + iF̄ i, κ (t) = κr (t) + iκi (t) .

Here and below in this subsection we neglect the subscript k for the statistical control in each mode ek for simplicity.
In an alternative way in representing the complex inner-product in (2.19), we can write the real and imaginary part
separately therefore the control relation can be rewritten as as a 2 × 2 system with matrix coefficients (U,Γ) from the
equilibrium statistics, that is,

C (t) =

[
Cr

Ci

]
= UK (t) + ΓLū (t;K) , K (t) =

[
κr

κi

]
, U =

[
ūr ūi

ūi −ūr

]
, Γ =

[
F̄r F̄ i

−F̄ i F̄r

]
. (2.20)

Besides Lū (t;K) =
(
δūr, δūi

)T
is the linear response in the mean state that in general couples the control in real and

imaginary component K =
(
κr, κi

)T
.175

The optimal statistical control C∗ (t) as a functional of the optimal controlled energy E∗ (t) by statistical control of
the energy equation can be solved explicitly through the dynamical equation (2.17)

C∗ (t) = −α−1K (t) E∗ (t) , E∗ (t) = exp
(
−2dt − α̃−1

ˆ t

0
K (s) ds

)
E0,
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with α̃−1 ≡
∑

k α
−1
k . The time differentiation of C∗ (t) can be expressed using the dynamics of the Riccati equation

(3.3) and proper rearrangement of the equations

dC∗

dt
= −α−1K̇E∗ − α−1K (t) E∗ (t)

(
−2d − α̃−1K (t)

)
=

(
2d − K−1 (t)

)
C∗.

Above the first equality uses the explicit solution of E∗ (t) and the second equality is through the Riccati equation
(3.3). On the other hand, to find the dynamics to solve κ (t), by taking time derivative of the control relation from
definition (2.20) we get the dynamics that relates the statistical control Ċ and the final control forcing K̇

dC
dt

= U
dK
dt

+ Γ
dLū

dt
= UK̇ (t) + ΓK (t) + Γ

ˆ t

0
R′ū (t − s)K (s) ds.

Above the time derivative of the autocorrelation function R′ū is also included.
Combining the above two relations for the time derivatives about the optimal statistical control C∗ (t), the control

forcing solution should follow the dynamical equation for real and imaginary component(
2d − K−1 (t)

)
C = Ċ = UK̇ + ΓK (t) + Γ

ˆ t

0
R′ū (t − s)K (s) ds

⇒
dK
dt

+ U−1Γ

(
K (t) +

ˆ t

0
R′ū (t − s)K (s) ds

)
− U−1

(
2d − K−1 (t)

)
C = 0,

(2.21)

where K =
(
κr, κi

)T
is a 2-vector. Notice that if we set the imaginary component in the above equation (2.21) to be

zero, Ci = 0, ūi = 0, F̄ i = 0, the matrix representation (2.20) is still valid by restricting to real values with the scalar
dynamics for real part only recovered

dκ̇
dt

+ F̄eq/ūeq

(
κ (t) +

ˆ t

0
R′ū (t − s) κ (s) ds

)
=

(
2d − K−1 (t)

)
C (t) /ūeq.

Still one additional difficulty is that the derivative of autocorrelation R′ū is usually unaccessible. Thus it required to
find some proper approximation for the autocorrelation function Rū so that the essential structures can be captured.

Linear regression fitting of the autocorrelation function. In solving the dynamical equation for K (t) (2.21), the key
point is to propose proper form of the linear response operator Rū. We consider simple low-order in time linear
regression models [23, 28, 29] to approximate the autocorrelation function Rū in (2.10). In this way, the responses due
to the forcing in each direction ek get decoupled with each other. The autocorrelation simply becomes an exponential
function using a linear regression model to approximate the autocorrelation Rū (t) in each perturbed direction,

RM
ū (t) = exp (−γMt) = exp [− (dM + iωM) t] . (2.22)

The imaginary parameter ωM is used to approximate the oscillatary structure that is common in autocorrelations. In
consistent with the matrix formulation (2.20) the mean response with the first-order linear response prediction (2.22)
can be also written in the 2 × 2 matrix form

Lū (t) ≡
[
δūr

δūi

]
=

ˆ t

0
RM

ū (t − s)K (s) ds, RM
ū (t) = e−dM t

[
cosωMt sinωMt
− sinωMt cosωMt

]
.

It can be seen from the test cases in Section 3, even with real equilibrium mean and forcing
(
ūeq, F̄eq

)
in the control

relation (2.19) it is still useful to consider complex values in Rū for better fitting in the autocorrelations. (2.22)180

is equivalent to using an independent Gaussian linear dynamical model for each coefficient uk of mode ek from
an Ornstein-Uhlenbeck process, duk = −γMukdt + σMdW. The model parameter σM could be estimated from the
equilibrium variance in the corresponding mode ek, σ2

k = req,k/2dM; and the optimal parameter value for γM =

−dM + iωM is chosen by a spectral information criterion compared with the true data. The information-theoretic
framework summarized in Appendix B [28, 29] is used which offers an efficient way to reach the optimal model185
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parameters with high accuracy. We offer some more details about the strategy in finding the optimal model parameters
in Appendix B, and the fitting results will be discussed with examples in Section 3 and 4.

Therefore with the linear model approximation the derivative of autocorrelation function RM
ū becomes easy to

calculate with model parameter dM , ωM through direct calculation in the matrix

RM′
ū = −dMR

M
ū (t) − ωMe−dM t

[
sinωMt − cosωMt
cosωMt sinωMt

]
.

The corresponding linear response for the mean stateLū = Rū∗K is then used to approximate the first-order prediction
in the mean δū with the autocorrelation function approximation. By simple arrangement the differentiation of the linear
response operator in RM

ū can still be expressed as the interaction with a linear operator

Γ

ˆ t

0
RM′

ū (t − s)K (s) = Γ1Lū = Γ1Γ−1 (C − UK) ,

where the relation Lū = Γ−1 (C − Uκ) from the definition is again used and the new operator Γ1 due to derivative
related with the linear approximation parameter (dM , ωM) is defined as

Γ1 =

[
−dM F̄r − ωM F̄ i −dM F̄ i + ωM F̄r

dM F̄ i − ωM F̄r −dM F̄r − ωM F̄ i

]
. (2.23)

Substituting the above approximation to the original dynamics (2.21) and using the relations in solutions (2.17), the
control forcing κ (t) in each perturbed direction can be solved from the following equation

dK
dt

+ U−1
(
Γ − Γ1Γ−1U

)
K + U−1

[
Γ1Γ−1 +

(
K−1 − 2d

)
I
]
C = 0. (2.24)

The initial value of K (0) = U−1 (C∗ (0) − ΓδU (0)) is determined from the optimal solution C∗ and the observed
initial mean state perturbation δU =

(
δūr, δūi

)T
. The coefficient matrices are defined from the equilibrium functionals

defined in (2.20) and (2.23). By definition the nontrivial equilibrium mean states,
∣∣∣ūeq

∣∣∣ , 0,
∣∣∣F̄eq

∣∣∣ , 0, guarantee
the existence of the inverse matrix U−1,Γ−1. The equation (2.24) is more practical in solving the solutions through
numerical schemes, especially when we need an imaginary coefficient ωM to capture the oscillating features in the
autocorrelations. Actually once we get the smooth solutions for C∗ (t) , E∗ (t), the above equation (2.24) is just a first-
order ODE with constant coefficient. The only information required in this step for recovering the control forcing is
the autocorrelation function in the zero mode. Thus it can be solved efficiently. Again if we contraint on only real
values with zero imaginary part the above system simplifies to the scalar equation

dκ
dt

+
(
dM + F̄eq/ūeq

)
κ (t) + (dM+2d)K(t)−1/αūeqE∗ (t) = 0.

By solving κ (t), we find the proposed control to force the perturbed system back to the neighborhood of initial
unperturbed climate.

In summary, the important advantage in the above two-step construction of the statistical control strategy using190

the statistical energy equation from (2.13) and (2.19) is that, the only information required a priori for controlling
the high-dimensional turbulent system is the initial total statistical energy perturbation E0 and a suitable approximate
linear response operator Rū for the mean of the target statistical solution with a few autocorrelations, without running
the detailed model for the complex turbulent system. In the next section, we will show that we can approximate Rū

with judicious error using the autocorrelation functions in the most sensitive directions [22, 23]. Therefore the entire195

control strategy can be carried out easily despite the highly complicated original turbulent dynamical system in a large
phase space with instability.

3. Linear First-Order Statistical Control with Homogeneous Perturbation

In this section, we display explicitly with examples the control methods in the two steps following the general
framework discussed in Section 2. The general statistical control strategy is first tested on a simple homogeneous
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perturbation case. This simple setup enables us to check the control dependence on different choices of parameter
values and the control performances on various statistical regimes. Furthermore this simple control framework with
control on the mean state can be applied on the more generalized inhomogeneous perturbation case that will be
discussed in the next section. Specifically if the homogeneous statistics is assumed with a scalar forcing exerted
on the zero base mode e0 = [1, · · · , 1]T , the mean state becomes a scalar field and the covariance matrix becomes
diagonal for the entire time [19, 22],

ū (t) = ū (t) e0, R (t) = diag {r1 (t) , · · · , rN (t)} , F (t) = F (t) e0. (3.1)

This homogeneous system will serve as a simple prototype test case in the first place for the control strategy. As we can
find from the numerical simulations later, even in the inhomogeneous perturbation case with small-scale responses,200

this homogeneous control forcing κ (t) directly on the uniform mean state is very effective for controlling the entire
responses in an overall sense.

