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Abstract An improved index for real-time monitoring and forecast verification7

of monsoon intraseasonal oscillations (MISOs) is introduced using the recently de-8

veloped nonlinear Laplacian spectral analysis (NLSA) technique. Using NLSA, a9

hierarchy of Laplace-Beltrami (LB) eigenfunctions are extracted from unfiltered10

daily rainfall data from the Global Precipitation Climatology Project over the11

south Asian monsoon region. Two modes representing the full life cycle of the12

northeastward-propagating boreal summer MISO are identified from the hierar-13

chy of LB eigenfunctions. These modes have a number of advantages over MISO14

modes extracted via Extended Empirical Orthogonal Function (EEOF) analysis,15

including higher memory and predictability, stronger amplitude and higher frac-16

tional explained variance over the western Pacific, Western Ghats, and adjoining17

Arabian Sea regions, and more realistic representation of the regional heat sources18

over the Indian and Pacific Oceans. The skill of the NLSA-based indices in real-19

time prediction of MISO is demonstrated using extended-range hindcasts of the20

NCEP version 2 Coupled Forecast System (CFSv2) model. It is shown that these21

indices yield a significantly higher prediction skill than conventional indices sup-22

porting the use of NLSA in real-time prediction of MISO.23

Keywords Monsoon Intraseasonal Oscillations · Nonlinear Laplacian Spectral24

Analysis · CFSv225

1 Introduction26

The boreal summer monsoon rainfall over south Asia shows a strong intraseasonal27

variability with two dominant modes: a northeastward propagating mode with28

30–60 day periodicity (Sikka and Gadgil, 1980; Goswami and Ajayamohan, 2001)29

and a westward propagating biweekly mode with 10–20 day periodicity (Krish-30

namurti and Bhalme, 1976; Chatterjee and Goswami, 2004). The low-frequency31

northeastward-propagating mode is generally known as the Monsoon Intraseasonal32

Oscillation (MISO; Kikuchi et al, 2012; Lee et al, 2012). The propagating char-33

acteristics of the MISO are more complex compared to the eastward-propagating34
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Madden Julian Oscillation (MJO) due to its interaction with the mean monsoon35

circulation and other modes of tropical variability. The phase of MISO occurring36

during the early and late monsoon season influences the timing of the onset and37

withdrawal of the Indian summer monsoon, respectively, and thereby the length of38

the rainy season (Sabeerali et al, 2012). MISO also affects rainfall over the Indian39

subcontinent, playing a fundamental role in the strength of the seasonal mean40

Indian summer monsoon and its predictability (Goswami and Ajayamohan, 2001;41

Ajayamohan and Goswami, 2003; Gadgil, 2003). Hence, an accurate prediction42

of various characteristics MISO phases and extreme events associated with the43

Indian summer monsoon is highly significant. In particular, the extended range44

prediction of MISO phases and real-time monitoring of the MISO is vital for agri-45

cultural planning like sowing, harvesting and water management (Sahai et al, 2013;46

Abhilash et al, 2014).47

Several indices have been proposed in recent years for real-time monitoring and48

forecast verification of the MJO and MISO (Wheeler and Hendon, 2004; Lee et al,49

2012; Kikuchi et al, 2012; Suhas et al, 2013). Among these, the multivariate RMM50

index (Wheeler and Hendon, 2004), constructed through multivariate Empirical51

Orthogonal Function (EOF) analysis of Outgoing Longwave Radiation (OLR) and52

zonal wind data, is primarily designed to monitor the MJO, which peaks in bo-53

real winter. For that reason, the RMM index fails to capture the northeastward54

propagation of the MISO (Lee et al, 2012; Kikuchi et al, 2012; Suhas et al, 2013).55

By applying Extended EOF (EEOF) analysis on bandpass-filtered OLR data, a56

bimodal MJO-BSISO index was introduced by Kikuchi et al (2012) to represent57

the state of the intraseasonal variability during all seasons. Other indices (Lee58

et al, 2012; Suhas et al, 2013) are based on similar multivariate EOF and EEOF59

techniques. In particular, the MISO index proposed by Suhas et al (2013, hereafter60

EEOF MISO index) has been used since its introduction by the Indian Institute of61

Tropical Meteorology (IITM) for real-time MISO prediction (Sahai et al, 2013; Ab-62

hilash et al, 2013). This index is based on EEOF analysis of longitudinally averaged63
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JJAS rainfall data over the Indian Monsoon region, and captures the spatial and64

temporal MISO patterns reasonably well, isolating the northeastward-propagating65

30–60 day periodicity band from the high-frequency westward propagating band66

(Suhas et al, 2013; Abhilash et al, 2013, 2014). Yet, the seasonal extraction and67

longitudinal averaging required to compute these indices can potentially lead to68

loss of predictive information or mixing with other other modes. More broadly,69

it is evident that discrepancies among these indices are caused by factors such70

as the physical variables, geographical domain, data preprocessing, and statisti-71

cal analysis technique used in their definition. Indeed, an accurate and objective72

identification of tropical intraseasonal oscillations, including the MJO and MISO,73

remains a challenging open problem (Kiladis et al, 2014).74

In this work, we introduce a new MISO index based on the Nonlinear Laplacian75

Spectral Analysis (NLSA) technique (Giannakis and Majda, 2012b,a), and use that76

index to explore the possibilities of improving the real-time monitoring and pre-77

diction of MISO. NLSA is a nonlinear data analysis technique that combines ideas78

from delay embeddings of dynamical systems (Packard et al, 1980; Sauer et al,79

1991) and kernel methods for harmonic analysis and machine learning (Belkin80

and Niyogi, 2003; Coifman and Lafon, 2006a) to extract spatiotemporal modes of81

variability from high-dimensional timeseries. These modes are computed using the82

eigenfunctions of a discrete Laplace-Beltrami operator—an operator which can83

be thought of as a local analog of the temporal covariance matrix employed in84

EOF and EEOF techniques, but adapted to the nonlinear geometry of data gen-85

erated by complex dynamical systems. A key advantage of NLSA over classical86

covariance-based approaches is that it is able to extract modes spanning multiple87

timescales without requiring ad hoc preprocessing (e.g., seasonal partitioning or88

bandpass filtering) of the input data. Thus, the method is well-suited for objec-89

