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Abstract9

A stochastic multi-cloud model (SMCM) convective parameterization is incorporated in10

the National Centers for Environmental Predictions’ Climate Forecast System version 211

(CFSV2). The resulting model is referred to here as CFSsmcm. Two 15 year long climate12

simulations of the CFSsmcm, differing only by one SMCM parameter, namely, the mid-13

tropospheric dryness parameter, MTD0, are analyzed and interpreted here. This particular14

parameter is chosen because not only it plays a crucial role in the SMCM formulation, but15

also is observed to be critical for triggering tropical convection. In one case we have used16

a single homogeneous MTD0 value for the entire globe and in the other run two different17

MTD0 values are used for land and ocean. The global precipitation climatology significantly18

improves in the inhomogeneous MTD0 case without significantly affecting the excellent per-19

formance of the CFSsmcm in terms of the intra-seasonal and synoptic variability as docu-20

mented in previous publications.21

1 Introduction22

The importance of the role played by a convective parameterization (CP) scheme can23

never be overemphasized in a global climate model (GCM). Most of the biases in a simu-24

lated climate originate from the inaccuracy in representing the subgrid scale convective el-25

ements [Randall, 2013; Arakawa, 2004]. Quest for an efficient CP scheme has been on for26

a few decades now [Kuo, 1965; Arakawa and Schubert, 1974; Betts and Miller, 1986; Kain27

and Fritsch, 1990; Gregory and Rowntree, 1990; Zhang and McFarlane, 1995]. The assump-28

tions these CP schemes are based on, stem from our understanding of atmospheric convec-29

tion. However, there is one feature common to all these different schemes: they are all de-30

terministic in nature. Or in other words, these schemes do not account for the sub-grid scale31

variability among the different convective elements. The basis for a deterministic convective32

parameterization is the underlying assumption that, a typical GCM grid size is large enough33

to encompass a large ensemble of the clouds, which are in quasi-equilibrium with the large34

scales and that the large-scale mean ensemble is uniquely determined [Arakawa and Schu-35

bert, 1974]. However, with the increasing resolution of the present day GCMs, the validity36

of this assumption needs to be reevaluated [Palmer, 1996]. Consequently, there is an undeni-37

able possibility that neglecting the variability of the subgrid scale convective elements may38

lead to biases in the mean climate [Palmer, 2001]. Efforts to adequately represent these con-39

vective systems in a GCMs has led the scientific community to think beyond conventional CP40
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schemes. Superparamaterized GCMs (SP-GCM) [Grabowski, 2001; Khairoutdinov and Ran-41

dall, 2001] and global cloud resolving models (GCRM) [Satoh et al., 2005] (also see Randall42

[2013] for a review) are such promising approaches. However, SP-GCMs and GCRMs are43

computationally expensive and definitely unlikely candidates for operational centers; espe-44

cially for ensemble predictions. Nevertheless, the success of these approaches highlighted45

the importance of accurate representation of the sub-grid scale (SGS) variability collectively46

while realizing the individual behaviour of the convective elements, in the GCMs and their47

impact on the large-resolved scales. In the spirit of superparameterization, a computationally48

significantly less expensive approach was introduced in Khouider et al. [2010]; the authors49

termed it as the stochastic multi-cloud model convective parameterization. This was the de-50

scendant of the same multi-cloud model introduced in Khouider and Majda [2006] but with51

the added feature of stochasticity.52

Driven by the general consensus that a faithful representation in some way of the sub-53

grid scale convective variability is probably the only way forward, stochastic approaches to54

the convective parameterization problem are getting more attention in the recent times than55

ever before [Buizza et al., 1999; Lin and Neelin, 2000, 2002, 2003; Palmer, 2001; Majda56

and Khouider, 2002; Khouider et al., 2003; Plant and Craig, 2008; Teixeira and Reynolds,57

2008; Deng et al., 2015, 2016; Ajayamohan et al., 2016; Davini et al., 2016]. In order to in-58

troduce stochasticity to an existing deterministic convective parameterization, different meth-59

ods have been adopted. The perturbed parameterization tendencies approach introduced by60

Buizza et al. [1999] consists of multiplying the CP outputs by correlated or non-correlated61

random numbers at each GCM column [Davini et al., 2016, and references therein]. Teixeira62

and Reynolds [2008] followed a similar technique as Buizza et al. [1999] but they multiplied63

only the convective tendencies. Lin and Neelin [2000] added stochasticity to a deterministic64

scheme by adding a zero-mean red noise to the its closure equation, namely the convectively65

available potential energy (CAPE) closure equation. In the study by Lin and Neelin [2002], a66

distribution of precipitation is assumed a priori to control the statistics of the overall convec-67

tive heating. Lin and Neelin [2003] tested a stochastic deep convective parameterization in a68

general circulation model for the first time. Plant and Craig [2008] used equilibrium statisti-69

cal mechanics to derive a Poisson distribution for convective plumes based on radiative con-70

vective equilibrium cloud resolving simulations. Majda and Khouider [2002] and Khouider71

et al. [2003] used a Markov process on a lattice for convective inhibition. The stochastic lat-72

tice approach has been extended in Khouider et al. [2010] to derive the stochastic multicloud73
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model (SMCM), designed to mimic the interactions at sub-grid scales of multiple cloud74

types in the tropics. The SMCM has been extensively used and evaluated in simple mod-75

els for organized convection and convectively coupled equatorial waves (CCEW) [Frenkel76

et al., 2012, 2013; Peters et al., 2013; De La Chevrotière et al., 2015; De La Chevrotière and77

