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Abstract: Complex multiscale systems are ubiquitous in many areas. This research expository
article discusses the development and applications of a recent information-theoretic framework
as well as novel reduced-order nonlinear modeling strategies for understanding and predicting
complex multiscale systems. The topics include the basic mathematical properties and qualitative
features of complex multiscale systems, statistical prediction and uncertainty quantification, state
estimation or data assimilation, and coping with the inevitable model errors in approximating such
complex systems. Here, the information-theoretic framework is applied to rigorously quantify the
model fidelity, model sensitivity and information barriers arising from different approximation
strategies. It also succeeds in assessing the skill of filtering and predicting complex dynamical
systems and overcomes the shortcomings in traditional path-wise measurements such as the failure
in measuring extreme events. In addition, information theory is incorporated into a systematic
data-driven nonlinear stochastic modeling framework that allows effective predictions of nonlinear
intermittent time series. Finally, new efficient reduced-order nonlinear modeling strategies combined
with information theory for model calibration provide skillful predictions of intermittent extreme
events in spatially-extended complex dynamical systems. The contents here include the general
mathematical theories, effective numerical procedures, instructive qualitative models, and concrete
models from climate, atmosphere and ocean science.
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1. Introduction

Complex multiscale turbulent dynamical systems are ubiquitous in geoscience, engineering, neural
science and material science [1–7]. They are characterized by a large dimensional state space and a large
dimension of strong instabilities which transfer energy throughout the system. Key mathematical issues
are their basic mathematical structural properties and qualitative features [2,3,8,9], statistical prediction
and uncertainty quantification (UQ) [10–12], state estimation or data assimilation [13–17], and coping with
the inevitable model errors that arise in approximating such complex systems [10,18–21]. Understanding
and predicting complex multiscale turbulent dynamical systems involve the blending of rigorous
mathematical theory, qualitative and quantitative modelling, and novel numerical procedures [2,22].

One of the central difficulties in studying these complex multiscale turbulent dynamical systems is
that either the dynamical equations for the truth are unknown due to the lack of physical understanding
or the resolution in the models is inadequate due to the current computing power [1,13,18,23–25].
Therefore, understanding the model error from the imperfect dynamics as well as the coarse-grained
processes becomes important. From both the theoretical and practical point of view, the following
issues are of great interest.

1. How to measure the skill (i.e., the statistical accuracy) of a given imperfect model in reproducing
the present states and predicting the future states in an unbiased fashion?

2. How to make the best possible estimate of model sensitivity to changes in external or internal
parameters by utilizing the imperfect knowledge available of the present state? What are the
most sensitive parameters for the change of the model status given uncertain knowledge of the
present state?

3. How to design cheap and practical reduced models that are nevertheless able to capture both the
main statistical features of nature and the correct response to external/internal perturbations?

4. How to develop a systematic data-driven nonlinear modeling and prediction framework that
provides skillful forecasts and allows accurate quantifications of the forecast uncertainty?

5. How to build effective models, efficient algorithms and unbiased quantification criteria for
online data assimilation (state estimation or filtering) and prediction especially in the presence of
model error?

Recently, an information-theoretic framework has been developed and is applied together with
other mathematical tools to address all the issues mentioned above [10,26–34]. This information-theoretic
framework provides an unbiased way to quantify the model error and model fidelity [18,35–37] in
complex nonlinear dynamical systems, which in turn offers a systematic procedure for model selection
and parameter estimation within a given class of imperfect models [1,26–28]. The information-theoretic
framework is also capable of estimating the model sensitivity in response to the changes in both internal
and external parameters [27,28]. Practically, by incorporating the so-called fluctuation–dissipation theorem
for the linear statistical response [38–40], the information-theoretic framework allows an extremely efficient
approach to assess the model sensitivity [27,28,41]. Such a sensitivity analysis becomes particularly useful
in for example detecting the climate change and preventing the occurrence of undesirable extreme
events [42,43]. The combination of the model fidelity and the model sensitivity then provides important
guidelines for developing reduced-order models [11,44,45] and data-driven prediction strategies using
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physics-constrained nonlinear stochastic models [46–48]. Applying the information-theoretic framework
for model calibration, the reduced-order models with suitable model structures are able to capture both
the key dynamical and statistical features as well as the crucial nonlinear and non-Gaussian characteristics
such as intermittency and extreme/rare events as observed in nature.

Nevertheless, the choice of the reduced or simplified models plays a crucial role in approximating
nature. Within an improper model family, even the best model with the most elaborate calibration
will result in a large model error. This is known as the information barrier and can be quantified
by the information-theoretic framework [27,49–52]. In fact, the information-theoretic framework
allows a rigorous decomposition of the total model error into an intrinsic barrier and an actual
model error. The latter can be eliminated or at least be minimized to a negligible level by the
information-optimization criterion [27,28]. Quantifying such information barriers have both theoretic
and practical importance. It indicates the futility of model calibration if the information barrier is
significant. It can also be used as a guidance to expand the model family of reduced models for the
improvement of imperfect models. Note that information barriers appear in both the model fidelity
and model sensitivity. A model with perfect model fidelity can still have a significant information
barrier in response to the internal/external perturbation and in short term predictions [27].

Another important application of the information-theoretic framework is that it provides a
novel and unbiased approach to assess the online data assimilation/filtering and prediction skill in
complex multiscale dynamical systems [31,53–58]. The traditional path-wise measurements such as
the root-mean-square error and pattern correlation [59,60] are misleading in assessing the model error
in both filtering and prediction [31,61]. In fact, these traditional measurements completely fail to
quantify the ability of the imperfect models in reproducing the extreme events in nature even in the
linear and Gaussian setup. In addiction, these traditional path-wise measurements take into account
the information only up to the second order statistics and therefore they have no skill in quantifying
the features of intermittency and non-Gaussian probability density functions (PDFs) as well as other
salient characteristics in nonlinear multiscale turbulent dynamical systems. On the other hand, the
information-theoretic framework combining different information measurements is able to quantify
the model error in an unbiased fashion and succeeds in assessing the ability of imperfect models
in reproducing both the Gaussian and non-Gaussian features in filtering and forecasting complex
nonlinear dynamical systems [31,61].

In practice, due to the incomplete knowledge and the limited computing power for dealing
with the complex nonlinear turbulent dynamical systems of nature, reduced-order models are often
designed for the state estimation and prediction [62–68]. Parameterizations of unresolved variables and
coarse-grained processes are typically involved in the reduced-order models [69–72], which result in
large uncertainties. Therefore, the reduced-order models aim at capturing the statistical features rather
than a single realization of random trajectories of the complex nonlinear turbulent dynamical systems.
Among all types of the reduced-order models, linear tangential approximations and Gaussian closure
models are widely used in approximating the time evolutions of the statistics of nature [71,73–75].
Despite their simplicity and skillful behavior in some scenarios, these crude approximations fail to
capture many crucial features in nature that result from the nonlinear interactions between different
variables or nonlinear feedback within different scales. Therefore, nonlinear and non-Gaussian
closure becomes important in describing the turbulence [76–79]. Recently, a new framework of
statistical closure models has been developed for improving the skill of the reduced-order models.
The new reduced-order models take into account higher-order moments but nevertheless remain
computationally efficient [1,45,50]. With the model calibration based on effective information criteria,
these new reduced-order models succeed in capturing the non-Gaussian statistical characteristics
including intermittency and extreme events as well as memory effect and temporal correlation. The new
reduced-order models have also been used to provide accurate state estimation and prediction of many
high-dimensional complex nonlinear turbulent systems [80–82].
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This research expository article blends new viewpoints and results with a current research summary
of a specific perspective. It focuses on both the development and applications of the information-theoretic
framework as well as the new reduced-order nonlinear modeling strategies for dealing with model
error, information barriers, state estimation and prediction in complex multiscale systems. The contents
include the general mathematical framework and theory, effective numerical procedures, instructive
qualitative models, and concrete models from climate, atmosphere and ocean science. The remaining
of the article is organized as follows. The information-theoretic framework is developed in Section 2.
In the same section, various information barriers in the presence of model error are shown via simple but
instructive stochastic models. In Section 3, the information-theoretic framework is applied to assess model
error in state estimation and prediction with examples coming from both complex scalar models and
spatially-extended multiscale turbulent systems. The advantage of the information-theoretic framework
over the traditional path-wise measurements are illustrated. Section 4 deals with sensitivity and linear
statistical response using the fluctuation–dissipation theorem. An efficient and effective algorithm in
finding the most sensitive change directions using information theory is also included in this section.
Then, in Section 5, a novel framework of data-driven physics-constrained nonlinear stochastic models
and predictions is developed and is applied to predicting the time series of an important atmospheric
phenomenon with strong intermittent instabilities and extreme events. Section 6 includes the development
of the new effective reduced-order models that involve higher order statistical features. These new models
together with the information-optimization model calibration strategy are applied to predicting passive
tracer extreme events driven by spatially-extended complex dynamical systems. The article is concluded
in Section 7.