tively identifying MISO patterns in noisy precipitation data.90

NLSA has previously been employed to extract families of modes of variability91

from equatorially averaged (Giannakis et al, 2012; Tung et al, 2014) and two-92
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dimensional (2D) (Székely et al, 2016a,b) brightness temperature (Tb) data span-93

ning interannual to diurnal timescales without prefiltering the input data (here-94

after, we collectively refer to these references as GMST). These mode families95

include representations of the MJO and BSISO with higher temporal coherence96

(Székely et al, 2016b) and stronger discriminating power between eastward and97

poleward propagation (Székely et al, 2016a) than patterns extracted through EOF98

and EEOF approaches. The MJO and BSISO modes from NLSA have also been99

used in low-order forecast models based on nonlinear stochastic oscillators (Chen100

et al, 2014; Chen and Majda, 2015) and ensembles of analogs (Alexander et al,101

2016) with useful predictive skill extending out to 40–50 day leads.102

Here, we demonstrate that NLSA yields physically meaningful and highly pre-103

dictable MISO modes when applied to unprocessed daily precipitation data from104

Global Precipitation Climatology Project (GPCP; Huffman et al, 2001) over the105

south Asian monsoon region. We find that compared to the conventional EEOF106

MISO indices, the NLSA-based MISO indices have higher memory and predictabil-107

ity. Further, we demonstrate the skill of the NLSA based MISO modes in real108

time prediction of the MISO using the NCEP Climate Forecast System version 2109

(CFSv2; Saha et al, 2014) model hindcast data.110

The plan of this paper is as follows. An overview of the datasets and NLSA111

methodologies used in this study are presented in sections 2 and 3, respectively.112

Section 4 presents the hierarchy of modes extracted by NLSA applied on spa-113

tiotemporal data, focusing on the temporal and spatial properties of the MISO114

modes. A comparison of the NLSA modes with the conventional EEOF-based115

MISO modes is presented in section 5, and section 6 discusses real-time MISO116

forecasting with the NLSA modes. The paper ends in section 7 with a summary117

discussion and concluding remarks.118
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2 Dataset description119

We apply NLSA on daily GPCP rainfall data (Huffman et al, 2001) over the Asian120

summer monsoon region (20◦S–40◦N, 30◦E–160◦E) for the period 1997–2014. The121

spatial resolution of this dataset is 1◦X 1◦, amounting to n = 5500 gridpoints for122

the Asian summer monsoon region. The number of temporal samples is s = 6574.123

Note that we analyze the raw GPCP data for the full year period without perform-124

ing any pre-filtering. To create the MISO phase composites, we use daily averaged125

outgoing longwave radiation (OLR) data from the NOAA advanced very high res-126

olution radiometer (Liebmann, 1996) and lower level (850 hPa) wind anomalies127

obtained from the National Centers for Environmental Prediction-National Center128

for Atmospheric Research (NCEP/NCAR) reanalysis (Kalnay et al, 1996) for the129

period 1998–2013. The horizontal resolution of these two datasets are 2.5◦ × 2.5◦.130

As hindcast data, we use precipitation fields from 45 day operational inte-131

grations of NCEP CFSv2. The CFSv2 is a fully coupled ocean-atmosphere-land132

model, with modified physics and higher resolution compared to its earlier version133

(CFSv1; Saha et al (2014)). In addition, this model has been identified as the134

base model for the Monsoon Mission project of the Government of India. Earlier135

studies have reported that the CFSv2 is able to adequately simulates the mean136

Indian summer monsoon features (George et al, 2016; Chattopadhyay et al, 2015;137

Ramu et al, 2016) and the subseasonal variability associated with it (Sabeerali138

et al, 2013; Goswami et al, 2014). For extended range MISO forecasts, 45 day lead139

time model integrations were performed at IITM using the CFSv2 coupled model140

(Sahai et al, 2013; Abhilash et al, 2014). In each monsoon season, 25 simulations141

with different initial conditions were performed starting from May 31 to September142

28 at 5 day intervals and each initial condition runs involve 40 ensemble members143

(a total of 25×40 runs for each year). For verifying the NLSA MISO forecasts, we144

use the ensemble mean of each initial condition run.145
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3 NLSA methodology146

In what follows, we first summarize the NLSA methodology to compute the Laplace-147

Beltrami eigenfunctions and associated spatiotemporal patterns from the train-148

ing (GPCP) data (section 3.1), and then describe the procedure to compute the149

eigenfunctions from previously unseen forecast data using out-of-sample extension150

techniques (section 3.2). More detailed discussions on NLSA and the out-of-sample151

extension procedure can be found in GM, and in Zhao and Giannakis (2014) and152

Comeau et al (2016), respectively.153

3.1 Overview of NLSA algorithms154

Let x(ti) be an n-dimensional vector of gridded precipitation values over the South155

Asia monsoon region at time ti = (i − 1) δt. Here, δt represents the 21 day sam-156

pling interval of the data, and i is an integer ranging from 1 to s so that the157

start date of the training dataset (January 1, 1997) is assigned the reference time158

t1 = 0. Using the data {x(t1), . . . , x(ts)}, NLSA computes a hierarchy Laplace-159

Beltrami eigenfunctions φ0(ti), φ1(ti), . . . , φl(ti) (which are temporal patterns that160

can be thought of as nonlinear analogs of the principal components (PCs) in EEOF161

analysis), and a corresponding collection of reconstructed spatiotemporal patterns162

{x(0)(ti), x(1)(ti), . . . , x(l)(ti)} such that
∑l
k=0 x

(k)(ti) approximates the input sig-163

nal x(ti). The NLSA pipeline consists of three main steps, as follows.164

The first step, which is in common with EEOF analysis, is to construct a higher-165

dimensional, time-lag embedded dataset using Takens’ method of delays. Fixing166

a positive integer parameter q (the number of lags), each snapshot x(ti) with167

i ≥ q is mapped to the lagged sequence X(ti) = (x(ti), x(ti−1), . . . , x(ti−q+1)).168

Note that the dimension of the vectors X(ti) is N = nq, and that after time-169

lagged embedding n− q + 1 samples are available for analysis. Following GMST,170

we set q = 64; this choice corresponds to an intraseasonal embedding window of171

length q δ = 64 days. We verified our results with different embedding windows by172
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computing eigenfunctions for q = 34, 48, and 90. Eigenfunctions computed using173

q = 34 and 40 exhibit mixing of different timescales, whereas those computed174

using q = 90 are in good agreement with our nominal choice, q = 64.175

The next step in NLSA is to compute the kernel matrix K with entries Kij =176

K(X(ti), X(tj)) given by177

K(X(ti), X(tj)) = exp

(
−‖X(ti)−X(tj)‖2

εξ(ti)ξ(tj)

)
.

