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We propose a new reduced fluid model for the study of the drift wave – zonal flow dynamics in
magnetically confined plasmas. Our model can be viewed as an extension of the classic Hasegawa-
Wakatani (HW) model, and is based on an improved treatment of the electron dynamics parallel to
the field lines, to guarantee a balanced electron flux on the magnetic surfaces. Our flux-balanced
HW (bHW) model contains the same drift-wave instability as previous HW models, but unlike these
models, it converges exactly to the modified Hasegawa-Mima model in the collisionless limit. We rely
on direct numerical simulations to illustrate some of the key features of the bHW model, such as the
enhanced variability in the turbulent fluctuations, and the existence of stronger and more turbulent
zonal jets than the jets observed in other HW models, especially for high plasma resistivity. Our
simulations also highlight the crucial role of the feedback of the third-order statistical moments in
achieving statistical equilibrium. Finally, we investigate the changes in the observed dynamics when
more general dissipation effects are included, and in particular when we include the reduced model
for ion Landau damping originally proposed by Wakatani and Hasegawa.
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I. INTRODUCTION

In toroidal magnetically confined plasmas, the level of cross field heat and particle transport in the edge region
is in large part set by drift-wave turbulence driven by temperature and density gradients [17]. This turbulence can
itself generate zonal flows [8], which are known to mediate turbulent transport by shearing the turbulent eddies and
absorbing some of the drift wave turbulence energy [3, 6, 8, 11, 18, 28, 32]. Understanding this process is a critical step
towards the goals of minimizing heat transport in magnetically confined plasmas and designing compact, economically
viable fusion devices.

A wide variety of models have been used to study the drift wave turbulence – zonal flow dynamics in toroidal
plasmas, with a varying degree of physics fidelity [1, 11, 14, 15, 21, 28, 29, 32, 33]; interested readers may find a longer
list of relevant references in [8]. In the present work, we propose a new fluid model which continues the rich tradition
of studies based on reduced fluid models [1, 7, 13, 16, 21–24, 30, 31] initiated by the pioneering works of Hasegawa
and Mima [14] and Hasegawa and Wakatani [15]. The approximations made to derive many of the reduced models,
including ours, are often only satisfied for parameter regimes which do not correspond to the values measured in the
edge of magnetic confinement fusion plasma experiments. We therefore do not expect numerical results obtained with
reduced fluid models to be in quantitative agreement with measurements. However, because of their relative simplicity,
reduced models have played an important role in characterizing the mechanisms responsible for the formation and
dynamics of zonal flows and continue to be important tools to provide more insights into these important phenomena.
In order to put our new model in context, we propose a very brief review of the main reduced models considered in
the plasma physics literature.

The Hasegawa-Mima (HM) [14] model is a one-field partial differential equation (PDE) which is the simplest known
model containing the drift wave turbulence – zonal flow feedback loop mechanism. It was recognized in the 1990s
[10, 11] that in the context of magnetic confinement fusion, it is more physically relevant to consider a corrected form
of the HM equations, now referred to as the modified Hasegawa-Mima (mHM) [7], in which the magnetic surface
averaged electron density response is subtracted from the original HM (oHM) equation [10]. The mHM model has
the desirable feature of being Galilean invariant under boosts in the poloidal direction [7], and is known to lead to a
stronger generation of zonal flows. This modification is also at the heart of the new model we propose.

A limitation of the HM models is that they do not contain a natural instability, so that turbulent forcing must be
added externally in order to study the turbulence – zonal flow dynamics. In contrast, Hasegawa and Wakatani [15]
have shown that a generalized version of the HM models which includes electron ion friction in the parallel direction
naturally contains a drift instability due to the finite plasma resistivity, and thus drift wave turbulence induced
transport. This is the original Hasegawa-Wakatani (oHW) model, a system of coupled PDEs for the ion vorticity
(which is the Laplacian of the electrostatic potential) and the ion density. However, the oHW model has shortcomings
too. Just like the oHM, it is not Galilean invariant. Furthermore, zonal flows are not generated in the oHW model [21],
unless one makes the adiabaticity parameter wave number dependent [24]. Numata et al. have proposed a modified
Hasegawa-Wakatani (mHW) model obtained by subtracting the zonal components from the resistive coupling term.
The mHW model addresses the issues of the oHW mentioned above: its drift wave turbulence can lead to the strong
generation of zonal flows, and it can be shown that the model has the desired Galilean invariance. Even if so, the
mHW has the weakness that it does not converge to either the oHM model or the mHM model in the limit of zero
resistivity and zero dissipation, as we will demonstrate numerically in this article.

We propose a generalized Hasegawa-Wakatani model with an improved treatment of the electron response along the
magnetic field lines. Our model addresses the aforementioned limitation of the mHW model by solving for the mHM
potential vorticity instead of the vorticity, and reduces to the mHM model in the adiabatic, nondissipative limit, as
desired, while maintaining the Galilean invariance of the mHW model. Our simple modification to the mHW model
leads to major differences in the observed dynamics. Most significantly, the generation of zonal flows is enhanced and
the turbulent fluctuations about the zonal mean state are increased. In our new Hasegawa-Wakatani model, we have
also chosen to generalize the form of dissipative effects introduced in the oHW model to represent a wider variety
of physical processes. As we acknowledged previously, we do not expect quantitative agreement between our fluid
model and measurements from the edge of magnetic confinement fusion plasma experiments, but we hope to improve
our understanding of the interplay between competing physical effects and of the implications of making simplifying
fluid assumptions to model subtle kinetic effect. As an illustration, in this article we make the observation that the
simplified linear Landau damping term of the oHW model [15] which we also included in our model, acting mostly on
the largest scale modes, may not always act as a pure dissipative effect and can effectively increase the variability in the
flow fluctuations. To help the reader throughout the article, we provide a summary of the similarities and differences
between the flux-balanced Hasegawa-Wakatani model and the modified Hasegawa-Wakatani model in Table I.

The structure of this paper is as follows. We first briefly review the classical Hasegawa-Mima and Hasegawa-
Wakatani models in Section II, in order to provide a historical context for our modifications to the Hasegawa-Wakatani
model. In Section III, we present our new Hasegawa-Wakatani model and derive its conserved quantities. In Section
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Flux-balanced Hasegawa-Wakatani
(bHW) Model

Modified Hasegawa-Wakatani
(mHW) Model

Zonal jet structure
(Figure 5, 6)

Stronger and more turbulent zonal jets
are generated

Jets are less persistent, but more steady
when present, with weaker fluctuations

Hydrodynamic limit
α→ 0 (Figure 2, 3,
and 5)

The bHW model maintains zonal jet
structures, with a reduced particle flux ũñ

The mHW model reduces to fully
homogeneous turbulence with strong

particle flux
Stronger variability in the entire variance
spectrum and especially in zonal modes

with wavenumber ky = 0

Weaker variability in the variance
spectrum and no anisotropy in the zonal

direction

Adiabatic limit
α→∞ (Figure 2, 4)

The bHW model converges uniformly to
the mHM model with little small-scale

fluctuation

The mHW model saturates in a final
state different from the mHM final state,
with intermittent small-scale vortices

Third-order moment
statistics (Figure 3)

The mHW and bHW models both have important third-order moment feedbacks to
the statistical equations for the mean and variance.

Stronger third-order moment feedback,
especially along zonal modes

Weaker zonal feedback in the third-order
moments

Table I: Summary of the similarities and differences between the mHW model and the bHW model observed in the
results of direct numerical simulations.

IV and V, we study the main differences between the mHW model and our model using numerical simulations; Section
IV focuses on statistical considerations while Section V illustrates our conclusions and observations from Section IV
with snapshots of results of direct numerical simulations, and explores the role of the different dissipation terms. We
summarize our work in Section sec:conclusion, and present the main linear stability properties of our new balanced
model in Appendix A.

II. THE HASEGAWA-MIMA AND HASEGAWA-WAKATANI MODELS

In this section, we review the central features of the classical Hasegawa-Mima (HM) and Hasegawa-Wakatani (HW)
models, as well as their modified versions [10, 21], known to excite more realistic and stronger drift-wave – zonal flow
dynamics. This short review is meant to provide the motivation for our new model. The presentation is purposefully
brief as clear, longer and more detailed presentations are readily available in the literature [7, 8, 17, 21]

A. Slab geometry on a two-dimensional rectangular domain

For simplicity, all the models we will discuss in this article are considered for a shearless slab geometry [2, 7], in
which the toroidal magnetic surfaces are imagined to be flattened into planes parallel to the y and z axes, as shown in
Figure 1, where (x, y, z) is the Cartesian coordinate system used to describe the geometry, x representing the radial
distance, which can be viewed as a flux surface label, and y and z playing the roles of the poloidal and toroidal
angles respectively. The magnetic field is assumed to be solely in the z direction, B = B0∇z, and B0 is constant and
uniform. The equilibrium density depends on the radial variable, n0(x), and we will treat the density profile within
the framework of the standard “local approximation” [27], in which n′0(x)/n0(x) = constant [21, 31]. The electron
temperature is uniform throughout the plasma, and the ion temperature is assumed to be small compared to the
electron temperature: Ti/Te � 1. In all the models discussed in this article, the physical quantities will be assumed
to be uniform in the z-direction, corresponding to the fact that in strongly magnetized plasmas, the dynamics is highly
anisotropic, with much slower variations of the physical quantities along the magnetic field than across the magnetic
field. The problem is therefore reduced to a two-dimensional problem in which all quantities only depend on x, y,
and the time t, and the computational domain Ω is a rectangle whose sides have lengths Lx and Ly. Finally, the
boundary conditions on the perturbed quantities (n, ϕ), which are the quantities the models solve for, are periodic
in both x and y [31].
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Figure 1: Nested toroidal flux surfaces in a tokamak geometry. The subplot (A) in the bottom left corner gives an
illustration of the slab approximation for the plasma edge, in which the curved flux surfaces are flattened into

planes, and shows the coordinate system used in this article.