3.1. Optimal statistical control from scalar Riccati equation
In the homogeneous perturbations case, (3.1) shows that the response in the mean state becomes only a scalar

ū. Therefore we only need to consider a homogeneous control on the base mode, ~κ (t) = κ (t) e0. Accordingly the
original statistical control functional C (2.12) and the cost function Fα (2.14) reduce to the simple form with only one
component for the homogenous controlled mean state,

C (t) = ūeq · κ (t) + F̄eq · δū (t) , Fα ≡

ˆ T

t

[
E2 (s) + αC2 (s)

]
ds + kT E2 (T ) ,

where α > 0 is the single parameter for the control weight. With the above simplifications for homogeneous statistics
the optimal statistical energy dynamics of E∗ (t) with the optimal control C∗ (t) in (2.17) gets simplified as

C∗ (t) = − α−1K (t) E∗ (t) , 0 ≤ t < T,
dE∗

dt
= −

[
2d + α−1K (t)

]
E∗ (t) ,

(3.2)

together with the scalar Riccati equation for K (t) in (2.16)

dK
dt

= α−1K2 + 4dK − 1, K (T ) = kT . (3.3)

Only parameters α, kT are required here for controlling the homogeneous state. Especially notice that if we use the
weighting parameters proposed in (2.18) according to the equilibrium statistics, the same set of equations will be205

developed in that general case. Therefore the general framework discussed in Section 2 can also be solved in a
uniform framework with (3.2) and (3.3).

The advantage of the Riccati equation (3.3) is that we can in fact derive the exact solution K (t). First suppose we
have the Riccati equation solution K (t) by solving (3.3), then the exact solution of (3.2) can be calculated directly,
that is,

E∗ (t) = E0 exp
(
−2dt − α−1

ˆ t

0
K (s) ds

)
. (3.4)

Note that E (t) is actually the energy fluctuation away from the equilibrium state Eeq, thus it can take either positive or
negative value depending on its initial state fluctuation E0. Furthermore notice that the above optimal solution has one
additional degree of freedom about the final endpoint value kT . In practice we can always set kT = 1 with a simple
assumption that the the error in E∗ decays fast enough. Then we can find the solution of K (t) by integrating the above
Riccati equation (3.3) explicitly as∣∣∣∣∣K (t) − K−

K (t) − K+

∣∣∣∣∣ = C (kT ) exp
[
2
(
4d2 + α−1

)1/2
(T − t)

]
, (3.5)

where K± = −2αd ±
(
4α2d2 + α

)1/2
are the two roots (fixed points) of the quadratic polynomial P2 (K) = α−1K2 +

4dK − 1 on right hand side of (3.3); and C (kT ) =
∣∣∣∣ kT−K−

kT−K+

∣∣∣∣ is the coefficient due to the endpoint condition. We have the
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non-negative constraint for K (t) ≥ 0 always guaranteed through the explicit solution in (3.5). It can also be observed210

from the explicit solution that K (t) will converge backwardly in time to the stable fixed point K+ in an exponential
rate, −

(
4d2 + α−1

)1/2
, thus the steady state solution K ≡ K+ is stable backwardly in time.

Special fixed-in-time solution in the limit of control parameter α
As a simple example to illustrate the performance of the controlled statistical energy, the simplest strategy is to

use the fixed point value K+ as the steady state solution. Thus the optimal solution in (3.4) becomes the simpler form

E∗ (t) = exp
[
−

(
4d2 + α−1

)1/2
t
]

E0. (3.6)

The parameter α is introduced to add proper amount of ‘control’ into the total statistical energy of the perturbed
system. It is interesting to observe the solutions in the asymptotic limit of the parameter α215

• low cost limit as α → 0: then E ∼ exp
(
−α−1/2t

)
E0, energy decays in rate 1/

√
α to achieve fast statistical

energy decay;

• high cost regime as α−1 → 0: then E ∼ exp
(
−2dt − (4dα)−1 t

)
E0, no control is added in the leading order.

From the asymptotic behavior in (3.6), large weight on the control factor α � 1 is equivalent to the case with no
control added at all; while small values of α � 1 means stronger forcing from the control C but increasing the cost in220

the total control
´ T

0 C
2 (s) ds at the same time.

3.1.1. Numerical solutions of scalar Riccati equation
For a clearer illustration of the control effect on total statistical energy, it is useful to check the solutions of the

Riccati equation (3.5) and the optimal statistical energy (3.4) through numerical computations. The exact solutions
from (3.5) with varying parameter values are shown in Figure 3.1 with various values of α, kT . First in the solutions225

of the Riccati equation for K (t), all the solutions approach the stable fixed point value K+ as time goes backwardly,
and all begin with the end-point value K (T ) = kT = 1. The convergence rate changes according to the parameter
value of α. The convergence rate goes to the slowest limit as the homogeneous damping rate exp (−2dt) when the
weighting parameter increases α → ∞. To another limit as α → 0 the solution converges to the fixed point solution
K (t) = K+ in a rapid rate exp

(
−α−1/2t

)
. The solutions of the optimal total statistical energy E∗ (t) and the optimal230

statistical control C∗ (t) both perform as an exponential decay to zero (which means that the system is driven back to
equilibrium and then no further control is needed). Accordingly, larger values of α lead to slower convergence in the
controlled total energy, while smaller values of α drive the energy to zero rapidly with a larger control functional cost
during the initial control time.

On the other hand, it is also useful to consider the control dependence on the end-point value weight kT when the235

parameter α is large and the control time window [0,T ] is small, which means that the control is restricted in small
values in the process and strong control is required near the end time. This case is useful when the control can only be
applied at limited period of time with the control strength within a limited amplitude. In the second column of Figure
3.1, we consider the case with α = 1 and the control is restricted in time before t < 2. As a result, large deviations of
K (t) away from the fixed point K+ is required at the end time t = T . The corresponding statistical energy E∗ (t) and240

optimal statistical control C∗ (t) then converge faster with a larger value of parameter kT . To achieve smaller end point
convergence with a short time window in T , we need to keep kT as large as possible, but it may add too large weight
on the end point cost in (2.14).

In Figure 3.2, we compare the values in each component of the minimized cost function Fα in (2.14) as the
parameter values α, kT vary. In the limit α → 0 the control cost

´ T
0 C

2 (t) dt in the cost becomes huge; while the cost245

in the total statistical energy
´ T

0 E2 (t) dt increases as α→ ∞. With smaller values of α, the end time energy E (T ) can
be effectively reduced due to the strong control. Thus the end-point parameter kT to control final energy level E (T )
does not matter too much. On the other hand, as the values of α increases, the controlled total statistical energy decays
in a slower rate thus the parameter kT gets a more important role to make sure convergence of E (T ) in final time,
especially when the control window [0,T ] is restricted in shorter time. Considering the case with short control regime250

up to time T = 2 with the parameter α = 1, by increasing the value of kT , the final energy E (T ) can be effectively
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(a) solutions with different values of α, kT = 1 (b) solutions with different values of kT , α = 1

Figure 3.1: Solutions of the Riccati equation K (t), total statistical energy E∗ (t) under optimal control, and the optimal statistical control C∗ (t) with
different parameter values of α and kT .

reduced. Correspondingly the cost in the control part increases with a considerable amount, while the cost in total
statistical energy decreases only in a small amount. Thus the total cost function saturated rapidly as the parameter kT

increases. The test shows that it is reasonable to just keep kT in a relatively small value. In the following numerical
experiments we will always use kT = 1 in the computations if not specifically mentioned.255

3.2. Numerical verification of the statistical control method using homogeneous L-96 model

Now we illustrate the control performance in the first place under the homogeneous 40-dimensional L-96 system
[18] with state variables u j such that

du j

dt
=

(
u j+1 − u j−2

)
u j−1 − u j + F̄eq + δF0 (t) , j = 1, · · · , J = 40, (3.7)

0 1 2 3 4 5 6 7 8 9 10
10

-2

10
-1

10
0

10
1

cost function in each component, k
T
 = 1

0

T
E

2
+C

2

0

T
E

2

0

T
C

2

0

T
C

2

(a) costs in varying α

0 1 2 3 4 5 6 7 8 9 10

kT

10-2

10-1

100

101
cost function in each component,  = 10

0
TE2+C2+k

T
E(T)2

0
TE2

0
TC2

E(T)2

(b) costs in varying kT

Figure 3.2: Comparison of the cost function Fα in each component as the parameter values α, kT vary under the optimal statistical control. In the
first panel with changing values of α, we use the end-point parameter kT = 1; while in the second panel with changing kT , we use the slow decay
case α = 1 with short control window T = 2.
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Figure 3.3: Energy spectra without and with perturbations in the two test cases F̄eq = 6, 8 in the L-96 system. The unperturbed equilibrium statistics
(black lines with circle) are compared with two different amplitudes of perturbations δF0 = ±0.05F̄eq,±0.1F̄eq.

where both F̄eq and δF0 are uniform at each grid point j. The L-96 system is designed to mimic geophysical turbulence
in the midlatitude atmosphere, with the energy-conserving nonlinearity in the first term on the right hand side of (3.7).
Two equilibrium forcing values are taken F̄eq = 6, 8 where the system is changing from strongly non-Gaussian
statistics (F̄eq = 6) to a near Gaussian regime (F̄eq = 8) with full turbulence. Stability analysis of the L-96 system260

shows that there exist 16 unstable modes for F̄eq = 6 case and 18 unstable modes for F̄eq = 8 case in the linearized
operator around the homogeneous mean state ūeq [22, 19]. Thus direct control of the L-96 system requires a large
number of controlled modes.