Khouider, 2017]. Moreover, the SMCM has been successfully adopted as a cumulus param-78

eterization in an aquaplanet GCM to simulate the Madden-Julian oscillation (MJO), CCEWs79

and Indian summer monsoon intra-seasonal oscillations (MISOs) [Deng et al., 2015, 2016;80

Ajayamohan et al., 2016]. In this chapter, we present the highlights of the simulated climate81

when the SMCM, is incorporated into the National Centers for Environmental Prediction82

(NCEP) Climate Forecast System version 2 (CFSv2) model (referred to as CFSsmcm here-83

after) in lieu of the pre-existing simplified Arakawa-Schubert (SAS) cumulus scheme.84

A first insight into the CFSsmcm simulated climate is provided in Goswami et al.85

[2017a]. They demonstrated that while retaining an equally good mean state (if not bet-86

ter) as the parent model (CFSv2), CFSsmcm significantly improved the synoptic and intra-87

seasonal variability; provided a better account of convectively coupled equatorial waves and88

the Madden-Julian oscillation (MJO); exhibited better northward and eastward propagation89

of intra-seasonal oscillation of convection including the MJO propagation beyond the mar-90

itime continent barrier. The distribution of precipitation events was also found to be better91

simulated in CFSsmcm which was severely biased towards too much drizzling precipitation92

in the parent model. An overview of the SMCM formulation, and the development and tun-93

ing of the CFSsmcm in detail can be found in Goswami et al. [2017b], where the model’s94

sensitivity to the key parameters of the SMCM formulation is reported through a compar-95

ative analysis of a few 5-year long climate simulations in order to distinguish the best pos-96

sible set of SMCM parameters for the CFSsmcm model. The model was found to be most97

sensitive to the mid-tropospheric dryness parameter (MTD) and to the stratiform cloud de-98

cay timescale (τ30). MTD was more effective in controlling the global mean precipitation99

and its distribution while τ30 had more effect on the organization of convection as noticed in100

the simulation of the Madden-Julian oscillation (MJO). This is consistent with the fact that,101

in the SMCM formulation, mid-tropospheric humidity controls the deepening of convec-102

tion and stratiform clouds control the backward tilt of tropospheric heating and the strength103

of unsaturated downdrafts which cool and dry the boundary layer and trigger the propaga-104

tion of organized convection [Ajayamohan et al., 2016; Deng et al., 2016]. Noteworthy, the105

CFSsmcm model was found to be robust in the sense that the simulated mean climate ap-106
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peared resilient to small changes in the parameter values. A detailed analysis of the tropical107

intra-seasonal variability (TISV) and convectively coupled equatorial waves (CCEW), in108

comparison with the parent GCM and with observations, was presented in Goswami et al.109

[2017c]. Significant improvements were noted in the simulation of the Madden-Julian oscil-110

lation (MJO) and most of the CCEWs as well as the Indian summer monsoon (ISM) intra-111

seasonal oscillation (MISO). The authors also demonstrated these improvements to be a re-112

sult of improved mechanisms and physical structure of these oscillations. They also found113

that, improved representation of interaction of the multiple clouds in the SMCM formulation114

holds the basis of this improved climate simulation by the CFSsmcm model. The SMCM has115

been used to modify the triggering of deep convection in the German GCM ECHAM4 and116

noticeable improvements are seen, especially in terms of the ability of the model to repre-117

sent tropical rainfall variability [Peters et al., 2017]. A variant of the SMCM has also been118

adopted and used to stochastisize an existing CP in Dorrestijn et al. [2016].119

Upon the implementation CFSsmcm, an extensive parameter testing has been con-120

ducted by making several short 5-year runs. A few of these simulations codified with whole121

numbers, are reported in Goswami et al. [2017b] providing a first hand analysis of the model’s122

parameter sensitivity and behavior. In this chapter we take Run 139 from Table 1 of Goswami123

et al. [2017b] and run it to simulate a 15-year long climate and then compare the results124

with that of Run 129. It should be noted that Run 129 is the only CFSsmcm run which has125

been extensively analyzed and reported in detail in Goswami et al. [2017a] and Goswami126

et al. [2017c]. The Run 129 was selected from a number of 5-year long simulations based127

on a few basic metrics reported in Goswami et al. [2017b]. Some changes, more often good,128

in the simulated mean state and variability were noted when we ran Run 129 for 15 years.129