B. The Hasegawa-Mima models

The Hasegawa-Mima models, both original and modified, are equations for the ion relative vorticity obtained by
combining the ion continuity equation and the ion momentum equation, together with the assumption of an adiabatic
electron response to close the system of equations [7, 14]. The only difference between the oHM and mHM models lies
in the treatment of that adiabatic electron response. More than a decade after the introduction of the oHM model, it
was indeed recognized that one should subtract the zonal mean of the electrostatic potential in the equation relating
the adiabatic electron density and the electrostatic potential in order to prevent unphysical net radial transport of
electrons [7, 9, 10, 24].

The oHM and mHM equations can be formulated under the same framework by defining a switch parameter j with
j = 0 for the oHM model and j = 1 for the mHM model, which accounts for the different treatment of the adiabatic
electrons. The unified equation is [13, 17]

∂q

∂t
+ J (ϕ, q)− κ∂ϕ̃

∂y
= 0, q = ∇2ϕ− (ϕ̃+ δj0ϕ) . (1)

In Eq. (1), J (ϕ, q) = ∂xϕ∂yq − ∂yϕ∂xq is the Jacobian associated with the advection term vE · ∇q, where vE is the
E×B velocity, t is the time normalized to the ion cyclotron frequency ωci = eB0/m, and x and y are normalized in
terms of the hybrid ion thermal Larmor radius ρs = ω−1

ci (Te/mi)
1/2

=
√
miTe/eB0, δj0 is the Kronecker delta, which

is equal to 1 if j = 0 and 0 otherwise, q = ∇2ϕ− (ϕ̃+ δj0ϕ) is the potential vorticity, with ϕ = eφ/Te the normalized
electrostatic potential, where e is the charge of the electron and φ the electrostatic potential, and κ = −d lnn0/dx.
A bar over a quantity f represents the zonally-averaged mean of that quantity, which only depends on x, and a tilde
represents the fluctuation component of f , obtained by removing the mean from f :

f (x) =
1

Ly

∫
f (x, y) dy, f̃ = f − f,

where Ly is length of the domain in the y direction.

The mHM modification to the oHM model is simple, only appearing in the definition of the potential vorticity q.
Yet it has important physical implications. First, unlike the oHM model, the mHM model is Galilean invariant under
boosts in the poloidal direction [7], which is a desired property for our shearless slab geometry. Second, it can be
shown, using linear theory, that in the absence of mean flow, the drift wave dispersion relation is identical in both
models, and given by ω = kyκ/(1 + k2), where ky is the y component of the wavevector k, and k the magnitude of k.
However, in the presence of a constant and uniform background mean flow in the y direction, vE = v̄ŷ, the dispersion
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relation is modified in different ways in the two models [7]:

oHM : ω =
kyκ

1 + k2
+

k2

1 + k2
ky v̄,

mHM : ω =
kyκ

1 + k2
+ ky v̄.

We see that at small scales, k � 1, the dispersion relations of the oHM and mHM models agree, and are given by
ω = ω∗ + ky v̄, where ω∗ = κky/(1 + k2) is the drift wave frequency. However, at larger scales, i.e. scales comparable
to ρs corresponding to k ∼ 1, the dispersion relations differ. In the mHM model, the mean flow leads to a simple
Doppler shift in the dispersion relation, as expected, but in the oHM model the Doppler shift is reduced by the factor
k2/(1 + k2).

It is clear from the dispersion relations above that in the absence of mean flow, or in the presence of a steady, uniform
mean flow in the poloidal direction, the Hasegawa-Mima models do not have instabilities. This does not remain true
if we assume the presence of a radially varying zonal mean flow. As we will show in an accompanying article more
focused on the analysis of direct numerical simulations [26], a drift instability can grow in these conditions, and break
up the zonal jet structure. Here too, the oHM and mHM models differ, and we find that the zonal jets are more likely
to be broken up by this instability in the oHM model than in the mHM model. This provides a hint for the most
important physical difference between the oHM and mHM models from the point of view of the present article as
well as applications to magnetic confinement fusion, namely the well-known result that the proper treatment of the
electron adiabatic response in the mHM model leads to much stronger zonal jet structures when a random forcing
term is added to the equation in order to mimick an instability leading to turbulent behavior [5, 7, 11]. This crucial
observation provides the motivation for the mHW model and our new bHW model, which will be the focus of the
remainder of this article.

C. The Hasegawa-Wakatani models

The Hasegawa-Mima models capture essential features of the drift wave – zonal flow dynamics when a forcing term
is included in the equation, but does not include any internal drift instability to drive the drift wave – zonal flow
feedback loop in the absence of forcing. The Hasegawa-Wakatani models [21, 31] address this limitation by including
electron-ion friction, which relaxes the slaving relation between the electron density and the electrostatic potential,
leading to a drift wave instability [30]. Because the one-to-one correspondence between density and potential is lost,
the HW models are two-field models for the ion relative vorticity and the ion density fluctuation. As for the HM
models, one can make the distinction between the original HW model (oHW) [31] and the modified HW model (mHW)
[21], which differ in their treatment of the parallel current. The mHW model accounts for the fact that zonal modes,
with wavenumber ky = 0, do not contribute to the parallel current, while the oHW does not. As for the HM models,
we can write the two HW models in a unified form, with the switch parameter j such that j = 0 for the oHW model,
and j = 1 for the mHW model:

∂ζ

∂t
+ J (ϕ, ζ) = α [(ϕ̃− ñ) + δj0 (ϕ− n)] + µ∆ζ (2a)

∂n

∂t
+ J (ϕ, n) + κ

∂ϕ̃

∂y
= α [(ϕ̃− ñ) + δj0 (ϕ− n)] (2b)

where ζ = ∆ϕ is the ion relative vorticity and n = n1/n0 is the relative density fluctuation, with N = n0 + n1 the
total ion density, and where all the quantities have been normalized in the same way as for the HM models. The term
µ∆ζ is an approximate model for collisional ion viscosity perpendicular to the magnetic field, where µ = µ̃/(ρ2

sωci)
with µ̃ = 3Tiνii/(10miω

2
ci) the kinematic ion viscosity coefficient, Ti the ion temperature, νii the ion-ion collision

frequency, and mi the ion mass. We note that strictly speaking, Eqs. (2a)–(2b) are not the mHW model, in the
sense that the mHW model has different dissipation terms than the oHW model. Specifically, in the mHW model,
dissipation for the relative ion vorticity is written as D∆2ζ and dissipation for the ion density is written as D∆2n,
with D the same unspecified constant in both equations. We do not dwell further on this distinction, since these
terms are not given any physical justification in [21], and seem to only be included in order to guarantee numerical
stability.

The parameter α ≡ Tek
2
z/n0e

2ηωci, where η is the resistivity parallel to the field line, is often referred to as the
adiabaticity parameter [4, 21, 24]. In the collisionless limit, α → ∞, the electrons have an adiabatic response along
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the field lines, whereas for small α electron-ion friction decouples the density and electrostatic potential. In order to
make the mathematical connection with the HM models in the asymptotic collisionless limit α → ∞ and µ → 0, we
can derive an equation for the potential vorticity q = ∇2ϕ− n valid for both models, by assuming that the oHW and
mHW models both only include the viscous dissipation µ∆ζ as dissipation mechanism (these dissipative terms will
not matter in the end since we will take the limit µ→ 0). Subtracting Eq. (2b) from Eq. (2a), we find

∂q

∂t
+ J (ϕ, q)− κ∂ϕ̃

∂y
= µ∆ζ, q = ∇2ϕ− n. (3)

We see that in the collisionless limit µ → 0, Eq. (3) has the same form as the equivalent equation (1) for the HM
models, with the HM potential vorticities ∇2ϕ− (ϕ̃+ δj0ϕ) replaced with the HW potential vorticity q = ∇2ϕ−n. In
the collisionless limit, α→∞, Eqs. (2a)–(2b) give n = ϕ in the oHW model, so the oHW potential vorticity becomes
q = ∇2ϕ− ϕ, and the oHW model coincides with the oHM model as desired.

However, in the mHW model, α → ∞ leads to ñ = ϕ̃, leaving n unspecified. The potential vorticity converges
to q → ∇2ϕ − ϕ̃ − n and the mHW equations (2a)–(2b) do in general not coincide with the mHM model in the
zero resistivity limit. Throughout this article we will return to this important conclusion, which is confirmed by our
numerical simulations, as it is a key difference between the mHW model and the new bHW model we introduce in
the next section. Even if the mHW model does not converge to the mHM model in the collisionless limit, it has been
shown that the improved treatment of the parallel current as compared to the oHW model leads to stronger zonal
mean structures than in the oHW model [21], just as the mHM model does compared to the oHM model.