By testing the control strategy due to perturbations at different strength, we apply the external forcing δF0 with
gradually increasing amplitude. The homogeneous forcing perturbation is chosen as a ramp-type forcing

δF0 (t) = δ f0
tanh a (t − tc) + tanh atc

1 + tanh atc
,

increasing from 0 to the maximum δ f0, with upward forcing for F̄eq = 8, and downward forcing for F = 6 with a
10% ramp amplitude as δ f0 = 0.1F̄eq. Thus the responses due to various perturbation amplitudes can be generated.265

The energy (variance) spectra at each spectral mode in the two test cases are plotted in Figure 3.3. The unperturbed
equilibrium spectra are compared with the perturbed cases with different perturbation amplitudes δF0 = ±0.05F̄eq and
δF0 = ±0.1F̄eq. Especially in the weakly chaotic case F̄eq = 6, we choose the downward ramp so that the statistical
structure will change vastly with an exchange of the dominant mode. Next we consider applying the statistical control
on the perturbed L-96 model with scalar control forcing κ (t) at different time of the perturbation δF0 (t) so that the270

control skill with different perturbation amplitudes can be tested.
For the numerical method, we use Monte-Carlo simulations with an ensemble size N = 10000 to get accurate

statistics in mean and variance. To check the control skill with different perturbed initial data, we first apply the ramp-
type perturbation in the system, and then replace the forcing with the control at a later time. In general the verification
can be carried out according to the following steps:275

1) Choose the time Tctrl as the start time to apply control. Then run the original model with original forcing perturba-
tions δF up to the control time Tctrl;

2) Use the statistics at time Tctrl as the initial value of the control, and switch the original forcing perturbation δF to
the optimal control forcing κ (t) from this time as the forcing perturbation;

3) Run the model up to the final time T , and check the model responses in the statistics going back to the unperturbed280

state as the control κ (t) is applied.

3.2.1. Recovering κ (t) from optimal control C (t)
First we check the recovery of the control forcing κ (t) from the inversion problem (2.19) under the L-96 model.

C (t) is recovered from the explicit solution in (3.2), then κ (t) is found by solving the dynamical equation (2.24) with
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Figure 3.4: Fitting for the linear response operator Rū in the mean mode with linear model. The L-96 system is used as the test model in equilibrium
regimes F = 6 and F = 8. The true linear response operator Rū (dashed black) is compared with the quasi-Gaussian approximation (2.8) using
autocorrelation functions (solid blue), and the linear model fitting RM

ū (t) = exp (− (dM + iωM) t) with optimal parameter (dotted-dashed red).

optimal model parameter γM . In the attribution of the optimal statistical control C (t), only the dominant leading order285

response in the uniform mean ū is needed in this simple homogeneous perturbation case. Thus the equilibrium state
ūeq, F̄eq in (2.20) only have real part. Still we find that the autocorrelation functions (2.10) usually display oscillating
structures, thus it is useful to introduce a complex coefficient γM = dM + iωM in the fitting (2.22) in treating the
oscillations. As a result we still solve the 2 × 2 systeim (2.24) with the imaginary parts of the parameters setting as
zero, Ci = 0, ūi = 0, F̄ i = 0.290

The optimal model parameter γM for fitting the autocorrealtion function can be achieved easily using the procedure
described in Appendix B. It appears that we can achieve quite high accuracy in fitting the autocorrelation function
using the linear model approximation for Rū. As a simple illustration, Figure 3.4 displays the fitting results of the
linear response operator in the two typical dynamical regimes F = 6, 8 from the equilibrium L-96 model. The true
linear response operator for the mean state Rū is first compared with the quasi-Gaussian approximation (2.8) using295

the true autocorrelation functions. Exact recovery can be reached in this homogeneous statistics case of L-96. Then
the linear model fit RM

ū (t) with optimal parameter still gives good approximation despite some errors in the long time
correlation. It will be seen in the controlled responses next that the errors in fitting the autocorrelations will have little
effect on the final control performance. (See figures from [19, 20, 28] for some further comparisons in this linear
model approximation with the true linear response operator.)300

The solutions of the optimal statistical control C∗ (t) and control forcing κ (t) in the two test cases F̄eq = 6, 8 are
plotted in Figure 3.5 with changing values of α. The parameter α sets the weight of the control in the cost function
Fα. Thus smaller values of α will lead to stronger control forcing κ. First the statistical control C (t) is determined
purely based on the dissipative structure of the system thus it acts as a restoring forcing on the total energy fluctuation
E. In the strongly non-Gaussian case F̄eq = 6, a downward forcing perturbation is added. Thus the total statistical305

energy will decrease subject to the perturbation. Then a positive control forcing is introduced to drive the system back
to equilibrium. On the other hand, in the near-Gaussian case F̄eq = 8, upward forcing perturbation increases the total
statistical energy. Therefore the control forcing gets negative values. Correspondingly in the final control forcing,
different values of parameter α mostly result in the strength at the very beginning of the control time. Especially with
small values of α, the control forcing κ (t) reverses directions in the control process as a further correction to the strong310

forcing exerted at the beginning control time. This reflects the oscillatory structure in the autocorrelation function.

3.2.2. Optimal statistical control in major statistical quantities
Next we verify the control performance with the control forcing κ∗ (t) achieved from the previous optimal statistical

control strategy and test it on the L-96 model. In this simple case with homogeneous perturbation, the statistical mean
ū at each grid point is uniform with the same value ū = ūe0, and the covariance matrix R =

〈
u′u′T

〉
becomes diagonal.315
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Figure 3.5: Solutions of the optimal statistical control C∗ (t) and the control forcing κ∗ (t) with different parameter values of α in the test regimes
F̄eq = 6, 8 of the L-96 model.
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Figure 3.6: Comparison of control performance in regime F̄eq = 6, and F̄eq = 8. The control forcing κ (t) is applied at different time Tctrl =

20, 30, 40. All the cases use the control model parameter α = 0.1.

Thus we may just check three representative statistical quantities, that is, the averaged mean state, ū = 1
J
∑J

j=1 ū j; the
one-point variance, r1pt = 1

J
∑N

j=1 R j j; and the total statistical energy, Estat = 1
2 ū2 + 1

2 r1pt, in the tests for controlled
responses. In Figure 3.6, we show the controlled responses in statistical mean, one-point variance, as well as the total
statistical energy in the two test regimes F̄eq = 6, 8. The control is applied at various time Tctrl = 20, 30, 40 with
the ramp-type perturbation forcing δF0 so that the control responses with different amplitudes of perturbations can320

be tested. Especially with large amplitude in the perturbation, the responses in mean may go beyond the linear range
of the first order prediction. Still in both test regimes and with different perturbation amplitudes, the control forcing
displays the skill in driving the perturbed mean and variance back to the equilibrium state in a rapid rate. Specially in
the case with highly non-Gaussian statistics, F̄eq = 6, the forcing perturbation changes the statistical structure of the
system greatly. Also notice that oscillation and overshoot in response could be induced especially in the mean state325

due to the strong nonlinear responses in the system.

3.2.3. Statistical control performance with different parameter values of α
In this simple test case with uniform perturbation δF0, it enables us to investigate more details in the control

strategies depending on the parameter values. In Figure 3.7 we show the controlled responses in the statistical mean
state and one-point variance with three different values of the control parameter α = 0.1, 0.5, 1. The control begins330

at time Tctrl = 40 where a large forcing perturbation is exerted. Remember that the parameter α is the weighting
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Figure 3.7: Comparison of control performance with different values of α = 0.1, 0.5, 1 in regime F̄eq = 6, and F̄eq = 8. The uncontrolled case
(without adding the control forcing κ after the control time Tctrl = 40) is compared in black dashed lines.

parameter of the statistical control C (t) in the cost function (3.2). Thus smaller values of αwill lead to stronger control
forcing κ (t) in the initial control time. In the figure we first compare all the control results with the uncontrolled case
(in dashed lines) where no additional forcing correction is added to the system after the control time Tctrl starts. So it is
a ‘free drop’ case to go back to the unforced equilibrium state in the time scale of the decorrelation time. On the other335

hand, with the help of the control forcing, both the statistical mean state and the one-point variance can converge to
the unperturbed equilibrium in a faster rate. And smaller value of α will offer a faster convergence rate, while it may
lead to an overshoot in some extent due to the too strong control forcing exerted at the initial control time as shown in
Figure 3.5. Comparing all the controlled responses, medium values of α are already good enough to receive desirable
control performance with not too large cost in the control forcing.340

4. Linear Statistical Control Model for Inhomogeneous Systems and Perturbations

Previously the simple scenario with control on homogeneously perturbed system is used to illustrate the basic
strategy in the efficient statistical control method. In this section we move on to consider the statistical control with
additional inhomogeneous effects in perturbations. In the following parts of this section, we propose two repre-
sentative test models to illustrate the control skill in treating inhomogeneous perturbations. The first model is the345

40-dimensional L-96 model that has already been applied for the homogeneous perturbation tests in Section 3 and
[17]. As a further application, we introduce small scale inhomogeneous perturbations on top of the original L-96 sys-
tem. Second, we will consider turbulent topographic barotropic flow, where anisotropy and instability are introduced
through topographic stress and rotation effects. Both of the two systems include the representative statistical energy
conserving quadratic nonlinearity (especially for the barotropic model, typical triad interactions are crucial for the350

energy cascades between small and large scale modes).
For example as in the L-96 model, still assume homogeneous statistics in equilibrium (typically we assume ho-

mogeneous damping, D = −dI, in the dissipation term in the general system (2.1)), so that the mean state maintains a
scalar field and the covariance matrix stays diagonal in the unperturbed statistical equilibrium, that is,

ūeq = ūeqe0, Req = diag
{
r1,eq, · · · , rN,eq

}
, Feq = Feqe0,

with the external deterministic forcing Feq also as a scalar applying on the mean state. In the simple case with
homogeneous perturbation, δF = δF0e0, we only need to focus on the responses in the homogeneous mean state, δū0
(that is, only the k = 0 mode needs to be fit in the linear response to get the leading order response).

