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Abstract. The capability of using imperfect stochastic reduced-order models to capture crucial passive tracer
statistics such as tracer energy spectrum, tracer intermittency, and eddy diffusivity is investigated. The passive scalar
field is advected by a two-layer baroclinic turbulent flow which can generate various representative regimes in atmo-
sphere and ocean. Much simpler and more tractable linear Gaussian stochastic models are proposed to approximate
the complex and high-dimensional advection flow equations. The imperfect model prediction skill is improved through
a judicious calibration of the model errors using leading order statistics of the background advection flow, while no
additional prior information about the passive tracer field is required. A systematic framework of correcting model
errors with empirical information theory is introduced, and optimal model parameters under this unbiased information
measure can be achieved in a training phase before the prediction. It is demonstrated that crucial principal statistical
quantities like the tracer spectrum and fat-tails in the tracer probability density functions in the most important large
scales can be captured efficiently with accuracy using the reduced-order tracer model in various dynamical regimes of
the flow field with distinct statistical structures. The skillful linear Gaussian stochastic modeling algorithm developed
here should also be useful for other applications such as accurate forecast of mean responses and efficient algorithms
for state estimation or data assimilation.
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1. Introduction
Passive scalar turbulence concerns about the advection and diffusion of a tracer field pas-

sively transported by a turbulent dynamical flow. The problem has many applications in atmo-
sphere, ocean, and climate change sciences, as well as many other branches of environmental
science, such as the behavior of anthropogenic and natural tracers and the spread of contami-
nants or hazardous plumes [8, 9, 24, 19, 11]. Important and representative characteristics in the
passive tracer field that can be observed in atmospheric observations, laboratory experiments,
and numerical simulations include the extreme events represented by non-Gaussian exponential
tails in probability density functions of the tracer field [10, 24, 23, 3, 4, 5]. Another remark-
able property of these systems is their complex multiscale structures in both space and time,
thus intermittent energy back cascades along the spectrum add important small scale feedbacks
to tracer large scale variability. Major difficulties in accurate prediction about the large-scale
tracer statistics are due to the inadequate numerical resolution for small scale feedbacks and
incomplete physical understanding about the energy transport mechanism of the system. One
way to address such complications is to build instructive simplified models which maintain the
skill in generating the key statistical features of the realistic passive tracer field to understand
the major mechanism in the passive tracer turbulence, so that the essential dynamical structures
can be identified [19, 8, 17, 22].

The scalar field T (x,t) describes the concentration of the passive tracer immersed in the
two-dimensional fluid on x=(x,y) which is carried with the local fluid velocity v but does not
itself significantly influence the dynamics of the fluid. We consider this issue in the context
of the evolution of the scalar field through the joint effect of turbulent advection and diffusion
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[29, 31, 19]

∂T
∂ t

+v·∇T =DT =−dT T +κ∆T. (1.1)

In general we assume the dissipation as a linear damping and diffusion, DT =−dT T +κ∆T ,
where dT has a stronger effect on the large-scale modes while κ applies to the small-scale modes
for the diffusion and unresolved effects together. The statistical description of tracer transport
in turbulent flows is a prevalent concern in atmospheric and oceanic fluid dynamics when the
advection flow v becomes turbulent [31, 28]. Generally the statistical solution for (1.1) cannot
be obtained in explicit form because of the nonlinear advection term from v·∇T . However with
certain simplifications about a prescribed tracer mean gradient and fluctuations around the mean
gradient, there exists well developed statistical-dynamical understanding for the above problem
with much simpler master equations for the advection flow with realistic physical characteristics
[19, 22]. The mechanism of the existence and behavior of intermittency is investigated under a
rigorous mathematical framework. Fat-tailed probability density functions and random spikes
in the time series of the tracer can also be generated by numerical simulations using the idealized
model (1.1) with a wide range of scales in the advection flow field [17, 3, 34].

In this paper, the the advection velocity field v(x,t) is modeled by the two-layer quasi-
geostrophic (QG) system [29, 33]. Despite its relatively simple structure, the two-layer QG
model can generate a wide variety of dynamical regimes that capture many essential features
of both the atmosphere and ocean [29, 32, 36]. Typically there are anisotropic, intermittent,
and inhomogeneous structures, and strong non-Gaussian statistics may appear in the flow field
especially among the dominant large scales. For example, in the atmosphere regime it would
exhibit a representative flow shifting between a cross-sweep zonal jet in the east-west direction
and the transverse Rossby waves in the north-south direction. Theories and parameterizations
for the anisotropic transport of a tracer in this two-dimensional anisotropic flow with jets are
developed in [2, 31]. A multi-scale stochastic superparameterization strategy has also been
developed for the system and has been successfully applied in predicting the passive tracer
equilibrium spectra and in multi-scale filtering [15]. The complexity and large computational
expense in resolving the highly turbulent true advection flow equations require the introduction
of simpler and more tractable imperfect models which still maintain the ability in capturing the
key intermittent features in the tracer field. Notice that the central quantity of interest here is the
tracer statistics rather than the background flow field. Thus it is advantageous to develop simpler
reduced-order stochastic models that can capture the most important features of the background
advection flow v, and check the performance and model errors in the resulting scalar tracer T
due to the imperfect modeling of flow solutions.

In turbulence literature, additional dissipation is introduced for coarse resolution numerical
modeling of the turbulent diffusion of passive tracers, which is usually called eddy diffusion
[19, 25, 29]. Stochastically excited linear system has been designed for modeling the nonlinear
eddy interactions in QG turbulence [7, 6], but the procedure there often reports limited skill in
capturing the mean response of the true system accurately [18]. A class of physics-constrained
multi-level nonlinear regression models was developed which involves both memory effects
in time as well as physics-constrained energy conserving nonlinear interactions [18, 12] with
mathematical rigor. In this paper, we address the reduced-order modeling problem for obtaining
crucial principal statistics of the passive scalar field immersed in a turbulent high-dimensional
fluid field with inhomogeneous statistics. The primary goal is to obtain a mathematically un-
ambiguous reduced-order stochastic modeling strategy with high skill for the scientific inves-
tigation of complex turbulent diffusion problems arising in many applications for which no
explicit solution is available. We begin with simple model approximation considering linear
Gaussian dynamics in the advection flow equations, then calibrate the model errors and over-
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come the possible barriers due to using this crude approximation of the flow field v. Only low
order equilibrium statistics are required in the model calibration as a correction to the nonlinear
small scale feedbacks, thus high computational cost can be avoided. The challenge here is to
develop efficient reduced-order stochastic models for the flow velocity field that keep the skill
in capturing the leading order moments, as well as the higher order statistics that characterize
intermittency in the principal directions in the tracer system.

In designing the reduced-order models, we propose imperfect model parameters to quan-
tify the unresolved small scale feedbacks [28] in the stochastic advection flow approximation,
and then use the imperfect flow solution to predict the intermittent structures in the turbulent
passive tracer field from reduced-order tracer equations of (1.1). Therefore a systematic pro-
cedure in calibrating the imperfect model errors due to the crude approximations is necessary.
In a training phase before the prediction, an information-theoretic framework [16, 26, 13] is
proposed to tune the imperfect model parameters in addition to the equilibrium consistency in
the leading order moments, so that the model predicted stationary process can possess the least
biased estimation in energy and autocorrelation functions compared with the truth. The major
statistical quantities to check for the reduced-order model prediction skill will include the mean,
variance of the leading dominant tracer spectral modes that determine the major structure in the
two-dimensional turbulent tracer field, as well as the fat-tailed tracer PDFs. The reduced-order
model is then tested in three typical dynamical regimes representing the ocean and atmosphere
with distinct statistics. Despite strong non-Gaussianity and anisotropic structures in the original
turbulent advection flow, the linear stochastic model displays promising predicting skill for the
tracer statistics and intermittency in large scale leading modes with high accuracy and effective
reduction in computational cost.

The remainder of this paper is organized as follows. Section 2 introduces the spectral
formulations for both the background flow equations and the scalar passive tracer equations
advected by the flow field. Then Section 3 describes the calibration strategies for the linear
Gaussian stochastic advection flow model so that consistency in first two leading order moments
and autocorrelation functions can be guaranteed. The reduced-order tracer equations can be
applied using the solution from the optimized flow equations. The skill of the reduced-order
models is then tested under the two-layer quasi-geostrophic system in Section 4. A summary
discussion about the results is shown in the final section of this paper.
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2. Spectral dynamical formulation for the turbulent diffusion models with mean gra-
dient

First we consider the general formulation for a scalar tracer T (x,t) which is advected by
a velocity field v(x,t). The turbulent advection flow is described from the solution of the two-
layer QG equation [29, 33]

∂q j

∂ t
+v j ·∇q j+

(
β +k2

dU j
) ∂ψ j

∂x
=−δ2 jr∆ψ j−ν∆sq j,

q j =∆ψ j+
k2

d
2
(
ψ3− j−ψ j

)
, v j =(U j,0)+v′j.

(2.1)

Above the subindex j=1,2 is used to represent the upper and lower layer of the two-layer
flow model. The two dimensional incompressible velocity field v j is decomposed into a zonal
mean cross sweep, (U j,0), and a fluctuating shear flow v′j =∇⊥ψ j =(−∂yψ j,∂xψ j). Next we
introduce the passive tracer equation. Assume the existence of a background mean gradient for
the tracer field varying in x and y directions and a tracer fluctuation component

Tj (x,t)=α·x+T ′j (x,t), (2.2)

where α=(αx,αy) is the horizontal mean gradient in x and y directions. In the atmosphere
analogy a tracer gas would include a north-south mean gradient and fluctuations restricted to a
narrow latitude band. The existence of a background mean gradient for the tracer field has been
shown responsible for many important phenomena [1, 3, 10].

With the tracer decomposition into mean gradient and fluctuations around the mean in (2.2),
the fluctuation parts of the tracer in upper and lower layers satisfy the following dynamics for
the full fluctuation passive tracer model of tracer field T ′j (x,t), j=1,2

∂T ′j
ε−1∂ t

+v′j (x,t)·∇T ′j +U j
∂T ′j
∂x

=−(αxu j+αyv j)(x,t)−dT T ′j +κ∆T ′j . (2.3)

Above v′j =(u j,v j) is the fluctuating advection flow field from the solution of equations (2.1)
together with a zonal mean flow U j. We further introduce a scale separation in the tracer equa-
tion (2.3) with order ε , while keeping the solution of the advection flow (2.1) unchanged. The
difference in time scale in the tracer is through a different time scale, t̃=ε−1t, in the tracer time
like in various previous works [19, 17, 22]. As ε <1, the velocity field is varying at a faster
time scale than the passive tracer process, while on the other hand with ε >1 the tracer evolves
in a more rapid rate than the advection field. A long time rescaling limit with explicit analytic
tracer solutions is derived in [22] and numerical simulations for varying values of ε among a
wide range are investigated in [3] under a much simpler linear model. In general, different in-
termittent features will be generated from near Gaussian statistics to distributions with fat tails
as the scale separation parameter value changes [3, 19].