Appendix A contains a detailed discussion of the linear stability of resistive drift waves in the HW models. At this
point, it suffices to say that assuming small perturbations with plane wave representations ϕ = ϕ̂ exp (i (k · x− ωt)),
n = n̂ exp (i (k · x− ωt)), zero background mean flow and µ = 0, we find that the imaginary part of ω is given by

ωi = − b
2
± b

2

(
1 + 16γ2

)1/4
sin

θ

2
, θ = Arg(−1 + i4γ), γ =

ω∗
b
, b (k) = α

(
1 + k−2

)
. (4)

In the above, Arg stands for the principal value argument. Thus, for α 6= 0, κ 6= 0, all the modes are unstable and
the growth rates are smaller for small-scale modes, k � 1.

III. A GENERALIZED FLUX-BALANCED HASEGAWA-WAKATANI MODEL

We are now ready to introduce the new bHW model, which addresses a major shortcoming of the mHW model,
namely the fact that it does not converge to the mHM model in the collisionless limit. In this new model, we also
consider generalized dissipation effects, which allow us to study separately the roles of the different dissipation terms,
which are often included for the mere sake of numerical stability, and whose simple forms are rarely justified physically.

A. The flux-balanced Hasegawa-Wakatani model

Let us start with the dissipation terms. Starting from the mHW model in Eq. (2), we relax the ad hoc assumption
that the viscosity coefficients are identical for the ion relative vorticity and the density fluctuation. Furthermore, we
include the model Landau damping term considered in the original Hasegawa-Wakatani article when the drift wave
frequency ω∗ is comparable to kzvTi , where vTi is the ion thermal velocity [31]. The equations become

∂ζ

∂t
+ J (ϕ, ζ) = α (ϕ̃− ñ) + µ∆ζ + Cϕ, (5a)

∂n

∂t
+ J (ϕ, n) + κ

∂ϕ̃

∂y
= α (ϕ̃− ñ) +D∆n. (5b)

Here, µ∆ζ is the same ion collisional viscosity term as in (2a), and D∆n can be viewed as a dissipation term due to
the collisional diffusion of the electrons perpendicular to the magnetic field [4]. Lastly, Cϕ, with C = ω∗Ti/(ωciTe), is
the simple model for ion Landau damping introduced in [31]. Observe that Hasegawa and Wakatani suggest a cutoff
for this term, which they set to zero when ω∗ is large. For simplicity, we do not impose such a cutoff, noticing that
the absence of cutoff will only be noticeable when kx is small and ky is moderate, since ω∗ is small for large k, as well
as for small ky. Furthermore, even if ω∗ can be larger than kzvTi

when kx is small and ky moderate, the ion viscosity
term, µ∆ζ, is still likely to dominate in these circumstances, since it contains a term proportional to k4

y.
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As we will discuss in more detail in Section V in the light of our numerical results, and in our linear stability analysis
in Appendix A, we find that Landau damping as modeled in Eq. (5) has a stabilizing effect on the largest scales and
at the same time increases the variability of the small-scale fluctuations.

We now turn to the key modification to the mHW model we make in the bHW model. As we did in Section II, if
we subtract Eq. (5b) from Eq. (5a) the terms with the adiabaticity parameter cancel, and we obtain an equation for
the potential vorticity in the mHW model qm ≡ ζ − n = ∆ϕ− n which reads

∂q

∂t
+ J (ϕ, q)− κ∂ϕ̃

∂y
=
[
(µ−D) ∆2 + C

]
ϕ+D∆q. (6)

As discussed in Section II, the issue with the equation above is that in the limit µ,D,C → 0 and α → ∞ it
violates the balanced electron response on the magnetic surfaces in the mHM sense, due to the inclusion of a non-zero
zonal mean state n in the potential vorticity. We propose a simple modification to the mHW model to address this
limitation, namely to replace the original potential vorticity qm with the corrected form qb = ζ − ñ. The resulting
flux-balanced equation for the new potential vorticity qb does not depend on the zonal mean density n explicitly.
The immediate and desired implication of this modification is that in the collisionless limit, α→∞ gives the slaving
relation ñ→ ϕ̃ from Eq. (5b), and the potential vorticity qb converges to the mHM potential vorticity q → ∇2ϕ− ϕ̃
unlike the mHW potential vorticity. As a result, in the adiabatic limit, and in the absence of the dissipative terms,
Eq. (6) when expressed for qb is identical to Eq. (1) of the mHM model.

We now have all the elements to introduce the generalized flux-balanced Hasegawa-Wakatani (bHW) equations for
the balanced potential vorticity q = ∇2ϕ− ñ and the relative particle density n = n+ ñ as

∂q

∂t
+ J (ϕ, q)− κ∂ϕ̃

∂y
=
[
(µ−D) ∆2 + C

]
ϕ +D∆q, q = ∆ϕ− ñ (7a)

∂n

∂t
+ J (ϕ, n) + κ

∂ϕ̃

∂y
= α (ϕ̃− ñ) +D∆n, (7b)

The potential vorticity equation (7a) has a form analogous to the vorticity equation in the mHM model, Eq. (1), but
unlike the mMH model, it contains a resistive drift instability through the coupling with the density fluctuation ñ.
The equation for the relative particle density fluctuation (7b) is the same as in the mHW equation (2b), except for
the dissipation term D∆n.

B. Comparison with the modified Hasegawa-Wakatani model

In this section and the next, we present some elementary properties of our model. We begin with a direct comparison
with the mHW model. A good starting point is to write the equations for the balanced potential vorticity qb = ∆ϕ−ñ
according to the mHW model and to the bHW model side by side

mHW : ∂qb

∂t + J
(
ϕ, qb

)
+

∂(ũñ)
∂x +

(
∂n
∂x − κ

)
∂ϕ̃
∂y = dissip. (8a)

bHW : ∂qb

∂t + J
(
ϕ, qb

)
− κ∂ϕ̃∂y = dissip. (8b)

with ũ = −∂ϕ̃/∂y the velocity fluctuation along the x direction and

∂
(
ũf̃
)

∂x
≡ J

(
ϕ̃, f̃

)
=

1

Ly

∫ (
∂ϕ̃

∂x

∂f̃

∂y
− ∂ϕ̃

∂y

∂f̃

∂x

)
dy,

with f̃ = ñ as in the equation above, or f̃ = q̃ as we will have below. The two differences in the mHW model are: 1)
the zonal density gradient feedback term (∂xn)∂ϕ̃/∂y, which modifies the original background density gradient profile
−κ = d(lnn0)/dx; and 2) the additional eddy flux feedback, ∂x

(
ũñ
)
, due to the transport of the particle density

along the x direction. Both terms are zonal mean density feedbacks which can act on the largest scales (to change the
zonal jet structure), and can also modify the structures in the small-scale fluctuations (to change the particle flux).
It is important to observe that although the zonal mean density n does not appear in Eq. (8b), qb depends on n in
the bHW model through the dependence of ñ on n, which we will write explicitly shortly. For the same reason, the
relative vorticity ζ = ∇2ϕ depends on n in the mHW model.

Let us now turn to the equations for the zonal mean quantities qb (x) and n (x). If, in order to highlight similarities
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between the mHW and bHW models, we modify the ad hoc dissipation terms in the mHW model in such a way
that the dissipation in the density equation is D∆n in both models, we obtain the following equations for the mean
balanced potential vorticity qb = ∂2ϕ/∂x2,

mHW : ∂qb

∂t +
∂(ũq̃b)
∂x +

∂(ũñ)
∂x = D

∂2qb

∂x2
(9a)

bHW : ∂qb

∂t +
∂(ũq̃b)
∂x =

[
(µ−D)

∂4

∂x4
+ C

]
ϕ+D

∂2qb

∂x2
, (9b)

and an equation for the zonal mean density n which is identical in both models:

∂n

∂t
+
∂
(
ũñ
)

∂x
= D

∂2n

∂x2
. (10)

Equations (9) and (10) highlight the feedback of the fluctuations on the zonal mean states, through the nonlinear
coupling terms ∂x

(
ũq̃
)
and ∂x

(
ũñ
)
. In the mHW model, the density fluctuation feedback ∂x

(
ũñ
)
is also present in

the equation for the mean balanced potential vorticity (9a), just like it is in Eq. (8a). Considering the steady-state
version of Eq. (10), we see that a strong particle flux ũñ can lead to a large zonal mean density gradient ∂n/∂x
which can then become a significant contribution in the term (∂xn − κ)∂ϕ̃/∂y in Eq. (8a), and effectively alter the
background density gradient in the mHW model.

A summary of the similarities and differences between the bHW and mHW models is given in the table below,
including the equations for the total energy E and enstrophy W which we will discuss in the next section. Once more,
in order to draw the appropriate parallels between the two models, we modified the form of the ad hoc dissipation
originally proposed in the mHW model [21] in such a way as to make the dissipation term agree in the density equation
of both models.
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modified Hasegawa-Wakatani (mHW) Model

Governing equations for the vorticity ζ = ∇2ϕ and the
density n

∂ζ

∂t
+ J (ϕ, ζ) = α (ϕ̃− ñ) +D∆ζ,

∂n

∂t
+ J (ϕ, n) + κ

∂ϕ̃

∂y
= α (ϕ̃− ñ) +D∆n.

Auxiliary equation for the balanced potential vorticity
qb = ∇2ϕ− ñ, with ũ = −∂ϕ̃∂y

∂qb

∂t
+ J

(
ϕ, qb

)
+
∂
(
ũñ
)

∂x
−
(
κ− ∂n

∂x

)
∂ϕ̃

∂y
= D∆qb.

Zonal mean and fluctuation equations for the vorticity
ζ = ζ + ζ̃

∂ζ

∂t
+
∂
(
ũζ̃
)

∂x
= D

∂2ζ

∂x2
,

∂ζ̃

∂t
+ J

(
ϕ, ζ̃

)
+

[
∂ζ

∂x
ũ− ∂

∂x

(
ũζ̃
)]

= α (ϕ̃− ñ)

+D∆ζ̃.