However in many situations, inhomogeneous perturbation may not always stay as a higher order quantity, which
can strongly affect the perturbed flow structures in the largest scales. For example, inhomogeneity could come from
the topographic stress on the bottom topography or from the small scale surface wind drift in realistic models. To
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first illustrate the inhomogeneity in the simple model, we introduce the effects from inhomogeneous perturbations on
smaller scale modes so that

δF =
∑
k∈Λ

δFkek + δF0e0, δū =

N∑
k=−N

δūkek + δū0e0. (4.1)

Still (δF0, δū0) represent the homogeneous perturbation and mean response like before on the uniform mean mode
e0, while the small scale mode coefficients (δFk, δūk) introduce additional perturbations and mean responses from the
mode ek. Above in (4.1) we assume the perturbation δF is applied on a subset of the modes Λ ⊆ {k | |k| ≤ N}, while
the mean responses δū may spread to the entire spectrum due to the nonlinear interactions between scales. With the
inhomogeneous perturbations in (4.1), higher order statistical responses should be included in the original statistical
energy equation (2.6). Considering the complete perturbed changes in the fluctuating energy equation, there are the
complete form of the feedbacks from deterministic and stochastic forcing(

ūeq · δF0 + F̄eq · δū0

)
+

∑
δFk · δūk +

∑
σ2

k . (4.2)

Above the first part is the original leading order terms in the perturbed statistical energy including non-zero equilib-355

rium mean and forcing
(
ūeq, F̄eq

)
. In the present discussion since the unperturbed equilibrium is homogeneous, thus

only the scalar mean and forcing are included in the leading order part. The second order correction is due to the in-
homogeneous responses δūk in the transient state. With inhomogeneous perturbation the second order feedbacks may
become non-negligible. The final term σ2

k is the additional stochastic errors from the linear response approximation
of δūk to allow for wider applicability to further development.360

In constructing a control strategy with inhomogeneous perturbations, nevertheless we still use the same control
based on the leading order terms, ūeq · δF0 + F̄eq · δū0, in the total statistical equation, even though the second order
feedbacks in (4.2) might also be important with inhomogeneous perturbations δFk and mean responses δūk. In real
applications, we may have no access to the exact information about the perturbation structure in each small scale. Thus
the robustness of the control method in admitting considerable model errors is a crucial issue to check. In controlling365

the system with forcing perturbation in the form (4.1), the idea is to propose uniform control forcing κ (t) e0 only
with homogeneous part to check whether the inhomogeneous responses can also be controlled with this homogeneous
control forcing in an efficient way. In this way, the same strategy as in Section 3 can be easily applied to the more
complicated case including strong inhomogeneity. As a complement, we briefly discuss and compare the control
performance including the second-order nonlinear response δFk · δūk in Appendix A.370

4.1. Statistical control in L-96 model with inhomogeneous perturbation

In the first test model we use again the L-96 system with 40 grid points as in (3.7) while inhomogeneous forcing
perturbation δF j is added at each grid point

du j

dt
=

(
u j+1 − u j−2

)
u j−1 − u j + F̄eq + δF j (t) , j = 1, · · · , J = 40.

To introduce inhomogeneity in the external forcing, we consider a small scale perturbation on top of the original
uniform forcing

F = F̄eqe0 +
∑
k∈Λ

δF̄kek, ek = eik·x, (4.3)

where Λ is a subset of all the spectral modes for the perturbed directions. Fourier modes are used to characterize each
small scale due to the periodic boundary condition. The equilibrium forcing is still homogeneous on the mean mode
e0, and the ramp-type forcing is again used for the perturbations on spectral modes changing from zero to the largest
value δ fk

δFk (t) = δ fk
tanh a (t − tc) + tanh atc

1 + tanh atc
.

We choose to perturb the most sensitive directions of the model so that large deviations from the equilibrium state
can be reached. The model sensitivity to perturbations in each direction can be illustrated by the integration of
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Figure 4.1: Spectra of energy in the mean |ūk |
2 and variance |u′k |

2 in the inhomogeneous perturbed case of L-96 system in regimes F = 6, 8. δ f is
the amplitude of the inhomogeneous perturbation in each mode.

autocorrelation functions Rk (t) = 〈uk (t) uk (0)〉 [23, 22]. In general in L-96 system, the modes with largest energy
k = 6, 7, 8, 9, 10 are highly oscillatory with largest absolute decorrelation time

´ ∞
0 |Rk (t)| dt; on the other hand, modes375

k = 11, 12, 13, 14 get the longest decorrelation time
∣∣∣´ ∞0 Rk (t) dt

∣∣∣ thus become the most sensitive directions [22, 23].
In our test case, we add perturbation on both the high energy modes k = 6, 7, 8, 9, 10 (with largest absolute

decorrelation time) and most sensitive modes k = 11, 12, 13, 14 (with largest decorrelation time). Thus the perturbed
subset of modes contains k ∈ Λ = {6, 7, 8, 9, 10, 11, 12, 13, 14} compared with the full spectrum with 20 complex
modes. The largest amplitude of small scale perturbation is set as δ fk = 0.1F̄ at each small scale mode. Figure380

4.1 shows the energy in the mean, |ūk |
2, and the variance, |u′k |

2 in each spectral mode in the two test regimes with
equilibrium forcing F̄eq = 6, 8. The spectra with two perturbation forcing amplitudes δ fk = 0.05F̄, 0.1F̄ are compared.
Unlike the homogeneous perturbation case with no exited small scale mean, many mean modes in small scales get
non-zero values due to the inhomogeneous forcing while the change in the uniform mean state ū0 is small. In the
spectra for variance, more modes become energetic due to the inhomogeneous forcing at the same time.385

4.1.1. Linear statistical control strategy in the L-96 system
In testing the control performance in this inhomogeneous perturbation case, we still follow the general control

formulation in Section 2 and apply the strategy to the inhomogeneously perturbed system (4.3) in L-96 model. The
total statistical energy equation (2.13) for L-96 by taking d = 1 and with control only on the single uniform mode then
becomes

dE
dt

= −2E (t) + C (t) , E (t) =
1
2

J∑
j=1

(
ū2

j + u′2j

)
− Eeq, (4.4)

where the energy fluctuation E (t) contains the total first and second order moments in all the J = 40 modes. The
equilibrium total statistical energy Eeq can be determined purely by the statistical mean state with homogeneity

2Eeq = ūeqF̄eq, ū j ≡ ūeq for all j.

In the exact form, the statistical control C (t) should include both linear and nonlinear responses due to inhomogeneous
perturbations as in (4.2). Solving statistical control of C in the first stage does not concern about the explicit forms
in the statistical mean feedbacks. Thus this single statistical control C can be solved in the same way as the explicit
solution in (3.2) with the scalar Riccati equation.390

In the second stage we consider the statistical inversion of inhomogeneous perturbation problem. Still we only
use the leading order part in finding the control forcing κ (t)

C (t) = ūeqκ (t) + F̄eqLū (t) . (4.5)
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Figure 4.2: Linear statistical control in regimes F = 6 and F = 8 in L-96 system with inhomogeneous perturbation (4.3). Controlled responses
in statistical mean and one-point variance at different control time Tctrl = 20, 30, 40 using the control forcing are compared with parameter value
α = 0.1.

So only a homogeneous control forcing ~κ (t) = κ (t) e0 is applied to this inhomogeneously perturbed system. Keep in
mind that the exact forms of the total statistical control C (t) should include non-zero second order feedbacks from
all the perturbed small-scale modes, δūk · δFk. We only use linear first order response considering that: i) the linear
response in the mean state is approximated by linear model

Lū (t) =

ˆ t

0
Rū (t − s) κ (s) ds =

ˆ t

0
e−γM (t−s)κ (s) ds,

thus the error from the leading order linear response approximation δū could be dominant; and ii) it has been shown
that the control method is quite robust in performance even with large model errors. Thus it is useful to check whether
acceptable control performance can be achieved with even this crude approximation. If possible, more detailed cal-
ibration with higher order responses might be unnecessary in many cases which could be much more expensive in
computation. Considering all these aspects, the control forcing κ (t) can be recovered using exact same strategy by395

solving the system (2.24) as in Section 2. In summary, we use exactly the same strategy as the homogeneous pertur-
bation case, but apply it to the system with inhomogeneous perturbations.

4.1.2. Verification of the control in L-96 system with inhomogeneous perturbation
To show the control performances with different perturbation amplitudes, the inhomogeneous perturbation (4.3)

with a ramp-type forcing is applied first to the original L-96 model and the control forcing is added at different400

control time Tctrl = 20, 30, 40. Figure 4.2 shows the control responses in statistical mean ū = 1
J
∑J

j=1 ū j, the one-
point variance, r1pt = 1

J trR, and the total statistical energy, Estat = 1
2 ū2 + 1

2 r1pt, in the two test regimes with equilibrium
forcing F̄eq = 6, 8. With inhomogeneous forcing perturbation along the small scale modes, the changes in the averaged
mean state are small. On the other hand, we apply homogeneous control forcing κ (t) directly on the base mode, thus
small fluctuations can be induced in the mean responses after the control forcing is applied at the beginning control405

time. The single-point variance and total statistical energy converge to the unperturbed state in a rapid rate in both
dynamical regimes. Overall the control results are generally good among all the different perturbation amplitudes even
with only first-order homogeneous control forcing in this inhomogeneous perturbation case. In the control process,
we always take the parameter value α = 0.1. Smaller parameter values of α will lead to stronger control forcing in the
initial control time and more rapid decay in the forcing as discussed before in Section 3.2.410

In this inhomogeneous perturbation case, the perturbations are added in a subset Λ = {6, 7, 8, 9, 10, 11, 12, 13, 14}
of all the small scale modes. Next it is useful to check in detail about the responses in the perturbed modes among
the subset Λ and in the rest unperturbed directions. Figure 4.3 shows the statistical responses of the energy in the
mean and variance among the perturbed modes,