2. Information Theory and Information Barriers with Model Error and Some Instructive
Stochastic Models

2.1. An Information-Theoretic Framework of Quantifying Model Error and Model Sensitivity

An information-theoretic framework has recently been developed and applied to quantify model
error, model sensitivity and prediction skill [10,26–34]. The natural way to measure the lack of
information in one probability density q(u) compared with the true probability density p(u) is through
the relative entropy P(p, q) [26,32,40],

P(p, q) =
∫

p log
(

p
q

)
, (1)

which is also known as Kullback–Leibler divergence or information divergence [83–85]. Despite the
lack of symmetry, the relative entropy has two attractive features. First, P(p, q) ≥ 0 with equality if and
only if p = q. Second, P(p, q) is invariant under general nonlinear changes of variables. These provide
an attract framework for assessing model errors in many applications [23,26,33,34,86–89].

To quantify the model error and information barriers, let us denote π the probability density
of the perfect model, which is actually unknown in practice. Nevertheless, the least biased estimate
πL based on L measurements of the perfect model during the training phase is typically available.
Therefore, P(π, πL) precisely quantifies the intrinsic error that is due to the ignorance of the
information beyond the L measurements in the perfect model. On the other hand, denote πM the
probability density associated with an imperfect model. Then, the model error in the imperfect model
compared with the truth is given by the difference between πM and π, which is quantified byP(π, πM).
Note that P(π, πM) quantifies the overall model error. Signal-dispersion (e.g., in Equation (6)) and
other decomposition methods are often used to access different components of the model error.
In addition, a general description of the model error in complex turbulent systems includes both
the statistical information in terms of the PDFs and the dynamical information such as the temporal
autocorrelation function. The latter will be emphasized in Sections 2.3–2.5.
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In practice, πM is determined by no more information than the available in the prefect
model. In addition, the imperfect model is typically defined on a subspace of the coarse-grained,
resolved variables of the perfect model. Therefore, throughout the following analysis, we focus on
characterizing the statistical departures of the imperfect model dynamics relative to the perfect model
on these coarse-grained variables u.

Now, consider a class of imperfect modelsM. The best imperfect model for the coarse-grained
variables u is the M∗ ∈ M so that the perfect model has the smallest additional information beyond
the imperfect model distribution πM∗ , namely

P(π, πM∗) = min
M∈M

P(π, πM). (2)

The following general principle [26] facilitates the practical calculation of (2),

P(π, πM
L′ ) = P(π, πL) + P(πL, πM

L′ )

= (S(πL)− S(π)) + P(πL, πM
L′ ).

(3)

In (3), we have assumed in practice that only L measurements are available in the perfect system
and the imperfect model takes into accounts L′ measurements with L′ ≤ L. In (3),

S(πL)− S(π) = −
∫

πL log πL +
∫

π log π (4)

is the entropy difference, which precisely measures an intrinsic error from the L measurements of the
prefect system. Consequently, the optimization in (2) can be computed by replacing the unknown π by
the hypothetically known πL so that the optimal model within the given class satisfies

P(πL, πM∗
L′ ) = min

M∈M
P(πL, πM

L′ ). (5)

The most practical setup for utilizing the framework of empirical information theory in many
applications arises when both the measurements of the perfect system and its imperfect model involve
only the mean and covariance of the resolved variables u so that πL = πG ∼ N (ū, R) and πM :=
πM

G ∼ N (ūM, RM) are both Gaussian. In this case, P(πG, πM
G ) has the explicit formula [2,26]

P(πG, πM
G ) =

[
1
2
(ū− ūM)∗(RM)−1(ū− ūM)

]
+

[
−1

2
log det(RR−1

M ) +
1
2
(tr(RR−1

M )− N)

]
. (6)

The first term in brackets in (6) is called ‘signal’, reflecting the model error in the mean
but weighted by the inverse of the model variance, RM, whereas the second term in brackets,
called ‘dispersion’, involves only the model error covariance ratio, RR−1

M . The signal and dispersion
terms in (9) are individually invariant under any (linear) change of variables which maps Gaussian
distributions to Gaussians. This property is very important for unbiased model calibration.

Next, we introduce the framework for improving model fidelity and model sensitivity [26,27].
Assume both the perfect and imperfect models are perturbed and both distributions vary smoothly
with parameter δ, namely,

πL,δ(u) = πL(u) + δπL(u),
∫

δπL(u)du = 0,

πM
δ (u) = πM(u) + δπM(u),

∫
δπM(u)du = 0.
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Rigorous theorems guarantee this smooth dependence under minimal hypothesis for stochastic
systems [90]. By assuming the parameter δ is small enough and doing leading order Taylor expansion
of (3), we reach the following result:

P(πδ, πM
δ ) =S(πL,δ)− S(πδ) + P(πL, πM) +

∫
log
( πL

πM

)
δπL −

πL

πM δπM

+
1
2

∫ [
π−1

L (δπL)
2 +

πL

(πM)2 (δπM)2 − 2
δπLδπM

πM

]
+ O(δ3).

(7)

In the case with perfect model fidelity in terms of the L measurements, namely P(πL, πM) = 0 or
πL(u) = πM(u), the expansion in (7) becomes

P(πδ, πM
δ ) = S(πL,δ)− S(πδ) +

1
2

∫
π−1

L (δπL − δπM)2 + O(δ3), (8)

where the quadratic discrepancy is measured in the Fisher information metric [91–93].
One important scenario in practice involves measuring only the mean and covariance for an

imperfect model. We denote π2,δ = πG,δ the unbiased Gaussian estimate of the perfect model. For the
simplicity of statement, we further assume both the covariance of the perfect and imperfect models,
Rδ and RM,δ, are diagonal such that Rδ = (Rk) + (δRk) and RM,δ = (RM,k) + (δRM,k), where |k| ≤ N
and (δRk) and (δRM,k) are the covariance response to the external perturbation which are all scalar
variances. In such a Gaussian setup, Equation (7) becomes

P(πδ, πM
δ ) =S(πG,δ)− S(πδ) + P(πG, πM)

+ ∑
|k|≤N

(δuk − δuM,k)
∗R−1

M,k(uk − uM,k)−
1
2
(uk − uM,k)

∗ δRM,k

R2
M,k

(uk − uM,k)

+
1
2 ∑
|k|≤N

[
Rk

RM,k
− 1
] [

δRk
Rk
−

δRM,k

RM,k

]
+ O(δ2).

(9)

Under the same Gaussian assumptions and perfect model fidelity, the formula in (8) becomes

P(πδ, πM
δ ) =S(πG,δ)− S(πδ) +

1
2 ∑
|k|≤N

(δūk − δūM,k)
∗R−1

k (δūk − δūM,k)

+
1
4 ∑
|k|≤N

R−2
k (δRk − δRM,k)

2 + O(δ3),
(10)

where the first summation represents the signal contribution whereas the second summation represents
the dispersion contribution. The formula in (9) or (10) can be applied to quantify the information
barrier in the model sensitivity using imperfect models (see, for example, Sections 2.3 and 4).