In this section, we first derive the explicit equations for the two-layer advection flow field
as well as the passive tracer field in spectral space. They can offer a detailed illustration about
the energy mechanism especially from the nonlinear effect between the tracer and underlying
flow field. Through a thorough understanding about the true model mechanism, the basic ideas
about constructing reduced-order models can be revealed. The reduced-order model is then
constructed with a careful calibration according to the true model nonlinear interactions.

2.1. Exact passive tracer and advection flow dynamical equations in spectral space
Given periodic boundary condition in both the two-layer flow and the tracer field, we for-

mulate the flow and tracer fields with Galerkin truncation to finite number of Fourier modes.
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Spatial Fourier decomposition in flow potential vorticity q j and passive tracer disturbance T ′j
can be written in the expansion under modes exp(ik·x) as

q j =∑
k

q̂ j,keik·x, T ′j =∑
k

T̂j,keik·x.

By projecting the tracer and flow equations (2.3) and (2.1) to each Fourier spectral mode,
equations for the spectral coefficients in each wavenumber of the two-layer tracer field ~Tk=(
T̂1,k,T̂2,k

)T , and two-layer advection flow field ~qk=(q̂1,k,q̂2,k)
T , form the set of ODEs in the

spectral domain as

d~Tk

dt
+ε−1 ∑

m+n=k

(
Akm~qm◦~Tn+Akn~qn◦~Tm

)
=−ε−1(γT,k+iωT,k)~Tk+ε−1Gk~qk, (2.4a)

d~qk

dt
+ ∑

m+n=k
(Akm~qm◦~qn+Akn~qn◦~qm)=−

(
γq,k+iωq,k

)
~qk, (2.4b)

where ‘◦’ is used to denote the pointwise produce, a◦b=(aibi). The potential vorticities~qk and
stream functions ~ψk in two layers are related by the transform matrix Hk

~qk=Hk~ψk=−
[
|k|2+ k2

d
2 − k2

d
2

− k2
d
2 |k|2+ k2

d
2

]
~ψk,

through the relation q j =∇2ψ j+
k2

d
2

(
ψ3− j−ψ j

)
in (2.1). Note the core nonlinearity are dom-

inated by the quadratic exchange of energy among triad modes on the left hand sides of (2.4)
with the same explicit form, Akm= 1

2 (kxmy−kymx)H−1
m , for both the tracer and flow equations.

On the right hand side of the tracer dynamics (2.4a), shear flow from the velocity field α·v
introduces the operator Gk applied on the flow vorticity as an external forcing, and the tracer
damping γT,k and phase shifting operators ωT,k are due to dissipation and the advection in large-
scale zonal mean flow respectively, that is,

Gk=−iα·k⊥H−1
k =ΓkH−1

k , γT,k=dT +κ |k|2 , ωT,k=kx~U .

In the advection flow field dynamics (2.4b), the operators get the explicit forms

γq,k=(0,1)T ◦r|k|2H−1
k +ν |k|2s , ωq,k=kx

(
~U+

(
β +k2

d
~U
)

H−1
k

)
,

as linear dissipation and dispersion effects. γq,k is due to the Ekman friction only applied on
the bottom layer and the hyperviscosity, and ωq,k is from the rotational β -effect as well as the
background zonal mean flow advection from the original equation (2.1) applied on the vorticity
modes.

The above spectral models (2.4) for tracer advected by two-layer baroclinic turbulent flow
can be compared with the simpler master models discussed in detail in [19, 17]

dT̂k+ε−1ikUt T̂kdt=−ε−1(γT,k+iωT,k
)

T̂kdt−ε−1α v̂kdt,

dv̂k+ikUt v̂kdt=−
(
γv,k+iωv,k

)
v̂kdt+σv,kdWk,t ,

dUt =−γUUtdt+σU dWt .

(2.5)

The simpler formulation in (2.5) models the nonlinear interaction through the zonal jet Ut from
a mean zero Ornstein-Uhlenbeck process in the third equation for both the tracer and flow dy-
namics, and similar linear dissipation and dispersion terms are applied on the right hand sides
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of the tracer and flow equations. Explicit solutions for the mean, variance, and cross-covariance
between tracer and flow modes can be derived [17] due to this simple structure, and intermit-
tency in such system can be predicted through the random resonance between modes of the
turbulent velocity and the passive tracer [22]. Motivated from the theoretical understanding
achieved from the simplified system (2.5), the system (2.4) advected by the two-layer QG flow
contains more realistic features with inherent internal instability and strong non-Gaussian statis-
tics. Thus we are able to investigate the more complicated triad nonlinear interactions between
the flow and tracer modes in different scales, and the effects of non-Gaussianity in the advection
flow field to the final tracer distributions instead of the simple large-scale Gaussian advection
in the system (2.5). More importantly, ideas about reduced-order modeling strategies can be
proposed by comparing the more complicated system with strong non-Gaussianity (2.4) and the
simpler master equations (2.5).

2.2. Reduced-order stochastic formulations for the passive tracer and turbulent flow
field

The advection terms in the tracer and flow equations (2.4) involve interactions between
modes of different scales along the entire spectrum in a large dimensional phase space, thus
usually high computational cost is required in achieving accurate statistical results from direct
numerical simulations. In general intermittency in tracer field is dominated by the variability
in largest scales, thus we will concentrate on the large-scale modes with wavenumber |k|≤
M�N, where M is the number of resolved modes and N is the full dimensionality of the
system. Usually we could choose M much smaller than N that only covers the essential most
energetic directions in the flow system. Below we first propose the simple strategy with linear
corrections to approximate the advection flow field in the leading modes. Then the calibration
and improvement of the imperfect models due to model errors from this approximation will be
discussed in Section 3.

2.2.1. Consistent linear Gaussian model in the advection flow
In approximating the advection flow, we begin with the simple Gaussian approximation by

replacing the quadratic interactions (v·∇q)k in the flow equations by additional linear damping
and random Gaussian noise. From the exact solutions from the simpler system (2.5), it has
been shown that important non-Gaussian and intermittent structures in the tracer field can be
generated from a linear Gaussian advection flow. It is useful to check the optimal prediction
skill for the nonlinear tracer statistics using only linear Gaussian approximation in the flow field.

Therefore the reduced-order advection flow equations are proposed as

d~qM,k=−
(
γq,k+iωq,k

)
~qM,kdt−DM

q,k~qM,kdt+ΣM
q,kd~Wq,k, 1≤|k|≤M. (2.6)

vM =∇⊥~ψM, ~qM,k=Hk~ψM,k,

with only Gaussian statistics generated. Only the first M large-scale modes, 1≤|k|≤M, are
resolved in the reduced-order formulation in (2.6).

(
γq,k,ωq,k

)
are the linear dissipation and

dispersion operators as in (2.4b) that are easy to model. On the other hand, the expensive
but crucial part in the original equations (2.4b) is the nonlinear interactions Akm~qm◦~qn where
modes with different scales are coupled. Especially the nonlinear term represents the energy
transfers between different modes so that the unstable modes due to internal instability can be
balanced. Thus additional damping and noise

(
DM

q ,ΣM
q
)

are introduced to correct model errors
due to the neglected nonlinear interactions in the flow equations.

One of the simplest and most direct way to estimate the undetermined coefficients(
DM

q ,ΣM
q
)

is through the mean stochastic model (MSM) discussed in [18, 12]. The param-
eter values are estimated from the characteristic quantities of total energy and decorrelation
time. Despite the simplicity in the linear autoregressive models, reasonably skillful prediction
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in uncertainty quantification as well as filtering can be reached under this strategy for turbulent
systems [18, 12]. However MSM still suffers several shortcomings when strong nonlinearity
and slow mixing take place in the system [26]. Thus more detailed calibration of the imperfect
model parameters are required especially when non-Gaussianity becomes crucial in the system.
The optimization strategy for the undetermined imperfect model parameters will be discussed
in detail next in Section 3 using detailed calibration from equilibrium statistics.

2.2.2. Direct stochastic modeling in the passive tracer equations
In the tracer dynamics, we would not introduce additional model calibrations of the tracer

field statistics in case of over fitting of data. The idea here is to improve the reduced-order
model prediction skill by optimizing the background advection flow field, thus the reduced-
order passive tracer equations can be modeled through a direct truncation

d~TM,k+
(

ṽM ·∇~TM

)
k

dt̃=Γk~ψM,kdt̃−(γT,k+iωT,k)~TM,kdt̃, 1≤|k|≤M. (2.7)

ṽM = ∑
|k|≤M1

ik⊥~ψM,keik·x, M1≤M.

Consistent with the advection flow model (2.6), only the first leading modes |k|≤M�N are
resolved in the tracer approximation model.

Again the major difficulty in modeling the tracer dynamics is from the accurate approxima-
tion of the tracer advection Akm~qm◦~Tn in (2.4a). Exact modeling about this nonlinear interaction
term requires the flow mode solution~qM,k along the entire spectrum 0< |k|≤N, while only the
first M leading modes are available through the reduced-order model. One crude approximation
idea could be to replace the nonlinear advection in the tracer field, v(x,t)·∇~T (x,t), with linear
damping and noise in a similar fashion as the flow approximation model (2.6). However, as
discussed in previous works [19, 22], the nonlinear advection in the tracer equation is crucial
in the generation of many important statistical features including the intermittency. Thus, the
inclusion of nonlinear effects from the flow solution is essential, at least for the large scale
modes. On the left hand side of the equation (2.7), the nonlinear advection ṽM ·∇~TM is mod-
eled explicitly, but only the first M1≤M largest scale flow modes in the model velocity solution
ṽM are used to calculate the imperfect model tracer advection. This nonlinear advection is es-
sential in generating the accurate spectra in tracer statistics, while it is also not expensive to
calculate since only leading modes are involved. The idea for this approximation is through the
assumption that the dominant features in tracer statistics (such as intermittency and equilibrium
spectrum in large scales) are due to the leading advection flow modes with largest energy. The
contribution from the leading dominant modes in tracer statistics will be further illustrated in
Section 4.1 through explicit model simulations.
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3. Imperfect model calibration using equilibrium statistics and information theory
In this section, we discuss the strategies for the optimal prediction models through calibra-

tion of low-order statistics in the advection flow system. In the stochastic reduced-order model
proposed in (2.6) for the advection flow equation, efficient linear Gaussian dynamics are used,
while large model errors are introduced due to the approximation in the turbulent flow field.
Strategies for finding optimal imperfect model parameters that minimize the model error are
proposed here according to the corresponding statistical equations of the flow equation. In this
modeling process, we only consider the calibration of the advection flow field, and the flow
equation solution is applied to the tracer equations for predicting tracer statistics directly.