In Goswami et al. [2017b], the closest competitor to Run 129 was Run 139. The only dif-130

ference between the two runs resides in the way the mid-tropospheric dryness parameter,131

MTD0, is prescribed. The physical significance of MTD0 is that, it decides how moist the132

middle atmosphere needs to be to initiate convection. In the SMCM formulation, a small133

MTD0 means that the middle troposphere needs to be very moist to allow deep convection.134

From Goswami et al. [2017b], we recall that Run 129 uses a single uniform value of MTD0135

= 5, for the entire globe, while in Run 139 we have set that, MTD0 = 5 over the oceans136

and MTD0 = 25 over the continents. In other words, in Run 139, the atmosphere over the137

oceans wait longer to initiate convection than it does over continents. However, one MTD0138

value for the entire globe implies no such distinction in Run 129. Goswami et al. [2017b]139
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briefly discussed the benefits of using distinct MTD0 values, one over land and one over140

the oceans, over using a single MTD0 value for the entire globe. A few crucial improve-141

ments were achieved with the variable-MTD0 runs including the precipitation climatology.142

In particular, the dry bias in the simulated Indian summer monsoon rainfall was significantly143

reduced. As a consequence, the poleward migrations of convection bands over the Indian144

monsoon region also had improved while the Takayabu-wheeler-Kiladis (TWK) spectra145

[Takayabu, 1994; Wheeler and Kiladis, 1999] remained almost unchanged. They explained146

this improvement by the fact that, the variable MTD0 affects primarily the mean while the147

intraseasonal and synoptic variability are mostly affected by convection over the oceans.148

The motivation behind this exercise is not to find out the better one between Run 129149

and 139. Rather, we want to highlight the possibilities offered by the CFSsmcm model as150

a virtual laboratory to study the interaction between convection and cloud and the climate151

system. More than summarizing the results in a review mode, we wish to explore the scopes152

and opportunities of SMCM. Comparing the runs 129 and 139, which differ only by one pa-153

rameter value, may seem like just a simple tuning exercise, but because of the role played by154

that particular parameter, MTD0 (the scaling value for the middle tropospheric dryness), in155

the SMCM formulation we expect to get valuable guidance towards improving the SMCM156

formulation further.157

The rest of this chapter is organized as follows: the SMCM framework, including the158

developmental and implementation aspects, is explained in the section 2. Section 3 presents159

and compares the numerical results obtained with the two MTD0 configurations. Finally a160

concluding discussion is provided in the 4th section.161

2 The SMCM formulation162

2.1 Parameterization of the Total Heating163

The stochastic multicloud model uses 3 prescribed profiles for convective heating, φc ,164

φd and φs , associated with cumulus congestus cloud decks (which warm and moisten the165

lower troposphere and cool the upper troposphere through radiation and detrainment), deep166

cumulonimbus clouds (which heat up the whole atmospheric column) and stratiform cloud167

types lagging deep convection (which heat the upper troposphere and cool the lower tropo-168

sphere due to the evaporation of stratiform rain), respectively.169
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Figure 1. Basis Functions. Cumulus congestus profile in Red; Deep Cumulus profile in Blue; and Strati-

form profile in Yellow.

186

187

While in the original multicloud-model [Khouider and Majda, 2006, 2008], simple170

sine functions were used to set up the basis functions and Khouider et al. [2011] used the171

vertical mode eigenstructure of Kasahara and Puri [1981] the CFSsmcm implementation172

combines observational studies with theory on tropical heating profiles to construct φc, φd, φs .173

The shape of the deep heating basis function is designed based on the average heating pro-174

file in Fig-3 of Stachnik et al. [2013]. The stratiform basis function is designed following175

the Stratiform heating profile reported in Fig-1 of Schumacher et al. [2007]. The congestus176

heating profile is designed following Khouider and Majda [2006], but slightly modified to177

represent the lower level peak (around 700hPa) noted in the convective heating profiles plot-178

ted from the CFSR data (not shown here). When constructing φc , we have also consulted the179

work of Schumacher et al. [2007] (The "Shallow convective" and the "Strongly detraining180

Cu congestus" profiles in their Fig-1). Incidentally (as it can be seen in Fig-1), the heating181

basis functions were clipped to zero at or slightly below 200 hPa. This is somewhat arbitrary182

as there are instances where the tropaupose level is higher and it is not clear how much the183

results would change if this level was a bit higher or lower. This will be the subject of future184

studies.185
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The total convective heating is:

Qtot (z) = Hdφd(z) + Hcφc(z) + Hsφs(z). (1)

Here, φc , φd and φs are the three basis functions shown in Figure 1; and Hc , Hd and Hs are

the associated heating rates, which are parameterized using the corresponding stochastic area

fractions, σd , σc and σs respectively, and the large-scale dynamical variables:

Hd =
σd

σ̄d
Qd, (2)

Hc =
σc

σ̄c
αcQc, (3)

∂Hs

∂t
=

1
τs

[
σs

σ̄s
αsHd − Hs

]
. (4)

Here, σ̄c , σ̄d and σ̄s are the background values of σc , σd and σs , respectively, αc and αs188

are the congestus and stratiform adjustment coefficients, respectively, and τs is the stratiform189

convection adjustment time-scale.190

According to Khouider et al. [2010] the cloud area fractions σc , σd and σs describe191

a Markov jump stochastic process in the form of a multi-dimensional birth-death process192

whose transition probabilities depend explicitly on the mid tropospheric dryness (MTD),193

convective available potential energy (CAPE) and convective inhibition (CIN) and vertical194

velocity (W). The formulation of the transition rates from one cloud type to the other are the195

same as prescribed in Deng et al. [2015], except for the formation of congestus and deep con-196

vection from clear sky condition. This change occurs due to the inclusion of CIN and W in197

the transition rules. The inclusion of CIN and W in the transition rates are driven the desire198

to make the deep convection paramaterization aware of the shallow convection scheme in the199

sense that in the event of strong subsidence and/or strong CIN, deep convection is inhibited200

leaving "space" for shallow convection which is naturally promoted in such circumstances.201

The modified transition rates (formation rates of congestus and deep clouds are highlighted202

in bold) are given in Table 1. The values of the transition time scales, on the last column of203

Table 1, are from De La Chevrotière et al. [2015], who used a systematic Bayesian inference204

technique to learn these parameters from large eddy simulation data [Khairoutdinov et al.,205

2009].206

In Eqn (2-4), the potentials for deep (Qd) and congestus (Qc) convection are com-212

puted, using the following equations,213
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Table 1. SMCM transition rules. The transition rates are given in terms of the large scale predictors CAPE,

C = CAPE/CAPE0, Low level CAPE, CL = LCAPE/LCAPE0, dryness, D = H/MT D0, whereH is the

relative humidity, large scale subsidence, WN = −min(0,W/W0), and CN = −CIN/CIN0. Here LCAPE

is the part of the CAPE integral between LFC and the freezing level. We note that CIN is by definition a

negative definite quantity, so that when CIN is large, Γ(CN ) −→ 1.

207

208

209

210

211

Description Transition Rate, where Γ(x) =


(1 − e−x), if x > 0

0, otherwise
Time Scale (hours)

Formation of congestus R01 =
1
τ01
(Γ(CL)Γ(D) (1−Γ(WN))+(1−Γ(CN))

2 τ01=32

Decay of congestus R10 =
1
τ10
Γ(D) τ10=2

Conversion of congestus to deep R12 =
1
τ12
Γ(C)(1 − Γ(D)) τ12=0.25

Formation of deep R02 =
1
τ02
(Γ(C)(1 − Γ(D)) (1−Γ(WN))+(1−Γ(CN))

2 τ02=12

Conversion of deep to stratiform R23 =
1
τ23

τ23=0.25

Decay of deep R20 =
1
τ20
(1 − Γ(C)) τ20=9.5

Decay of stratiform R30 =
1
τ30

τ30=1
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Qd =

[
Q̄d +

1
τq

Lv

Cp
q
′
m +

1
τc

(
θ
′

eb − γcθ
′
m

)]+
, (5)

Qc =

[
Q̄c +

1
τc

(
θ
′

eb − γcθ
′
m

)]+
. (6)

In the equations (5) and (6), Q̄d , Q̄c , Q̄s are prescribed background potentials for deep,

congestus and stratiform convection respectively. They are inferred from CFS reanalysis data

[Saha et al., 2010] by projecting the climatological convective heating, Q1 onto the three

basis functions in (1). The parameters τq and τc are the convective adjustment time scales of

moisture and temperature, respectively. The quantities q
′
m, θ

′

eb
, θ′m are given by,

q
′
m = qm − q̄m (7)

θ
′

eb = θeb − ¯θeb (8)

θ
′
m = θm − ¯θm. (9)

They are the deviations of the model’s middle troposphere moisture, equivalent potential214

temperature, in the planetary boundary layer (PBL) and middle troposphere potential tem-215

perature, respectively, from their background states denoted by over bars. These background216

values are set according to the climatology of 20 year CFSR data averaged in space over dis-217

tinct regional boxes in Figure 2.218

Earlier theoretical studies with the SMCM [Khouider and Majda, 2006; Khouider219

et al., 2010; Deng et al., 2015, and the relevant references therein] all rely on the radiative220

convective equilibrium (RCE) solution (space-time homogeneous solution) of the govern-221

ing equations to construct the background to set up the parameterization in Equations (2)222

to (10). However, such solution is not practical in the context of a comprehensive climate223

model because of existence of various inhomogeneities, like, land-ocean, tropics-mid lati-224