∑
k∈Λ |ûk |

2, and in the rest unperturbed subspace,
∑

k∈Λc |ûk |
2. In both
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Figure 4.3: Controlled responses in statistical energy in mean and variance among the perturbed modes and unperturbed modes. Perturbations are
added among a subset of the Fourier modes Λ = {6, 7, 8, 9, 10, 11, 12, 13, 14}, and homogeneous control forcing κ (t) is applied on the uniform mean
state. The results with the control forcing are compared with the uncontrolled case without forcing after the control time.

the test regimes with F̄ = 6, 8, the perturbed subspace gets stronger responses in both mean and variance while there415

are also changes in the unperturbed subspace due to the nonlinear transfer of energy between modes. In this strategy
with homogeneous control forcing, we only add a scalar uniform control forcing κ (t) to the system despite that the
major part of the perturbations is added on the smaller scale modes (in both perturbed and unperturbed subspace).
The uniform control forcing guarantees the effectively control on all the small scale modes to the equilibrium state in
a much faster rate in both the perturbed and unperturbed subspace especially in the mean state.420

Finally we also check the responses in the mean state and variance in each individual mode in the two test regimes
F̄ = 6, 8 in Figure 4.4 and 4.5. Remind that the uniform control forcing κ is not applied on these small scale
modes directly, whereas the responses in these modes can be controlled through the interaction with the mean state
that is directly controlled by the forcing. Again compared with the uncontrolled case without the effect of control
forcing after the control time, the controlled case achieves faster convergence rate back to the equilibrium in each425

single perturbed mode in both the statistical mean state and variance. Still, especially for the F = 6 case, some
oscillating structures are developed after the control is applied. This is due to the strong non-Gaussian effect and
long decorrelation time dominant in this regime. Together these fast convergences in the perturbed states show the
effectiveness and robustness of the simple statistical control strategy focusing on the mean statistical responses.

Remark. In contrast with the first-order control only using the leading order terms in the total statistical equation430

expansion in (4.2), an interesting question is what is the effects of including the second-order responses, δFk · δūk, in
the control process. In Appendix A, we develop control models taking into account the second-order contributions to
introduce an inhomogeneous control forcing, ~κ (t). It shows that the second-order control on each small scale modes
gives similar performance as in Figure 4.4 and 4.5, while the computational costs are much higher since the control
forcing along each mode needs to be considered.435
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Figure 4.4: Responses in each perturbed spectral mode in statistical mean and variance in regime F̄ = 6 in the inhomogeneous perturbed case with
homogeneous control forcing. Responses in most sensitive directions are selected. The uncontrolled case after the control time Tctrl = 40 is shown
in dashed lines.
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Figure 4.5: (Continuing) Responses in each perturbed spectral mode in statistical mean and variance in regime F̄ = 8 in the inhomogeneous
perturbed case.
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4.2. Statistical control in barotropic flow with topography

In the second test model for control in more realistic inhomogeneous flows, we apply the statistical control strategy
in a geophysical barotropic system involving anisotropic and inhomogeneous dynamics. The barotropic flow can be
viewed as a vertically averaged one-layer system which generates many interesting and representative features found
in the real atmosphere and ocean [13, 12, 30]. Comparing with the stereotype L-96 system, the barotropic model440

incorporates the essential structures in realistic geostrophic turbulence with a large-scale zonal mean flow U and
topographic effect h [12, 21]. In general, the topographic barotropic flow on a rotational β-plane with dissipation and
forcing can be formulated in terms of small-scale vorticity and a large-scale mean flow as

∂ω

∂t
+ v · ∇q + β

∂ψ

∂x
+ U

∂q
∂x

= −dω + F (x, t) + Σ (x) Ẇ (t) , (4.6a)

dU
dt

+

 
∂h
∂x
ψ (t) = −dU + F0 (t) + Σ0Ẇ0 (t) , (4.6b)

where q = ω + h, ω = ∆ψ represent the potential vorticity and relative vorticity respectively; and ψ is the flow stream
function; h is the topographic structure while q is advected by the velocity field of the flow, v = ∇⊥ψ ≡

(
−∂yψ, ∂xψ

)
.445

The right hand sides are the dissipation (by Ekman damping) and forcing (in both deterministic and stochastic part)
terms.

In solving the above barotropic equations in (4.6) with periodic boundary condition, a finite-dimensional trun-
cation is made by applying a Galerkin projection on each Fourier mode ek = exp (ik · x), where the equations are
projected into a subspace with high wavenumber truncation. Consider the Galerkin projection operator PN on a sub-450

space with the mean flow U and vorticity mode wavenumbers 1 ≤ |k| ≤ N, PN (U (t) , ω (x, t)) = (U (t) , ωN (x, t)),
applied to the original model for topographic barotropic flow (4.6) with the specific forcing and Ekman damping terms

dω̂k

dt
= −PN

(
∇⊥ψN · ∇qN

)
k

+ ikx

(
β |k|−2 − U

)
ω̂k − ikxĥkU (4.7a)

−dω̂k + σkẆk + F̄k + δFk, 1 ≤ |k| ≤ N,
dU
dt

= −
∑

1≤|k|≤N

ikx |k|−2 ĥ∗kω̂k − dU + σ0Ẇ0 + F̄0 + δF0. (4.7b)

Above ω̂k is the Fourier coefficient of the flow vorticity ω on the projected model. Only linear Ekman friction is intro-
duced in the dissipation term. The stochastic noise is defined in each mode as, σ0 = σ |µ|−1/2, σk = σ

∣∣∣1 + µ |k|−2
∣∣∣−1/2

with the parameter µ. Only small noise is needed to guarantee ergodicity of the system [16]. In the regime with
µ > 0, it can be shown that this random noise can maintain a Gaussian invariant measure in statistical equilibrium
and the system is stable through nonlinear stability theory [20, 21]. The equilibrium deterministic forcing

(
F̄0, F̄k

)
is

introduced in consistency with the climatology
(
ω̄eq, Ūeq

)
as

F̄k = dω̄eq,k, F̄0 = dŪeq. (4.8)

Usually the equilibrium state
(
ω̄eq, Ūeq

)
is defined with the model parameter µ through a linear dependence between

the stream function and potential vorticity [12, 21, 20]

Ūeq = −
β

µ
, ω̄eq,k = −

|k|2 ĥk

µ + |k|2
. (4.9)

The unperturbed equilibrium mean (4.9) and forcing (4.8) get inhomogeneous structure due to the topography h. In
the numerical tests, we will consider two typical parameter values, µ = 2 and µ = −0.5, thus the large scale mean flow455

Ūeq gets opposite directions in steady state. The additional forcing terms (δF0, δFk) represent the potential external
perturbations added on the system driving the state variables away from the original equilibrium state. More statistical
features about the truncated barotropic flow (4.7) are investigated in detail in [16, 21, 20].
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4.2.1. Control of the barotropic model using conservation of statistical energy
In controlling the topographic barotropic system, we assume that the equilibrium statistical mean state

(
Ūeq, ω̄eq

)
460

(i.e. the climate) is known with reasonable accuracy, and the goal is to find the optimal control (as one external
forcing) that can drive the perturbed states (say, due to climate change) back to the equilibrium at a fast rate. In this
specific control problem about the perturbed system with (δF0, δFk) , 0 in (4.7), the task is to design a proper control
forcing κ (t) driving the perturbed system back to the original unperturbed equilibrium states

(
Ūeq, ω̄eq

)
. As the general

framework discussed in Section 2, we would like to begin with a scalar statistical dynamical equation (2.3) according465

to the proper conserved quantity to derive a optimal statistical control C (t) as in (2.12). Then the standard procedure
can be used to find the optimal control by solving a scalar Riccati equation regardless of the complicated nonlinear
effects contained in the complex system.

For the topographic barotropic flow (4.6) with mean flow, both the total energy, 1
2 U2+ 1

2

ffl
|∇ψ|2, and the large-scale

enstrophy, βU + 1
2

ffl
ω2, stay conserved due to the symmetry in the nonlinear interactions, ∇⊥ψ ·∇q [12, 21]. Here, we470

use the conservation of total energy in the statistical control and consider the statistical energy dynamics following the
general framework in [15, 16]. Therefore define the fluctuation of total statistical energy about the equilibrium state

Estat = Estat
0 +

∑
k,0

Estat
k , (4.10)

Estat
0 =

1
2
EU2 −

1
2
EU2

eq, Estat
k =

1
2
E |k|2 |ψk|

2 −
1
2
E |k|2

∣∣∣ψeq,k
∣∣∣2 ,

where Ex2 = x̄2 + x′2 represents the statistical energy of the random process x combining the statistics in mean and
variance together, and Ueq, ψeq are the state variables in the unperturbed equilibrium with δF0 = 0, δFk = 0. The
statistical energy (4.10) only contains the perturbed fluctuation part away from the equilibrium. It is easy to check that
the nonlinear terms in (4.7) will not change the total statistical energy Estat. The dynamical equation for the statistical
energy in (4.10) can be derived as a special form according to the general formulation (2.6) of the control problem in
Section 2

dEstat

dt
= −2dEstat +

(
F̄0 · δŪ + Ūeq · δF0

)
+

∑
k

|k|−2
(
F̄∗k · δω̄k + ω̄∗eq,k · δFk

)
+ O

(
δ2

)
. (4.11)

Above
(
F̄0, F̄k

)
are the deterministic forcing without perturbation,

(
Ūeq, ω̄eq

)
are the statistical mean in the unperturbed

equilibrium, and
(
δŪ, δω̄k

)
are the first order responses in statistical mean states. On the right hand side of (4.11),

additional weight |k|−2 based on the energy inner product is introduced in the feedbacks of the interaction with mean475

response. Still in the control process we focus on the leading order feedbacks despite the various inhomogeneous
perturbation forcing δFk.