The information theory developed here plays important roles in quantifying model error,
model sensitivity and information barrier, assessing data assimilation and prediction skill as well as
developing new reduced-order nonlinear modeling strategies. These topics will all be addressed with
instructive examples in the following sections.

2.2. Information Barriers in Capturing Model Fidelity

Information barriers are defined broadly as the gap of information obtained from the imperfect
model related to that from the perfect one that can never be overcome. In other words, the information
barriers imply the impossibility of generating stochastic models in a given model family that capture
the missing physics. For example, if the minimization of the information model error in (5) remains
significant, then there always exists a portion of information in the perfect model that cannot be
recovered by the reduced imperfect models. Such information barriers play important roles in both
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model fidelity and sensitivity. Quantifying the information barriers have both theoretic and practical
importance. It indicates the futility of model calibration if the information barrier is significant. It can
also be used as a guidance to expand the model family of reduced models for the improvement of
imperfect models.

Below, two simple but illustrative examples will be shown for the information barriers in capturing
model fidelity. The study of these information barriers to more sophisticated turbulent dynamical
models can be found in [30,50]. The information barrier in the model sensitivity will be discussed in
Section 2.3.

2.2.1. First Information Barrier: Using Gaussian Approximation in Non-Gaussian Models

The first piece of information involves using linear Gaussian models to approximate non-Gaussian
nature, which is a typical (crude) strategy in many real-world applications [30,94,95]. In addition to the
intrinsic barrier in capturing the higher-order statistics (namely the non-Gaussian features), the goal
here is to show that there exists an information barrier using the linear Gaussian models in capturing
even the second order statistics of the truth in the presence of a time-periodic forcing.

As a simple but illustrative example, consider the following nonlinear dynamical system:

du
dt

= −γu + F(t) + σuẆu,

dγ

dt
= −dγ(γ− γ̂) + σγẆγ.

(11)

This is a simplified version of the model named as “stochastic parameterized extended Kalman
filter (SPEKF) model” that is widely used in nonlinear data assimilation and prediction [96–99].
Here, u can be regarded as a resolved variable and γ is an unresolved process which interacts with u in a
nonlinear way. The external forcing F(t) is usually a periodic function that mimics the seasonal/annual
cycle or any deterministic cycle that contributes to the system. In (11), the unresolved process γ plays
the role of stochastic damping and therefore the statistics of u can be highly non-Gaussian with
intermittent instabilities. One nice property of the model in (11) is that the time evolution of all the
moments can be written down in closed analytical forms [15,97].

A natural way to approximate u without knowing the detailed structure of the unresolved process
γ is the following mean stochastic model (MSm) [15,41],

duM

dt
= −γ̂uM + FM(t) + σM

u ẆM
u , (12)

where the mean value of the hidden process γ is used in the dynamics of the resolved variable
u. The MSm in (12) is a linear model with additive noise and therefore it has Gaussian statistics.
To understand the information barrier in using the linear and Gaussian MSm to approximate the
nonlinear and non-Gaussian SPEKF-type model in (11), we study the following two dynamical regimes:

Highly Intermittent Regime: σu = 0.5, dγ = 1.2, σγ = 1, γ̂ = 1.5,

Nearly Gaussian Regime: σu = 0.5, dγ = 1.2, σγ = 1, γ̂ = 5.0.
(13)

In both regimes, the periodic forcing is given by F(t) = 5 sin(t). Figure 1 shows sample trajectories
of u and γ in the two regimes, respectively. It is clear that in the highly intermittent regime, γ has a
frequent transition to values below zero, which triggers large bursts in the signal of u, namely the
intermittent instability. On the other hand, in the nearly Gaussian regime, γ stays positive and therefore
the signal of u has no intermittent instability. In panels (a)–(d) of Figure 2, the time evolution of the first
four moments of u is shown. Despite the strong nonlinear interactions between γ and u, the external
forcing F(t) results in periodic behavior in all these statistics. In panels (e)–(g), the PDFs of u at three
different time instants within one period t = 13.5, 15 and 16.5 are demonstrated, which are all highly
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non-Gaussian with significant skewness and kurtosis. As comparison, the skewness and kurtosis in
the nearly Gaussian regime (Figure 3) are tiny and the amplitudes of the periodic oscillation in the
variance, skewness and kurtosis become much weaker.
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Figure 1. Sample trajectories of u and γ in the highly intermittent regime (a,b) and nearly Gaussian
regime (c,d), respectively. The parameters are given in (13). In (b,d), the dotted line γ = 0 indicates the
instability threshold, where γ below zero corresponds to the unstable phases of u.
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Figure 2. Highly intermittent regime. (a–d): the first four moments (mean, variance, skewness and
kurtosis) of u. (e–g): Probability density functions (PDFs) of u at t = 13.5, 15 and 16.5. These simulations
are based on Monte Carlo with 100,000 samples. Note that, due to the intermittent unstable events, the
calculation of the high order moments of u becomes sensitive to the samples.
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Figure 3. Nearly Gaussian regime. Same captions as in Figure 2.

Let’s denote π the PDF of the nonlinear dynamics in (11) and πM
G = πM

2 that of the MSm in (12).
It is clear according to (3) that there is an intrinsic barrier S(π)− S(πG) due to the non-Gaussian
nature of π. Next, we show that there exists an information barrier in the statistics of MSm πM

G even
compared with the Gaussian approximation of π. Below, the mean and variance of u from the perfect
model are both computed using their closed analytical forms [97].

First, we take the same parameters FM(t) = F(t) and σM
u = σu in the MSm (12) as those in

the perfect model (11). The time evolutions of the mean 〈u(t)〉 and the variance Var(u(t)) within
one period at the statistical equilibrium from the MSm (blue) are shown in panels (a) and (b) of
Figure 4. Although the evolution of the mean using MSm is quite close to the truth (black), the
variance is strongly underestimated. This is as expected since a large portion of the variance comes
from the intermittent events while the MSm stabilizes the system and does not allow such large
bursts. As a consequence, the dispersion part of the model error, as defined in (6), becomes huge.
Interestingly, despite the small error in the time evolution of the mean (panel (a)), the signal part of
the model error remains significant. In fact, according to (6), the signal part of the model error is
weighted by the inverse of the model variance, the severe underestimation of which results in such a
large error. To overcome the issue of underestimating the variance, a common strategy in improving
imperfect model is to inflate the stochastic forcing coefficient σM

u [29,100,101]. Here, the optimization
is based on the minimization of the averaged information content P(π, πM) between the perfect and
imperfect models within one period at the statistical equilibrium. In panel (f), we show P(π, πM) as a
function of σM

u . With an inflation of σM
u , the model error does decrease significantly. However, even at

the minimum of the curve where σM∗
u = 1.5, the model error is still far from zero. In fact, due to

the linear nature of the MSm, the forcing FM(t) in the MSm only affects the evolution of the mean.
The periodic behavior in the variance can never be captured by the MSm (see panel (h)), which leads
to an information barrier. As comparison, the nonlinearity in the nearly Gaussian regime as shown
in Figure 5 is much weaker and therefore the information barrier becomes insignificant. In Figure 6,
the optimal stochastic forcing σM∗

u as well as the information barrier as a function of γ̂ are shown. It is
clear that the information barrier decreases when the dynamical regime goes more towards Gaussian
(with an increase of γ̂).
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Figure 4. Highly intermittent regime. (a,b): time evolutions of the mean 〈u(t)〉 and variance Var(u(t))
within one period in the statistical equilibrium; (c–e): total model error, model error in the signal part
and model error in the dispersion part. The results shown from both mean stochastic model (MSm)
and Gaussian closure model (GCm) in (a–e) are equipped with the same parameters as those in the
perfect model; (f): averaged model error P(π, πM) as a function of σM

u ; (g–k) are similar to those in
(a–e) except that the stochastic forcing coefficient σM

u is optimized.
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Figure 6. (a): optimal noise coefficient σM
u in MSm and GCm as a function of γ̂. The larger the γ̂ is, the

corresponding dynamical regime is more Gaussian; (b): the corresponding minimal information model
error (information barrier) averaged over a period in the statistical equilibrium.