In the above, ε is a positive kernel bandwidth parameter, and the quantities ξ(ti)178

are “phase space velocities” measuring the local time-tendency of the data through179

ξ(ti) = ‖X(ti)−X(ti−1)‖. The kernel values K(X(ti), X(tj)) provide a nonlinear180

measure of similarity between samples X(ti) and X(tj) with K(X(ti), X(tj)) close181

to 1 or 0 meaning that X(ti) and X(tj) are highly similar or highly dissimilar,182

respectively. Due to the exponential decay of the kernel, this measure of similar-183

ity is local in the sense that for a fixed reference point X(ti) sufficiently small ε,184

K(X(ti), X(tj)) is appreciable only in a small neighborhood of X(ti) where the185

local geometry of the data (viewed as a cloud of points in RN ) is approximately186

linear. Intuitively, operators constructed from K(X(ti), X(tj)) smoothly interpo-187

late between such local linear patches that together make up the global nonlinear188

geometry of the data. This approach has been widely used in machine learning189

algorithms (e.g., Belkin and Niyogi, 2003; Coifman and Lafon, 2006a), but the190

novelty of the NLSA kernel lies in the fact that K(X(ti), X(tj)) depends on the191

dynamical system generating the data due to both time lagged embedding (since192

changing the dynamics would change the snapshot sequences present in the time-193

lagged vectors) and the local phase space velocities ξ(ti). Time-lagged embedding194

is crucial for obtaining timescale separation in the eigenfunctions φi, and the phase195

space velocities enhances the ability of the algorithm to capture intermittent rapid196

transitions. Since ther calculation of ξ(ti) “uses up” the initial lagged-embedded197

sample X(tq), the kernel matrix K has size S × S where S = s − q. Due to the198

exponential decay of the kernel, the entries of K below a given threshold can be199
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set to zero leading to a sparse matrix. Here, following GMST, we work with the200

bandwidth parameter value ε = 2, and retain the largest 650 nonzero entries in201

each row of K (which corresponds to ' 10% of the total number of samples). To202

verify the sensitivity of our results to the value of ε, we repeated our analysis with203

different ε values. We found that choosing ε in the interval 2–5 does not make204

qualitative changes in the results.205

Having computed the sparse kernel matrix K, NLSA proceeds by normalizing206

it to obtain a Markov (row-stochastic) matrix P using the normalization procedure207

introduced in the diffusion maps algorithm Coifman and Lafon (2006a). Specifi-208

cally, the matrix elements Pij are computed through the sequence of operations209

210

qi =
S∑
j=1

Kij , K′ij =
Kij
qiqj

, di =
S∑
j=1

K′ij , Pij =
Kij
di

, (1)

and it follows immediately that
∑S
j=1 Pij = 1. The NLSA temporal patterns φk(ti)211

are then determined by the eigenvectors of the Laplacian matrix L = I −P . That212

is, we solve the sparse eigenvalue problem213

Lφk = λkφk, φk = (φ1k, φ2k, . . . , φSk)>,

and set φk(ti) = φik. It follows from standard properties of ergodic Markov chains214

that the eigenvalues λi admit the ordering 0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λS .215

Moreover, the eigenfunctions can be chosen to be orthonormal with respect to the216

weighted inner product 〈φj , φk〉 :=
∑S
i=1 µiφijφik = δik, where µi are positive217

weights with
∑S
i=1 µi = 1, given by the entries of the (unique) left eigenvector of218

P with corresponding eigenvalue 1. Conceptually, these Laplace-Beltrami eigen-219

functions can be treated as nonlinear analogs of the principle components (PCs)220

in (E)EOF analysis, and can be used e.g., to create spatiotemporal reconstruc-221

tions and phase composites. In particular, an exact recovery of the input signal is222

possible using all S eigenfunctions, although of course in practice one works with223

the leading few eigenfunctions.224
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In a suitable limit of large data (S →∞ and ε→ 0) L converges to the Laplace-225

Beltrami operator on the manifold sampled by the lag-embedded data X(ti) for a226

Riemannian geometry that depends on the kernel K (Coifman and Lafon, 2006a).227

That is, L generates a diffusion process (random walk) on the nonlinear data228

manifold sampled by the data, which is statistically isotropic (i.e., the random229

walker takes steps with equal probability in every direction), but the notion of230

isotropy is with respect to a modified geometry that depends on the choice of231

kernel. The eigenfunctions φk correspond to preferred classes of functions that232

remain statistically invariant (up to an eigenvalue-dependent scaling) under that233

diffusion process. Moreover, the corresponding eigenvalues λk can be interpreted234

as a measure of roughness (called Dirichlet energy) of the φk viewed as functions235

on the data manifold, much like the Laplacian eigenvalue k2 corresponding to a236

Fourier function eikθ on a periodic domain measures roughness associated with237

the wavenumber k.238

It is well known that for appropriate choices of kernel, eigenfunctions of dif-239

fusion operators on manifolds can reveal important relationships in complex data240

(Belkin and Niyogi, 2003; Coifman and Lafon, 2006a). In particular, a popular241

approach in harmonic analysis and machine learning is to use the φi as nonlin-242

ear dimension reduction maps, sending the n-dimensional snapshots x(ti) to the243

l-dimensional vectors (φ1(ti), φ2(tj), . . . , φl(tj)) where l� n. Ordering the eigen-244

functions in order of increasing corresponding eigenvalues, leads to the least rough245

l-dimensional dimension reduction map in the kernel dependent geometry. For the246

class of kernels in time-lagged embedding space used in NLSA it can be shown247

that as the number of lags q increases, the leading eigenfunctions become increas-248

ingly sensitive towards the subset of dynamical degrees of freedom with large249

Lyapunov stability, filtering out the unstable degrees of freedom. Quasi-periodic250

patterns, such as intraseasonal oscillations, are likely to be well represented by251

stable degrees of freedom, making NLSA a suitable technique for their detection252

in high-dimensional complex data (Berry et al, 2013). Indeed in section 4 ahead,253
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we will see that NLSA recovers MISO from precipitation data through a doubly-254

degenerate pair of eigenfunctions with more realistic corresponding spatial features255