Conservation laws for the energy E and the enstrophy
W

E =
1

2

∫
Ω

(
|∇ϕ|2 + n2

)
dV, W =

1

2

∫
Ω

(ζ − n)
2
dV

dE

dt
= κ

∫
Ω

ñũdV − α
∫

Ω

(ϕ̃− ñ)
2
dV −DE ,

dW

dt
= κ

∫
Ω

ñũdV −DW .

flux-balanced Hasegawa-Wakatani (bHW) Model

Governing equations for the potential vorticity q = ∇2ϕ−ñ
and the density n

∂q

∂t
+ J (ϕ, q)− κ∂ϕ̃

∂y
=
[
(µ−D) ∆2 + C

]
ϕ+D∆q,

∂n

∂t
+ J (ϕ, n) + κ

∂ϕ̃

∂y
= α (ϕ̃− ñ) +D∆n.

Auxiliary equation for the vorticity ζ = ∇2ϕ, with ũ =
−∂ϕ̃∂y

∂ζ

∂t
+J (ϕ, ζ) +

[
∂n

∂x
ũ−

∂
(
ũñ
)

∂x

]
= α (ϕ̃− ñ) +µ∆ζ +Cϕ.

Zonal mean and fluctuation equations for the vorticity ζ =
ζ + ζ̃

∂ζ

∂t
+
∂
(
ũζ̃
)

∂x
−
∂
(
ũñ
)

∂x
= µ∆ζ + Cϕ

∂ζ̃

∂t
+ J

(
ϕ, ζ̃

)
+

[
∂ζ

∂x
ũ− ∂

∂x

(
ũζ̃
)]

+
∂n

∂x
ũ = α (ϕ̃− ñ)

+ µ∆ζ̃ + Cϕ̃

Conservation laws for the energy E and the enstrophy W ,
with v = ϕx

E =
1

2

∫
Ω

(
|∇ϕ|2 + n2

)
dV, W =

1

2

∫
Ω

(ζ − ñ)
2
dV

dE

dt
= κ

∫
Ω

ñũ
(
1 + κ−1v

)
dV − α

∫
Ω

(ñ− ϕ̃)
2
dV −DE ,

dW

dt
= κ

∫
Ω

ñũdV −DW .

C. Conservation laws for the flux-balanced Hasegawa-Wakatani model

For the analysis of the fundamental properties of a new model and the verification of numerical codes, it is always
helpful to identify dynamical invariants. We define the total energy E and potential enstrophy W [21] for the bHW
model as

E = E + Ẽ =
1

2

∫
Ω

(
|ϕx|

2
+ n2

)
dV +

1

2

∫
Ω

(
|∇ϕ̃|2 + ñ2

)
dV,

W = W + W̃ =
1

2

∫
Ω

q2dV +
1

2

∫
Ω

q̃2dV,

(11)

where the integrals are over the computational domain Ω, which is a periodic box with sides Lx and Ly, and where
we have separated E,W , the energy and enstrophy of the zonal mean state with q = ∂2ϕ/∂x2, from Ẽ, W̃ , the energy
and enstrophy of the fluctuations about the zonal mean state, with q̃ = ∆ϕ̃ − ñ. Note that the enstrophy W in the
bHW model is defined in terms of the balanced potential vorticity q = ∇2ϕ− ñ. It is easy to verify that the nonlinear
terms J(ϕ, q) and J(ϕ, n) in (7) conserve both the energy and the balanced enstrophy, and we obtain the following
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dynamical equations for the total energy and potential enstrophy

dE

dt
= κ

∫
Ω

ũñ
(
1 + κ−1v

)
dV − α

∫
Ω

(ñ− ϕ̃)
2
dV −DE ,

dW

dt
= κ

∫
Ω

ũñdV −DW ,

(12)

where v = ∂ϕ
∂x and DE and DW come from the dissipation terms in the bHW equations:

DE =

∫
Ω

(
Cϕ2 + µ |∆ϕ|2 +D |∇n|2

)
dV,

DW =

∫
Ω

[(D − µ) ∆ϕ̃∆ñ+ Cñϕ̃] dV +

∫
Ω

[
C |∇ϕ|2 + µ |∇q|2 + (D − µ) |∇ñ|2

]
dV.

Comparing the energy and enstrophy equations (12) with the analogous equations for E and W in the mHW model,
as given in the table above, we notice the additional term

∫
Ω
vũñdV in the energy equation for the bHW model. This

contribution to the total energy from the fluctuations originates from the eddy diffusivity term
(
ũñ
)
x
in the equation

for the relative vorticity in the bHW model, which is absent in the mHW model. This additional term, in which we
recognize the advection by the mean velocity v, represents the zonal flow transport of the particle flux ũñ.

As in the mHW model, the resistive coupling of ñ and ϕ̃ through the adiabaticity α(ϕ̃− ñ) gives a negative-definite
term in the energy equation and acts as an energy sink. That term does not enter in the evolution equation for the
enstrophy W . The dissipation for the total energy DE is always positive definite. This is not true for the dissipation
DW of the potential enstrophy, whose terms may not all always be positive. Specifically, the first integral on the right
hand side contains interactions between the fluctuating potential and density ∆ϕ̃∆ñ, ñϕ̃ due to ion Landau damping
and the fact that the damping coefficients µ and D are not equal; the last term in the second integral, (D − µ) |∇ñ|2,
is always negative if D < µ and can thus act as a source of potential enstrophy instead of a sink. In Section VB, we
illustrate these different dissipation effects on the flow field and energy spectra through direct numerical simulations.

To close this section, we propose a more mathematically rigorous proof of the convergence of the bHW model to the
mHM model in the adiabatic limit α → ∞. We have already observed that formally, the limit α → ∞ implies that
ϕ̃ = ñ, meaning that the bHW potential vorticity is equal to the mHM potential vorticity, and that the models are
unified in this limit. Here, we rely on the energy and enstrophy equations (12) to find a more precise description of the
relation between the bHW model and the mHM model in the adiabatic limit. For simplicity, we assume that µ = D
and C = 0, so that the dissipation terms in the energy/enstrophy equations take the simple form DW = D

∫
|∇q|2 ,

and DE = D
∫ (
|∆ϕ|2 + |∇n|2

)
. We then consider states in statistical equilibrium, i.e. such that the time derivatives

for the statistical expectations EE and EW vanish. The enstrophy equation in (12) then gives us the following
estimate for the total particle flux,

Γeq ≡ Eeq

∫
Ω

ũñdV = κ−1DEeq

∫
Ω

|∇q|2 dV > 0,

where Eeqf can be viewed as the time average along the stationary trajectory of the functional f . This relation shows
that there always exists a statistically positive particle flux towards the boundary of the domain, and that the total
particle flux Γeq depends on the ratio D/κ.

Turning to the equilibrium statistical equation for the total energy, we obtain the following estimate from the
balance between the flux and dissipation terms

Eeq

∫
Ω

(ñ− ϕ̃)
2
dV = α−1Eeq

(
κ

∫
Ω

ũñ
(
1 + κ−1v

)
dV −DE

)
≤ α−1Eeq (V DW −DE) .

To derive the inequality above, we used the identity κΓeq = EDW and assumed that the zonal mean flow can be
bounded as V = maxΩ

∣∣1 + κ−1v
∣∣. The statistical expectation on the right hand side of the inequality is positive and

finite in the equilibrium state. Therefore, the expectation Eeq (ñ− ϕ̃)
2 vanishes as α → ∞ since the right-hand side

of the inequality goes to zero. This demonstrates that in the adiabatic limit, the fluctuations ñ and ϕ̃ approach the
Boltzmann relation ñ = ϕ̃ in the mean square sense under expectation. Note however that there may still exist a
non-zero zonal structure in the density n (x) in this limit, in addition to the fluctuation ñ = ϕ̃.
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domain size L 40

spatial resolution N 256

time step ∆t 1× 10−2

mean density gradient κ 0.5

adiabatic particle resistivity α 0.01 – 10

kinetic ion viscosity µ 5× 10−4, 20× 10−4

cross-field diffusion D 5, 20× 10−4

ion Landau damping C 0, 0.005, 0.025

hyperviscosity ν 7× 10−21

order of hyperviscosity s 8

Table II: Model parameters and their chosen values for our numerical simulations.

IV. STATISTICAL ANALYSIS OF THE PROPERTIES OF THE FLUX-BALANCED
HASEGAWA-WAKATANI MODEL

For the remainder of this article, we turn to direct numerical simulations to highlight characteristic features of the
bHW model, and compare them with the mHW model. We solve the equations on a doubly periodic square domain
of size L along each side, so that the smallest wavenumber is 2π/L, which is also the spacing ∆k between any two
wavenumbers. We write the quantities (ϕ, n, ζ) we solve for as the following Fourier series

ϕ =
∑
k

ϕ̂k (t) eik̃·x, n =
∑
k

n̂k (t) eik̃·x, ζ =
∑
k

−k̃2ϕ̂k (t) eik̃·x,

where the spatial variables x = (x, y) ∈ [−L/2, L/2]× [−L/2, L/2] and the corresponding wavenumbers are

k̃ =
2π

L
k, k = (kx, ky) ∈ [−N

2
+ 1,

N

2
]× [−N

2
+ 1,

N

2
].

where N is the number of modes we keep in our simulations. For all the results shown in this article, we used L = 40
and N = 256. We know from our linear stability analysis (see Appendix A) that the larger the domain size L, the
more unstable modes we will have inside the circle of strong instability. We solve the equations using a pseudo-spectral
approach, in which the nonlinear terms are calculated in real space instead of Fourier space. To stabilize the truncated
numerical system, hyperviscosities ν∆sq and ν∆sn are added in the vorticity and density equations respectively, with
ν = 7 × 10−21 and order s = 8. We rely on a fourth-order explicit-implicit Runge-Kutta scheme for time stepping,
where the stiff hyperviscosity operator ν∆8 is the only term treated implicitly. In agreement with the difference in
the formulations of the mHW and bHW models, we numerically solve for the unknowns (ζ, n) when we consider the
mHW model, and solve for the balanced potential vorticity q = ∇2ϕ− ñ and n when we consider the bHW model.