The above analysis indicates an important fact. That is, even if only the first two moments
(mean and variance) are taken into account in the perfect model, the linear MSm still fails to capture
the evolution of these Gaussian statistics, which evolve in a strongly nonlinear way driven by the
underlying nonlinear perfect dynamics. Such an information barrier cannot be overcome unless the
imperfect model contains nonlinear information. In practice, various closure models are used to
approximate the nonlinear behavior in the underlying perfect model. Below, we briefly report the
results using a simple Gaussian closure model (GCm) [73,102,103]. Recall the Reynolds’ decomposition

u = ū + u′, γ = γ̄ + γ′,

where ·̄ is the ensemble mean and ·′ is the fluctuation with ·̄′ = 0. With the Reynolds’ decomposition,
the evolution equations of the mean 〈u〉 = ū, 〈γ〉 = γ̄, the variance Var(u) = u′2, Var(γ) = γ′2 and the
covariance Cov(u′, γ′) = u′γ′ are given by

dū = (−γ̄ū− u′γ′ + FM(t))dt,

dγ̄ = −dM
γ (γ̄− γ̂M)dt,

du′2 = (−2ūu′γ′ − 2u′2γ̄ + (σM
u )2 − 2u′2γ′)dt,

dγ′2 = (−2dM
γ γ′2 + (σM

γ )2)dt,

du′γ′ = [−(γ̄ + dM
γ )u′γ′ − ūu′2 − u′γ′2]dt.

(14)

Note that the third and the fifth equations of (14) involve triad interactions u′γ′2 and −2u′2γ′,
which represent the third order moments. These triad terms come from the nonlinearity of the
underlying perfect system. In fact, the perfect model involves quadratic nonlinearity, and therefore the
evolution of the k-th order moments always depend on the k + 1-th order ones. To close the system,
the Gaussian closure model assumes u′γ′2 = −2u′2γ′ = 0. The resulting system then involves only
the interactions between the mean and covariance,
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dū = (−γ̄ū− u′γ′ + FM(t))dt,

dγ̄ = −dM
γ (γ̄− γ̂M)dt,

du′2 = (−2ūu′γ′ − 2u′2γ̄ + (σM
u )2)dt,

dγ′2 = (−2dM
γ γ′2 + (σM

γ )2)dt,

du′γ′ = [−(γ̄ + dM
γ )u′γ′ − ūu′2]dt.

(15)

In Figure 4, it is clear from panel (b) that even using exactly the same parameters in GCm as in
the perfect one and without optimizing σM

u , the variance recovered from the GCm is much improved
compared with that from the MSm. This indicates the fact that the information barrier can be largely
overcome by taking into account the nonlinearity in the imperfect model. The remaining error comes
from ignoring the third order moments u′γ′2 and −2u′2γ′, which are nonzero in the intermittent
non-Gaussian regime. More elaborate closure model techniques involve calibrating the third order
moments using various approximations [11,44,104], which are not necessary in this simple example
but have been shown to be crucial for more complex turbulent dynamical systems. Such topics will
be discussed in detail in Section 6.3. Notably, the periodic behavior in the variance using the GCm is
captured due to the nonlinear interactions between mean and variance. For example, the time-periodic
mean ū appears in the equation of u′2. This is a significant difference compared with the linear MSm.
Finally, with the optimal choice of σM

u (panel (f)), the information model error here becomes negligible.

2.2.2. Second Information Barrier: Using Single Point Correlation to Approximate Full Correlation Matrix

The strategy with single point statistics is widely used in climate science [105]. The single point
statistics takes into account only the variance at each grid point and ignores the correlations between
different grids. Despite the fact that both equilibrium consistency and sensitivity in response in single
point statistics can be achieved by turning at most one parameter of the imperfect model, such a
strategy is not enough for desirable model performance, which can be measured by the information
barrier [10,26,27]. Such an information barrier was first quantified in [44,50]. In the following, we show
this information barrier.

Let the PDF from the true model be π(u) with u = (u0, u1, . . . uJ−1)
T as before. Consider a

Gaussian imperfect model where we only measure pointwise marginal PDF πM
1pt(uj) ≡ πM

1pt,j at each
grid pint j = 0, . . . , J− 1. Then, we construct the PDF with only single point statistics from the marginal
distribution as πM

1pt = ∏J−1
j=0 πM

1pt,j. According to [34], the information distance between the truth and
imperfect model prediction has the form:

P(π, πM
1pt) = S(πG)− S(π) + P

(
πG,

J−1

∏
j=0

πG
1pt,j

)
+

J−1

∑
j=0
P(πG

1pt,j, πM
1pt,j), (16)

with πG
1pt,j = N (ūj, Rj). The first part on the right-hand side of (16) is the intrinsic information barrier

in Gaussian approximation. The third part is the model error in the imperfect model as compared
to the single point statistics of the perfect model Gaussian fit, which can be vanished (or at least be
minimized) by calibrating the imperfect model. The error from single point approximation by ignoring
the cross-covariance then comes only from the information barrier in the marginal approximation as
shown in the second part on the right-hand side of (16).

Below, we assume the true system is statistically homogeneous, which means the statistics is
invariant at different grid points. This is in fact a typical feature in many real applications [2,106,107].
With statistical homogeneity, it is straightforward to show [50] that the diagonal entries of the
covariance matrix corresponding to the single point approximation are all the same R1pt. In addition,
the covariance matrix R̂ in the spectral space (associated with the Fourier modes of u) is also a diagonal
matrix. Denote R̂j the j-th diagonal entry of R̂:
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R̂j = J
J−1

∑
n=0
〈u′0u′n〉e2πinj/J , (17)

where u′n is the n-th component of u by subtracting the mean. Therefore, R̂1pt =
∑J−1

j=0 R̂j

J . By further
assuming the same pointwise mean for πG and its single point approximation, the information barrier
due to single point statistics approximation becomes

P
(

πG,
J−1

∏
j=0

πG
1pt,j

)
=

J/2

∑
k=J/2+1

[
− log det(R̂kR̂−1

1pt) + tr(R̂kR̂−1
1pt − I)

]

= −
J/2

∑
k=J/2+1

log det(R̂kR̂−1
1pt) + tr

[
J/2

∑
k=J/2+1

(R̂kR̂−1
1pt − I)

]

= − log

(
J/2

∏
k=J/2+1

det R̂k

det R̂1pt

)

= J log

 det
(

∑J−1
j=0 R̂j/J

)
(

∏J−1
j=0 det R̂j

)1/J

 ,

(18)

where the second equality just applies the definition of R1pt such that ∑J/2
k=−J/2+1

(
RkR−1

1pt − I
)
= 0.