3.1. Model calibration in the advection flow field

3.1.1. Statistical equations for the advection flow fluctuation
In constructing reduced-order flow models, we need to make sure that the imperfect model

calibration parameters
(
DM

q ,ΣM
q
)

can properly reflect the true nonlinear energy mechanism from
the true system. The consistent imperfect model then can be proposed by consulting the model
statistical dynamics. Therefore it is useful to investigate the statistical equations for the second-
order moments from the fluctuation equations of (2.4b). The dynamics for the covariance matrix
Rq

k=〈~qk~q∗k〉 of flow vorticity can be derived as a 2×2 blocked system for each wavenumber
[28, 21]

dRq
k

dt
+Lk(q̄)Rq

k+Rq
kL

∗
k (q̄)+Qq

F =
(
L q

k +Dq
k
)

Rq
k+Rq

k
(
L q

k +Dq
k
)∗
, |k|≤N. (3.1)

The linear operators (L q,Dq) represent the skew-symmetric dispersion and dissipation effects
from the right hand side of (2.4b). The additional operator Lk(q̄) represents the interactions
with a non-zero statistical mean state, where internal instability occurs with positive growth
rate. Most importantly, the nonlinear interactions between different spectral modes introduce
the additional nonlinear flux term Qq

F indicating higher-order interactions, that is,

Qq
F (~qk)=

1
2 ∑

m+n=k
〈(Akm~qm◦~qn+Akn~qn◦~qm)~q∗k〉. (3.2)

Therefore the small and large scale modes are linked through third-order moments 〈~qm~qn~q∗k〉
in (3.2) between the triad modes m+n=k. The nonlinear flux Qq

F plays the central role in
the energy mechanism that balances the unstable directions due to internal instability from
the linear operators. Thorough discussions about the energy mechanism and construction of
statistical closure models for (3.1) are detailed in [28, 21, 27] for more generalized systems.

Here our focus is on the low-order stochastic realization in (2.6) of the statistical closure
model of (3.1), thus solving the statistical equation (3.1) directly is not favorable considering
its complexity. Still the nonlinear flux Qq

F (3.2) corresponds to the unresolved nonlinear effects
in the stochastic model in (2.6). Thus it is useful to exploit the nonlinear flux Qq

F so that the
imperfect model parameters

(
DM

q ,ΣM
q
)

in (2.6) can be proposed according to the true model
energy transfer mechanism. Especially in statistical equilibrium as t→∞ the nonlinear fluxes
can be calculated easily from the localized lower-order moments

Qq
F,eq=

(
L q

k +Dq
k−Lk

(
q̄eq
))

Rq
k,eq+Rq

k,eq

(
L q

k +Dq
k−Lk

(
q̄eq
))∗

. (3.3)

Above in (3.3) only steady state statistics about the first two moments
(
q̄eq,R

q
eq
)

are required,
thus we do not really need to calculate the entire spectrum to get the higher order feedbacks in
the dominant low wavenumber modes.
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3.1.2. Imperfect model correction from equilibrium statistics and additional correc-
tion terms

As illustrated in above sections, the expensive nonlinear flux Qq
F in the statistical equa-

tions (3.1) is replaced by linear damping and noise with parameters
(
DM

q ,ΣM
q
)

in the stochastic
models (2.6) representing the unresolved interactions. In fact, we can decompose the matrix
Qq

F =Qq,+
F +Qq,−

F by singular value decomposition into positive-definite and negative-definite
components. The positive definite part Qq,+

F illustrates the additional energy that injected into
this mode from other scales, while the negative definite part Qq,−

F shows the extraction of energy
through nonlinear transfer to other scales.

In the first step of constructing the stochastic damping and noise parameters, the idea is to
make use of the equilibrium statistics of the nonlinear flux Qq

F,eq which can be achieved easily
from the lower-order equilibrium statistics as in (3.3). In adopting the true equilibrium statistics
from Qq

F,eq, the true model energy transfer mechanism is respected and least artificial effect
is introduced into the imperfect approximation model. Considering all these aspects, the first
proposal for the linear damping and Gaussian random noise correction can be introduced as

Deq
q,k=−

1
2

Qq,−
F,eq,k

(
Rq

k,eq

)−1
, Σeq

q,k=
(

Qq,+
F,eq,k

)1/2
. (3.4)

The additional damping is from the negative definite equilibrium flux Qq,−
F,eq; and the positive

definite equilibrium flux Qq,+
F,eq acts as additional noise to the system. The above additional

damping and noise (3.4) offer a desirable quantification for the minimum amount of corrections
to stabilize the system with consistent equilibrium statistics for the mean and variance. This
is the same idea applied to the statistical modified quasi-linear Gaussian closures developed in
[30].

Still the above estimation of parameters (3.4) may not be optimal for the reduced-order
Gaussian model considering that: i) it only guarantees marginal stability in the unstable modes
for equilibrium; and more importantly ii) the time mixing scale in each mode (represented by
the autocorrelation functions) may still lack the accuracy in the approximation using only equi-
librium information. The nonlinear energy transferring mechanism may change with large de-
viation from the equilibrium case when intermittent fluctuations are present. The shortcomings
for purely using the approximation (3.4) only from equilibrium statistics can be observed from
the various numerical simulations [26]. As a further correction, we propose additional terms on
top of (3.4) with a simple constant damping for all the spectral modes and an additional noise
accordingly to make sure consistency in energy

Qadd
M,k=−Dadd

M RM,k+
(

Σadd
M,k

)2
, Dadd

M =diag{dM+iωM,dM−iωM}. (3.5)

Specifically for the two-layer system, we introduce the additional damping parameter dM with
same rate in the upper and lower layer. The imaginary part of the parameter ωM introduces
additional dispersion effect for correcting the time decay scale among the two layer modes.
This further correction term in (3.5) is aimed to offer stabilizing effects in the marginal stable
equilibrium form (3.4), and to offer further corrections in modeling the autocorrelation function
that is important for the mixing rate in each spectral mode.

Combining the ideas in (3.4) and (3.5), We propose the additional damping and noise cor-
rections for the reduced-order flow vorticity model (2.6) in the following form

DM
q,k=−

1
2

Qq,−
F,eq,k

(
Rq

k,eq

)−1
+Dadd

M , ΣM
q,k=

(
Qq,+

F,eq,k+
(

Σadd
M,k

)2
)1/2

. (3.6)
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Above the parameters
(

DM
q,k,Σ

M
q,k

)
are 2×2 matrices applied on the two-layer spectral mode~qk.

Comparing with the exact true system (2.4b), the reduced-order approximation is equivalent to
replacing the nonlinear interaction terms with the judiciously calibrated damping and noise
in consideration with both the equilibrium energy transfer mechanism and further sensitivity
correction. Next the task left in the Gaussian linear flow model is a systematic strategy to
estimate the optimal imperfect model parameters in (3.5) in a training phase making sure that
i) statistical equilibrium consistency for the mean and variance can be maintained; and ii) the
time mixing scale represented by the autocorrelation function in each mode can be modeled
correctly with the truth.

3.2. Imperfect stochastic model consistency in equilibrium statistics and autocorrela-
tion functions

From the above construction of reduced-order stochastic models, we still have the unde-
termined model parameters

(
Dadd

M ,Σadd
M
)

in the linear damping and noise corrections in (3.6).
These additional parameters can offer the freedom to control the imperfect model consistency
in the leading order moments, and agreement in autocorrelation functions. Now we describe the
model calibrations for consistency in equilibrium moments, and model optimization using au-
tocorrelation functions under a systematic information-theoretic framework. This information-
theoretic framework based on the relative entropy offers an unbiased and invariant measure for
model distributions [14, 13], and has been utilized to systematically improve model fidelity and
sensitivity and to make an empirical link between model fidelity and forecasting skill [16].

3.2.1. Climate consistency of the stochastic models for the first two moments
First we calculate the constraints for the imperfect model parameters so that the resolved

modes can converge to the same equilibrium statistics in the first and second order moments in
statistical steady state. The linear parts form the same linear dissipation and dispersion operators
as in (3.1), thus we only need to consider the imperfect model approximation of the nonlinear
flux compared with the truth in QM and Qq

F . The contribution from the additional damping DM
q

in (3.6) adds the effective outflow of energy in each mode as

Q−M,k=DM
q,kRM,k+RM,kDM∗

q,k =−
1
2

Q−F,eq,kR−1
k,eqRM,k+Dadd

M RM,k+c.c.

The additional noise ΣM
q in (3.6) acts as the inflow of energy in each mode as

Q+
M,k=

(
ΣM

q,k
)2
=Qq,+

F,eq,k+
(

Σadd
M,k

)2
.

In the statistical steady state, we would like to make sure the imperfect model statistics converge
to the truth as

Rq
M→Rq

eq, as t→∞.

From the negative and positive definite correction terms above in Q−M and Q+
M , the first compo-

nent acts as the nonlinear flux approximation from equilibrium statistics, thus it will converge
to the truth QF,eq in the equilibrium. Therefore we get the necessary condition for the additional
damping and noise to make sure climate consistency so that

(
Σadd

M,k

)2
=Dadd

M Rk,eq+Rk,eqDadd∗
M . (3.7)

In the two-layer case, Dadd
M is defined in (3.5) for the 2×2 uniform damping in each spectral

mode, and the 2×2 matrix Σadd
M,k adds additional noise into each spectral mode accordingly.
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3.2.2. Training phase for optimal autocorrelation functions with information theory

By choosing parameters according to (3.7), the climate consistency for the imperfect
reduced-order models in the unperturbed equilibrium is guaranteed. Still the imperfect stochas-
tic model may not be optimized due to the incorrect modeling about time scales and mixing rate
in each mode (See Figure 4.5 in Section 4.2.2 as an example). On the other hand, we still have
the additional model parameters (dM,ωM) in (3.5) to control the performance in each mode. The
time mixing scale in the stochastic process for~qk(t) can be characterized by the autocorrelation
functions defined as

Rk(t)≡
〈
(~qk(τ)−〈~qk〉)(~qk(τ+t)−〈~qk〉)∗

〉
, (3.8)

that forms a 2×2 matrix for each spectral mode. It measures the lagged-in-time covariance〈
~q′(t)~q′(0)∗

〉
in statistical stationary state as ‘memory’ in remembering the previous state in

each mode, thus characterizes the mixing rate. Next we follow the general strategy introduced
in [26] for measuring autocorrelation functions with the help of information theory.