and higher predictability than the corresponding EEOF modes.256

3.2 Out-of-sample extension257

In real-time monitoring and forecasting applications it is important to be able to258

compute the values of NLSA eigenfunctions for previously unseen samples. Specifi-259

cally, suppose that we are given a lagged sequence Y = (y(t′i), y(t′i−1), . . . , y(t′i−q+1))260

of precipitation snapshots, where t′i represents time at forecast verification and the261

y(t′j) are n-dimensional vectors storing precipitation data over the South Asian262

monsoon region in the same manner as the training data x(ti). In the application263

of interest here, Y will be constructed from CFSv2 output, or a concatenated se-264

quence to CFSv2 output and GPCP data (to provide precipitation snapshots at265

times prior to CFSv2 initialization). To that end, we employ so-called Nyström266

out-of-sample extension techniques, originally introduced in the 1930s for interpo-267

lation of solutions of integral eigenvalue problems and adopted to the setting of268

kernel methods on manifolds by Coifman and Lafon (2006b).269

Consider now the eigenfunction time series φk(ti) with corresponding eigen-270

value λk. Each value φk(ti) of that time series can be naturally associated with the271

training sample X(ti) in lagged embedding space RN ; i.e., we have the mapping272

X(ti) 7→ φk(ti). In the Nyström method, that mapping is extended to arbitrary273

points Y ∈ RN subject to a consistency requirement on the training data. That is,274

given Y ∈ RN , we compute a quantity φ̂k(Y ) such that if Y happens to be equal275

to some X(ti) in the training dataset, then φ̂k(Y ) = φk(ti).276

The procedure to compute φ̂k(Y ) has its foundations in the theory for func-277

tion interpolation in reproducing kernel Hilbert spaces, and follows closely the278

diffusion maps construction described in section 3.1. Specifically, we first compute279

the pairwise kernel values between Y and the samples in the training dataset,280

K̂j(Y ) = K(Y,X(tj)), and then perform the diffusion maps normalization proce-281
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dure,282

K̂j(Y ) =
K̂j(Y )

qj
, d̂(Y ) =

S∑
j=1

K̂′j(Y ), P̂j(Y ) =
K′j(Y )

d̂(Y )
,

where qj is determined from (1). Note that
∑S
j=1 P

′
j(Y ) = 1, and if Y = X(ti)283

then P̂j(Y ) = Pij . Introducing the row vector P̂ (Y ) = (P̂1(Y ), . . . , P̂S(Y )), the284

out-of-sample extension of φk is then given by285

φ̂k(Y ) =
1

1− λk
P̂ (Y )φk. (2)

The consistency condition on the training data follows from the facts that P̂ (Y )286

is equal to the i-th row of the matrix P from (1) when Y = X(ti), and that φk is287

an eigenvector of P corresponding to the eigenvalue 1− λk.288

It is evident from (2) that Nyström extension becomes ill-conditioned when289

1 − λk ≈ 0, and this is consistent with our interpretation of the eigenvalues as290

measures of eigenfunction roughness (see section 3.1). That is, eigenfunctions with291

low roughness have λk � 1, and intuitively such eigenfunctions should be robustly292

extendable to previously unseen points Y , but eigenfunctions with large roughness293

have λk ≈ 1 and cannot be robustly extended.294

4 Hierarchy of spatiotemporal modes revealed by NLSA295

Applying the NLSA algorithm to the raw GPCP rainfall data as described in sec-296

tion 3.1, yields a hierarchy of Laplace-Beltrami eigenfunctions capturing coherent297

patterns of rainfall variability. In order to identify the modes northward propagat-298

ing boreal summer MISO, we examine the frequency spectra of the the eigenfunc-299

tion time series, as well as spatial reconstructions and composites. Following the300

convention of section 3.1, we order the eigenfunctions in order of increasing eigen-301

value; the latter are displayed in Figure 1. In what follows, we focus on the leading302

six eigenfunctions, whose time series and power spectral densities are displayed in303

Figure 2.304
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4.1 Periodic modes305

As is evident by their strong spectral peak at the frequency 1/yr, the first two306

eigenfunctions, φ1 and φ2 (Figure 2a,b) represent the annual cycle. The timeseries307

of these eigenfunctions have the structure of a periodic wave (which is nearly308

sinusoidal in the case of φ1, whereas φ2 also exhibits higher-frequency overtones).309

Eigenfunctions φ1 and φ2 also exhibit discernible semiannual and triennial spectral310

peaks, respectively. Modes φ3 and φ4 (Figure 2c,d) have strong spectral peaks at311

the frequency 2/yr representing semiannual variability.312

In spatiotemporal reconstructions (not shown here for brevity), mode φ1 shows313

a seasonal (winter to summer) shift of precipitation anomalies between the two314

hemispheres with strong precipitation anomalies in winter and summer months315

and relatively weak precipitation anomalies in other months. Moreover, the pre-316

cipitation anomalies associated with this mode are stronger over land than over317

the ocean. On the other hand, the annual mode φ2 shows significant precipita-318

tion anomalies over oceanic region compared to land region and it shows strong319

anomalies during spring and autumn season. The semiannual modes φ3 and φ4320

show significant precipitation anomalies over the equatorial Indian Ocean, and321

these anomalies appear twice a year in association with the ITCZ movement. Pre-322

cipitation anomalies are initially seen over the the equatorial Indian Ocean, and323

then propagates poleward towards the Indian subcontinent.324

4.2 MISO modes325

Eigenfunctions φ5 and φ6 represent the dominant MISO activity over the south326

Asian monsoon region. These eigenfunctions form a doubly-degenerate pair (Fig-327

ure 1) of 90◦ out-of-phase amplitude-modulated waves with a spectral peak in the328

1/(30 day)–1/(60 day) frequency band (Figure 2e,f). Moreover, they exhibit strong329

seasonality with the bulk of their activity taking place during the boreal summer330

months. The temporal evolution of eigenfunctions φ5 and φ6 is shown in more331
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detail in Figure 3 for a two-year reference period, where the 90◦ phase difference332

and seasonality are clearly evident. The detailed view in Figure 3 also illustrates333

the absence of high-frequency noise from the φ5 and φ6 time series. Another im-334

portant feature of eigenfunctions φ5 and φ6 is their non-Gaussian statistics. As335

shown in Figure 4, the probability density functions (PDFs) of the φ5 and φ6336

timeseries have fat tails when computed from the year-round data, and their kur-337

tosis values (κ = 7.6 and 3.8, respectively) are significantly higher than the κ = 3338

kurtosis of the Gaussian distribution. Computed over JJAS, the PDFs of φ5 and339

φ6 become platykurtic (i.e., have lighter tails than a Gaussian distribution) with340