Specifically in setting the forcing and dissipation part, we consider linear Ekman damping, −dω, so that the
statistical energy equation becomes linear and is easy to solve directly. From (4.6b) the topographic stress in the
large scale flow U is only dependent on the zonal variability of h, thus we use simple topography only varying along
large-scale x-direction

h = H (cos x + sin x) =
H
2

[
(1 − i) eix + (1 + i) e−ix

]
. (4.12)

Then the topographic forcing is only applied on the largest scale zonal modes ω̂(1,0), ω̂(−1,0). Correspondingly, the
forcing perturbation is only applied on the mean flow and topographically forced modes,

δF0, on mean flow U;
δF1, on topographic mode ω̂(1,0)eix;
δF−1, on topographic mode ω̂(−1,0)e−ix.

These are the first modes that are most sensitive to external perturbations. One representative feature in the flow field480

is the shifting directions of the zonal mean flow as the external forcing increases in amplitude.
The control solution with the above model setup is then developed following the general the two-step framework

discussed in Section 2. The control on the total statistical energy fluctuation in (4.11) gets the dynamical equation due
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to control C0 on the mean flow U and C1 on the ground vortical mode ω1 with |k| = 1

dEstat

dt
= −2dEstat + 2C1 + C0. (4.13)

Note that the contributions from the two modes δF−1 = δF∗1 are conjugate with each other thus would offer the same
contribution in C1. With the non-zero equilibrium mean (4.9) and forcing (4.8), multiple controls (κ0, κ1) should
be introduced for all the perturbed directions instead of the previous homogeneous case. Putting all the statistical
solutions together as in (2.20) the control forcing κ (t) can be recovered together from the implicit relation in a 3 × 3
system

C (t) =

C0
Cr

1
Ci

1

 = ΩK+ΓLū, K (t) =

κ0
κr

1
κi

1

 , Lū (t) =

 δŪδω̄r
1

δω̄i
1

 Ω =


Ūeq

ω̄r
eq,1 ω̄i

eq,1
−ω̄i

eq,1 ω̄r
eq,1

 , Γ =

F̄0
F̄r

1 F̄ i
1

−F̄ i
1 F̄r

1

 . (4.14)

Above κ0 = δF0 is the (real) control on the mean flow U, and κ1 = δF1 is the (complex) control on the ground mode
ω̂(1,0). The coefficient matrices (Ω,Γ) are determined from the equilibrium statistics in (4.8) and (4.9). Using the same
strategy as in Section 2.2.2 to decompose the complex component into real and imaginary part, we avoid the difficulty
in treating complex values in numerical implementation. Especially this system (4.14) could be coupled together485

through the linear response Lū [κ0, κ1] mixing the effects from all the control forcing. Still we need to propose the
imaginary part of the statistical control C1. One easy choice is just to take Cr

1 = C1 and Ci
1 = 0 from the statistical

control solution.
The statistical control (C0,C1) in (4.13) can be purely determined depending only on the dissipation effect of the

system. In solving the control problem of the total statistical energy in (4.13), we avoid the complicated nonlinear
interactions in the original system in the first stage and introduce the statistical control only based on the dissipation
structure (say, −2dE in this case) of the system. The solution is directly from the strategy in Section 2 using the scalar
Riccati equation (3.1) in exactly the same form

dK
dt

= −1 + 4dK (t) + α−1K2 (t) ,

K (T ) = 1, 0 < t < T.

The optimal energy control can be found from the solution K (t) of the above equation

C0 = −α−1
0 K (t) Estat (t) , C1 = −α−1

1 K (t) Estat (t) .

The values of α0, α1 can be determined by the energy in mean flow U and mode ω̂(1,0). Using the principle proposed
in (2.18) in choosing the weights, one proper choice is to set α0 = αw−1

0 , α1 = αw−1
1 according to the equilibrium490

variance in the corresponding mode, w0 ∝ rU,eq,w1 ∝ rω1,eq, so that we only need one single parameter α > 0 for the
control strength.

4.2.2. Linear approximation for autocorrelation functions in perturbed modes
The next task is to recover the explicit control forcing κ (t) with the inversion relation (4.14) through the statistical

control solutions C0,C1. Still, we can approximate the first-order response Lū using linear response theory, that is,

δŪ (t) = LU (t) =

ˆ t

0
RU (t − s) κ (s) ds + O

(
δ2

)
,

δω̄1 (t) = Lω (t) =

ˆ t

0
Rω (t − s) κ (s) ds + O

(
δ2

)
.

In general, the linear response operators for the mean state (RU ,Rω) will again include the feedbacks from all the
perturbed modes and also non-Gaussian effects (such as, 〈U (t)ωk (0)〉 and 〈ωk (t)ωl (0)〉) [20]. Following the strategy
in (2.22) in Section 2.2.2, we estimate the linear response operators using a single autocorrelation function as

RU (t) ∼ 〈U (t) U (0)〉 , Rω (t) ∼
〈
ω1 (t)ω∗1 (0)

〉
. (4.15)
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Figure 4.6: Linear response operators (RU ,Rω) for the mean responses in large-scale flow and first vortical mode. The solid blue lines are the
autocorrelations for each mode; the dotted-dashed red lines are the linear model fits.

The control on the mean flow U and on the first vortical mode ω1 in (4.14) is decoupled through this assumption in
the diagonalized linear response operators. Then linear model approximations can be used to fit the autocorrelations
in the mean and first vortical mode with the parameters

(
γM , ωM

)
as a damping and rotation factor

RM
U (t) = exp

(
−γM

0 t
)
, RM

ω (t) = exp
(
−

(
γM

1 − iωM
1

)
t
)
. (4.16)

Notice that RU only has real part for the linear responses of the mean flow U, while Rω contains real and imaginary
components. In consistency with the matrix representation in (4.14) the three components of the linear mean responses
of interest can be put together using the trick in Section 2.2.2,

Γ
d
dt
Lū = Γκ (t) + Γ1Lū,

with Lū =
(
δŪ, δω̄r

1, δω̄
i
1

)T
and the operator Γ1 due to the derivative of the response operator

Γ1 =

−γ
M
0 F̄0

−γM
1 F̄r

1 + ωM
1 F̄ i

1 −γM
1 F̄ i

1 − ω
M
1 F̄r

1
γM

1 F̄ i
1 + ωM

1 F̄r
1 −γM

1 F̄r
1 + ωM

1 F̄ i
1

 .
As an illustration in the fitting process, Figure 4.6 plots the linear response operators and the linear regression model
fits in the two test regimes that will be detailed next in Section 4.2.3. The solid lines are the autocorrelation functions495

in (4.15) for the mean flow U and the first spectral mode ω1, and the dotted-dashed lines are the linear model fits from
the simple approximation using optimal model parameters

(
γM , ωM

)
in (4.16). Good agreement can be achieved by

just using the simple fitting method. Still large errors may exist in the single autocorrelation approximation (4.15)
for the linear response operators compared with the truth. This is due to the strong inhomogeneous feedbacks in the
system from cross-covariances. On the other hand thanks to the robustness of the control method, as we will observe500

in the control results later, using the parameters with error by just fitting the autocorrelations can already get good
control performance in the model, regardless of the relatively large error in the linear response operators in (RU ,Rω).

Finally the explicit control forcing κ0 (t) (for the mean flow U) and κ1 (t) = κr
1 (t) + iκi

1 (t) (for the first vorticity
mode ω̂(1,0)) can be recovered in the same way of the general formula (2.24) by solving the 3 × 3 dynamical system

dκ
dt

+
(
Ω−1Γ −Ω−1Γ1Γ−1Ω

)
κ + Ω−1

(
Γ1Γ−1 +

(
K−1 − 2d

)
I
)
C = 0, (4.17)
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with the solution κ =
(
κ0, κ

r
1, κ

i
1

)T
. The coefficients are defined from the equilibrium statistics in (4.14). Despite the

complex matrix representation this is just a first order linear equation, thus the solution is easy to achieve through
numerical integration.505

4.2.3. Verification of the control in barotropic model with non-zero mean state
In the numerical simulations, we consider the control model (4.7) with a small wavenumber truncation |k| ≤ N =

17 resulting in a total 57 degrees of freedom. This model has the attractive features of the low-order truncated model
being exactly like the three-dimensional Charney–DeVore model [31], and consists of a well-defined mean climate
state and topographic Rossby waves [16, 21, 20]. A pseudo-spectral scheme is used to integrate the topographic510

barotropic equation with time step ∆t = 0.001, which is small enough to capture all the small-scale dynamics. No
additional hyperviscosity is needed in this small truncation case with only low wavenumbers included. We verify the
control skill for the topographic barotropic flow under the following model parameter setups:

• The unperturbed equilibrium case is assumed with no additional forcing δF0 = 0, δF1 = 0 in the unperturbed
case, so that we can have the equilibrium mean state in

(
Ūeq, ω̄eq

)
in the unperturbed equilibrium. The beta-515

effect is taken as β = 1, and the topographic strength as H = 3
√

2/4 in (4.12). The first order linear control is
considered here as in the general framework;

• We consider two parameter values µ = 2 and µ = −0.5. Usually the parameter µ defines the steady state mean
flow Ū = −β/µ, thus this represents different directions in the large-scale mean jet. Especially when µ = −0.5,
there exists instability for the large-scale mean flow U due to topographic stress [32, 21];520

• The perturbation is added in the large scale modes with δF0 = dF, δF1 = dF in both test cases. The perturbation
amplitude is taken as dF = 1. The goal in the control problem is to use the optimal control forcing ~κ (t) to drive
the perturbed states back to the zero unperturbed mean.