tude, etc. To overcome this conundrum we have used climate data to compute surrogates for225

the RCE solution as time and spatial means for a set of boxes centered over different areas226

of relatively homogeneous climatologies. These different areas (boxes) of relatively homo-227

geneous climatologies are shown in Figure 2 overlaid over the shows the long term mean of228

specific humidity at the surface, which provide a rationale behind choosing these boxes. We229

have plotted other thermo-dynamical fields as well (not shown here), before deciding on the230

partition boxes. Noteworthy, we have smoothed each background fields before prior to the231

implementation into CFSsmcm. As an example of a background field, the middle level spe-232

cific humidity is shown in Figure 3.233
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Furthermore, the CFSsmcm includes an unsaturated downdraft mass flux which serves

to cool and dry the lower troposphere due to the evaporation of stratiform rain in the lower

troposphere. It is given by,

Dc = µ

[
Hs − Hc

Q̄c

]+
, (10)

where, µ = 1.25cms-1 is the downdraft reference scale. Here and elsewhere in the paper X+234

denotes the positive part of the variable X , i.e., max(X, 0).235

In the equations in (5) and (6), the subscript b indicates variables averaged over the236

boundary layer height defined as, Xb =
1
h

∫ h

0 X(z) dz. The PBL height, h, is inputted from237

CFSv2. The height of the stable PBL, h, is estimated iteratively from ground up using bulk238

Richardson number (Rb) until a critical value Rbc = 0.25 is reached [Troen and Mahrt,239

1986]. Incidentally, h is the height of the mixed layer which is consistent with the design240

of the multicloud model [Khouider and Majda, 2006, 2008; Waite and Khouider, 2009]. The241

subscript m indicates values of the variables taken at the middle troposphere. The middle242

level specific humidity is chosen at 700 hPa. This is based on the long term mean (obtained243

from CFSR 20 year reanalysis data) of moist static energy (MSE) profile. We have chosen244

the level where a minimum in the MSE profiles is noted (for those boxes which lie within245

40S-40N in Fig-2). Based on the climatological profiles of equivalent potential temperature246

(θe) and convective heating (not shown here), we have defined the middle and low tropo-247

sphere value of θe at 500hPa and 700hPa, respectively.248

2.2 Prescribed vertical profiles of moistening and drying249

The moisture sink is set to:

P(z) = −
cp
Lv
〈Qtot〉Q2(z), (11)

where 〈Qtot〉 is the vertical average of the total heating Qtot (z), cp is the specific heat at con-254

stant pressure, Lv is the latent heat of vaporization, and H = 16 km is the a rough estimate of255

the tropospheric height. Moreover, Q2(z) is a prescribed moisture sink function whose exact256

shape is given in Figure 4 and its vertical average is unity.257

The surface precipitation is given by

P =
cp
Lv

∫ H

0
Qtot (z)dz. (12)
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Figure 2. Long term mean of specific humidity at the surface (computed from Climate Forecast System

Reanalyses product).

250

251

Figure 3. Background mid level (700 hPa) Specific Humidity (g/kg). In shading is the non-smoothed

box-wise values. Smoothed field for the same is shown by the overlaid contours.

252

253
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Figure 4. (a) The shape of the Q2(z) structure function in the moisture sink eq. 11 (drying). (b) The shape

of the δm(z) structure function in eq. 13 (moistening).

268

269

The introduction of the structure function Q2(z) is a new feature of this current ver-258

sion of SMCM. The shape of Q2(z) (Figure 4a) is inspired by the Yanai moisture sink profile259

[Yanai et al., 1973]. In earlier versions of the SMCM, the moisture sink is set according to260

the fact that only the column integrated water vapor is integrated, i.e, the free tropospheric261

moisture is represented by one single vertical grid point. In this context, under the constraint262

of the conservation of vertically integrated moist static energy, the precipitation rate reduces263

to the vertical integral of the convective heating potential temperature tendency, renormal-264

ized by the ratio of the latent heat of vaporization and the specific heat at constant pressure.265

The moisture sink closure provided in Eq 11 was derived under the same constraint of moist266

static energy conservation.267

The evaporation rate is given by,

E(z) =
(
δm(z)

Dc

H

)
4mθe, (13)

where, 4mX = Xb − Xm, with the suffixes b and m indicating respectively the PBL and mid-

dle troposphere values of the variable X . The structure function δm(z) (Figure 4b) is defined

by:

δm(z) =


2 exp

(
−αm |P(z)−PMID |

PBOT−PTOP

)
, if z ≥ h

0, if z < h
(14)

where αm is a constant, so that, 1
H

∫ H

0 δm(z) = 1270
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The expression P(z) = − cp
Lv
〈Qtot〉Q2(z) ensures that the vertically averaged convective271

heating balances the total amount of precipitation reaching the ground while that of the evap-272

oration rate, E(z), is designed to balance the drying and cooling of the PBL by downdrafts so273

that the vertically averaged moist static energy is conserved as anticipated.274

The SMCM feeds back onto the dynamical core variables through the temperature and

moisture convective tendencies given by,[
∂

∂t
θ(z)