In addition to compute the information barrier explicitly using (18), the following result provides
an effective estimation of such an information barrier,

P
(

πG,
J−1

∏
j=0

πG
1pt,j

)
∼ O

(
(σmax − σmin)

2
)

, (19)

where σmax and σmin are the largest and smallest variances in R̂. See [50] for more details.
Below, we construct a simple linear system to illustrate the information barrier due to the single

point statistics approximation and showing the calculation of the formula in (18). An illustration of
such information barrier based on a more sophisticated (40-dimensional) turbulent system is included
in [50]. Here, the truth is given by a two-dimensional linear model,

du0

dt
= L00u0 + L01u1 + σu0Ẇu0 ,

du1

dt
= L10u0 + L11u1 + σu1Ẇu1 ,

(20)

with the following parameters

L =

(
L00 L01

L10 L11

)
=

(
−1 0.5
0.5 −1

)
, Σ =

(
σu0

σu1

)
=

(
1

1

)
. (21)

It is easy to check that the two eigenvalues of L are λ1 = −1.5 and λ2 = −0.5 and therefore the
linear system (20) is stable. In addition, due to the non-zero coefficients L01 and L10, u0 and u1 are
correlated. Figure 7 shows the sample trajectories of the two-dimensional model (20) with parameters (21).
The covariance matrix and statistical equilibrium can be written down explicitly [15],

R =
1
3

(
2 1
1 2

)
. (22)
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The non-zero off-diagonal entries clearly indicate the cross-covariance between u0 and u1. Now,
we implement the single point statistics approximation, which ignores the off-diagonal entries in (22)
and the result is

R1pt =
1
3

(
2

2

)
. (23)

Since this example is extremely simple, it is straightforward to compute the information barrier
by plugging the covariance matrices (22) and (23) as well as the zero mean into the explicit formula of
the relative entropy (6), which yields

P
(

πG,
J−1

∏
j=0

πG
1pt,j

)
= 0.1438. (24)

Alternatively, according to (17), it is also easy to show that R̂ is a diagonal matrix and is given by

R̂ =

(
R̂0

R̂1

)
, (25)

where

R̂0 = 2 (〈u0u0〉+ 〈u0u1〉) = 2,

R̂1 = 2 (〈u0u0〉 − 〈u0u1〉) =
2
3

.
(26)

Plugging (26) into (18) gives the same result as in (24). This clearly shows the information barrier
due to single point statistics approximation. Panels (c) and (d) in Figure 7 show true joint probability
density function (PDF) π(u0, u1) and the one with single point statistics approximation, the difference
between which indicates the information barrier.
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Figure 7. (a,b): sample trajectories of the two-dimensional model (20) with parameters (21); (c): true joint
PDF associated with (a,b); (d): joint PDF with single point statistics approximation.

2.3. Intrinsic Information Barrier in Predicting Mean Response to the Change of Forcing

In Section 2.2, we have demonstrated the information barrier in the model fidelity via simple but
illustrative examples. In this section, we aim at using a simple example to illustrate the intrinsic information
barrier in the model sensitivity. Ref. [27] is a good reference for this topic. The example shown here also
reveals the following fact. Even if the model fidelity represented by the equilibrium PDF is captured,
the dynamical feature in the perfect model can still be missed if the model sensitivity is not recovered by
the imperfect model. Therefore, both the model fidelity and model sensitivity are required in calibrating
the imperfect model, which will be discussed with more details in Sections 5 and 6.

Here, the focus is the mean response to the change of forcing in linear models. A general framework
of any system response (e.g., variance or higher order moments) to different types of external perturbations
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(e.g., forcing, dissipation or phase) in complex nonlinear model will be developed in Section 4 using the
so-called fluctuation–dissipation theorem (FDT).

Consider a general linear system with noise

du
dt

= Lu + F + σẆ. (27)

In (27), L is a linear operator whose eigenvalues all have a negative real part, which guarantees
the existence of a Gaussian statistical steady state of u. Here F is an external forcing, which can be a
function of time t, and Ẇ is stochastic white noise. Now, we impose a forcing perturbation δF to the
original system in (27)

duδ

dt
= Luδ + F + δF + σẆ. (28)

Since both (27) and (28) are linear models, the mean values 〈u〉 and 〈uδ〉 at the statistical steady
state can be written explicitly,

〈u〉 = L−1F, and 〈uδ〉 = L−1 (δF + F) .

Therefore, the mean response of u to the forcing perturbation δF is given by

〈δu〉 = 〈uδ − u〉 = L−1δF. (29)

In practice, model error is usually inevitable. A suitable imperfect model is expected to generate
at least the same mean response as in the perfect model in (29) in addition to the model fidelity.

A typical situation with model error for complex systems arises when the true system has
additional degrees of freedom that are hidden from the family of imperfect models due to either the
lack of scientific understanding or practical lack of computational resolution. The simple example
below involves such features.

Consider the following perfect model with linear stochastic equations,

du
dt

= au + v + F,

dv
dt

= qu + Av + σẆ,
(30)

where Ẇ is white noise. The system in (30) has a smooth Gaussian statistical steady state provided that

a + A < 0, aA− q > 0. (31)

In (30), u can be treated as a resolved variable while v is a hidden one. All the imperfect models
are given by the scalar stochastic equation that involves only the process of the observed variable,

duM
dt

= −γMuM + FM + σMẆM. (32)

It is natural to require γM > 0 such that the imperfect model (32) has a Gaussian statistical steady
state. Next, the imperfect model (32) is tuned to capture the model fidelity in the perfect system (30)
by matching the equilibrium mean and variance of u and uM. This implies

FM
γM

= − AF
aA− q

,
σ2

M
2γM

=
σ2

2(a + A)(aA− q)
≡ E (33)

with a suitable choice of the three tuning parameters FM, σM and γM(> 0), it is clear that the conditions
in (33) can always be satisfied.
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In addition to the model fidelity, an important and practical issue is to understand the response of
the system to the external forcing perturbation δF. Therefore, it is crucial to have an imperfect model
that has the same forcing response as the perfect model. To test the response of the external forcing,
we replace F and FM by F + δF and FM + δF in the two linear systems (30) and (32), respectively.
Note that the external forcing will not change the variance in linear systems. The only change in the
equilibrium response is through the change in mean,

δu = − A
aA− q

δF, δuM =
1

γM
δF. (34)

Now assume A > 0 in the perfect model (30). We claim that no model in the family (32) can match
the response of u correctly. In fact, with A > 0 and aA− q > 0 as required in (31), δu ∝ −δF. However,
γM > 0 implies δuM ∝ δF. In other words, the responses in the perfect and imperfect models are
always anti-correlated, which implies an information barrier. To quantify this information barrier, we
insert the response of mean (35) into (10) and make use of the fact that the response in the variance is
always zero. Then, (10) yields

P(πδ, πM
δ ) =

1
2

E−1
∣∣∣∣− A

aA− q
− 1

γM

∣∣∣∣ |δF|2. (35)

It is clear that with A > 0 there is no finite minimum over γM of (35) and necessarily γM → ∞
in the approach to this minimum value. Thus, there is an intrinsic information barrier to skill in
the mean response that cannot be overcome with the imperfect models in (32) even if they satisfy
perfect model fidelity (33). On the other hand, if A < 0, then (35) indicates a unique minimum with
γ∗M = −A−1(aA− q), in which case both the model fidelity and mean response are captured.

2.4. Slow-Fast System and Reduced Model

An important practical issue for complex dynamical systems is how to account for the indirect
influence of the unresolved variables uII on the response of the resolved variables uI beyond bare
truncation formulae. The importance of this has already been in Sections 2.2 and 2.3 for calibrating
the model fidelity and predicting the mean response using linear imperfect models. Understanding
this issue also has practical significance since simplified models are always preferred to decrease
the computational cost in solving the complex multiscale dynamical systems. Therefore, developing
reduced stochastic models for the variables uI with high skill for the low-frequency response is
a central issue. While nature can be highly nonlinear and non-Gaussian, the focus here is linear
systems with slow-fast multiscale features. Below, we will show that the stochastic mode reduction
techniques [40,108–110] are able to produce a reduced stochastic model for the low-frequency variables
uI. Despite its simplicity, such a reduced stochastic model has exactly the same mean response
operator as that in the complete stochastic system! More Gaussian and non-Gaussian examples can be
found in [111].