The above parameter setup has been used as a stringent paradigm model in many previous problems [20, 16, 33].
As an illustration of the flow structure, we plot the mean stream functions and snapshots of flow vorticity for the525

two test regimes µ = −0.5 and µ = 2 in Figure 4.7. Both flow plots in unperturbed case dF = 0 and perturbed
case dF = 1 are displayed, and the colormap is scaled into the same range for comparison. In the snapshots of the
flow relative vorticity ω = ∆ψ, the perturbation forcing can induce stronger vortices in the perturbed vorticity field
compared with weaker vortical modes in the unperturbed case. Also the full mean stream function Ψ̄ = −Ūy + ψ̄
combining the mean flow U and small-scale modes ψ is plotted to show the entire flow structure. It can be observed530

that the jets change directions in the two test cases µ = −0.5 and µ = 2. In the case with µ = −0.5 (with eastward
background mean steady flow Ūeq = 1), the unperturbed flow has strong jets in opposite directions in the mean stream
function and the forcing perturbation tends to weaken the zonal jets. Conversely in the case with µ = 2 (with westward
background mean steady flow Ūeq = −0.5), the unperturbed case has a weaker jet while the perturbation forcing can
generate strong opposite jets in both directions. These observations show the rapid changes in flow field structures535

and also in the flow statistics subject to the perturbations.
In the final verification step, we need to show the skill of the optimal control forcing achieved through the statistical

control equations (4.13) and (4.17). The control forcing (κ0, κ1) is only applied on the mean flow state U and first
vortical mode ω̂1. Figure 4.8 and Table 1 display the percentage of statistical energy in unperturbed equilibrium in
the two test cases. The large scale mean flow U always gets most of the energy (around 10% for µ = 2 and 20% for540

µ = −0.5) and then the ground modes ω̂(1,0) and ω̂(0,1). Still all the remaining modes in smaller scales which are not
controlled count for more than 50 to 70 percent of the total statistical energy, thus are still important and crucial in the
final flow structure. In the following control verifications, we will show whether we can control the responses due to
interactions between various scales by only forcing the leading most energetic modes.

In running the barotropic model for statistical responses in mean and variance we can afford to run the model with545

an ensemble size N = 1000 for Monte-Carlo simulations using the 57-mode model, so that the essential statistics in
the mean and variance can be captured with small error. Figure 4.9 displays the control results in the two test cases
compared with the uncontrolled responses. In the beginning state the system is subject to the non-zero perturbation
forcing δF at the largest scales U and ground mode ω1, and the control forcing is added at time Tctrl = 5 to drive the
perturbed states back to statistical equilibrium. The figures show the responses in the mean flow U and the perturbed550
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Figure 4.7: Mean stream functions Ψ̄ = −Ūy + ψ̄ with the vector flow field and snapshots of flow relative vorticity ω = ∆ψ in the two parameter
regimes µ = −0.5 (eastward mean flow) and µ = 2 (westward mean flow). Both the unperturbed case dF = 0 and perturbed dF = 1 case are shown.
The colormap is scaled to the same range for comparison.

5 10 15 20 25 30 35 40 45 50
10-3

10-2

10-1

100
percentage of statistical energy in each mode

 = 2

 = -0.5

Figure 4.8: Percentage of statistical energy in each mode of the 57-mode model in descending order.

µ U ω̂(1,0) ω̂(0,1) ω̂(1,1) rest modes

-0.5 0.203 0.123 0.081 0.030 0.564

2 0.097 0.052 0.044 0.033 0.774

Table 1: Percentage of statistical energy in the leading modes of the 57-mode barotropic model.

28



0 5 10 15 20 25
-2

0

2

4
response in mean, flow U

w/o control

control on U, 
control on U only

0 5 10 15 20 25
-0.6

-0.4

-0.2

0

response in mean, mode 
1

0 5 10 15 20 25
-2

0

2

4
response in variance, flow U

0 5 10 15 20 25

time

0

1

2

response in variance, mode 
1

(a) µ = −0.5

0 5 10 15 20 25
-1

0

1
response in mean, flow U

w/o control

control on U, 

control on U only

0 5 10 15 20 25

-0.5

0

0.5
response in mean, mode 

1

0 5 10 15 20 25

-0.2
0

0.2
0.4
0.6

response in variance, flow U

0 5 10 15 20 25

time

0

0.5

1

1.5

response in variance, mode 
1

(b) µ = 2

Figure 4.9: Control responses in regimes µ = −0.5 and µ = 2 with forcing perturbation in the mean state U and the topographic vorticity mode
ω̂(1,0). Control is added at time Tctrl = 5. The control results with control forcing on both mean flow U and first mode ω̂1 (solid lines) and with
control forcing only on the mean flow U (dotted-dashed lines) are compared with the responses without control forcing (dashed lines). The results
are achieved through a Monte-Carlo simulation with ensemble size N = 1000 and with control parameter α = 0.05.

modes ω1, and the statistical mean and variance are calculated through an ensemble simulation of N = 1000 particles.
Overall, the control forcing κ (t) can effectively speed up the convergences of the perturbed states in both statistical
mean and variance. For a further comparison about the control effects on each component, we also compare the
performances of control forcing κ0 only on the mean flow U and the full control κ0, κ1 on both the perturbed modes
U, ω1 as before. Obviously only controlling the mean flow U in this inhomogeneous flow field can be skillful but is555

insufficient to achieve the optimal control performance. Both mean and variance get slower convergence rates to the
equilibrium state compared with the previous fully controlled results; and even the responses in the controlled direction
U are not as good when no control forcing is applied on the other mode ω1. This is due to the strong feedbacks from
the vortical modes to the mean flow field through the topographic stress. Nevertheless the performance with control
only on mean flow U is still better compared with the purely uncontrolled situation. To summarize, the statistical560

control strategy can offer an efficient way to develop the control forcing on the largest scales regardless of the high
internal instability, but effectively drive the perturbed system back to equilibrium based on the total statistical energy
structure.

For a further comparison, we also check the statistical energy responses in the unperturbed modes,
∑
|k|2≥2 |ω̂k|

2 in
Figure 4.10. In this 57-mode model with a limited number of modes, the energy inside the small scale modes is small.565

Thus the responses in both the controlled and uncontrolled cases is equally small.

5. Summary

In this paper, we investigated a general statistical control strategy for complex dynamical systems with the help
of a statistical energy conservation principle based on the framework first developed in [17]. The general turbulent
systems of interest include a large group of universal models with energy-conserving nonlinearity. Instead of a direct570

control on the state variables in a high-dimensional phase space of the turbulent system with instability, we focus on
a simple scalar dynamical equation developed in [15, 16] about the total statistical energy that combines the changes
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Figure 4.10: Control responses in the unperturbed modes |k|2 ≥ 2 in regimes µ = −0.5 and µ = 2. The forced responses on these unperturbed
modes are quite weak in these tests.

of energy in the mean and total variance. The total statistical energy equation offers an overall characterization of
the statistical structure of the complex system related only with the deterministic forcing perturbation and statistical
mean state, thus avoiding treating the complicated higher order nonlinear interactions with instability. The optimal575

control for this statistical equation is first solved with explicit solution by applying dynamic programming on the
scalar statistical equation. Then in the second step the control forcing exerted on the original perturbed system can be
recovered by inverting the achieved optimal statistical control related only with the first order mean statistical response
of the system. In addition, the statistical responses in the mean subject to external forcing is approximated using linear
response theory [23, 19] without the need to run the explicit model. In the two major mathematical tools used in the580

control method, the statistical energy principle relates the changes in total statistical energy with the perturbation
in the first order mean state; and the mean responses are predicted with the linear response operator approximated
by autocorrelation functions. The important advantage is that very little information is needed beforehand under this
statistical control framework. Only the initial total changes in the statistical energy and a few autocorrelation functions
of the target statistical steady state are required in finding the final form of control forcing without need of tracking585

the evolution of the full system and a large number of instabilities.
The control performance of this statistical strategy is then verified using two representative models involving in-

homogeneity, that is, the 40-dimensional L-96 system and the topographic barotropic system including mean flow and
small-scale interaction. The L-96 system can serve as a simple prototype model but can generate many representative
statistical regimes. This enables us to compare the control performances in detail with different choices of model590

parameters in the simple setup of homogeneous perturbations. Then inhomogeneous perturbations are introduced in
various small scale modes and the control skill is further confirmed. The barotropic flow topography offers another
testbed for the anisotropic flow with various statistics. More detailed control forcing on a few large scale modes are
required in this case to guarantee very effective statistical control. Despite the model errors introduced through the
leading order expansion in both the statistical equation and linear prediction in mean response, the statistical control595

methods display uniform robust skill in all the numerical experiments for controlling the homogeneously and inho-
mogeneously perturbed system in the same fashion. The control forcing κ (t) is found with high skill even admitting
large errors in the statistical energy equation and mean response approximations. Furthermore this statistical control
strategy shows potential for extremely high dimensional problems in turbulent flows and passive turbulence [16, 29].
Additional investigation is also required in strategies for finding the imperfect model parameters to achieve optimal600

performance in a systematic way, which in the present case is mostly determined empirically.
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Appendix A. Statistical Control with Second-Order Responses in Inhomogeneous Perturbation605

In the main text we always focus on the leading order expansion, ūeq ·δF0 + F̄eq ·δū0, in the statistical control, while
the second order responses, δFk · δūk, are assumed to be small or neglected in inhomogeneous perturbation cases. As
one additional discussion we compare a more detailed control on the second order statistical response

∑
k δFk · δūk

with the previous homogeneous control only on the statistical mean in the main text.