We keep the background density gradient fixed at κ = 0.5 and will vary the value of α in the range [0.01, 10]. In this
section, the dissipation coefficients µ and D are set to µ = 5× 10−4, D = 5× 10−4, and the ion Landau damping term
is turned off by setting C = 0. In contrast, in section V we will consider different values for the parameters µ,D, and
C to analyze the role of dissipation effects more closely. The parameters we used for all our numerical simulations in
this article are summarized in Table II.

A. Statistical comparison between the balanced and modified Hasegawa-Wakatani models

1. Transition from the turbulence dominated regime to the zonal flow dominated regime

Previous work has shown that the randomness of the turbulent flow depends sensitively on the parameters κ and α
[21]. This can be readily understood from the linear stability analysis we present in Appendix A, since κ/α determines
the size of the region of instability in k-space. Hence, if κ is held fixed, a smaller value of α, corresponding to higher
plasma resistivity, leads to a larger region of instability, and a more energetic and turbulent vorticity field. When the



12

value of α is increased, the vorticity field is regularized into dominant anisotropic zonal jets. This is the phenomenon
we now study, comparing the bHW and mHW models.

Because of the turbulent nature of the flows, it is more appropriate to adopt a statistical viewpoint, and instead
of looking at physical quantities at a given instant in time, we take time-averages of the solution once the stationary
state is reached. We will focus on the total kinetic energy and the relative enstrophy for both models, given by∫

Ω

|∇ϕ|2 dV =
∑
k

k̃2 |ϕ̂k|2 ,
∫

Ω

ζ2dV =
∑
k

k̃4 |ϕ̂k|2 .

The relative enstrophy gives more weight to the small scale modes, while the kinetic energy puts more emphasis on
the large scale structures. We decompose ϕ and ζ into their time averages 〈ϕ〉eq, 〈ζ〉eq and their time fluctuating
parts ϕ′, ζ ′ according to ϕ = 〈ϕ〉eq + ϕ′, ζ = 〈ζ〉eq + ζ ′, and compute the energy and enstrophy in the time-averaged
mean ∫

Ω

|〈∇ϕ〉eq|2 dV ,

∫
Ω

〈ζ〉2eqdV

and the time-averaged kinetic energy and enstrophy of the variances∫
Ω

〈|∇ϕ′|2〉eqdV =

∫
Ω

〈|∇ϕ− 〈∇ϕ〉eq|2〉dV ,

∫
Ω

〈ζ ′2〉eqdV =

∫
Ω

〈(ζ − 〈ζ〉eq)2〉eqdV

The results are shown in Figure 2 for simulations of the bHW equations and the mHW equations, with α varying
in the interval

[
10−2, 10

]
. Since one of the main reasons to study the reduced HM and HW fluids models is to better

understand the drift wave – zonal flow interplay, we separately plot the kinetic energy and enstrophy contained in
zonal modes, i.e. with ky = 0, and the total kinetic energy and enstrophy obtained by summing over all the resolved
modes. We first focus on the plots for the variances, in the left-hand column, to observe that in both models the
kinetic energy and enstrophy of the variances decrease as α increases. This is a clear signature of the transition from
a strongly turbulent regime to a zonal flow dominated regime, as we expected. For α small, the flow is strongly
fluctuating with large and small scale modes both containing considerable amount of energy. As α increases, stronger
zonal jets develop and the variances in kinetic energy and enstrophy decrease. In the regime α� 1, the system tends
to the HM equations which do not have an internal instability, and the variances reach minimum values.

Still looking at this first column, we highlight differences between the bHW and mHW models. The bHW model
always contains a large variance for the kinetic energy in comparison to the mHW model, which has weaker variability.
Furthermore, much of the variance in the bHW model is in zonal modes, unlike the mHW model. Our improved
treatment of the electron dynamics parallel to the field lines enhances the zonal flow variability as the system transitions
to the turbulence dominated regime when α decreases. The plot for the variance of the relative enstrophy, which
is a physical quantity which gives more weight to smaller scale structures, helps to explain the different dynamics
in the two models. Indeed, we notice that the mHW model has a much larger variance in enstrophy as α < 0.1
than the bHW model. This is due to the generation of many small and strong vortices, as Figure 5 in Section V
illustrates explicitly with a contour plot of the vorticity field. Even if so, the zonal mode variance in the relative
enstrophy remains larger in the bHW model. This is a central point of this article: even for very small values of α
the variability of the turbulent fluctuations is in zonal modes in the bHW model, while the mHW equations describe
fully homogeneous turbulence in the small α limit.

We now consider the kinetic energy and enstrophy in the mean, in the second column of Figure 2. The kinetic
energy and enstrophy in zonal modes almost overlap with the total kinetic energy and enstrophy, proving that the
mean state is always dominantly in the zonal direction. We can distinguish three different regimes depending on
the value of α. Starting at around α ∼ 0.1, we notice a significant jump in the value of the kinetic energy and the
enstrophy in the mean as compared to situations with α < 0.1, indicating the presence of stronger zonal jets. A
close comparison between the plots for the kinetic energy and enstrophy shows a large kinetic energy and a moderate
enstrophy for α ∈ (0.1, 0.5), which is a signature of the presence of one or very few zonal jets. For α > 0.5, the
kinetic energy is a bit lower and fairly constant as a function of α, whereas the enstrophy increases. This indicates
the presence of multiple zonal jets. These conclusions are confirmed by the snapshots of the vorticity field for each of
the α regimes discussed here, which are shown in Figure 5 in the next Section.
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Figure 2: Comparison of the statistical energy of the variance
∫

Ω

〈
|f − 〈f〉eq |2

〉
dV and of the mean

∫
Ω
| 〈f〉eq |2dV

for both the bHW and mHW models and varying values of α, with f = ∇ϕ (corresponding to the kinetic energy)
and f = ζ (corresponding to the enstrophy). The dashed lines show the energy contained in the zonal modes ky = 0.

The other parameters are kept fixed, with κ = 0.5, µ = D = 5× 10−4.

2. Statistical energy equations and higher-order moment feedbacks

Besides the kinetic energy and enstrophy in the statistical equilibrium state discussed in the previous section, it is
also important to investigate the dynamical evolution of the statistical quantities, in particular to better understand
the nonlinear energy exchange processes in the model and the model sensitivity to various perturbations. While in
many situations we are mostly interested in the statistics of the two lowest order moments, that is, the statistical
mean and variance, the higher-order feedbacks to these low order moments can often play a key role in the dynamics
and should not be ignored. The crucial contributions from the third-order moments to the equations for the mean
and variance have for example been illustrated in [19, 20, 25] for general systems with quadratic nonlinearity. In this
section, we highlight these mechanisms for the bHW and mHW models.

We consider here the statistical average EEk of the kinetic energy in each spectral mode ϕ̂k of the electrostatic
potential, given by

EEk =
〈
k̃2|ϕ̂k|2

〉
,

where 〈·〉 represents an ensemble average, which could in principle be estimated with a Monte-Carlo approach, using
a large number of numerical simulations. To derive the dynamical equations for EEk, we first project the equations
for the relative vorticity in the mHW and bHW models onto each individual spectral mode, to obtain equations for
each ϕ̂k. We then multiply by ϕ̂∗k on both sides of the equations and take the statistical ensemble average (see [20]
for details) to obtain the desired equations for EEk. For the bHW model, the equations are

d

dt

1

2

〈
k̃2|ϕ̂k|2

〉
+Qb

F,k = −α
(〈
|ϕ̂k|2

〉
− 〈ϕ̂∗kn̂k〉

)
−Dk̃4

〈
|ϕ̂k|2

〉
+ c.c., ky 6= 0,

d

dt

1

2

〈
k̃2|ϕ̂k|2

〉
+Qb

F,k = −Dk̃4
〈
|ϕ̂k|2

〉
+ c.c., ky = 0.

(13)

Here, c.c. stands for the complex conjugate completion. Importantly, the nonlinear interaction term in the vorticity
equation produces the higher-order feedback Qb

F,k = −〈ϕ̂∗kJ (ϕ,∆ϕ+ n)k〉+ c.c. for the non-zonal modes ky 6= 0; and



14

Qb
F,k = −〈ϕ̂∗kJ (ϕ,∆ϕ− ñ)k〉+ c.c. for the zonal modes ky = 0. For the mHW model, the equations are

d

dt

1

2

〈
k̃2 |ϕ̂k|2

〉
+Qm

F,k = −α
(〈
|ϕ̂k|2

〉
− 〈ϕ̂∗kn̂k〉

)
−Dk̃4

〈
|ϕ̂k|2

〉
+ c.c., ky 6= 0,

d

dt

1

2

〈
k̃2 |ϕ̂k|2

〉
+Qm

F,k = −Dk̃4
〈
|ϕ̂k|2

〉
+ c.c., ky = 0,

(14)

with the higher-order feedback Qm
F,k = −〈ϕ̂∗kJ (ϕ,∆ϕ)k〉+ c.c. The removal of the zonal mean density n in the term

involving the adiabaticity parameter α in both models, as well as in the definition of the potential vorticity in the
bHW model, are responsible for the different form the equations take for the zonal modes. We finally note the presence
of the cross-covariance term 〈ϕ̂kn̂∗k〉 in both models, representing the interactions between the potential and density.