Consider a linear multiscale stochastic model for variables u = (uI, uII)
T given by

duI

dt
= L11uI + L12uII + FI,

duII

dt
= L21uI −

Γ
ε

L22uII + FII +
σ

ε1/2 Ẇ,
(36)

which can also be written in a compact form

du
dt

= Lεu + σεẆ + F, with Lε =

(
L11 L12

L21 − Γ
ε

)
. (37)
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The parameter ε > 0 in (36) can be large or small. Here, we require that Lε has eigenvalues with a
negative real part for all ε and in particular

(L11u, u) < 0, (Γu, u) > 0. (38)

for u 6= 0. These requirements guarantee that Lε is invertible and the climate mean state is given by
〈u〉 = −(Lε)−1〈F〉. This together with (37) and (38) implies in particular that the change in the first
components of the climate mean state, δ〈uI〉, in response to a change in forcing, δF1, is given exactly by

δ〈uI〉 = (Lε)−1
11 δFI,

(Lε)−1
11 = (L11 + εL12Γ−1L21)

−1.
(39)

Stochastic mode reduction techniques [40,108–110] systematically produce a reduced stochastic
model for the variables uI alone, which is a valid model in the limit ε → 0; such models often have
significant skill for moderate variables of ε [112,113]. Here, we focus on their skill in producing infinite
time-mean response in (39) of the full dynamics from (36) independent of ε.

First, the local equations in (36) can be rewritten exactly as an equivalent equation with memory
in time for the uI variable alone [114] given by

duI

dt
= L11uI + FI + L12

∫ t

0
e−(Γ/ε)(t−s)[L12uI(s) + FII(s)

]
ds + L12ε−1/2

∫ t

0
e−(Γ/ε)(t−s)σdW(s). (40)

For simplicity in exposition, zero initial data are assumed for uII. As discussed in detail [40,109],
the second and third terms in (40) simplify in the limit ε → 0 and yield reduced simplified local
stochastic dynamics for uI alone given by

dũI

dt
=
(
L11 + εL12Γ−1L21

)
ũI + ε1/2L12(−Γ)−1σẆ + FI + εL12(−Γ)−1FII. (41)

This is an explicit example of stochastic mode reduction where the variables uII have been
eliminated and there is a reduced local stochastic equation for ũI alone with explicit corrections that
reflect the interaction with the unresolved variables. Here, we address the skill of the approximation
in (41) in recovering the exact mean climate response in (39) independent of ε. Reasoning as discussed
earlier in general below (38), the response of the climate mean in (41) to a change in forcing is given
exactly by

δ〈ũI〉 =
(
L11 + εL12Γ−1L21

)−1
δFI. (42)

Remarkably, the mean response operator in (42) coincides exactly with the projected mean climate
response operator in (39) for the complete stochastic system in (36) for any value of ε > 0! This general
result points to the high skill of the response for the reduced stochastic model in calculating the mean
climate response. Note that the asymptotic behavior and the filtering skill of the linear multiscale
stochastic model in (36) have both been studied in [115].

We wrap up this subsection with the following remark. Unlike the linear models as shown
in Sections 2.3 and 2.4, direct calculations of the response in general nonlinear models become
a great challenge. Nevertheless, fluctuation–dissipation theorem (FDT) provides an efficient and
practical way for computing the response in nonlinear systems. The general framework of FDT will
be developed in Section 4. Note that low-frequency regimes of general circulation models (GCMs)
typically exhibit subtle but systematic departures from Gaussianity. In [41], the stochastic mode
reduction technique is applied to a simple prototype nonlinear stochastic model that mimics structural
features of low-frequency variability of GCMs with non-Gaussian features [116]. FDT is then used to
study the skill of the resulting reduced nonlinear stochastic models.
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2.5. Fitting Autocorrelation Function of Time Series by a Spectral Information Criteria

As was seen in the previous subsections, the model sensitivity is applied to quantify the
information of the temporal evolution of the system. In fact, the autocorrelation function of a given
stochastic system is a simple and easily computed measurement that can be used for accessing the
model sensitivity. In this subsection, we make use of the autocorrelation to quantify the model
sensitivity based on a new information-theoretic framework. Autocorrelation is the correlation of a
signal with a delayed copy of itself, as a function of delay. For a zero mean and stationary random
process u, the autocorrelation function can be calculated as

R(t) = lim
T→∞

1
T

∫ T

0

u(t + τ)u∗(τ)
Var(u)

dτ. (43)

Clearly, a linear Gaussian process is completely determined by its mean and autocorrelation
function, where the autocorrelation function characterizes the memory of the system. Therefore,
an accurate estimation of the autocorrelation function in the imperfect models plays an important role
in prediction. In many applications, the integral of the autocorrelation function,

τ =
∫ ∞

0
R(t)dt, (44)

which is known as the decorrelation time, is used for model calibration. Although fitting the
decorrelation time in the imperfect model is a simpler strategy, it is however insufficient for pointwise
agreement with the true autocorrelation. In particular, if the underlying nonlinear turbulent dynamics
has a slow mixing rate and involves wave-like behavior, then the profile of the true autocorrelation
function is very likely to be a damped oscillation. As a consequence, fitting only the decorrelation
time in the imperfect model results in a large model error due to the failure of capturing the detailed
oscillation structures of the autocorrelation function, which severely deteriorates the prediction skill.
Thus, it is of practical importance to calibrate the autocorrelation function in imperfect models in order
to capture the dynamical features beyond the equilibrium statistics of the truth. The autocorrelation
function is also directly linked with the model sensitive in terms of the mean response as well as the
prediction skill.

Information theory provides a rigorous and practical way to quantify the error in the two
autocorrelation functions associated with the perfect and imperfect models respectively [81,117].
However, direct application of the information distance in (1) is not suitable for measuring the
difference between the two autocorrelation functions. This is because the autocorrelation function
R(t) may oscillate with negative values while π and πM have to be positive in (1). To generalize the
information-theoretic framework to include the autocorrelation functions, the theory of spectral
representation of stationary random fields [118] is exploited here. It is proved by Khinchin’s
formula [118] that if the autocorrelation function R(t) is smooth and rapid-decay, which is the typical
property for most systems, then there exists a non-negative function E(λ) ≥ 0 such that

R(t) =
∫ ∞

−∞
eiλtdF(λ), (45)

with dF(λ) = E(λ)dλ a non-decreasing function. Therefore, the spectral representation of the
stationary process of u can be constructed as

u(t) =
∫ ∞

−∞
eiλtẐ(dλ). (46)
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The exact spectral random measure Ẑ(dλ) has independent increments whose energy spectrum
can be represented by E(λ) or dF(λ)

dF(λ) = E(λ)dλ = E
∣∣Ẑ(dλ)

∣∣2 .

Applying the theory for spectra representation of stationary processes, an one-to-one
correspondence between the autocorrelation function R(t) and non-negative energy spectra E(λ)
together with the spectral representation Ẑ(dλ) of the process u(t) can be found. Consider the
approximation of this random process with only second order statistics by a lattice random field with
spacing ∆λ. By independence, the true increment Ẑ(∆λj) = Ẑ(λj + ∆λ)− Ẑ(λj) has the second order
Gaussian probability density function approximation

Ẑ(∆λ) ∼ pG(x; λ)∆λ = N (0, E(λ)∆λ),

and the corresponding spectral representation from the imperfect model also has the density function

ẐM(∆λ) ∼ pM
G (x; λ)∆λ = N (0, EM(λ)∆λ),

where N (µ, σ2) denotes a Gaussian random variable with mean µ and variance σ2. Since the spectral
measure has independent increment, we approximate the true and imperfect model Gaussian random
fields by

pG = ∏
j
N (0, E(λj)∆λ), pM

G = ∏
j
N (0, EM(λj)∆λ).

Then, the normalized relative entropy between these two Gaussian fields becomes

P(pG, pM
G ) = ∑

j
P
(

pG(x; λj), pM
G (x; λj)

)
∆λ,

→
∫ ∞

−∞
P
(

pG(x; λ), pM
G (x; λ)

)
dλ, as ∆λ→ 0

Therefore, given spectral density E(λ) and EM(λ), the spectral relative entropy is given by

P(pG, pM
G ) = P(E(λ), EM(λ)) :=

∫ ∞

−∞
P
(

pG(x; λ), pM
G (x; λ)

)
dλ, (47)

where we slightly abuse the notion above by using the spectra E(λ) to denote density functions.
Since E and EM are variances for the spectral random variables, it is well-defined in the last part of the
above formula (47) using the information distance formula (1). Through measuring the information
distance in the spectral coefficients Ẑ(λ), we arrive at the lack of information in the autocorrelation
function R(t) from the model. See [81] for more details as well as an efficient algorithm of solving (47).