κ = 1.5 and 1.4, respectively. The non-Gaussianity of the NLSA eigenfunction341

PDFs contribute to their higher discriminating power compared to classical linear342

approaches (Székely et al, 2016b).343

In the spatial domain, NLSA MISO modes display the characteristic pattern of344

northeastward propagating anomalies associated with the MISO. This pattern is345

illustrated in Figure 5 with a spatiotemporal reconstruction of the 2004 monsoon346

season. The wet phase of MISO seen at the third week of June 2004 (Figure 5c)347

over the western/central tropical Indian Ocean propagates in the northeastward348

direction in the following days and reaches the foothills of Himalayas by the third349

week of July 2004 (Figure 5f). Following this event, a new wet phase of MISO350

initiates over the western/central tropical Indian Ocean in the last week of July351

2004, and reaches the Himalayan foothills by the end of August 2004. The cycle352

continues with the initiation of convection over the central equatorial Indian Ocean353

in first week of September 2004 and propagates northeastward.354

Together, eigenfunctions φ5 and φ6 delineate the full life cycle of the northward355

propagating boreal summer convection band, and can be used to determine the356

phase and amplitude of the poleward-propagating rainfall anomalies associated357

with the MISO. Hereafter, we refer to eigenfunctions φ5 and φ6 as MISO1 and358

MISO2, respectively. Following previous works (Kikuchi et al, 2012; Székely et al,359
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2016a,b), we also define the NLSA MISO amplitude at time t via360

r(t) =

√
MISO1(t)2

σ2
1

+
MISO2(t)2

σ2
2

, (3)

where σi = 1.03 are the standard deviations of the MISOi(t) time series.361

4.3 Real-time monitoring via NLSA MISO indices362

The daily evolution of the MISO can be monitored from the two-dimensional363

(2D) phase space diagram constructed from the NLSA MISO indices, shown in364

Figure 6 for three drought years. Note that flood years are not present in the365

1998–2003 analysis period. In Figure 6, the 2D phase space diagram is plot-366

ted for the extreme rainfall years where the All India summer monsoon rain-367

fall (AISMR) index exceeds ±1 of its standard deviation (this corresponds to368

a ±10% fractional rainfall anomalies). In the period 1998–2013, there are only369

three years where AISMR is less than −1 (the drought years 2002, 2004, and370

2009); the rest are normal rainfall years with |AISMR| < 1. A list of all drought371

and flood years for the period 1871–2015 can be found in the IITM website372

(http://www.tropmet.res.in/ kolli/mol/Monsoon/Historical/air.html).373

Figure 6 shows the strong MISO activity during June and July months of374

2002 and the subdued MISO activity during the ensuing August and September375

months. In contrast, in spite of it being a drought year, MISO activity during376

2004 is persistently strong throughout the boreal summer. In 2009, MISO activity377

is weak during the late monsoon season. Such day to day evolution of MISO378

can be used for real-time monitoring of monsoon intraseasonal rainfall variability379

(Abhilash et al, 2014). It is evident from 6 that MISO activity does not always380

begin in phase 1 and end in phase 8; a behavior which has also been observed in381

the case of the MJO (Straub, 2013; Stachnik et al, 2015; Székely et al, 2016b).382

To illustrate the relationship between the NLSA MISO indices plotted in Figure 6383

with actual rainfall data, in Figure 7 we compare the MISO2 time series against the384
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corresponding bandpass-filtered (25–90 d) and unfiltered JJAS rainfall anomalies385

over the central Indian domain. Evidently, in all the three drought years the NLSA386

index is able to capture the active and break phases associated with the Indian387

summer monsoon. NLSA mode MISO1 also correlates well with the active and388

break phases in those years, but because this mode has a 90deg phase difference389

with MISO2, the correlation exhibits a time lag (not shown). Following the familiar390

approach from RMM (Wheeler and Hendon, 2004) and EEOF (Suhas et al, 2013;391

Abhilash et al, 2013) indices, we divide the 2D phase space into eight phases, and392

compute phase composites by conditional averaging in each phase subject to the393

requirement that the instantaneous MISO amplitude r(t) from (3) is greater than394

1. In what follows, we use this threshold to identify significant MISO events.395

The resulting composites for bandpass-filtered OLR and 850 hPa wind anoma-396

lies are shown in Figure 8. The composites indicate that an anticlockwise rotation397

from the phase 1 through phase 8 in the 2D phase space represents the poleward398

propagation of the MISO. In particular, phase 1 represents the formation of en-399

hanced convection anomalies (negative OLR anomalies) over the Indian Ocean,400

phases 2 and 3 (Figure 8b,c) the subsequent movement of convection towards the401

Indian subcontinent, phases 4–6 (Figure 8d,e,f) the propagation of enhanced con-402

vection over the subcontinent and Bay of Bengal, and phases 7 and 8 (Figure 8g,h)403

the breaking over the subcontinent. The composites for bandpass-filtered rainfall404

(Figure 8i–p) also exhibit consistent propagating MISO patterns. The realistic405

northward and eastward propagation characteristics of the NLSA MISO modes406

can also be seen in phase-latitude and phase-longitude plots in Figure 9. There, the407

phase-latitude diagrams of both OLR and precipitation field show a clear north-408

ward propagation of the convective anomalies from the equatorial Indian Ocean409

(5◦S) into the northern latitudes (around 25◦N) and a southward propagation410

from 5◦S into the southern ocean (Figure 9a,b). Moreover, the longitude-phase di-411

agram of OLR and precipitation anomalies averaged over the equatorial belt shows412
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a clear eastward propagation of convective anomalies from the western equatorial413

Indian Ocean to the tropical western Pacific (Figure 9c,d).414

A number of studies argue that Rossby wave emanation from eastward-propagating415

convective anomalies is responsible for the poleward propagation of the MISO416

(Wang and Xie, 1997; Kemball-Cook and Wang, 2001; Annamalai and Sperber,417

2005; Ajayamohan et al, 2010). Therefore, realistic simulation of this eastward418

propagating convective anomalies in a model is thought to be essential for the419

realistic northward propagation of the MISO (Sabeerali et al, 2013). The phase420

relationship between convection and circulation in Figure 8 shows evidence of the421