As emphasized in [19, 20], the third-order moments on the left hand side of Eqs. (13) and (14) play the critical role
of mediating the growing unstable modes and driving the system to the final equilibrium. As we know from the linear
stability analysis, the linear operators on the right hand sides of the statistical equations contain positive eigenvalues,
corresponding to the linearly unstable directions. If the third order moments on the left hand sides are not included,
the internal instability will lead to fast growth in kinetic energy among the unstable modes and fast decay in the other
over-damped modes. When the third-order moments are kept, they transfer the growing energy from the unstable
subspace to the stable subspace, where the energy eventually gets dissipated.

We thus see the importance of understanding the contributions from the third-order moments. Unfortunately, it is
usually expensive to compute these moments from direct numerical simulations since it requires the inclusion of all
the triad modes across the entire spectrum [20]. On the other hand, the third-order moment feedbacks in statistical
equilibrium are much easier to compute. Indeed, in statistical equilibrium the time derivatives on the left hand sides
of Eqs. (13) and (14) vanish, so the third-order moments can be expressed in terms of the first and second order
moments appearing on the right-hand sides. Specifically, for the bHW model, we can write

Qb
F,k,eq = α

(〈
|ϕ̂k|2

〉
eq
− 〈ϕ̂∗kn̂k〉eq

)
+Dk̃4

〈
|ϕ̂k|2

〉
eq

+ c.c., ky 6= 0,

= Dk̃4
〈
|ϕ̂k|2

〉
eq

+ c.c., ky = 0.

The equilibrium moments,
〈
|ϕ̂k|2

〉
eq
, 〈ϕ̂∗kn̂k〉eq can be readily calculated from the equilibrium mean and variance by

averaging along the stationary time trajectory. The equilibrium third-order moments for the mHW model can be
computed in an analogous way.

To numerically investigate the differences and similarities between the mHW and bHW models from the point of
view of the statistical moments, we choose a regime with small α, α = 0.01, which corresponds to a physical situation
with strong mean flow – drift wave interactions. Figure 3 presents the equilibrium statistics of the bHW and mHW
models for both the second-order variances and the third-order moment feedbacks in the spectral domain. We first
look at the first column, which shows contours of the logarithm of the second-order variance of each energy mode
k2 |ϕ̂k|2. The stronger variability for the zonal modes (ky = 0) in the bHW model is clearly visible. This is consistent
with the observation we made in the previous section that even in the small α regime, the bHW model generates
energetic zonal flows which are responsible for most of the flow variability. In contrast, we note that the contour plot
for the mHW model is radially symmetric in the Fourier domain, indicating the absence of anisotropy in the flow
statistics.

We next turn to the third-order moment feedbacks shown in the second and third columns of Figure 3. In the middle
column, the logarithm of the magnitude of the third-order moments is plotted in order to amplify the small values,
and we use dashed lines to represent positive values and solid lines for negative values. In the last column, we plot
the contours of the third-order moments themselves (i.e. not their logarithm). The red colors correspond to positive
values, and the blue colors to negative values. We first observe that both the bHW and the mHW models show strong
non-zero contributions from the third-order moments, particularly at the largest scales in the system. Comparing the
results of the linear stability analysis we present in Figure 8 of Appendix A with these figures, we see that the linearly
unstable modes are subject to negative third-order moment feedbacks which act as an effective damping mechanism
against the growth in energy. At the same time, the linearly stable modes are subject to positive third-order moment
feedbacks. This is characteristic of a nonlinear transfer of energy from the unstable modes, whose energy grows in
time, to the stable modes, which then dissipate the energy. Note that the third-order moment feedback conserves
energy as a whole, so it cannot act as a source or sink of energy, and instead redistributes energy at different scales.
Finally, one observes much stronger third-order moment feedbacks for the zonal modes in the bHW model than in the
mHW model, which we would expect given our previous results: once again, even in the regime α� 1, zonal modes
play a central role in the dynamics in the bHW model, while they are essentially absent in the mHW model.
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Figure 3: Equilibrium second-order moments and third-order moment feedbacks in the Fourier domain for the bHW
and mHW models with α = 0.01, κ = 0.5. The first column shows the logarithm of the variance k̃2

〈
|ϕ̂k|2

〉
of each

spectral mode. The second column plots the logarithm of the third-order moment feedbacks. Negative values, which
correspond to effective damping, are plotted with solid lines and positive values, which correspond to an injection of
energy, are plotted with dashed lines. In the third column, the contours of the third-order moment feedbacks are
plotted without taking the logarithm, thus emphasizing the modes with the strongest third-order moments. Blue

colors are for the largest negative values, red colors for the largest positive values.

B. Numerical convergence to the modified Hasegawa-Mima model as α → ∞

Both the bHW and the mHW models converge to an HM-like model without instability in the limit of large α, as
we confirmed numerically in section IVA. We showed in section III C that the bHW model converges to the mHM
equation (1) (with an additional dissipation term) in the limit α→∞, with the balanced potential vorticity converging
to its limiting form q = ∇2ϕ − ñ → ∇2ϕ − ϕ̃. We also explained in section IIIA that the mHW equations do not
guarantee exact convergence to the mHM model due to the incomplete treatment of the zonal mean density n. In this
section, we verify our reasoning with numerical simulations. Specifically, we consider a case in which α is relatively
large, α = 5, which is a regime where the linear growth rates are small, so the energy in the small-scale modes is
mostly dissipated, and a dominant zonal mode with multiple jets sets in, as is clearly visible in the first column of
Figure 4, which shows contour plots of the relative ion vorticity ζ at the final time of the simulation, in the top left
corner for the bHW model, and in the bottom left corner for the mHW model. To obtain a more quantitative idea
of the selective energy decay in each spectral mode, we plot the kinetic energy k̃2|ϕ̂k|2 of each mode at different
simulation times in the second column of Figure 4, with the bHW results at the top and the mHW results at the
bottom as before. The energy decay in the small scale modes can be observed for both models at early times, and for
both models the decay saturates at around t = 2500. At the final time, only a dominant zonal mode with three zonal
jets remains in the flow field, as can be seen in the contour plots in the first column of Figure 4. However, the decay
rate in the mHW is much slower, with considerable amount of kinetic energy maintained in the small scales, while the
small scale kinetic energy in the bHW model decays quickly to negligible amounts after a short transient state. This
fundamental difference between the mHW and bHW models is clearly apparent in the contour plots of the vorticity
field in the first column. In the bHW simulation in the upper left corner, the vorticity field is largely dominated by
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Figure 4: (Left column) Contour plot of the relative ion vorticity at the final time of the simulation for the bHW
model (top) and the mHW model (bottom). (Middle column) Kinetic energy spectra at different simulation times
for the bHW model (top) and the mHW model (bottom). (Third column) Profile of the zonally averaged velocity in

the y-direction for the mHM model in solid blue and the bHW model in dashed black (top) and kinetic energy
spectra at different simulation times for the mHM model (bottom). The final state of the bHW simulation was

chosen as the initial state for the mHM simulation, with random noise added at small scales. For all these results,
we used α = 0.5 and the values used throughout Section IV for the other parameters.

the large scale zonal jet structure, with very limited smaller scale features. On the other hand, the mHW simulation
shows many persistent small scale vortices in the vorticity field.

To further verify the convergence to the mHM model, we numerically solve the mHM equations with dissipation and
random noise perturbations added at small scales, starting from an initial state given by the final state of the bHW
simulation with parameters κ = 0.5, α = 5. The results are shown in the right column of Figure 4. Since the mHM
model does not contain any instability, the fluctuations get dissipated while the zonal jet structure is maintained in
time. The top right figure shows the final and converged zonally averaged velocity v = ∂xϕ for both the bHW and
mHM model simulations. The zonal mean flow clearly converges to the same saturated limit. We have verified that
this is true whatever the initial state is chosen for the mHM simulation. Although not shown in the figure, the contour
plot for the mHM relative ion vorticity has strong similarities with the bHW figure, with the same dominant zonal
jets, and very few small scale structures, unlike the mHW results.

This concludes our numerical proof of the convergence of the bHW model to the mHM model in the adiabatic limit,
and of the incomplete convergence of the mHW model in that same limit.

V. DIRECT NUMERICAL SIMULATIONS OF THE BHW AND MHW MODELS

In this section, we illustrate the key results discussed in Section IV with plots of the relative ion vorticity and mean
flow obtained with direct numerical simulations for different values of the adiabaticity parameter α. We also study
the separate roles of the dissipation terms µ∆ζ, D∆n and Cϕ by considering different values for the parameters µ,
D and C than what we had in the previous section.
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Figure 5: Snapshots of the relative ion vorticity ζ = ∆ϕ at the final time of the simulation for the bHW model (top
row) and the mHW model (bottom row). For each figure κ = 0.5, and each column corresponds to a different value
of α: α = 0.01, 0.1, 0.5 from left to right. Notice the clear zonally elongated structures obtained in the bHW model

for α = 0.01 in comparison with the homogeneous field in the mHW model.