The problem is about to find a proper metric to measure the errors in the imperfect model
autocorrelation functions in the training phase in a balanced way. A preferable measure to offer
an unbiased metric for the imperfect model probability distribution πM from the truth π is to
use the relative entropy [14, 16, 13]

P (π,πM)=

ˆ
π log

π
πM

. (3.9)

However one additional difficulty in tuning the autocorrelation functions under the information
metric is that the functions given in (3.8) is not actually a distribution function to measure in
the relative entropy (3.9) above. The autocorrelation function R (t) may oscillate with negative
values, thus it becomes improper to directly substitute R (t) into the formula (3.9) by replacing
the distribution function π to measure the distance. The problem can be solved by instead
considering the spectral representation of the random process ~q(t), from the theory of spectral
representation of stationary random fields [35]. It is proved a positive-definite matrix E (λ )>0
can be constructed so that the spectral representations of the autocorrelation R (t) and stationary
process~q become

R (t)=
ˆ ∞

−∞
eiλ tdF (λ ), ~q(t)=(q̂1,q̂2)

T =

ˆ ∞

−∞
eiλ t~̂Z(dλ ), (3.10)

where the spectral random measure ~̂Z(dλ )=
(
Ẑ1(dλ ),Ẑ2(dλ )

)T has independent increments
and energy spectrum measured by E (λ ) or dF (λ )

dF (λ )=E (λ )dλ =E
∣∣∣~̂Z(dλ )~̂Z∗(dλ )

∣∣∣.

Here specifically for the application in the two layer flow system, we view the spectral density
and distribution functions E and dF as 2×2 matrices (see Appendix A for more details about the
spectral expansion). In this way, we can optimize the autocorrelation functions R (t) including
upper and lower layer covariances at the same time since these two modes are always closely
coupled together.

Applying the theory for spectral representation of stationary processes, we find the one-
to-one correspondence between the autocorrelation function R (t) and positive-definite energy
spectra E (λ ). Back to the comparisons of the true and model random fields ~q,~qM constrained
within first two moments, R (t) for the true process~q can be achieved through the data from true
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model simulations in (2.4b), while the imperfect model autocorrelation RM (t) can be solved
explicitly through the Gaussian linear process in (2.6). E (λ ) and EM (λ ) then are the Fourier
transforms of the autocorrelation matrices R (t),RM (t) according to (3.10). Therefore we can
construct the spectral measures for two Gaussian random fields as a product of increment inde-
pendent normal distributions about the frequency λ

pG(x;λ )=∏N (0,E (λ )dλ ), pM
G (x;λ )=∏N (0,EM (λ )dλ ).

The normalized relative entropy (3.9) between the two processes then can be defined under the
spectral densities

P
(

pG,pM
G
)
=P (E (λ ),EM (λ )),

ˆ ∞

−∞
P
(

pG(x;λ ),pM
G (x;λ )

)
dλ . (3.11)

See [26] and Appendix A for a more detailed derivation about the above formula. We abuse the
notation above using the spectra E (λ ) to denote density functions. Since E and EM are positive
definite 2×2 matrices for the spectral random variables, it is well-defined of the last part of
the above formula (3.11) using the information distance formula (3.9). Through measuring the
information distance in the spectral coefficients ~̂Z(dλ ), we get the lack of information in the
autocorrelation function R (t) from the model. Furthermore, we have shown in [26] that the
error in autocorrelation functions ‖R (t)−RM (t)‖ of two stationary random processes ~q and
~qM is bounded by the information distance of their energy spectra P (E,EM).

To summarize, we can seek a spectral representation of the autocorrelation functions like

P (E (λ ),EM (λ ))=
ˆ

D
(

E (λ )EM (λ )−1
)

dλ , (3.12)

where D (x)≡−logdetx+trx−2 is the Gaussian relative entropy with a zero mean state [13].
And since we only concentrate on the leading order statistics (that is, mean and variance),
thus this representation is enough. We can find the optimal model parameter θ∗=(dM,ωM) by
minimizing the information metric defined in (3.12)

P (E (λ ),EM (λ ,θ∗))=min
θ

P (E (λ ),EM (λ ,θ)). (3.13)

The same strategy has been tested successfully for the simpler L-96 system in [26].

3.3. Summary about the numerical algorithm for the reduced-order stochastic mod-
els

With the optimal reduced-order stochastic approximation for the background advection
flow equations constructed in (3.6) in which consistent leading order statistics and autocorrela-
tion functions are guaranteed, the prediction about tracer statistics can be carried out by apply-
ing the reduced-order tracer equations as in (2.7). As a summary, here we describe the general
reduced-order stochastic modeling procedure for predicting passive tracer statistics advected by
a two-layer turbulent flow field.
ALGORITHM 3.1. (Reduced-order stochastic model for passive scalar turbulence)

Determine the low-dimensional subspace spanned by orthonormal basis {ek} covering the
regime with largest variability in the flow spectrum. The stochastic dynamical equations for
advection flow and passive tracer field (2.6) and (2.7) can be set up by Galerkin projecting the
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original equations to the resolved subspace for wavenumbers 1≤|k|≤M,

d~TM,k=−
(

vM ·∇~TM

)
k

dt+Γk~ψM,kdt−(γT,k+iωT,k)~TM,kdt,

d~qM,k=−
(
γq,k+iωq,k

)
~qM,kdt−DM

q,k~qM,kdt+ΣM
q,kd~Wq,k,

vM =∇⊥~ψM = ∑
|k|≤M1

ik⊥~ψM,keik·x, ~qM,k=Hk~ψM,k.

The flow vorticity equation for~qM needs to be calibrated in a training phase for optimal model
parameters, and then the solution from the flow equation is used for the prediction of tracer
statistics in ~TM in the most energetic leading modes.

• Calibration in advection flow equations: in the vorticity equations about ~qM , addi-
tional linear damping and Gaussian noise

(
DM

q ,ΣM
q
)

are introduced according to the
flow equilibrium statistics and further corrections in (3.6). Equilibrium consistency
is guaranteed through the constraint in (3.7), and the optimal model parameter is
achieved through tuning the imperfect model autocorrelation function with the truth
under information metric using (3.12) and (3.13).

• Prediction in passive tracer equations: the advection flow solution vM is calculated
from reduced-order model with the optimized parameters. Using the advection flow
solution, the truncated tracer model is applied to get the statistics in passive tracer
field. Tracer energy spectrum can be achieved by averaging the time-series of the
tracer solution, and the tracer intermittency can be checked by comparing the tails in
tracer probability density functions.
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Table 4.1: Model parameters representing test regimes in ocean and atmosphere. The ocean
regime gets a larger deformation frequency F than the atmosphere regime. N is the model
resolution, β is the rotation parameter, F = f 2

0 L2/4π2g′H=k2
d/4 is inversely proportional to

the deformation radius, U is the background mean shear flow, r is the Ekman drag in the bottom
layer, and the hyperviscosity is measured by the operator−ν∇2s. The last three columns display
the parameters for the tracer equations for linear damping dT , tracer diffusivity κ , and mean
gradient α along y.

regime N β F U r ν s dT κ α
ocean, high lat. 128 2 40 0.1 0.1 1×10−13 4 0.5 0.001 1

atmosphere, high lat. 128 1 4 0.2 0.2 1×10−13 4 0.1 0.001 1
atmosphere, mid lat. 128 2 4 0.2 0.1 1×10−13 4 0.1 0.001 1

4. Numerical experiments for passive tracer statistics in various regimes
In this section, we test the reduced-order models described in the previous sections

among different dynamical regimes of the two-layer QG flow with distinct statistical fea-
tures. In numerical simulations, the true statistics are calculated by a pseudo-spectra code with
128×128×2 grid points in total. We use this relatively small truncation since it already suffices
to generate strong large-scale intermittency. The zonal mean flow ~U =(U,−U) is taken as the
same strength with opposite directions in the two layers. In the tracer simulations, for simplicity
we always consider the mean gradient along y direction, that is to assume, T =T ′+αy. This
assumption is representative in many previous investigations [22, 17, 26]. We may change the
scale separation parameter ε in (2.4a) to generate different tracer structures. In most of the test
case here, we use ε−1=5 where intermittency is prominent. Parameter values for both ocean
and atmosphere regimes are following [13, 20] and are shown in Table 4.1. In the reduced-
order models, we only compute the modes |k|≤M=10 in largest scales, compared with the
true system resolution N=128.

4.1. Statistics in the true system with full resolution
In the first place, we display the true model solutions with full resolution as an illustration

of the flow structures. Using the two-layer baroclinic model in (2.1), many typical dynami-
cal regimes with distinct statistical features can be generated by varying the parameter values.
Here we focus on three representative regimes as shown in Table 4.1. In the high latitude
regimes, the statistics are relatively homogeneous with a competition between the zonal modes
and meridional modes. The typical structure is the exchange between the blocked regime with
strong meridional heat transfer and unblocked regime with strong zonal jet (see Figure 4.3
and [29, 28]). The mid latitude atmosphere regime forms another interesting dynamical regime
with representative anisotropic zonal jets (see Figure 4.1 and [29]). Thus stronger non-Gaussian
statistics can be expected in this regime.

As a typical illustration about the advection flow field in the three test regimes in Table
4.1, we compare the zonal averaged flow time-series, ū=−

ffl
ψy(x,y)dx, in Figure 4.1. In the

high latitude ocean regime, there is obvious competition between the unblocked zonal flow
and blocked meridional heat flux (see Figure 4.3 for the snapshots of stream functions in these
two regimes). In the high latitude atmosphere regime, similar structure can be observed with
stronger turbulent mixing. In contrast, the mid latitude atmosphere regime generates a mean-
dering zonal jet, which displays the highly anisotropic structure in this flow field. These three
dynamical regimes get different statistics and share representative features with the typical flow
fields that are observed in real applications.
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Fig. 4.1: Time-series of the zonal averaged flow in the three test regimes with parameters in
Table 4.1. The evolutions of the high latitude ocean (first row), the high latitude atmosphere
(second row), and the mid latitude atmosphere (third row) are compared. The x-axis is time and
y-axis is meridional coordinate.