Rossby wave emanation. In particular, the wind pattern in phases 3 and 4 dis-422

plays a classical Matsuno-Gill Kelvin-Rossby wave response (Matsuno, 1966; Gill,423

1980) with easterly anomalies along the equatorial western Pacific and two cy-424

clonic gyres on either side of the equatorial Indian Ocean (Figure 8). This wind425

pattern exhibits an asymmetry about the equator, indicating the role of Rossby426

wave propagation in modulating MISO’s poleward propagation.427

This Rossby wave propagation brings out the importance of the western Pacific428

and maritime continents in determining the structure of MISO rainfall. Another429

important feature of the MISO is the quadrupole-like convection pattern over430

the Asian monsoon region in which positive (negative) anomalies persist as a431

tilted band extending from the Indian subcontinent to the western Pacific and432

negative (positive) anomalies exist to the south of this pattern over the Indian433

Ocean and western Pacific (Annamalai and Sperber, 2005; Pillai and Sahai, 2015).434

This structure is clearly captured in the OLR composites in Figure 8, especially435

in phases 5 and 6 where the amplitude of convection over the western Pacific is436

strong and extends beyond the date line.437

5 Comparison with EEOF-based MISO indices438

To place our results in context, we compare the NLSA-based MISO modes with439

the EEOF-based modes of Suhas et al (2013). As stated in section 1, the EEOF-440
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based MISO indices are currently used for real-time monitoring of MISO at IITM,441

and one of the objectives of our study is to explore ways to improve the skill of442

these real-time forecasts.443

We have computed the EEOF MISO modes as described in Suhas et al (2013)444

using same daily GPCP rainfall dataset described in section 2. Specifically, we445

perform EEOF analysis on longitudinally averaged (over 60.5◦E–95.5◦E) GPCP446

rainfall data and the latitudes 12.5◦S–30.5◦N, after removing the climatological447

mean and first three harmonics of the seasonal cycle. We use 15 EEOF lags,448

sampled once per day. At a given time t, we define the MISO indices MISO1E(t)449

and MISO2E(t) from EEOF PCs 1 and 2 (ordered in order of decreasing explained450

variance), and also define the EEOF-based MISO amplitude index (cf. (3))451

rE(t) =

√
MISO1E(t)2

σ2
1E

+
MISO2E(t)2

σ2
2E

.

where σ1E = 39.2 and σ2E = 33.5 are the standard deviations of the MISO1E(t)452

and MISO2E(t) time series, respectively. Similarly to section 4.3, we use rE(t) ≥ 1453

as a threshold for significant MISO events based on EEOFs.454

Figure 10 displays the joint temporal evolution of the MISO1 and MISO2455

indices and the corresponding amplitudes obtained via NLSA and EEOF analysis456

for the 1998–2013 JJAS period. There, it can be seen that the NLSA and EEOF457

time series are in moderately good qualitative agreement, although the temporal458

evolution of the NLSA modes is markedly more coherent. Moreover, as shown459

in the amplitude plots in Figure 10(c), the significant MISO events detected via460

NLSA tend to be more persistent. Examined in terms of their statistics (Figure 4),461

the EEOF-based MISO indices are more Gaussian than their NLSA counterparts.462

Next, we compare the NLSA and EEOF MISO indices in terms of their power463

spectral densities (Figure 11) and temporal correlation structure (Figure 12). As464

shown in Figure 11, the indices obtained via either of the two methods capture the465

central peak between 1/30 and 1/60 d−1 observed in the raw rainfall anomalies,466

and are also effective in removing the high-frequency content present in rainfall467
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data. In general, the spectra of the NLSA indices have smaller high-frequency468

power than the EEOF spectra, which is consistent with the remark made earlier469

that the time evolution of the former is more coherent than the latter. In Fig-470

ure 12a, the autocorrelation functions of the of NLSA and EEOF MISO modes are471

compared with that of the observed bandpass filtered (25–90 d) rainfall anomalies.472

In general, the autocorrelation functions of the NLSA modes are closer to observa-473

tions than the EEOF modes, especially at longer (±20 d) lags. In Figure 12b, the474

cross correlation function between the two NLSA MISO modes, which are uncorre-475

lated at lag zero by orthogonality of the eigenfunctions, exhibits a near-sinusoidal476

behavior with a reemergence of correlations (' 0.95 values) at ±11 day lags. This477

behavior is indicative of a coherent, and hence predictable, harmonic oscillator.478

In the case of the EEOF modes, the cross-correlation function is characterized479

by a marked amplitude decay, with the minima/maxima occurring earlier (at ±7480

d) and attaining smaller absolute values (' 0.7). Overall, these results indicate481

that the NLSA indices retain their memory for a longer period (Figure 12), while482

capturing the dominant spectral peak of MISO efficiently (Figure 11).483

We now turn attention to spatial composites. Figure 13 shows similar OLR484

and wind composites to the NLSA-based composites in Figure 8, constructed via485

the EEOF MISO indices. These composites clearly exhibit the typical lifecycle486

of the MISO, including its northeastward propagation and zonal and meridional487

structure, but certain features are not as well represented as in NLSA. In partic-488

ular, the EEOF-based composites have weaker loadings of convection anomalies489

over the Maritime continent, a less coherent quadrupole structure, and a less de-490

veloped tilted zonal convection band. These features are also evident in rainfall491

composites (Figure 13). To further assess the skill of NLSA and EEOF analysis492

in capturing the regional heat sources we examine spatial maps (Figure 14) show-493

ing the percentage of fractional variance of bandpass-filtered rainfall anomalies494

explained by the spatial composites from the two methods. Consistent with the495

spatial composites in Figure 8, NLSA yields a realistic variance pattern and cap-496
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tures the regional centers of MISO activity. Compared to the EEOF-based variance497

maps, NLSA explains larger fractional variance over important MISO regions in-498

cluding the western Pacific, Western Ghats, the adjoining Arabian Sea. Note that499

capturing the variability over Indo-West Pacific region is particularly important in500

determining the propagation characteristics of MISO (e.g. Pillai and Sahai, 2015).501

In summary, the results in Figures 8, 13, and 14 indicate that NLSA outperforms502