]
SMCM

= Qtot (z) − Dbθ (15)[
∂

∂t
q(z)

]
SMCM

= −P(z) + E(Z) − Dbq (16)

Here, Dbθ and Dbq represent the effect of unsaturated downdraft which result in cooling

and drying below the PBL (h, which is a variable imported from the CFSv2 boundary layer

scheme into the SMCM module), and they are given by

Dbq(z) =


Dc

h 4mq if z < h, results drying,

0 if z > h,
(17)

Dbθ (z) =


Dc

h 4mθ if z < h, results cooling,

0 if z > h.
(18)

While the GCM dynamical core has time step of 10 minutes, the SMCM convective275

tendencies in Eqns. (13) and (14) are updated every 10 seconds, i.e., 60 times per GCM time276

step in order to ensure stability, due to the fast convective timescale.277

A comprehensive list of parameters that appear in the equations (1)-(18) and their val-278

ues are provided in Table 3. The first column of Table 3 refers to the number of the equation279

where the parameters appear for first.280

3 Results282

In this section we compare two longtime simulations corresponding to runs 129 and283

139 from Goswami et al. [2017b], by comparing their mean state and their intra-seasonal284

variability against observational benchmarks consisting of TRMM rainfall [Huffman et al.,285

2010] and NCEP reanalysis data [Kalnay et al., 1996] for temperature, moisture and wind286

fields.The CFSsmcm simulations are based on a T126 horizontal resolution combined with287

64 vertical levels and a 10 minute time step. The SMCM birth-death process is simulated288

via Gillespie’s exact Monte-Carlo algorithm, which is run in parallel at every GCM time step289
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Table 2. List of parameters281

Reference Parameter Value Remarks

3 αc 0.1 Congestus adjustment coefficient

4 τs 96 hrs Stratiform convection adjustment timescale

4 αs 0.2 Stratiform adjustment coefficient

5 τq 144 hrs Moisture adjustment timescale

5 Lv 2.5x106 J kg-1 Latent heat of condensation

5 Cp 1004.6 J kg-1 K-1 Specific heat of air at constant pressure

5 τc 240 hrs Congestus convection adjustment timescale

5 γc 0.1 Adjustment coeff. for relative contribution of congestus to deep heating

10 µ 1.25 cm s-1 Downdraft reference scale

12 H 16km Height of the tropical troposphere

14 αm 0.22 —
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Figure 5. Annual and seasonal (summer: JJAS and winter:O-M) mean rainfall fields (mm day-1) for Run

139 (left hand side panels), TRMM (middle panels) and Run 129 (right hand side panels).

296

297

(see Khouider et al. [2010], for details). As mentioned earlier the key difference between290

the two SMCM simulations presented here resides in the way the mid-troposphere dryness291

parameter, MTD0, appearing in the caption of Table 1, is set. Run 129 uses a single value of292

MTD0=5 globally while Run 139 uses two values simultaneously, by setting MTD0=25 over293

land and MTD0=5 over the ocean.294

3.1 Mean state295

The simulated precipitation fields are shown in Figure 5, where the annual mean and298

the summer and winter seasonal means are displayed separately. It is evident from the annual299

mean, and individually for the two seasons as well, the precipitation field has significantly300

improved in Run 139. The wet bias over the oceans and the dry bias over the continents have301

significantly reduced. Overall, the geographical distribution of the precipitation looks much302

better in Run 139. Improvement in the simulation of the Indian summer monsoon mean state303

is one of the major gains of Run 139 over Run 129. As a more convincing evidence, we have304

plotted the climatological annual cycle of rainfall over the Indian summer monsoon domain305

in Figure 6. We consider three different boxes over the ISM domain and plotted the clima-306

tological annual cycle of rainfall over each box. Clearly, Run 139 simulation matches the307
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Figure 6. Annual cycle of climatological daily mean rainfall (mm day-1) over the Indian monsoon region

(different boxes).

314

315

observation fairly well and much better than Run 129 and the CFSv2 control run. For both308

the boxes "Central India" and "Extended IMR", Run 139 looks consistent with observation.309

Importantly, the improved annual cycle is actually due to good distribution of rainfall and310

not due to any compensation of rainfall covering the dry bias over India by wet bias over the311

mountainous terrains. However, Run 139 still looks dry over the box "Monsoon trough" ac-312

companied by an early withdrawal.313

3.2 Intra-seasonal Variability316

Capturing the intra-seasonal variability has been a key achievement of the SMCM ef-320

fort in its idealized simulations [Deng et al., 2015, 2016; Ajayamohan et al., 2016] as well321

as when implemented in CFS [Goswami et al., 2017a,c]. Another feature of the CFSsmcm322

has been its resilience in terms of minor changes to its parameter values [Goswami et al.,323
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Figure 7. Intra-seasonal variability (standard deviation of the 10-90 day bandpass filtered rainfall anoma-

lies) for Run 139 (top panels), TRMM (middle panels) and Run 129 (bottom panels), for the summer and

winter seasons.