4.1.1. Statistics in the advection flow field
In the statistics of the advection flow field, most importantly we consider the first two

leading moments of the mean and variance in each mode (and they are also important in con-
structing the reduced-order model for the flow dynamics); but it is still useful to check the higher
order statistics about how large the steady state statistics divert from the Gaussian distributions.
Usually to measure the higher order moments, two characterizing statistical quantities are the
skewness and flatness of the variables of interest, that is,

skewness=

〈
(u−ū)3

〉

〈
(u−ū)2

〉3/2 , flatness=

〈
(u−ū)4

〉

〈
(u−ū)2

〉2 . (4.1)

The skewness is used to measure the symmetry of the distributions of the random variables;
flatness (kurtosis) indicates how the peak and tails of a distribution differ from the normal
distribution. For a normal distribution, flatness gets the standard value of 3. A distribution with a
flatness larger than 3 indicates that the distribution has tails heavier than the normal distribution
(with same variance) and sharper peak. Likewise, a distribution with a flatness smaller than 3
indicates that the distribution has tails lighter than a normal distribution and flatter peak in the
middle. One additional characterizing quantity is the autocorrelation function, R (u), which can
be used to measure the time mixing scale of the process. The integrated correlation time of the
process can be defined in two ways

Mabs
corr=

ˆ
|R (t)|dt, Mcorr=

∣∣∣∣
ˆ

R (t)dt
∣∣∣∣. (4.2)

Both Mabs
corr and Mcorr are useful in measuring the mixing rate of the state variables for both the

advection flow and the passive tracer modes [1, 19] especially when the autocorrelation function
is highly oscillatory.

The equilibrium steady state statistics in the first four leading modes,
ψ̂(1,0),ψ̂(0,1),ψ̂(1,1)ψ̂(−1,1), of the flow stream functions are listed in Table 4.2 for the
three test regimes. In the high latitude regimes, the first two modes (1,0) and (0,1) are dominant
with much larger energy than the other modes, representing the Rossby waves and the zonal
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Table 4.2: Equilibrium steady state statistics for the advection flow field stream functions ψ̂k
in three test regimes. The (absolute) mean, variance, skewness, and flatness are compared
in the first four most energetic modes. The original Mcorr (in parenthesis) and absolute Mabs

corr
decorrelation time are shown in the last column, which illustrate the mixing scale for each
mode in the advection flow.

lower layer mean variance skewness flatness correlation time
ψ̂(1,0) 0.0261 14.0134 -0.0136 2.4459 3.1190 (0.4673)
ψ̂(0,1) 0.1593 13.3364 0.0369 2.2103 6.2486 (6.1076)
ψ̂(1,1) 0.0050 0.4332 -0.0349 4.6093 1.3864 (0.2823)

ψ̂(−1,1) 0.0099 0.4379 0.0310 4.7116 1.4175 (0.2990)
high-latitude ocean regime F =40,β =2 (lower layer)

lower layer mean variance skewness flatness correlation time
ψ̂(1,0) 0.0046 0.5917 -0.0073 2.3438 4.1925 (1.1283)
ψ̂(0,1) 0.0215 0.5898 -0.0265 2.1646 3.5128 (2.8489)
ψ̂(1,1) 0.0018 0.0490 -0.0350 3.2605 1.7763 (1.0116)

ψ̂(−1,1) 0.0023 0.0500 -0.0421 3.1349 1.7144 (0.9326)
high-latitude atmosphere regime F =4,β =1 (lower layer)

lower layer mean variance skewness flatness correlation time
ψ̂(1,0) 0.0029 0.0111 0.0055 4.1219 17.7396 (0.7574)
ψ̂(0,1) 0.0002 0.1397 -0.0813 1.7995 97.6285 (73.672)
ψ̂(1,1) 0.0003 0.0176 -0.0557 3.6148 16.6485 (1.2648)

ψ̂(−1,1) 0.0005 0.0180 0.0082 3.5290 15.4606 (1.0893)
mid-latitude atmosphere regime F =4,β =2 (lower layer)

jets respectively. This can also be seen in Figure 4.2 with the energy spectra. For the variances
in upper and lower layers of the flow, ocean regime has relatively the same amount of energy
in both layers, and atmosphere regime accumulates more energy in the upper layer. In the mid
latitude atmosphere regime, instead the zonal mode (0,1) gets much larger energy representing
the meandering jet structure.

In higher order statistics, first note the skewness are all small within numerical errors for
all the modes. This shows the symmetry in the distributions in the leading modes of interest.
In high latitude regimes, for the fourth order moments for flatness, the first two modes (1,0)
and (0,1) get values smaller than 3, representing sub-Gaussian distributions; while the next two
modes (1,1) and (-1,1) have values larger than 3, representing fat tails. In mid latitude case,
the zonal mode (0,1) becomes strongly sub-Gaussian while all the other modes are strongly
super-Gaussian with fat tails. These higher order statistics can be further observed in Figure
4.4 in the marginal PDFs. The correlation time Mcorr and Mabs

corr can be used to measure the
mixing rate in each mode. Much longer mixing time can be observed also in the two leading
modes. Another important feature to observe is the difference between Mcorr and Mabs

corr. Mode
ψ̂(0,1) gets relatively similar values between Mcorr and Mabs

corr, showing a slowly decaying mode
(representing zonal flow); while mode ψ̂(1,0) has much difference in Mcorr and Mabs

corr, meaning
strong oscillation (representing meridional transport mode).

4.1.2. Intermittency in the passive tracer field
Here we display the intermittent structure in the passive tracer field briefly in the true model.

As a typical example we use the high latitude ocean regime with representative blocked and un-
blocked regimes as shown in Figure 4.3. Correspondingly we can observe the time-series of
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Fig. 4.2: The energy spectra in the three typical test regimes. Both the energy spectra in flow
velocity field, |k|2

〈
|ψ̂k|2

〉
, and the tracer field,

〈∣∣T̂k
∣∣2
〉

, are shown in radial average.

the meridional heat flux defined as H f =
ffl

vτ =
ffl

ψxτ , with (ψ,τ) the barotropic and baroclinic
mode. In the unblocked state with strong zonal flow, the meridional heat flux is suppressed;
while in the blocked state strong meridional heat flux can be observed showing a strong merid-
ional transport of the heat. The source of intermittency in passive scalar tracer is described
qualitatively in [3] under an elementary model. The streamline topology for the flow field
changes from unblocked behavior in the x direction (that is, parallel to the imposed tracer field
mean scalar gradient αy along y), to very rapid heat transport in the y direction in the blocked
state. The open streamlines in the meridional transport (like the left panel in first row in Figure
4.3), along with the y mean gradient, lead to large convective transport and large deformations
of the isocontours for the passive scalar field, which promotes strong mixing by diffusion. On
the other hand, in the regime with strong zonal flow along x direction (like the right panel in
first row in Figure 4.3), weak distortion of the scalar isocontours is caused by the almost en-
tirely zonal convection of the flow field, and hence little opportunity for strong tracer mixing
by diffusivity. Confirmed in the time-series of the scalar passive tracer trajectory in Figure 4.3,
strong tracer intermittent bursts are always corresponding to the strong meridional heat trans-
port in blocked regime leading to high mixing rate in tracer modes; the quite regime with little
meridional heat flux in the unblocked regime also shows little intermittency of the tracer field
in small amplitude.

The above on and off intermittent mechanism detailed in [3, 19] explains the turbulent mix-
ing and intermittency via streamlines blocking and opening through simple elementary model
with no instability and turbulence, while similar phenomena are also observed in the numerical
simulations through much more complex two-layer baroclinic model in turbulence here. Even
though simple and qualitative, the intuitive reasoning hints that the first two most energetic
leading modes (0,1) and (1,0) which represent the competitive unblocked and blocked states
might be crucial for modeling the intermittent structures in the tracer field. This also verifies
the validity of only using small number of leading modes to model the tracer advection in (2.7)



18 Predicting Extreme Events for Passive Scalar Turbulence through Reduced-Order Stochastic Models

barotropic flow field, blocked regime

-3 -2 -1 0 1 2 3

x

-3

-2

-1

0

1

2

3

y

(a) blocked regime

barotropic flow field, unblocked regime

-3 -2 -1 0 1 2 3

x

-3

-2

-1

0

1

2

3

y

(b) unblocked regime

200 400 600 800 1000 1200 1400 1600 1800 2000

0

1

2
time-series of flow heat flux vτ

200 400 600 800 1000 1200 1400 1600 1800 2000

time

-5

0

5
time series of tracer T, upper layer

(c) time-series of heat flux and scalar tracer

Fig. 4.3: Illustration about tracer intermittency with heat flux. The first row is the snapshots of
the flow field with blocked and unblocked regime. The following parts show typical time-series
for both the heat flux and scalar passive tracer.

for the reduced-order tracer model.

4.2. Calibration in the advection flow field
Now we use the reduced-order stochastic model in (2.6) and (2.7) to predict scalar passive

tracer statistics with only calibration of the background turbulent advection flow field. Only
the leading modes |k|≤10 are resolved for reducing model computational cost. As the model
calibration strategy described in Section 3.1, we need to confirm equilibrium consistency in
the energy spectra and time scale consistency in autocorrelation functions for the flow vorticity
solutions.

4.2.1. Consistency in energy spectra
As described in the modeling strategy in the previous section, the linear Gaussian flow ap-

proximation equations in (2.6) should recover the true statistical energy in equilibrium in the
first place. Choosing the parameters according to the constraint (3.7), naturally the same statis-
tics can be reached since the true equilibrium first two moments are used to help construct the
reduced model approximation for additional damping and noise corrections. To further con-
firm this convergence and make sure the validity of the numerical schemes, Figure 4.4 displays
the equilibrium PDFs from the first 4 leading modes, ψ̂(1,0),ψ̂(0,1),ψ̂(1,1)ψ̂(−1,1), of flow stream
functions in truth and reduced-order model predictions. Consistency in variances is confirmed
in these marginal distributions for the reduced-order model predictions overlapping the Gaus-
sian fit of the truth with the same variance. Besides, consistent with the numbers in Table 4.2,
the true leading modes all display some degree of non-Gaussian statistics with sub-Gaussian or
super-Gaussian structures in the tails. Especially for the first two leading modes, that is, (1,0)
for the Rossby waves and (0,1) for the large-scale zonal flow, strongly non-Gaussian features
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Fig. 4.4: The marginal PDFs of the first four leading modes in stream functions in all three
test regimes. The truth is shown in blue and red is the reduced model result. The Gaussian
distributions with the same equilibrium variance are in dashed black lines. Since we use the
equilibrium statistics to correct the linear Gaussian approximation models, exact recovery about
the Gaussian fit can be achieved through this reduced-order model.

can be observed in all three regimes. On the other hand, the reduced-order model only captures
the Gaussian statistics since only linear Gaussian model is used.