Finally, let there be the set of parameters θ for the imperfect model. Minimum relative entropy
criterion implies the process of minimizing the lack of spectral information distance by picking the
optimal parameter set θ∗ for the imperfect model so that

P(E(λ), EM(λ, θ∗)) = min
θ
P(E(λ), EM(λ, θ)). (48)
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The following example makes use of the above spectral information criteria to reveal the
importance in calibrating the autocorrelation function in the imperfect linear prediction model.
The perfect model considered here is a noisy version of the so-called Lorenz 84 model [119,120],

dx
dt

= −(y2 + z2)− a(x− f ) + σxẆx,

dy
dt

= −bxz + xy− y + g + σyẆy,

dz
dt

= bxy + xz− z + σzẆz.

(49)

This model is an extremely simple analogue of the global atmospheric circulation and the
noise-free version can be derived as a Galerkin truncation of the two-layer quasigeostrophic potential
vorticity equations in a channel [121]. In (49), x represents the intensity of the mid-latitude westerly
wind current while y and z represent the cosine and sine phases of a chain of vortices superimposed
on the zonal flow.

With g = 0, the processes y and z in (49) form a pair of stochastic nonlinear oscillator through
the skew-symmetric terms −bxz and bxy, where the frequency of the oscillation is stochastic and it
depends on the amplitude of x. Meanwhile, x also plays the role of stochastic damping, which can be
seen in the nonlinear terms xy and xz that modify the wave amplitudes.

The parameters used in this test are as follows:

a = 5, b = 2, f = 1, g = 0, and σx = σy = σz = 0.1. (50)

In Figure 8, sample trajectories and the corresponding autocorrelation functions associated with
x, y and z in Equation (49) with parameters (50) are shown. It is clear that the autocorrelation functions
associated with y and z oscillate and decay to zero, which satisfies the features of wave pairs.
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Figure 8. (a–c): sample trajectories of noisy Lorenz 84 model in (49); (d–f): the corresponding
autocorrelation functions.

The goal here is to predict the vortex variables y and z. The imperfect model for prediction is a
mean stochastic model (MSm) with a constant phase,

duM

dt
= (−dM

u + iωM
u )uM + σM

u Ẇ. (51)
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Note that uM is a complex process and its real and imaginary parts correspond to the pair of
vortex y and z in (49), respectively. Due to the simple linear structure, the autocorrelation function
RM(t) and spectra density EM(λ) of the MSm in (51) can be written down explicitly,

RM(t) = exp
(
(−dM

u + iωM
u )t

)
, and EM(λ) =

2dM
u

(dM
u )2 + (λ−ωM

u )2
. (52)

The model (51) has three parameters to determine: dM
u , ωM

u and σM
u . Now, we apply the spectral

relative entropy in (47) and make use of the analytic formula in (52) for EM(λ) to implement the
optimization (48). Note that the spectra density EM(λ) in (52) does not depend on the stochastic
forcing coefficient σM

u . Therefore, the optimization in (48) is over all the possible choices of dM
u and

ωM
u . This gives the following results:

Optimal parameters by fitting the autocorrelation function:

dM
u = 0.1, and ωM

u = 1.85.
(53)

For comparison, we also adopt the traditional parameter estimation strategy in MSm by fitting
only the decorrelation time (44) [15]:

Optimal parameters by fitting only the decorrelation time:

dM
u = 5.0, and ωM

u = 1.85.
(54)

The remaining parameter σM
u is calibrated by matching the variance of y and Re(uM) at the statistical

steady state, which results in σM
u = 0.205 in Case (53) and σM

u = 1.850 in Case (54). In Figure 9, two sample
trajectories of Re(uM) and the corresponding autocorrelation functions with parameters in (53) and (54)
are shown. It is clear that the sample trajectory of Re(uM) and the corresponding autocorrelation function
with parameters in (53) highly resemble those of y in Figure 8. On the other hand, the decorrelation
time of y is very short, which is due to the canceling out of the oscillation patterns with positive and
negative values by integrating the autocorrelation function. Thus, the oscillation patterns in the trajectory
of Re(uM) are overwhelmed by the noise due to the strong mixing property when the model is calibrated
using only the decorrelation time (Panels (c) in Figure 9). This example indicates the necessity of using
the information criterion developed here for calibrating the autocorrelation function rather than simply
matching the decorrelation time as used in many earlier works.

Finally, in Figure 10, we show the prediction of the time evolution of the mean and variance of
y and Re(uM) starting from the same initial value y = Re(uM) = 1 and others = 0. In column (a),
the mean evolution of Re(uM) from the linear model (51) captures that of y in the nonlinear Lorenz 84
model (49) quite accurately with a significant oscillation structure. The trend of the variance using the
linear model is also quite similar to that using the Lorenz 84 model, though the oscillation structure in
the variance due to the fact that the nonlinearity in the Lorenz 84 model is not predicted by the linear
MSm. The latter has already been discussed in [111] and in Section 2.2.1 as an information barrier.
On the other hand, by calibrating only the decorrelation time (Column (b) in Figure 10), the time
evolutions of the mean and variance have dramatically fast relaxations towards the statistical steady
state, which are completely different from the truth.

In [81], the information theory as shown above has been applied to calibrate more complicated
reduced order models. The calibrated models succeed in predicting fat-tailed intermittent PDFs in
passive scalar turbulence.
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(c)  Sample trajectory of Re(uM) (Fitting only the decorrelation time)
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Figure 9. Panels (a,b): Sample trajectories and the corresponding autocorrelation functions of Re(uM)

with parameters in (53). Panels (c,d) those with parameters in (54).
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(b) Fitting only the decorrelation time
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Figure 10. Time evolutions of mean and variance in the perfect model of y and imperfect model
of the real part of uM. (a): the parameters in the imperfect model are calibrated by matching the
autocorrelation function (53); (b): the parameters in the imperfect model are calibrated by matching
only the decorrelation time (54).

3. Quantifying Model Error with Information Theory in State Estimation and Prediction

3.1. Kalman Filter, State Estimation and Linear Stochastic Model Prediction

Filtering (also known as data assimilation or state estimation) is the process of obtaining the
optimal statistical estimate (based on a Bayesian framework for example) of a natural system from
partial observations of the true signal. Important contemporary examples involve the real-time
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filtering and prediction of weather and climate as well as the spread of hazardous plumes or
pollutants [13–16,122–124].

The general procedure of filtering complex turbulent dynamical systems with partial and noisy
observations contains two steps at each time step t = m∆t. The first step involves a statistical prediction
of a probability distribution um+1|m starting from the initial value um|m using the given dynamical
model. Then, in the second step, um+1|m is corrected on the basis of the statistical input of noisy
observation vm+1, which results in um+1|m+1. See the illustration of Figure 11.

tm+1tm tm tm+1

um+1|m(prior)

um+1|m

(observation)
vm+1

um|m

(posterior)
(prior)

true signal true signal

um+1|m+1

(posterior)

vm+1

(observation)

2. Analysis (Filtering)1. Prediction (Forecast)

Figure 11. Illustration of the prediction-filtering procedure.

For linear system with Gaussian noise, the above procedure is known as the Kalman filter [125–127].
Below, we summarize the Kalman filter for a one-dimensional complex variable [13,15,17].