317

318

319

2017b]. Since changing the value of the middle tropospheric dryness parameter is a consid-324

erable change from SMCM’s perspective, we examined the response of the CFSsmcm Run325

139 in capturing the intra-seasonal variability. In Figure 7, we have plotted the standard de-326

viation of 10-90 day bandpass Lanczos filtered rainfall anomalies for the two seasons. This327

gives an overview of the intra-seasonal variability in the simulated precipitation fields. Com-328

paring the runs 129 and 139, the intra-seasonal variability does not change significantly. As329

we have already mentioned, resilience to changes in parameter values has been a hallmark330

of the CFSsmcm throughout its development [Goswami et al., 2017b]. Nevertheless, there331

are slight increases in variability observed over the Western Pacific and the Indian landmass.332

This increase in variability is consistent with the increase in the mean seasonal rainfall.333

3.3 Tropical wave spectrum334

When implementing the SMCM in CFSv2, the simulation of the tropical intra-seasonal337

variability (TISV) improved significantly compared to the default CFSv2 simulation, evident338

from the Takayabu-Wheeler-Kiladis (TWK) diagram [Goswami et al., 2017c]. Therefore we339

plotted the same for Run 139 to see if the improvements are retained or changed. In Figure 8340
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(a)SMCM139:Sym (b)NOAA:Sym (c)SMCM129:Sym

(d)SMCM139:Asym (e)NOAA:Asym (f)CFS129:Asym

Figure 8. Wheeler-Kiladis spectra of OLR from (a)Run 139, (b)NOAA OLR and (c) Run 129, for the

symmetric component. The corresponding anti-symmetric spectra are shown in panels d, e and f, respectively.

335

336

the TWK diagram for the outgoing long-wave radiation (OLR) is shown for the whole length341

of the 10-year climate for the runs 129 and 139 and observation (OLR from the National342

Oceanic and Atmospheric Administration; Liebmann and Smith [1996]). As evident from343

the faded color shading, Run 139 is relatively less skillful compared to Run 129. However,344

Run 139 still outperforms the control CFSv2 run (See Figure 1b and 1c of Goswami et al.345

[2017c]). Except the equatorial Rossby waves, there is a loss power in all other modes of the346

tropical wave spectrum. Especially the MJO mode appears somewhat weak with unrealistic347

power in higher wave-number regime.348

3.4 MJO variability and propagation349

The MJO is the major mode of variability in the tropics on the intra-seasonal timescales.358

Also, it is notoriously difficult to simulate realistically by coarse resolution climate models.359

Hence it can be treated as a metric for the fidelity of a climate model in simulating the trop-360

ical variability at such scales. Goswami et al. [2017c] showed that CFSsmcm simulates the361

MJO significantly better compared to the default CFSv2 model. Now, as we have already362

seen in the previous subsection 3.2, that the TWK plot has slightly deteriorated in Run 139,363
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Figure 9. Daily variance of the MJO filtered (wavenumber 1-9 and 36-90 days) OLR ((W m-2)2) anoma-

lies: Run 139 (top), OBS (NOAA OLR) (middle) and Run 129 (bottom).

350

351
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Figure 10. Hovmöller (averaged from 5°S - 5°N) plots showing MJO propagation for the MJO filtered OLR

(W m-2) anomalies.[Composite based on MJO peak over the box bounded by 82.5°E-90°E and Eq-8.5°N.]

352

353
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Figure 11. MJO Phase propagation. Composite of different phases of the MJO filtered OLR (W m-2)

anomalies constructed based on an MJO index averaged over 82.5°E-90°E and Eq-8.5°N. Run 139 are shown

in the left hand side column, OBS in the middle and Run 129 in the right hand side column. Phase-lag stamps

are seen in the right hand bottom corner.

354

355

356

357
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it is of obvious curiosity to explore the MJO features in this run. Following the exact same364

methodology adopted to plot the Figures 2, 4 and 3 of Goswami et al. [2017c], we have plot-365

ted here the fields in Figures 9, 10 and 11, respectively. We note that in Figure 9, the MJO366

variance has somewhat deteriorated in Run 139. Particularly, the meridional span of the re-367

gion of strong variance has narrowed, the variance over the Western Pacific has unrealisti-368

cally strengthened and that over the California coast has weakened. The variance along the369

oceanic inter-tropical convergence zone towards the south of the Western Pacific, which was370

already poorly simulated in Run 129, has further worsened. Consistent with the observed371

limitation in the simulation of the MJO variance in Figure 9, the propagation features are372

also simulated with limited fidelity as seen from Figure 10. Although, both CFSsmcm runs373