4.2.2. Consistency in autocorrelations
Still the climate consistency in the leading order moments is not sufficient for representing

the low-order imperfect approximations in an optimal way. It is observed that large model error
could still exist in the autocorrelation functions of each mode. As illustrated in Section 4.1.2 and
Figure 4.3, the tracer intermittency is related to the competition between the zonal mode (0,1)
and meridional mode (1,0). Thus the correct modeling about the time mixing scales in these
modes is directly linked with the occurrence of intermittency, then with the accurate prediction
of the fat-tails in tracer distributions.

The autocorrelation functions of the first four leading modes in the flow stream functions
are plotted in Figure 4.5. Again we observe that the zonal mode (0,1) has a long decaying
time representing the persistent zonal jet especially in mid latitude regime; while the Rossby
mode (1,0) is highly oscillating responsible for the intermittent heat transport. Comparing the
reduced-order model results with the optimal parameters from (3.13) and the non-optimized
model with no additional corrections dM =0,σM =0, it can be seen that in all three test regimes,
the tuning process in the training phase can effective improve the accuracy in the predicted
autocorrelation functions, while large error may still exist for the non-optimal case without ad-
ditional correction. Important time scales in these crucial modes will be missed if no additional
model calibration is considered. As we can see in the predictions for tracer statistics in the next
section, this is also important for the reduced model skill for tracer results.

4.3. Predictions of turbulent tracer statistics in reduced-order models
In this section, we test the prediction skill of the reduced-order tracer models in (2.7) using

the solution from the optimized flow equations as achieved above. As we have discussed, the
nonlinear advection in the tracer equation vM ·∇TM is important for the final tracer statistical
structure, while this part is expensive to calculate explicitly since it is nonlocal requiring the
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Fig. 4.5: Autocorrelation functions in the first four most energetic modes in the flow field stream
functions in all three test regimes. The truth in dashed blacked lines are compared with the op-
timized reduced-order model estimations in red lines. The optimal parameters in the reduced-
order model is achieved by minimizing the information metric between the autocorrelations
with the truth. For comparison, we also give the non-optimized results without additional cor-
rections (dM,σM)=0 in dotted-dashed blue lines.

modes in different scales. So the strategy is to consider only principal modes with largest
variance in vM in calculating the nonlinear term and check the imperfect model prediction skill
as in (2.7). Besides, we still have the scale separation parameter ε and linear damping dT to
control the tracer structures in the tracer model. This enables us to investigate the reduced model
skill with different statistics by changing these parameter values.

4.3.1. Prediction in tracer equilibrium spectra and autocorrelation functions
In the reduced-order tracer equation (2.7), we would not like to introduce further calibra-

tions of the tracer field. Thus in the first place, we should check the imperfect model skill in
recovering the energy spectra and autocorrelation functions in the resolved tracer modes. As
from the original tracer model (2.4a), the nonlinear advection in the tracer dynamics is non-
local, while the reduced-order model only uses the leading modes in the flow field solution
vM =∑v̂M,keik·x,|k|≤M1, to calculate the nonlinear part. By changing the size of truncated
modes M1, we can check the contribution of modes in different scales in tracer advection. In
Figure 4.6-4.8, the equilibrium spectra in tracer modes and cross-covariance between tracer
modes and flow stream functions are shown. To clearly compare the two-dimensional modes
along one axis, the tracer modes are ordered all together with descending energy according
to the advection flow modes. In the reduced-order model only the leading modes |k|≤10 are
computed explicitly in the equations. Furthermore, we consider two different truncation sizes
M1=10 and M1=2 in calculating the nonlinear advection in vM . Thus with M1=2, only the
first two dominant modes (1,0) and (0,1) are used in the nonlinear advection velocity, vM ·∇TM .
In general, the energy structure in the largest scales can be captured with desirable accuracy,
while large errors appear with smaller size of advection modes. The cross-covariances between
the tracer mode and stream function can also be captured through the reduced-order formula-
tion. Comparing in more details in the first few dominant modes, using only two modes M1=2
leads to larger errors due to the inaccurate modeling about the unresolved small scale feed-
backs to the largest scales. Especially in the mid latitude regime with persistent zonal jet, using
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Fig. 4.6: Tracer variance spectra predicted with the reduced-order model in high latitude ocean
regime with tracer parameters

(
ε−1,dT

)
=(5,0.5). The modes are ordered in descending order

of the corresponding advection flow energy. The truth is shown in black, and we consider
different number of resolved modes M1=10 and M1=2 in the reduced model advection.

only two modes M1=2 becomes insufficient with large errors. This shows the importance of
small scale contributions in this regime. Overall, using the total M1=10 resolved modes in the
advection, the leading mode energy can be approximated with good agreement with the truth.

Next we check the reduced model prediction of the autocorrelation functions in the lead-
ing tracer modes. Results in all regimes in ocean and atmosphere are displayed in Figure 4.9.
Overall the tracer autocorrelations show shorter decorrelation time than the corresponding ad-
vection flow modes in Figure 4.5. For the mid latitude case, the most important modes become
the slow varying zonal modes, where the extremely long mixing time is still captured in the
model. Among all three test cases, the tracer autocorrelation functions can be captured with
good accuracy in the reduced-order models.

4.3.2. Prediction in tracer intermittency and fat-tails in PDFs
Another important issue in the reduced-order models is the prediction of intermittency in

the leading tracer modes. It has been observed from simulations in the true models that the trac-
ers undergo a transition from Gaussian behavior to a probability distribution with approximately
exponential fat-tails over a wide range of its variability with the change of model parameters. In
the formulation in the tracer equations (2.4a), we can change the parameter value ε for scale sep-
aration between the tracer field and turbulent flow. The change of values in ε leads to changes
in the Péclet number Pe=UL/κ , where U is the characteristic scale in the advection flow v. It
is shown [3, 17, 22] that the passive tracer produces stronger intermittency as the tracer field ap-
proaches the long time slow varying limit ε→0. Still here we would not like to push the system
to the extremes but consider two typical cases with ε =1/5 (where strong fat-tailed distributions
are developed) and ε =1 (where the tracer statistics become near Gaussian).

In Figure 4.10 and 4.11, we compare the high latitude atmosphere regime with two different
scale separation parameter value ε =1/5 and ε =1. First observe that in the true signals from
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Fig. 4.7: Tracer variance spectra predicted with the reduced-order model in high latitude atmo-
sphere regime with tracer parameters

(
ε−1,dT

)
=(5,0.1). The modes are ordered in descending

order of the corresponding advection flow energy. The truth is shown in black, and we consider
different number of resolved modes M1=10 and M1=2 in the reduced advection.
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Fig. 4.8: Tracer variance spectra predicted with the reduced-order model in mid latitude atmo-
sphere regime with tracer parameters

(
ε−1,dT

)
=(5,0.1). The modes are ordered in descending

order of the corresponding advection flow energy. The truth is shown in black, and we consider
different number of resolved modes M1=10 and M1=2 in the reduced advection.
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Fig. 4.9: Prediction of the reduced-order autocorrelation functions in the tracer field in the first
four most energetic modes. In the ocean case F =40, the tracer parameters are

(
ε−1,dT

)
=

(5,0.5); and in the atmosphere case F =4, the tracer parameters are
(
ε−1,dT

)
=(5,0.1). In the

autocorrelation functions, the truth is shown in black dashed lines and the reduced-order model
prediction in red lines.

the perfect system with high resolution, larger spikes are produced in the tracer trajectories with
smaller value ε =1/5, and obvious fat tails can be observed in the leading modes representing
strong intermittent structures. On the other hand with larger value ε =1, the tracer field reduces
to near Gaussian statistics where all the modes have the distributions close to the Gaussian fit.
Similar case can be seen in the ocean regime case in Figure 4.12 and 4.13. Intermittency be-
comes weaker as ε is in larger value. Both the near Gaussian and highly non-Gaussian regimes
can be representative showing a wide range of variability in the passive tracer field.

Then we observe the reduced-order model skill in capturing these central non-Gaussian
fat-tails. In Figure 4.10-4.13, we compare the imperfect model prediction in the high latitude
regime in both ocean and atmosphere. Since the tracer intermittency is usually most important
in the first few leading modes, we compare the representative time-series and tracer PDFs in
statistical steady state. Among all the regimes, the fat-tails in the distribution functions can be
captured, and similar characteristic structures can be seen in the truth and reduced model time-
series. On the other hand in the nearly Gaussian regimes, still similar structures can be seen by
comparing the truth and imperfect model results, and the reduced-order model can recover the
tracer PDFs again with accuracy.

Finally, in Figure 4.14 and 4.15, the mid latitude regime with persistent zonal jet is tested.
In this case, the representative feature is the slow-varying leading zonal modes that become
dominant. In this case, the streamlines will be open with strong zonal flow for most of the
time in the general situation, thus the contour lines of the tracer mean gradient along y is less
frequent to be broken. Thus tracer turbulent mixing in this case is weaker and fat-tails in the
PDFs is less obvious. The reduced-order model maintains the skill in capturing tracer statistics
in leading modes among this regime. Notice here in all the reduced-order simulations, only the
largest scale modes |k|≤10 are resolved compared with the full model with resolution of 128
grid points along each horizontal direction. The model efficiency can be effectively improved
by solving the low-order model.

Reduced model error due to truncated modes in tracer advection term
In the advection term vM ·∇TM in modeling the passive tracer field (2.7) in the reduced-

order approximation, only the resolved large-scale modes in the flow equation solution vM are
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Fig. 4.11: Prediction about tracer intermittency in high latitude atmosphere regime with parameters
�
e�1,dT

�
=

(5,0.1). The left panel is the time-series for the first two leading modes (1,0) and (0,1) between true model
and reduced model results; the right panel compares the PDFs in the first four modes between the truth and
reduced model prediction.
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Fig. 4.11: Prediction about tracer intermittency in high latitude atmosphere regime with parameters
�
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�
=

(5,0.1). The left panel is the time-series for the first two leading modes (1,0) and (0,1) between true model
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reduced model prediction.