EEOF analysis in capturing variability over the regional heat sources associated503

with the MISO.504

6 Application to extended-range MISO prediction505

In this section, we demonstrate the skill of the NLSA MISO modes identified506

in section 4 in extended-range MISO prediction. In particular, we use the CFSv2507

operational data described in section 2 to create hindcasts of the NLSA MISO1 and508

MISO2 indices, and assess the skill of these hindcasts by comparing the predicted509

values of the indices against the true values computed from GPCP data.510

Recall from section 3.2 that the Laplace-Beltrami eigenfunctions (including511

the NLSA MISO indices) can be evaluated for an arbitrary lagged sequence Y512

using out-of-sample extension techniques. In the scenario of interest here, Y has513

the structure Ypred(t′i) = (y(t′i), y(t′i−1), . . . , y(t′i−q+1), where t′i is the forecast514

verification time for the i-th hindcast experiment under study, and y(t′i−j) is the515

vector predicted rainfall values over the Asian summer monsoon region at time516

t′i−j , j ∈ {0, 1, . . . , q−1}. When t′i−j is smaller than the forecast initialization time,517

τi, we set y(t′i−j) equal to the historically observed GPCP rainfall x(t′i−j). This518

takes into account that the fact that evaluation of the NLSA MISO indices requires519

information from a time interval containing q rainfall snapshots, and if t′i−j ≤520

τi, this interval includes times prior to CFSv2 initialization time. The predicted521

value φ̂k(Ypred) for the MISO indices is then determined via Nyström extension522

using (2). We also use (2) to compute the true values for the monsoon indices,523
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replacing Ypred(t′i) with the lagged vector Ttrue(t
′
i) = (x(t′i), x(t′i−1), . . . , x(t′i−q+1)524

constructed from the GPCP data.525

We have performed such hindcast experiments using CFSv2 runs for the period526

2009-2010, initialized at five-day intervals from May 31 to September 28 of each527

year. Figure 15 shows the corresponding pattern correlation (PC) and root mean528

square error (RMSE) scores computed for lead times ranging from 0 to 45 days.529

The PC scores for both MISO1 and MISO2 (Figure 15a) exhibit an initial period530

of persistence to & 0.9 values for up to ' 16 day leads. The PC scores then begin531

a more rapid decay, but MISO1 (MISO2) remain greater than 0.8 for ' 22 (' 25)532

days. The RMSE scores (Figure 15b) show a near- linear increase with lead time,533

and remain less than one for up to ' 22 day. These results indicate that in CFSv2,534

an accurate prediction of MISO for a minimum of 22 days can be achieved using535

NLSA based MISO indices.536

To further assess the skill of NLSA-CFSv2 for real-time MISO forecasts, we537

examine in Figure 16 phase space trajectories of the MISO1 and MISO2 indices538

for four representative hindcast experiments. The cases shown in Figure 16a,b,e,f539

are examples of successful forecasts. In Figure 16a, the truth signal shows a MISO540

event that starts at phase 4 in May 31, 2009 and subsequently moves northward,541

decaying at phase 8 in July 2, 2009. The predicted trajectory successfully tracks542

the truth for up to 32 days, and then slightly deviate from the truth (Figure 16e).543

Similarly, in Figure 16b, the observed MISO becomes significant in September544

2, 2010 in phase 2 and then follows its northward propagation until it reaches545

phase 7 in the end of September. The predicted trajectory realistically captures546

the truth until the middle of September 2010 and then a moderately small devi-547

ation can be seen from the truth (Figure 16f). On the other hand, the examples548

in Figure 16c,d,g,h are unsuccessful forecasts. In these two cases, the forecasted549

MISO trajectory is reasonably good for up to 10 day leads, and then fails to track550

the truth trajectory. It is found that out of the 50 test cases analyzed, 78% are551

comparably successful to the cases in Figure 16a,b,e,f and 22% are comparably552
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unsuccessful as the cases in Figure 16c,d,g,h. Overall, the results in Figure 16 il-553

lustrate that the forecast skill can have large spread depending on the initial data,554

though on average the NLSA MISO modes generated using CFSv2 runs are useful555

for at least 22 day leads.556

As a comparison with EEOF-based indices, we note that Suhas et al (2013)557

have estimated the MISO prediction skill using CFSv1 (an earlier version of558

CFSv2), and found that MISO1 (MISO2) forecasts have skill for up to 13 (9)559

days. In their study, they used a lag of 15 days to resolve the northward prop-560

agating MISO. Using the same EEOF-based indices, (Abhilash et al, 2014) have561

reported that the MISO1 (MISO2) prediction skill of CFSV2 is 17 (14) days. A562

difference between these approaches and our NLSA-based approach is that we use563

a longer, 64 day, embedding window in conjunction with kernel eigenfunctions to564

resolve a coherent MISO evolution. As a result, our forecasts depend more strongly565

on past observations of nature as opposed to CFSv2 output, especially for short566

leads.567

In general, a direct comparison between data-driven indices, including EE-568

OFs and NLSA, is not very meaningful since all such indices have a degree of569

subjectivity (though NLSA attempts to minimize that subjectivity by avoiding570

pre-processing of the input data). Instead, a more appropriate comparison would571

involve using these indices to predict physical observable (e.g., average rainfall over572

a given region) of interest to forecasters and stakeholders. While such a comparison573

is beyond the scope of this work, the fact that the NLSA MISO modes realistically574

capture the structure of a number of key physical variables associated with the575

MISO (in particular, rainfall, convection (OLR), and circulation; see Figures 8, 9,576

and 14) is encouraging for future applications of NLSA in real-time monitoring577

and forecasting of aspects of MISO beyond indices.578
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7 Summary and conclusion579

In this paper, we have developed improved indices for real-time monitoring and580

forecast verification of the MISO using NLSA; an objective data analysis technique581

for decomposition of high-dimensional time series. A key advantage of NLSA over582

classical eigen decomposition techniques is improved timescale separation and abil-583

ity to detect intermittent patterns through the use of kernel methods in conjunc-584

tion with Takens delay embeddings. Applied to GPCP rainfall data over the Asian585

summer monsoon region, NLSA yields a hierarchy of spatiotemporal modes span-586

ning annual to subseasonal timescales. This hierarchy includes an in-quadrature587

pair of modes representing the full life cycle of MISO with improved temporal and588

spatial characteristics compared to the conventional EEOF-based MISO indices589

(Suhas et al, 2013). These features include improved temporal phase coherence590

while maintaining the ability to isolate the northeastward-propagation and 30–591