are better compared to the CFSv2 simulated propagation features, it is debatable to claim374

for any improvement or its lack thereof in Run 139 compared to Run 129. Instead, it would375

be proper to say that both the CFSsmcm runs have their own strengths and weaknesses in376

simulating the MJO propagation features, especially passed the Maritime continent. A more377

detailed picture of the MJO propagation is shown in Figure 11, where the lag-lead composite378

of OLR anomalies, with respect the MJO peak defined over a box region in the Bay of Ben-379

gal (82.5°E-90°E and Eq-8.5°N), are plotted. Consistent with the results shown in Figure 10,380

the MJO structure is not as prominent as in the observations with a hint of a smaller spatial381

structure in the model simulations. Nevertheless, the simulated MJO structure in both the382

CFSsmcm runs, 129 and 139, looks significantly better than in CFSv2 MJO, shown on the383

bottom right corner of Figure 11.384

3.5 Indian summer monsoon intra-seasonal oscillation (MISO)385

Analogous to the TWK-spectra along the east-west direction in the tropics, the North-391

South version of the same diagram plotted for the boreal summer data over the Indian mon-392

soon domain provides a first hand overview of the major modes of oscillation of the Indian393

summer monsoon (ISM). For the North-South TWK-spectra (Figure 12a, c and e), wavenum-394

ber 1 corresponds to 50 degrees of latitude (from 20°S to 30°N). As we had seen for the395

TWK-spectra in Figure 8, the North-South wavenumber-frequency spectra also has dete-396

riorated in Run 139. Interestingly, the MISO power in the north-south spectra in Run 139397

deteriorates whereas the seasonal mean precipitation improves. We need to recall here that,398

the SMCM parameter responsible for the stratiform convection decay time was found to be399

crucial for organization of convection in the CFSsmcm [Goswami et al., 2017b] and MTD0400
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Figure 12. Wavenumber-frequency spectra of OLR (divided by the background red spectrum) computed

for the boreal summer season (JJAS). The top three panels show the north-south spectra (wavenumber 1 cor-

responds to the largest wave that exactly fits into 50°latitudes, from 20°S to 30°N; computed over 60°E to

100°E). The bottom three panels show the east-west spectra (wavenumber 1 corresponds to the length of the

equator).

386
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388
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is influential for controlling the mean precipitation only. So this is consistent with the formu-401

lation of the SMCM. Finding a balanced pair of values for MTD0 for continents/oceans and402

an adequate stratiform convection decay time scale to complement this pair of MTD0 values403

calls for further tuning of CFSsmcm parameters.404

4 Discussion405

We have run two different versions of the CFSsmcm model: one with one middle tro-406

pospheric dryness parameter (MTD0) value for the entire globe (Run 129) and the other with407

two separate values of MTD0 for continents and oceans (Run 139). For the sake of ease of408

discussion, let us call these two runs 129 and 139, as MTD_G and MTD_L/O, respectively.409

We performed some standard analyses to examine the difference in mean climate and its vari-410

ability, based on 10-year long climate simulations. The motive behind doing this exercise411

is to highlight the sensitivity and resilience of the CFSsmcm, to changes in parameter val-412

ues. Thereby exposing the scopes of improving the CFSsmcm model to the climate modeling413

community.414

The CFSsmcm mean rainfall has already been demonstrated to be sensitive to the415

MTD0 parameter in Goswami et al. [2017b]. As a consequence the mean rainfall of the416

MTD_G and MTD_L/O runs are significantly different, especially over the rain abundant417

regions in the tropics, like, the Indian summer monsoon, West Pacific, Amazonia, etc. In418

the MTD_L/O run, the MTD0 values are chosen in such a way that the atmosphere over the419

continents trigger precipitation relatively quickly compared to that over the oceans. This ad-420

justment has resulted in reducing the dry bias over the continents. As per our analyses, the421

simulation of the Indian summer monsoon (ISM) mean rainfall has improved the most in the422

MTD_L/O run. However, intra-seasonal variability has not shown much improvement. In423

fact, at times, it has worsened. The tropical wave spectrum (as seen from the TWK-diagram424

in Figure 8) looks a bit deteriorated in the MTD_L/O run. The same can be said for the MJO425

variability and propagation (Figures 10-12). As can be seen from Figure 12, power in the426

desired modes of variability of the ISM climate has also slightly deteriorated. The param-427

eters responsible for organization of convection, especially the stratiform convection decay428

time parameter [Goswami et al., 2017b], needs to be adjusted to suite the MTD_L/O run in429

order to simulate better intra-seasonal variability. However, the results obtained from this430

single attempt with a varying MTD0 look very encouraging. A thorough tunning of the CF-431

Ssmcm model for the MTD_L/O run bears promise to lead us to an even better version of the432
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CFSsmcm model with better seasonal mean rainfall and perhaps better intra-seasonal and433

synoptic scale variability.434
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