Fig. 4.10: Prediction of tracer intermittency in high latitude atmosphere regime with parameters(
ε−1,dT

)
=(5,0.1). The left panel is the time-series for the first two leading modes (1,0) and

(0,1) between true model and reduced model results; the right panel compares the PDFs in the
first four modes between the truth in blue and reduced model prediction in red with the Gaussian
fit in dashed black lines.

used in calculating the nonlinear tracer advection. That is, the tracer advection in the model is
calculated through the large scale truncation. In above simulation results for tracer PDFs, we
always use the entire number of resolved flow modes M1=M from the advection velocity solu-
tion vM . Here as a further test for model errors through the high wavenumber truncation, we can
even consider less modes M1<M in computing the nonlinear advection in the tracer dynamics.
In Figure 4.16, PDFs in the two representative atmosphere and ocean regimes are compared
with different truncation sizes M1=10,5,2 in computing the nonlinear tracer advection term
with vM. With M1=M=10, all the resolved modes from linear Gaussian flow model (2.6) are
used in the tracer advection. Using half of the resolved modes, M1=5, still we observe that the
major structure with fat-tails can be captured in the leading PDFs with only a little larger error
in the tails of the distributions. In the extreme case using the severe truncation M1=2, only the
first two modes are included in calculating the nonlinear advection. As a result, larger errors
appear with this crude approximation due to the insufficient quantification for flow advection
modes.

4.3.3. Eddy diffusivity approximations for tracers
Parameterization by eddy diffusivity in the tracer system is often used in practice to account

for unresolved small scales [19, 17]. Here we demonstrate the accuracy of the imperfect model
in recovering the tracer eddy diffusivity. Consider the mean statistical dynamics about T̄k=〈Tk〉
of the tracer equations by taking ensemble average about the original model (2.4a)

dT̄k+(v̄·∇T̄ )kdt+
〈
v′ ·∇T ′

〉
kdt=Γkψ̄kdt−(γT,k+iωT,k)T̄kdt.

Above 〈v′ ·∇T ′〉k is the eddy diffusivity for the tracer dynamics. This is a spatially nonlocal term
involving the interactions between all the spectral modes among all scales. In the turbulent-
viscosity hypothesis [29, 19], the tracer turbulent advection is represented by a diffusion term
as

〈
v′ ·∇T ′

〉
=−∇·(κT ∇T̄ ), (4.3)
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Fig. 4.12: Prediction about tracer intermittency in high latitude atmosphere regime with parameters
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(1,0.1). The left panel is the time-series for the first two leading modes (1,0) and (0,1) between true model
and reduced model results; the right panel compares the PDFs in the first four modes between the truth and
reduced model prediction with the Gaussian fit in dashed black lines.
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Fig. 4.12: Prediction about tracer intermittency in high latitude atmosphere regime with parameters
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(1,0.1). The left panel is the time-series for the first two leading modes (1,0) and (0,1) between true model
and reduced model results; the right panel compares the PDFs in the first four modes between the truth and
reduced model prediction with the Gaussian fit in dashed black lines.

Fig. 4.11: Prediction of tracer intermittency in high latitude atmosphere regime with parameters(
ε−1,dT

)
=(1,0.1). The left panel is the time-series for the first two leading modes (1,0) and

(0,1) between true model and reduced model results; the right panel compares the PDFs in the
first four modes between the truth in blue and reduced model prediction in red with the Gaussian
fit in dashed black lines.

where the coefficient κT is a constant “eddy diffusivity”. The turbulent-viscosity hypothesis
implies that the scalar flux vector is aligned with the mean scalar gradient vector. It is introduced
through a homogenization about the turbulent system.

Here we want to compare the eddy diffusivity from the truth with the reduced-order ap-
proximations. From (4.3) we can calculate the eddy diffusivity coefficients for both the true
system and reduced-order models through each spectral mode solution

κT =
〈v′ ·∇T ′〉k
|k|2 T̄k

, κM
T =
〈v′M ·∇T ′M〉k
|k|2 T̄M,k

. (4.4)

The statistics are achieved through time averaging along solution trajectories in both true system
and reduced stochastic model. Note that in the reduced-order models, only the first 10 leading
modes are resolved, thus 〈v′M ·∇T ′M〉k are calculated based on these available resolved modes
only. Also, especially in homogeneous case, the statistical mean states of the tracer modes
become small. Thus (4.4) can only qualitatively describe the mixing rate in each mode.

Figure 4.17 shows the results for eddy diffusivity estimated from (4.4) for mid latitude at-
mosphere F =4 with jets. The modes are ordered in the same descending order according to the
equilibrium statistical energy spectra of the vorticity as before. From the black lines for the true
model eddy diffusivity, beginning from the intermediate scales from wavenumber around 10,
the numerical estimation about eddy diffusivity κT stays in nearly constant values with small
fluctuations. This illustrates that turbulent-viscosity hypothesis is valid in tracer intermediate to
small scales, and can actually offer good approximation in the eddy-diffusivity homogenization
as in (4.3). In the reduced-order predictions with model errors, eddy diffusivity approxima-
tion κM

T has agreement in amplitude along the spectrum except the largest scales, showing that
the most important fluctuation interactions in the reduced-order approximations are modeled
with accuracy. In the largest scale modes, larger errors appear and the eddy diffusivity approx-
imation gets violated. This is related with the highly anisotropic structure in the largest scale
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Fig. 4.13: Prediction about tracer intermittency in high latitude ocean regime with parameters
�
e�1,dT

�
= (5,0.5).

The left panel is the time-series for the first two leading modes (1,0) and (0,1) between true model and
reduced model results; the right panel compares the PDFs in the first four modes between the truth and
reduced model prediction with the Gaussian fit in dashed black lines.
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Fig. 4.13: Prediction about tracer intermittency in high latitude ocean regime with parameters
�
e�1,dT

�
= (5,0.5).

The left panel is the time-series for the first two leading modes (1,0) and (0,1) between true model and
reduced model results; the right panel compares the PDFs in the first four modes between the truth and
reduced model prediction with the Gaussian fit in dashed black lines.

Fig. 4.12: Prediction of tracer intermittency in high latitude ocean regime with parameters(
ε−1,dT

)
=(5,0.5). The left panel is the time-series for the first two leading modes (1,0) and

(0,1) between true model and reduced model results; the right panel compares the PDFs in the
first four modes between the truth in blue and reduced model prediction in red with the Gaussian
fit in dashed black lines.

representing the zonal jets and the large errors in the approximation for the mean state with large
fluctuations. The important practical issue of model error from eddy diffusivity approximation
in the tracer statistics is an important research area worth further investigation in the future.
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Fig. 4.14: Prediction about tracer intermittency in high latitude ocean regime with parameters
�
e�1,dT

�
= (1,0.5).

The left panel is the time-series for the first two leading modes (1,0) and (0,1) between true model and
reduced model results; the right panel compares the PDFs in the first four modes between the truth and
reduced model prediction with the Gaussian fit in dashed black lines.
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Fig. 4.16: Prediction about tracer intermittency in low latitude atmosphere regime with parameters
�
e�1,dT

�
=

(1,0.1). The left panel is the time-series for two leading modes (0,1) and (1,1) between true model and
reduced model results; the right panel compares the PDFs in the first four modes between the truth and
reduced model prediction with the Gaussian fit in dashed black lines.
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Fig. 4.16: Prediction about tracer intermittency in low latitude atmosphere regime with parameters
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=

(1,0.1). The left panel is the time-series for two leading modes (0,1) and (1,1) between true model and
reduced model results; the right panel compares the PDFs in the first four modes between the truth and
reduced model prediction with the Gaussian fit in dashed black lines.

Fig. 4.16: Prediction about tracer intermittency in mid latitude atmosphere regime with parameters
�
e�1,dT

�
=

(1,0.1). The left panel is the time-series for two leading modes (0,1) and (1,1) between true model and
reduced model results; the right panel compares the PDFs in the first four modes between the truth and
reduced model prediction with the Gaussian fit in dashed black lines.
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Fig. 4.13: Prediction of tracer intermittency in high latitude ocean regime with parameters(
ε−1,dT

)
=(1,0.5). The left panel is the time-series for the first two leading modes (1,0) and

(0,1) between true model and reduced model results; the right panel compares the PDFs in the
first four modes between the truth in blue and reduced model prediction in red with the Gaussian
fit in dashed black lines.

5. Concluding discussion
In this paper we developed reduced-order stochastic models for predicting extreme events

and intermittency in passive scalar turbulence. The turbulent flow field is generated by a two-
layer quasi-geostrophic model containing non-Gaussian and anistropic structures that can be
observed in many realistic natural flows. The passive tracer is transported by this advection
flow and forced by a mean tracer gradient. Various representative statistical features in the
passive tracer field can be generated through this system from near Gaussian distributions to
highly intermittent structures with fat-tailed PDFs in the leading tracer modes. This passive
tracer turbulence advected by the complex high dimensional flow can be compared with the
much simpler model using the L-96 system as the advection flow investigated in [26], which
shares many similarities in statistical structures with the QG flow but gets much simpler dy-
namical equations (in fact, the F =5 case in L-96 model has strong non-Gaussian statistics with
leading dominant mode as the atmosphere regime with jets, and the F =8 case in L-96 model
can be viewed as a simplification of the high latitude ocean with near-Gaussian homogeneous
statistics). Therefore the model reduction idea in [26] can be used as a guideline for the model
development here under more complex setup.

The complex strongly turbulent dynamical system requires proper reduced-order modeling
strategy of adopting simple advection flow models especially in situations when realistic high
dimensional applications apply, but still maintaining the skill in recovering the most important
statistical features in the tracer field. Linear Gaussian stochastic model is then introduced to
approximate the background flow field, and the tracer equations with advection terms using only
the resolved large-scale modes are applied for efficient prediction. Calibration of the imperfect
models with error is then required to achieve the optimal performance. First linear damping and
random noise corrections are introduced in the reduced-order model to replace the expensive
higher order nonlinear interactions in the original flow equations. This is from a stochastic
realization of the statistical closure models in [21, 28]. High order feedbacks from small scales
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Fig. 4.15: Prediction about tracer intermittency in low latitude atmosphere regime with parameters
�
e�1,dT

�
=

(5,0.1). The left panel is the time-series for two leading modes (0,1) and (1,1) between true model and
reduced model results; the right panel compares the PDFs in the first four modes between the truth and
reduced model prediction with the Gaussian fit in dashed black lines.
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Fig. 4.15: Prediction about tracer intermittency in low latitude atmosphere regime with parameters
�
e�1,dT

�
=

(5,0.1). The left panel is the time-series for two leading modes (0,1) and (1,1) between true model and
reduced model results; the right panel compares the PDFs in the first four modes between the truth and
reduced model prediction with the Gaussian fit in dashed black lines.