60-day MISO periodicity from the broad band rainfall data, as well as strong592

seasonal activity in the boreal summer (emerging without having to partition593

the input data). Moreover, the NLSA modes seems to better-resolve the tilted594

structure of MISO convention and its associated quadrupole circulation structure595

through phase composites, and also explain more fractional variance over the west-596

ern Pacific and Western Ghats and adjoining Arabian Sea regions. This is a value597

added feature of MISO as the regional heat sources and Pacific variability has a598

significant influence over the monsoon variability.599

Using NLSA based MISO indices, we also demonstrated the skill of NLSA in600

real-time prediction of MISO. The forecast skill of MISO is verified using hindcasts601

of CFSv2 extended range prediction runs. It is found that NLSA yields a signif-602

icantly higher prediction skill than conventional MISO indices. The better skill603

of NLSA may be due to the ability of NLSA algorithm to capture the non linear604

features of MISO. These above mentioned merits of the NLSA over EEOF gives605

a scope for using this technique for the real-time monitoring and forecast verifi-606

cation of the MISO and can supplement to the existing EEOF based index used607
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at Indian Institute of Tropical Meteorology, Pune, India. Real-time monitoring of608

the monsoon intraseasonal oscillation using a global coupled model assume signif-609

icance in light of its applications in agriculture, construction and hydro-electric610

power sectors.611
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Fig. 1 Eigenvalues corresponding to the leading 10 Laplace-Beltrami eigenfunctions. Asterisks
represent annual modes, crossed circles represent semiannual modes, and inverted triangles
represent monsoon intraseasonal oscillation (MISO) modes.
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Fig. 2 Leading six Laplace-Beltrami eigenfunctions for the period January 2003 to December
2004 (left panels) and the corresponding power spectra (right panels). The power spectra are
computed for the period January 1998 to December 2013. The red lines represent the 1/(90
days) and 1/(30 days) frequencies, and the green lines represent the 1/year, 2/year and 3/year
frequencies.
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Fig. 3 Laplace-Beltrami eigenfunctions corresponding to the monsoon intraseasonal oscil-
lation (NLSA MISO1 and NLSA MISO2) plotted together for the period January 2003 to
December 2004.
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Fig. 4 PDFs of MISO indices from NLSA (a,b) and EEOF analysis (c,d). The black curves
show Gaussian fits estimated via nonlinear least squares.
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Fig. 5 Reconstruction of the MISO evolution for the period June 2004 to September 2004.
The spatiotemporal map represent the GPCP rainfall anomalies (mm/day) obtained from the
NLSA MISO indices for the period June 2004-September 2004

Fig. 6 2D phase space diagrams for the NLSA MISO indices, showing the significant MISO
events in three typical drought years: (a) 2002, (b) 2004, and (c) 2009. An anticlockwise
propagation from the phase 1 represents MISO’s northward propagation. The circle centered
at the origin has radius 1 standard deviation 0.89 of the MISO amplitude index r(t) from (3).
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Fig. 7 Time series of the MISO2 index from NLSA and bandpass-filtered (25–90d) and un-
filtered rainfall anomalies averaged over the central Indian domain (10.5◦N–25.5◦N, 70.5◦E–
85.5◦E) for the JJAS seasons of the three drought years depicted in Figure 6.
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Fig. 8 (a-h) Phase composites of bandpass-filtered (25–90d) OLR (colors) and 850 hPa winds
(vector) anomalies obtained from NLSA MISO modes.(i-p) same as (a-h) but for the bandpass-
filtered (25–90d) rainfall (colors) and 850 hPa winds (vector) anomalies. The number of days
used to create each composite is shown at the top left of each panel.
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Fig. 9 (a,b) Latitude-phase diagrams for the phase composites of (a) OLR anomalies (b) rain-
fall anomalies from Figure 8, averaged over 70◦E–100◦E. (c,d) The corresponding longitude-
phase diagrams for anomalies averaged over 5◦S–5◦N. For non integer phase values, the values
are computed by interpolating between the 8 phases.
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Fig. 10 (a) MISO1 indices for the 1998–2013 JJAS period obtained from NLSA (red line)
and EEOF analysis (blue line). (b) same as (a) but for the MISO2 indices. Each indices are
normalized by its own standard deviation (c) MISO amplitude index for the 1998-2013 JJAS
period obtained from NLSA (r(t); red line) and EEOF analysis ((rE)(t); blue line). Horizontal
black line indicate the threshold for significant MISO events.
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Fig. 11 Composites of the power spectra of rainfall anomalies over the monsoon core region
(10.5◦N–25.5◦N, 70.5◦E–085.5◦E). Green lines represent NLSA MISO1, blue lines represent
EEOF MISO1 and red lines represent Markov Red noise spectrum. Sixteen boreal summer
season (1998-2013, JJAS) rainfall data is used for this calculation.
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Fig. 12 (a) Autocorrelation function of the NLSA and EEOF MISO modes compared with
the autocorrelation function of bandpass filtered (25–90 d) rainfall anomalies over the monsoon
core region.(b) Cross-correlation functions of the NLSA and EEOF MISO modes.
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Fig. 13 (a-h) Phase composites of bandpass-filtered (25–90d) OLR (colors) and 850 hPa
winds (vector) anomalies obtained from EEOF MISO modes. (i-p) same as (a-h) but for the
bandpass-filtered (25–90d) rainfall (colors) and 850 hPa winds (vector) anomalies. The number
of days used to create each composite is shown at the top left of each panel.
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Fig. 14 Aggregate fractional variance associated with the (a) NLSA and (b) EEOF phase
composites of bandpass-filtered rainfall anomalies. The aggregate fractional variance at each
gridpoint is estimated as the ratio between the variance of phase composites and the total
bandpass-filtered rainfall anomalies. The variance of phase composites is estimated from the
eight life cycle composites (from Fig 8i-p and Fig 13i-p). The total bandpass-filtered rainfall
anomalies is calculated for the period 1998-2013.
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Fig. 15 (a) Extended range prediction skill of MISO modes and (b) root mean square error
(RMSE) of the predicted MISO modes at each lead time estimated via out-of-sample extension
of the NLSA modes using the CFSv2 hindcast data.
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Fig. 16 Forecasts of the NLSA MISO indices for four initial condition runs of CFSv2 (right
panels, e–h). Forecasts shown in lower panels are verified with the GPCP rainfall observations
(left panels, a–d). Colors denote month.
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