A. Weak and strong zonal regimes

In section IV, we highlighted the critical role of the adiabaticity parameter α in determining the turbulent flow
regime in the HW models, with a transition to strong zonal jets as α increases. This transition is clearly visible in
Figure 5, which shows contours of the relative ion vorticity ζ for the bHW model in the first row, and for the mHW
model in the second row. These figures are obtained for the parameters µ = D = 5×10−4 and C = 0, and for the final
time of the simulation, which is much later than the time when statistical equilibrium has been reached. The three
contour plots in each row correspond to three different values of the adiabaticity parameter α. From left to right, the
values are α = 0.01, α = 0.1, and α = 0.5. We see that for α = 0.01, many small-scale vortices are visible on top of
the background mean vorticity. As the parameter value increases to α = 0.1, a stronger single jet pattern begins to
form, while still coexisting with many smaller scale fluctuations. Finally for α = 0.5 the vorticity field becomes fully
dominated by several strong zonal jets. These figures offer an explicit illustration of the statistical results given in
Figure 2.

Figure 5 also confirms another key observation regarding differences between the bHW and mHW models. The
bHW model maintains jet structures for a wide range of values of the adiabaticity parameter α, throughout the
transition from a regime with dominant zonal jets (large α) to the strong drift wave turbulence regime (small α). For
small values of α, the jets are more turbulent and shift in time, but the anisotropic zonal dynamics persists. This is
in stark contrast to the mHW model, which loses the jets as α → 0, as a regime with fully homogeneous turbulence
and strong vortices sets in. Because of the persistence of the zonal jets, the particle flux is always smaller in the bHW
model than in the mHW model for small values of α. Physically, the unbalanced density flux in the mHW model is
responsible for the highly turbulent vorticity and strong particle transport in the limit of small α.

In the large α regime, we highlight another critical difference between the mHW and the bHW models, namely the
fact that in the bHW model, both the zonal mean flow and the fluctuations have a much larger variability than in the
mHW model. To demonstrate this, in Figure 6 we plot the time series of the zonal mean velocity field v = ∂ϕ/∂x for
α = 0.5, which corresponds to a strong zonal jet regime. The jets generated in the bHW model have large amplitude
variations in time, whereas the zonal velocity in the mHW model is mostly steady in time with an almost constant
jet amplitude.
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Figure 6: Time-series of the zonally averaged mean flow v = ϕx for the bHW model (top) and the mHW model
(bottom) in the zonal jet dominated regime α = 0.5, κ = 0.5.

B. Role of dissipation terms

Thus far, we have always turned off ion Landau damping by setting C = 0, and set the dissipation coefficients D
and µ to be equal, with µ = D = 5 × 10−4. In this last section, we take a closer look at the right-hand side of Eq.
(7a) by dissociating µ and D and considering finite values for C. Specifically, we study the consequences of increasing
the values of µ to µ = 2 × 10−3 while keeping the other parameters to their original values, and of increasing D to
D = 2× 10−3 while keeping the other parameters to their original values. In addition, we test two small values for C,
C = 0.005 and C = 0.025, which correspond to 0.01κ and 0.05κ respectively. Since Landau damping mostly acts on
the largest scales, we focus in this section on the regime corresponding to α = 0.5, κ = 0.5, where there exist strong
but fluctuating large-scale zonal mean modes.

Figure 7 provides a summary of our main results. The top left panel shows time series of the total energy in the
system for the different values of µ, D and C considered in this section. The blue and red curves correspond to cases
in which there is no Landau damping, and we see that increasing D by a factor of 4, to D = 2× 10−3, only decreases
the total energy by a small amount. As expected from our linear stability analysis in Appendix A, increasing µ by
a factor of 4, to µ = 2 × 10−3 has a slightly stronger effect, decreasing the total energy to a noticeably lower value,
but it does not significantly change the nature of the dynamics. In contrast, ion Landau damping greatly changes the
energy time series, even for small values of C. In this regime with strong zonal jets, Landau damping increases the
total energy and leads to much larger fluctuations. This is because our naive model for Landau damping damps the
large scales, but increases the energy at the small scales, as we now explain with a spectral viewpoint.

To better understand the results found for the time series of the total energy, we show the energy spectra of the
variance 〈E′2tot〉eq and the statistical mean 〈Etot〉eq in the top center and top right panels of Figure 7 respectively.
These figures confirm that increasing D has a small impact on small scale modes, and does not significantly modify the
largest zonal mean modes of the flow either. The impact of a larger value of µ is more noticeable, but approximately
uniform across all scales. On the other hand, setting the Landau damping coefficient C to a finite value has a strong
effect in changing the zonal flow profile v. Landau damping effectively removes the energy of the zonal modes at the
largest scales, and drives the original zonal flow with 3 jets to a configuration with 4 or 5 dominant jets in the flow as
its strength increases. At the same time, it increases the variance in the small-scale modes. We illustrate this effect by
showing the time-series of the zonal mean flow v = ∂xϕ for C = 0.005 in the second row of Figure 7. Comparing this
figure with the analogous Figure 6 for the same regime in the absence of Landau damping, we see that the jets are
much more turbulent when Landau damping is included, meandering in time with stronger small-scale fluctuations.
Moreover, instead of a persistent 3-jet structure in the C = 0 case, the flow shows a competition between 4 and 5
jets. The 5 zonal jets get frequently merged into a 4-jet flow, then the 5 jets reemerge after a short period of time.

VI. SUMMARY AND DISCUSSION

In this article, we presented a new two-field fluid model for the study of the drift wave – zonal flow dynamics
in magnetically confined plasmas. Our model is inspired by the rich tradition of Hasegawa-Wakatani (HW) models
[21, 24, 31], which are the simplest known two-field models for magnetized plasmas which contain a drift-wave
instability and can generate zonal flows through nonlinear drift wave interactions. The main novelty of our balanced
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Figure 7: (Top row) Time-series of the total energy and time-averaged energy spectra for the bHW model, for
different values of the coefficients µ, D, and C. (Bottom row) Time-series of the zonally averaged mean flow v = ϕx
for the bHW model when ion Landau damping is included, with µ = D = 5× 10−4 and C = 0.005. Notice how the
jets are more turbulent when C 6= 0, with stronger small-scale fluctuations. For all these results, α and κ are fixed,

with α = 0.5, κ = 0.5.

HW (bHW) model as compared to previous HW models is its improved treatment of the electron dynamics parallel to
the magnetic field lines, which guarantees a balanced electron density response [7, 10] in the limit in which electrons
are adiabatic. To achieve this, the bHW model does not solve for the ion vorticity, but instead for a well constructed
potential vorticity defined by q = ∇2ϕ − ñ, which we call the balanced potential vorticity and does crucially not
include the zonal mean density n.

Our new bHW model inherits the desirable features of former HW models as well as those of the Hasegawa-Mima
model with a modified adiabatic electron response, which we have called mHM [7]. Like other HW models, the bHW
model contains a drift wave instability, and like the mHW model, the bHW model has the desired Galilean invariance
along a magnetic flux surface; on the other hand, like the mHM model, the improved electron response in the bHW
model leads to enhanced zonal flows and strong fluctuations. Mathematically, the bHW model has the satisfying
property of converging to the mHM model in the proper adiabatic limit, which is not the case of previous HW models.

We relied on direct numerical simulations to investigate the main features of the bHW model, with numerical
simulations of the recent modified HW model (mHW) [21] as a point of comparison. We paid close attention to the
transition from a strongly drift wave turbulent regime to a much more organized regime with strong zonal structures,
which is associated with a decrease of the plasma resistivity, allowing electrons to become more and more adiabatic.
We observed that the bHW model has stronger fluctuations than the mHW model in the turbulent regime and
throughout the transition to the regime with strong zonal jets. Remarkably, however, the bHW model maintains
mainly zonal dynamics even at large plasma resistivity, while in contrast the drift wave turbulent regime in the mHW
model is dominated by small scale dynamics. In other words, in the bHW model, the zonal flows are more robust,
in the sense that they are observed for any value of the plasma resistivity, but they have a larger variability than in
the mHW model in the regime in which they are seen in both models. We also used direct numerical simulations
to confirm the convergence to the mHM model in the zero resistivity limit, and to study the role of the dissipation
terms introduced in our model. We noticed that the simple model for Landau damping introduced by Wakatani and
Hasegawa [31] leads to more turbulent dynamics, with zonal structures which are fluctuating more, and more energy
and variability at small scales. The significant effect of the Landau damping term on the bHW dynamics provides
yet again a clear justification for the development and implementation of more accurate fluid approximations for this
effect, as was first done in the pioneering work of Hammett, Perkins, and Dorland [10, 12].

This article is meant to be the first in a series of articles in which we study the interplay between drift waves
and zonal flows using the new bHW model presented here. In a second article [26], more focused on the analysis of
detailed numerical simulations, we investigate the effect of the shape and size of the computational domain on the
properties of the drift wave turbulence and zonal structures. In a subsequent article, we will treat the bHW model
and the drift wave - zonal flow dynamics it describes as a test bed to explore the applicability of statistical model
reduction strategies [20, 25] for the efficient description of turbulent magnetized plasmas. The latter is the topic of
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ongoing research, with progressed to be reported in the near future.
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Appendix A: Linear drift wave instability in the flux-balanced Hasegawa-Wakatani model

In this appendix, we present a detailed linear stability analysis for the bHW model given by Eq. (7). For this
analysis, we assume a zero background mean flow, so the linearized equations for the perturbations (ϕ1, q1, n1) to the
background state are given by

∂tq1 − κ∂yϕ̃1 =
[
(µ−D) ∆2 + C

]
ϕ1 +D∆q1,

∂tn1 + κ∂yϕ̃1 = α (ϕ̃1 − ñ1) +D∆n1.