Fig. 4.14: Prediction of tracer intermittency in mid latitude atmosphere regime with parameters(
ε−1,dT

)
=(5,0.1). The left panel is the time-series for two leading modes (0,1) and (1,1)

between true model and reduced model results; the right panel compares the PDFs in the first
four modes between the truth in blue and reduced model prediction in red with the Gaussian fit
in dashed black lines.

can be approximated by low order moments in equilibrium, thus the efficiency in calculating
the imperfect model parameters is guaranteed. Second the model prediction skill is further
improved through a systematic framework by measuring the model autocorrelation functions
in the spectral representation with the information metric [26]. The time mixing scales in the
leading modes can be modeled with accuracy. The skill of imperfect models in capturing the
crucial large-scale structures in tracer statistics is tested among a wide variety of dynamical
regimes ranging from strongly non-Gaussian to near Gaussian statistics with strong mixing. The
reduced-order stochastic model displays uniform skill in capturing both tracer energy spectra in
equilibrium and fat-tails in the leading resolved modes, as well as a good approximation for the
tracer eddy diffusivity in the atmosphere regime with jets. Besides, the skillful linear Gaussian
stochastic modeling algorithm developed here should also be useful for other applications such
as accurate forecast of mean responses to changes in forcing [18] and efficient algorithms for
state estimation or data assimilation [10].
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Fig. 4.16: Prediction about tracer intermittency in low latitude atmosphere regime with parameters
�
e�1,dT

�
=

(1,0.1). The left panel is the time-series for two leading modes (0,1) and (1,1) between true model and
reduced model results; the right panel compares the PDFs in the first four modes between the truth and
reduced model prediction with the Gaussian fit in dashed black lines.
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the nonlinear tracer advection term with vM. With M1 = M = 10, all the resolved modes from linear Gaussian flow
model (2.5) are used in the tracer advection. Using half of the resolved modes, M1 = 5, still we observe that the major
structure with fat-tails can be captured in the leading PDFs with only a little larger error in the tails of the distributions.
In the extreme case using the severe truncation M1 = 2, only the first 4 modes are included in the nonlinear advection
term. As a result, larger errors appear with this crude approximation due to the insufficient quantification for flow
advection modes.

4.3.3 Eddy diffusivity approximations for tracers

In the final part of the test for reduced-order models, we check the actual form of tracer eddy diffusivity [24, 21] and the
imperfect models’ skill in recovering it. Consider the mean statistical dynamics about T̄k = hTki of the tracer equations
by taking ensemble average about the original model (2.3a)

dT̄k +(v̄ ·—T̄ )k dt +
⌦
v0 ·—T 0↵

k dt = Gkȳkdt � (gT,k + iwT,k) T̄kdt.

On the left hand side of the above equation, hv0 ·—T 0ik is the eddy diffusivity for the tracer dynamics. This is a spatially
nonlocal term involving the interactions between all the spectral modes among all scales. In the turbulent-viscosity
hypothesis [34, 24], the tracer turbulent advection is represented by a diffusion term as

⌦
v0 ·—T 0↵= �— · (kT —T̄ ) , (4.3)

where the coefficient kT is a constant “eddy diffusivity”. The turbulent-viscosity hypothesis implies that the scalar flux
vector is aligned with the mean scalar gradient vector. It is introduced through a homogenization about the turbulent
system.

Here we want to compare the eddy diffusivity from the truth with the reduced-order approximations. From (4.3) we
can calculate the eddy diffusivity coefficient for both the true system and reduced-order models through each spectral
mode solution

kT =
hv0 ·—T 0ik

|k|2 T̄k
, kM

T =
hv0M ·—T 0

Mik

|k|2 T̄M,k
. (4.4)

Fig. 4.15: Prediction of tracer intermittency in mid latitude atmosphere regime with parameters(
ε−1,dT

)
=(1,0.1). The left panel is the time-series for two leading modes (0,1) and (1,1)

between true model and reduced model results; the right panel compares the PDFs in the first
four modes between the truth in blue and reduced model prediction in red with the Gaussian fit
in dashed black lines.
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Fig. 4.16: Tracer PDFs in the first two leading modes (1,0) and (0,1) with different truncation
M1=10,5,2 in computing the advection velocity vM . The truth in black is compared with the
reduced-order model predictions with different reduction in the nonlinear advection term.

Appendix A. Information criterion for measuring autocorrelation functions of the sta-
tionary random fields.

A.1. Spectral representation of general stationary random fields
For a scalar stationary process u(t), its autocorrelation function R (t)=

〈
u(0)u(t)∗

〉
is
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Fig. 4.17: Eddy diffusivity calculated from (4.4) for the mid latitude atmosphere regime with
different parameters. The modes are ordered according to the descending order of the advection
flow vorticity variance. The true model results are shown in dashed black lines, while the
reduced-order model predictions are in red.

positive-definite in time, that is,

N

∑
i, j=1

R (ti−t j)aia∗j≥0, ∀{a1,···aN}∈CN .

Thus it is proved by Khinchin’s formula [35] that the autocorrelation function has a spectral
representation

R (t)=
ˆ ∞

−∞
eiλ tdF (λ )=

ˆ ∞

−∞
eiλ tE (λ )dλ , (A.1)

where F (λ ) is the non-decreasing spectral distribution function of the stationary process u(t),
and E (λ )>0 is the spectral density function of the stationary process u(t). According to the
formula (A.1), the spectral distribution function F (λ ) of the process u(t) can be determined
from its autocorrelation function R (t) via Fourier transform. Conversely, the autocorrelation
function can be calculated from the corresponding spectral distribution function. Therefore we
can construct the spectral representation of the stationary random field u(t) as

u(t)=
ˆ ∞

−∞
eiλ t Ẑ(dλ ), (A.2)

with Ẑ(dλ ) a random measure which can be defined in a similar form of Fourier transform as

Ẑ(dλ )= lim
T→∞

dλ
2T

ˆ T

−T
e−iλ tu(t)dt.

By combining (A.1) and (A.2) we can find that E (λ ) or dF (λ ) can be viewed as the energy
spectrum of the random field u which measures the variance in Ẑ(dλ )

dF (λ )=E (λ )dλ =E
∣∣Ẑ(dλ )

∣∣2 . (A.3)

Note here that in general Ẑ(dλ ), which depends on the statistics of the stationary process u(t), is
not necessarily a Gaussian random variable and may include higher order statistical information.
But in the main text we only concern fitting a linear Gaussian process with consistent statistics
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up to second order, so a simple Gaussian approximation uG(t) with statistics up to second
order moments is sufficient. The true model autocorrelation function R (t) and corresponding
spectral density E (λ ) can be achieved directly through the Fourier transform (A.1) based on
true observation of the data. As the discussion in the main text, we use an Ornstein-Uhlenbeck
process to approximate the flow model, that is,

duM =−(γ+iω)uMdt+σdW.

The autocorrelation function and corresponding spectral density function can be calculated in
exact forms,

RM (t)=exp(−(γ+iω)t), EM (λ )=
ˆ ∞

−∞
e−iλ tR (t)dt=

2γ
γ2+(λ +ω)2 . (A.4)

A.2. Spectral information criterion for measuring the autocorrelation functions in
two-layer model

In the linear stochastic model (2.6) of advection flow vorticity~qM (t), one additional differ-
ence is that we are considering a 2-vector field. Still this can be easily reduced to the previous
scalar case. In fact in the stochastic approximation model, (2.6) becomes a two-dimensional
Ornstein-Uhlenbeck process for each vorticity spectral mode ~qM =(q̂1,q̂2)

T including the up-
per and lower layer modes

d~qM =−(Γ+iΩ)~qM+Σd~W ,

where Γ,Ω,Σ are 2×2 matrices and we neglect the subscripts in the state variables. Explicitly
in the two-layer QG model we have

Γ+iΩ=

[
0

r|k|2
]

H−1
k +ν |k|2s I2+DM

q,k+ikx

[
U
−U

]
+ikx

[
β +k2

dU
β−k2

dU

]
H−1

k ,Σ=ΣM
q,k,

with the original linear operators (2.6) and additional imperfect model corrections (3.6) com-
bined together. The autocorrelation function about the above system becomes the 2×2 matrix

RM
(
t,t ′
)
≡
〈
~qM (t)~qM

(
t ′
)∗〉

=

ˆ t∧t ′

t0
e−(t−s)(Γ+iΩ)Σ2e−(Γ−iΩ)(t ′−s)ds. (A.5)

In each entry of the above matrix, the integrant is still an exponential about time; then in sta-
tionary state the autocorrelation function is only dependent on the time difference |t ′−t|. Thus
each entry of the above autocorrelation matrix can be reduced to the exact form of the scalar
case (A.4). The corresponding spectral density EM (λ ) is the 2×2 matrix that can be defined
componentwisely as in (A.4).

The true process constraint in Gaussian statistics, ~qG, and the imperfect linear model
approximation, ~qM (t), can be then naturally expressed under an independent 2-dimensional
Wiener random measure d ~̂W (λ )=

(
dŴ1,dŴ2

)
. That is,

~qG(t)=
ˆ ∞

−∞
eiλ tE1/2(λ )d ~̂W (λ ), (A.6)

~qM (t)=
ˆ ∞

−∞
eiλ tE

1/2
M (λ )d ~̂WM (λ ). (A.7)

Above E (λ ) is the true spectral energy, while EM (λ ) is the explicit form for the density of
autocorrelation function for the linear model from (A.5). Instead of measuring the information
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distance between the stationary random fields~qG(t) and~qM (t) at fixed time t, a more favorable
way is to compare the distributions between the true spectral random measure and the imperfect
model approximation field which can include the information about the autocorrelation func-
tions. With the help of the spectral decomposition of stationary random process, we decompose
the state variables into the spectral forms in (A.6) and (A.7) respectively under each Fourier ba-
sis
{

eiλ t
}

in time and measure the information distance between one single spectral increment
at frequency λ . Here consider the full spectra of random measures

pG=∏
λ

pG(x;λ )∼
{

E1/2(λ )d ~̂W (λ )
}∞

λ=−∞

and

pM =∏
λ

pM (x;λ )∼
{

E
1/2
M (λ )d ~̂WM (λ )

}∞

λ=−∞

as two random process about λ ∈R. Due to the independent increments between ~̂W (dλ1) and
~̂W (dλ2), the information distance between these two random processes can be expressed as the
integration between all the spectral modes [26, 35]

P (pG,pM)=P

(
∏
λ

pG(x;λ ),∏
λ

pM (x;λ )

)

=

ˆ ∞

−∞
dλP (pG(x;λ ),pM (x;λ ))

=

ˆ
dλD

(
E (λ )E−1

M (λ )
)
,

(A.8)

where D (x)=−logdetx+trx−N is the Gaussian relative entropy with a zero mean state.
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