Appendix A.1. Statistical control formulation with inhomogeneous perturbation in second-order response610

We still consider the control problem through the statistical energy identity in the general form

dE
dt

= −2dE (t) + C (t) , E (t0) = E0, t0 ≤ t ≤ T. (A.1)

In the same way, we use C (t) for the total statistical control from the mean state perturbation. Notice that we can
always include nonlinear terms inside the general statistical control functional C (t) considering higher-order pertur-
bations. Therefore an inhomogeneous control forcing ~κ (t) is introduced to control the system adaptively along each
EOF in the controlled subspace {ek}

M
k=1

F̄eq = F̄eqe0, ūeq = ūeqe0, ~κ (t) = κ0 (t) e0 +

M∑
k=1

κk (t) ek. (A.2)

The generalized control is dependent on perturbation along each EOF direction

C (t) = C0 (t) +

M∑
k=1

Ck (t) , C0 (t) = ūeqκ0 (t) + F̄eq

ˆ t

0
Rū (t − s) κ0 (s) ds,

Ck (t) = κk (t)
ˆ t

0
Rk (t − s) κk (s) ds. (A.3)

Above the leading order response in C0 only contains the linear homogeneous control κ0. Further we want to add
individual controls κk along each smaller scale, thus higher order nonlinear control Ck needs also be considered. The
cost function can be defined according to the equilibrium energy in each perturbed direction

Fα [C (·)] ≡

ˆ T

t
E2 (s) + α

∑
k,0

w−1
k C

2
k (s) ds + w−1

0 C
2
0

 + kT E2 (T ) ,

v (x, t) = min
C
Fα [C (·)] . (A.4)

Above different penalty weight wk should be added in each control mode Ck in the cost function Fα. We use the same615

strategy (2.18) in determining the control weight according to the equilibrium variance in each control direction. Each
weight in small scales is proportional to the equilibrium variance in that direction, thus the more energetic modes get
stronger control in response. In the control for the responses from uniform mean C0 (which is responsible for the
averaged feedback in the homogeneous state), the scaling is corresponding to the averaged one-point variance r1pt.
And all the weights are normalized. In this way, each component in cost function is balanced.620

Following similar strategy in Section 2 of the main text, we can derive the optimal control equations for each
control component

C∗0 (t) = − α−1w0K (t) E∗ (t) ,

C∗k (t) = − α−1wkK (t) E∗ (t) , 0 ≤ t < T,
dE∗

dt
= − 2dE∗ (t) − α−1K (t) E∗ (t) .

(A.5)

Since each spectral component in the cost function Fα is weighted through the equilibrium variance wk, the energy
control in each mode is proportional to the ratio of equilibrium variance. The solution K (t) of the scalar Riccati
equation is exactly the same as the previous homogeneous case solution in (3.3), and the optimal energy control Ck
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is consistent with the previous case by just replacing αk = αw−1
k . So the same exact solution can be applied. After

solving the above equation for K (t), exact same strategy can be applied for the control inversion along each direction625

of control κk (t).
Now having achieved each component of the control parameter Ck (t), the next problem is to recover the inhomo-

geneous control forcing ~κ (t) by inverting the nonlinear non-Markovian relation in (A.3). The control forcing in zero
mode κ0 (t) can be calculated using the same strategy as before in (2.21), thus the central problem is for new dynami-
cal equations for the smaller scale forcing κk (t). Still we use the linear approximation to estimate the autocorrelation
functions. The linear response operator is approximated by autocorrelations with fitting parameters (γk, ωk)

Rk (t) = exp
[
(−γk + iωk) t

]
.

Therefore we have the dynamical equations for the linear response Lk =
´ t

0 Rk (t − s) κk (s) ds under the linear model
approximation of Rk in each mode

dLk

dt
= (−γk + iωk)Lk (t) + κk (t) , 1 ≤ k ≤ M, Lk (0) = 0.

It needs to be noticed that small scale responses Rk,Lk are both in complex values due to the phase parameter ωk. The
mean control forcing κ0 can be recovered following exactly the same strategy as in the homogeneous case. Next we
discuss the recovery of the nonlinear interactions due to small scale feedbacks.

Next we discuss about the inversion problem for the quadratic relation in complex values

Ck (t) = κ∗kLk + κkL
∗
k, Lk =

ˆ t

0
Rk (t − s) κk (s) ds.

First note that the time derivative on the right hand side is real and can be calculated exactly as in the main text,
Ċk =

(
2d − K−1

)
Ck. Then it is easy to check the above nonlinear problem satisfy the following equation combining

the linear regression model and nonlinear response

dκr
k

dt
= −2C−1

k

[(
κr

k

)2
+

(
κi

k

)2
]
κr

k +
(
γk + 2d − K−1

)
κr

k − ωkκ
i
k,

dκi
k

dt
= −2C−1

k

[(
κr

k

)2
+

(
κi

k

)2
]
κi

k +
(
γk + 2d − K−1

)
κi

k + ωkκ
r
k.

(A.6)

Above in the spectral modes, κk = κr
k + iκi

k, we separate the dynamical equation for the complex control in real and
imaginary parts. The initial value of the above system can be decided in the same fashion

κr
k (0) =

Reδūk (0)

|δūk (0)|2
Ck (0) , κi

k (0) =
Imδūk (0)

|δūk (0)|2
Ck (0) . (A.7)

Appendix A.2. Verification second-order control with inhomogeneous perturbation630

Here we compare the performances of the control on second-order responses and the simple linear control model
in the main text. We use the L-96 model with inhomogeneous forcing perturbations the same as Section 4.1. The
most sensitive directions k = 11, 12, 13, 14 and the most energetic directions k = 6, 7, 8, 9, 10 are perturbed. The
mean responses in the small scale modes using the homogeneous control forcing κ0 (t) in main text and using the
inhomogeneous control ~κ (t) above with forcing on the small scales are compared. In Figure A.1 the linear first-order635

control and the second-order control offer similar results in the responses in all the small scale modes. However, the
second-order control method is in general much more expensive because the control forcing along each small scale
modes needs to be calculated individually. As a result, the linear homogeneous control is sufficient to offer desirable
control performance considering both efficient and effectiveness.
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Figure A.1: Comparison of results with linear control and second-order control applied in L-96 system with inhomogeneous perturbations. The
dashed black lines are the uncontrolled case; the blue lines are the case with leading order homogeneous control on the mean state; and the
dotted-dashed red lines are the case with second-order control.

Appendix B. Information criterion for measuring autocorrelation functions of the stationary random fields640

Here we propose one strategy in determing the optimal model parameter (dM , ωM) in Section 2.2.2 by fitting the
lagged-in-time autocorrelation following the general method introduced in [28] with the help of information theory.
A preferable measure to offer an unbiased metric for the imperfect model probability distribution πM from the truth π
is to use the relative entropy [22]

P (π, πM) =

ˆ
π log

π

πM
. (B.1)

However one additional difficulty in tuning the autocorrelation functions under the information metric is that the
autocorrelation functions is not actually a distribution function to measure in the relative entropy (B.1). The autocor-
relation function R (t) may oscillate with negative values, thus it becomes improper to directly substitute R (t) into the
formula (B.1) by replacing the distribution function π to measure the distance. The problem can be solved by instead
considering the spectral representation of the random process u (t), from the theory of spectral representation of sta-
tionary random fields [34]. It is proved by Khinchin’s formula [34], that if the autocorrelation function R (t) makes
smooth and rapid-decay, a positive definite matrix E (λ) > 0 can be constructed so that the spectral representations of
the autocorrelation R (t) and stationary process u become

R (t) =

ˆ ∞

−∞

eiλtdF (λ) , u (t) =

ˆ ∞

−∞

eiλtẐ (dλ) , (B.2)

where the spectral random measure Ẑ (dλ) has independent increments and energy spectrum measured by E (λ)

dF (λ) = E (λ) dλ = E
∣∣∣Ẑ (dλ) Ẑ∗ (dλ)

∣∣∣ .
Applying the theory for spectral representation of stationary processes, we find the one-to-one correspondence

between the autocorrelation function R (t) and positive-definite energy spectra E (λ). Back to the comparisons of
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the true and model random fields u, uM constrained within first two moments, R (t) for the true process u can be
achieved through the data from true model simulations, while the imperfect model autocorrelation RM (t) can be
solved explicitly through the Gaussian linear process

duM = − (dM + iωM) uMdt + σMdW.

The autocorrelation function and corresponding spectral density function can be calculated in exact forms,

RM (t) = exp (− (dM + iωM) t) , EM (λ) =

ˆ ∞

−∞

e−iλtR (t) dt =
2dM

d2
M + (λM + ωM)2 . (B.3)

E (λ) and EM (λ) then are the Fourier transforms of the autocorrelation matrices R (t) ,RM (t) according to (B.2).
Therefore we can construct the spectral measures for two Gaussian random fields as a product of increment indepen-
dent normal distributions about the frequency λ

πG (x; λ) =
∏
N (0, E (λ) dλ) , πM

G (x; λ) =
∏
N (0, EM (λ) dλ) .

The normalized relative entropy (B.1) between the two processes then can be defined under the spectral densities

P
(
πG, π

M
G

)
= P (E (λ) , EM (λ)) ,

ˆ ∞

−∞

P
(
πG (x; λ) , πM

G (x; λ)
)

dλ. (B.4)

See [28] for a more detailed derivation about the above formula. Since E and EM are positive definite for the spectral
random variables, it is well-defined in the last part of the above formula (B.4) using the information distance formula
(B.1). Through measuring the information distance in the spectral coefficients Ẑ (dλ), we get the lack of information in
the autocorrelation function R (t) from the model. Furthermore, we have shown in [28] that the error in autocorrelation
functions ‖R (t) − RM (t)‖ of two stationary random processes u and uM is bounded by the information distance of their645

energy spectra P (E, EM).
To summarize, we can seek a spectral representation about the autocorrelation functions like

P (E (λ) , EM (λ)) =

ˆ
D

(
E (λ) EM (λ)−1

)
dλ, (B.5)

where D (x) ≡ − log det x + trx − 2 is the Gaussian relative entropy with a zero mean state. And since here we only
concentrate on the leading order statistics (that is, mean and variance), thus this representation is enough. We can find
the optimal model parameter θ∗ = (dM , ωM) by minimizing the information metric defined in (B.5)

P (E (λ) , EM (λ, θ∗)) = min
θ
P (E (λ) , EM (λ, θ)) . (B.6)
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