The dispersion relation for the bHW model is found by considering a single mode solution for the perturbations, i.e.

ϕ1 = ϕ̂1 exp (i (k · x− ωt)) , n1 = n̂1 exp (i (k · x− ωt)) , ζ1 = −k2ϕ̂1 exp (i (k · x− ωt)) ,

where we assume ky 6= 0. Substituting the above single mode solution in the linearized equations, we find the following
equations for ϕ̂1 and n̂1:

iωk2ϕ̂1 = α (ϕ̂1 − n̂1) + µk4ϕ̂1 + Cϕ̂1,

−iωn̂1 = α (ϕ̂1 − n̂1)− iκkyϕ̂1 −Dk2n̂1.
(A.1)

We first derive and analyze the dispersion relation for the situation without dissipation D = µ = C = 0. We will then
discuss the modifications due to the various dissipation effects.

1. Linear stability analysis without dissipation

From the coupled equations (A.1) in the absence of dissipation effects, µ = D = C = 0, it is straightforward to
derive the dispersion relation

ω2 + ib (ω − ω∗) = 0, (A.2)

where the drift wave frequency ω∗ and the wavenumber dependent coefficient b are given by

ω∗ (k) = κky/
(
1 + k2

)
, b (k) = α

(
1 + k−2

)
.

We immediately see that if α = 0, b = 0 and ω = 0, so all the modes are marginally stable. Furthermore, when α 6= 0
but κ = 0, ω = 0 and ω = −ib are solutions, so there are only damped and marginally stable modes. For the general
case with α 6= 0, κ 6= 0, we write the solution to equation (A.2) as ω = ωr + iωi, with

ωr = ± b
2

(
1 + 16γ2

)1/4
cos

θ

2
, ωi = − b

2
± b

2

(
1 + 16γ2

)1/4
sin

θ

2
, θ = Arg(−1 + i4γ), γ =

ω∗
b
. (A.3)

http://arxiv.org/abs/de-sc/0012398
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Here, Arg stands for the principal value argument. Thus, for the case α 6= 0, κ 6= 0, linear stability is determined by
comparing the term

(
1 + 16γ2

)
sin4 θ

2 with 1. θ = Arg(−1 + i4γ) implies that cos2 θ =
(
1 + 16γ2

)−1. Hence,

(
1 + 16γ2

)
sin4 θ

2
=

1

4

(
1 +

(
1 + 16γ2

)−1/2
)2 (

1 + 16γ2
)

=
1

4

(√
1 + 16γ2 + 1

)2

> 1 for any γ 6= 0.

(A.4)

We conclude that for all modes with ky 6= 0, there is a solution with ωi > 0. In other words, in the absence of
dissipation, all modes with ky 6= 0 are unstable.

Keeping in mind the complete equations including dissipation, it is valuable to construct a boundary curve outside
of which the growth rate can be regarded as small compared to dissipation mechanisms. We know that the system is
marginally stable if γ = ω∗/b = 0. The growth rate of linear instability is small if ω∗ (k)� b (k), which we write as

ω∗
b

= ε, ε� 1.

The above relation can be rewritten as (
k + k−1

)2
=
ky
ε

κ

α
.

In the asymptotic regime ε � 1, the above equation has one solution for k � 1 and one solution for k � 1. We
discard the former since for our finite size periodic box, the smallest wavenumber has magnitude 2π/L. We thus have,
for ε� 1,

k +
1

k
=

(
ky
ε

)1/2 (κ
α

)1/2

.

The curve separating slowly growing modes from faster growing modes for our drift wave instability is therefore given
by the following Cartesian equation in wavenumber space:

k2
x +

(
ky −

1

2ε

κ

α

)2

=
1

4ε2

(κ
α

)2

. (A.5)

It describes a circle in the spectral domain, centered in (0, κ/2εα) and with radius κ/2εα. Inside the circle the modes
have large linear growth rates, and outside the circle the modes are quasi-stable. We note that our analysis shows
that the range of wavenumbers which correspond to very unstable modes only depends on the ratio κ/α.

Now, returning to the general situation with arbitrary values for ω∗/b, we can combine our expression for the growth
rate in Eq. (A.3) and the relation (A.4) to write

ωi =
b

2

[
−1 +

1√
2

(√
1 + 16γ2 + 1

)1/2
]
.

The magnitude of the term in the square parentheses is determined, for a given wave vector, by the magnitude of the
ratio r = κ/α. We can derive insightful explicit formulae for the wavenumber dependence of ωi for the two asymptotic
regimes r � 1 and r � 1.

For r � 1, γ � 1 and we find

ωi ∼ α
(k2 + 1)

k2
γ2 =

κ2

α

k2
yk

2

(1 + k2)3
;

For fixed values of κ and α, we can look for the mode with the largest growth rate. Given the symmetry of the
linearized equations with respect to the wavenumber kx, we look for a mode with kx = 0 and ky finite. In that case,

ωi ∼
κ2

α

k4
y

(1 + k2
y)3

;

The maximum growth rate ωmax
i = 4

27 (κ2/α) is reached for kmax
y =

√
2, corresponding to γmax = 2

√
2

9 (κ/α) and
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Figure 8: Linear growth rates from the solution of (A.3) with different ratios κ/α. The black dashed line corresponds
to the circle of meta-stability given by (A.5), with ε = 2× 10−2. The fast growing modes are located inside the circle.
The figure on the right shows the maximum linear growth ωmax

i rate as a function of the model parameters α and κ.

bmax = 3α/2.
For r � 1, γ � 1 and we find

ωi ∼ α
(k2 + 1)

2k2

√
2γ =

√
ακ

2ky
.

In this regime, the largest growth rate is obtained for the smallest finite ky.
Our linear stability analysis is confirmed by our numerical results. The first two plots on the left in Figure 8 are

contour plots of the growth rate ωi in Fourier space, calculated from Eq. (A.3). For these plots, we chose ε = 2×10−2

and did not plot contours corresponding to slow growing modes, outside of the circle of meta-stability given by Eq.
(A.5) and marked by the dashed black lines. The size of the region with strong growing modes increases with the
ratio κ/α, as predicted. The axial symmetry with respect to the line kx = 0 is clearly visible, and we verify that the
maximum growth rate is reached for kx = 0 and ky ∼

√
2 for κ/α� 1. The rightmost plot in Figure 8 shows contours

of the maximum growth rate in κ-α space. The dependence on κ and α in the regimes r � 1 and r � 1 agree with
our analytic expressions derived for these asymptotic regimes.

2. Modifications due to dissipative effects

We now consider the effects of the dissipation terms, namely µ∆ζ+Cϕ for the vorticity equation, and D∆n for the
density equation. The linearized equation (A.1) can be written as a 2× 2 system of equations for each wavenumber,
given by [

iω − αk−2 −
(
µk2 + Ck−2

)
αk−2

−α+ iκky −iω + α+Dk2

] [
ϕ̂
n̂

]
= 0. (A.6)

Nontrivial solutions to the system exist provided the following dispersion relation has solutions:

ω2 + i (b+ L1)ω − ibω∗ − αL2 −D
(
µk4 + C

)
= 0, (A.7)

where

L1 (k) = Dk2 + µk2 + Ck−2, L2 (k) =
(
D + µk2 + Ck−2

)
.

Because of the complexity of the dispersion relation (A.7), we will only solve it numerically. To do so, we choose
the same numerical values for the parameters as we used in the numerical simulations discussed in the main text.
Specifically, if µ 6= 0, then µ = 5 × 10−4, if D 6= 0, then D = 5 × 10−4, and if C 6= 0, then C = 0.01κ = 0.005. Our
results comparing linear growth rates with and without dissipation terms are shown in Figure 9. The first two plots
on the left show the dependence of the linear growth rates on ky along the line kx = 0 in k-space, which is the line
along which the maximum growth rate is reached. The situation without dissipation is considered in the first plot
on the left, for different values of κ and α. The curves confirm our analytic results in the previous section, with a
maximum reached for ky ∼

√
2 for r � 1 and moving to the left as r increases. In the second plot, we analyze the

effect of including dissipation terms, for α = 0.1 and κ = 0.5. We see that as expected, our simple model for Landau
damping stabilizes the large scale modes, but has a negligible effect on small scale modes. In contrast, the terms µ∆ζ
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Figure 9: Comparison of growth rates with changing parameter values for α, κ, µ, D, and C. The left and middle
plots show the linear growth rates as a function of ky, for kx = 0 and different values of α, κ, µ, D, and C. The plot
on the right shows the contours of meta-stability with small growth rate ωi = 1× 10−3 as the coefficients of the

dissipation terms are changed.

and D∆n only stabilize the small scale modes, and have little effect on the large scale modes. In order to determine
the relative importance of these two terms, we turn to the plot on the right of Figure 9, which shows the contour of
meta-stability, set here at ωi = 1× 10−3, for different values of the parameters µ, D, and C, and α = 0.1 and κ = 0.5.
We see that the term µ∆ζ has a much stronger damping effect, since setting µ to zero leads to a much increased
region of strong instability. We also have the confirmation that the model Landau damping term stabilizes the large
scale modes.
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