Let um ∈ C be a complex random variable whose dynamics are given by the following:

um+1 = Fum +Fm+1 + σm+1, (55)

where σm+1 is a complex Gaussian noise with σm+1 = (σ1,m+1 + iσ2,m+1)/
√

2 and it has zero mean
and variance r = 〈σm+1σ∗m+1〉 =

1
2 ∑2

j=1〈σ2
j,m+1〉. Here, F is a complex number known as the forward

operator and F is an external forcing which can vary in time. The goal of the Kalman filter is to
estimate the unknown true state um+1, given noisy observations

vm+1 = gum+1 + σo
m+1, (56)

where g is a linear observation operator and σo
m ∈ C is an unbiased Gaussian noise with variance

ro = 〈σo
m(σ

o
m)
∗〉. The Kalman filter is the optimal (in the least-squares sense) solution found by

assuming that the model and the observation operator that relates the model state with the observation
variables are both linear and both the observation and prior forecast error uncertainties are Gaussian,
unbiased and uncorrelated. In particular, the observation error distribution of v at time tm+1 is a
Gaussian conditional distribution

p(vm+1|um+1) ∼ N (gum+1, ro), (57)

which depends on the true state um+1 through (55). In (57), p(vm+1|um+1) is known as the likelihood
of estimating um+1 given observation vm+1.

Assume the filter model is perfectly specified [128]. An estimate of the true state prior to knowledge
of the observation at time tm+1, which is known as the prior state or forecast state, is given by

um+1|m = Fum|m +Fm+1 + σm+1. (58)



Entropy 2018, 20, 644 25 of 98

See the first step in Figure 11. From the probabilistic point of view, we can represent this prior
estimate with a probability density p(um+1). This prior distribution acounts only for the earlier
observations up to time tm,

p(um+1) ∼ N (ūm+1|m, rm+1|m), (59)

where the prior mean and prior variance

ūm+1|m ≡ 〈um+1|m〉,

rm+1|m ≡ 〈(um+1 − ūm+1|m)(um+1 − ūm+1|m)
∗〉,

(60)

are solved via

ūm+1|m = Fūm|m +Fm+1,

rm+1|m = Frm|mF∗ + r,
(61)

with rm|m = 〈(um − ūm|m)(um − ūm|m)
∗〉. Note that in order to solve the prior distribution p(um+1|m),

the posterior information in the previous step ūm|m, rm|m has been used.
Next, we derive the posterior state (or the filtered state) that combines the prior information

p(um+1|m) with the observation vm+1 at tm+1. This estimate is given in the probabilistic sense by the
Bayesian update through maximizing the following conditional density,

p(um+1|vm+1) ∼ p(um+1)p(vm+1|um+1) = e−
1
2 J(um+1), (62)

which is equivalent to minimizing

J(u) =
(u− ūm+1|m)

∗(u− ūm+1|m)

rm+1|m
+

(vm+1 − gu)∗(vm+1 − gu)
ro .

The value of u at which J(u) attains its minimum is the estimate for the mean and is given by

ūm+1|m+1 = (1− Km+1g)ūm+1|m + Km+1vm+1, (63)

where
Km+1 =

grm+1|m
ro + g2rm+1|m

(64)

is the Kalman gain. Note that 0 ≤ Km+1g ≤ 1. The filter fully weighs to the model or prior forecast
when Km+1g = 0 and fully weighs to the observation when Km+1g = 1. Such weights depend on the
ratio of the uncertainty (reflected by the noise) in the observations and the model. Finally, the posterior
variance is calculated via the following:

um+1 − ūm+1|m+1 = um+1 − ūm+1|m − Km+1(vm+1 − gum+1 − g(ūm+1 − um+1))

em+1|m+1 = (1− Km+1g)em+1|m − Km+1σo
m+1.

(65)

These result in the expression of the posterior variance

rm+1|m+1 = (1− Km+1g)rm+1|m. (66)

Note that the above Kalman filter is designed for a linear system with Gaussian noise. In practice,
different generalizations of the Kalman filter and various nonlinear filters such as the ensemble Kalman
filter, particle filter and blended filtering techniques are applied to nonlinear and non-Gaussian systems.
See [13–17,101,129,130] for more details.
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3.2. Asymptotic Behavior of Prediction and Filtering in One-Dimensional Linear Stochastic Models with Model Error

Recall in Section 3.1 that the true underlying linear stochastic model is given by

um+1 = Fum +Fm+1 + σm+1. (67)

However, the true underlying dynamics is typically unknown in practice. Therefore, imperfect forecast
models are used in the prediction stage. Now, let’s assume the forecast model has the following form

uM
m+1 = FMuM

m +FM
m+1 + σM

m+1, (68)

where the model error comes from the imperfect forward operator, forcing and noise coefficient. Due to
the appearance of such model errors, the updates of prediction and filtering distributions become

ūM
m+1|m = FM(1− gKM

m )ūM
m|m−1 + FMKM

m gum + FMKM
m σo

m +FM
m+1,

rM
m+1|m = (1− KM

m g)|FM|2rM
m|m−1 + rM,

(69)

and

ūM
m+1|m+1 = FM(1− gKM

m )ūM
m|m + FMKM

m+1gum+1 + FMKM
m+1σo

m+1 +FM
m+1,

rM
m+1|m+1 = (1− KM

m g)(|FM|2rM
m|m + rM),

(70)

respectively.
Now, we study the asymptotic behavior of the updates (69) and (70) with model error compared

with the truth based on (67). The detailed calculations are included in Appendix C, which exploit the
augmented system involving the truth and the prediction/filtering with model error [31]. Here, we
summarize the results.

From (67) and (68), it is easy to show the equilibrium mean estimates of the perfect and
imperfect model

ūeq =
F∞

1− F
, ūM

eq =
FM

∞
1− FM . (71)

3.2.1. Prediction

The asymptotic prediction mean of ūM
m+1|m is given by

lim
m→∞

E(ūM
m+1|m) =

1
(1− FM) + FMKM

∞ g
(

FMKM
∞ gūeq + (1− FM)ūM

eq
)
. (72)

Clearly, the asymptotic mean of the prediction state is a linear combination of the equilibrium
mean of original true model ūeq and that of the forecast model of the mean ūM

eq . With (67), the error in
the asymptotic prediction mean of ūM

m+1|m yields,

lim
m→∞

E(um+1 − ūM
m+1|m) =

1− FM

(1− FM) + FMKM
∞ g

(ūeq − ūM
eq ). (73)

The asymptotic prediction mean of ūM
m+1|m is equal to the equilibrium mean of the perfect model if

and only if the imperfect model has the same equilibrium mean as the perfect model, namely ūeq = ūM
eq .

On the other hand, the asymptotic prediction variance rP
∞ = limm→∞ rm+1|m is given by

rP
∞ = |FM|2(1− KM

∞ g)rP
∞ + rM = |FM|2 rorP

∞
g2rP

∞ + ro + rM, (74)
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where the asymptotic Kalman gain is

KM
∞ =

grP
∞

g2rP
∞ + ro .

Therefore, the asymptotic prediction variance simplifies to

rP
∞ =

|FM|2ro

g
KM

∞ + rM. (75)

3.2.2. Filtering

The asymptotic filtering mean of ūM
m+1|m+1 is given by

lim
m→∞

ūM
m+1|m+1 =

1
(1− FM) + FMKM

∞ g
(KM

∞ gūeq + (1− FM)(1− KM
∞ g)ūM

eq ) (76)

with (67), the error in the asymptotic filtering mean of ūM
m+1|m+1 yields,

lim
m→∞

E(um+1 − ūm+1|m+1) =
(1− FM)(1− KM

∞ g)
(1− FM) + FMKM

∞ g
(ūeq − ūM

eq ). (77)

The asymptotic prediction mean of ūM
m+1|m+1 is equal to the equilibrium mean of the perfect model

provided that (1) the imperfect model has the same equilibrium mean as the perfect model, namely
ūeq = ūM

eq , or (2) KM
∞ g = 1, namely the observational noise is zero and the filter trusts completely

towards the observations.
On the other hand, the dynamics of prediction variance rA

∞ = limm→∞ rm+1|m+1 are given by

rA
∞ = (1− KM

m+1g)(|FM|2rA
∞ + rM) (78)

with direct manipulations, the asymptotic analysis variance becomes

rA
∞ =

ro

g
KM

∞ . (79)

3.2.3. Comparison

Comparing the asymptotic prediction mean (73) and filtering mean (77), we have

lim
m→∞

E(um+1 − ūm+1|m+1) = (1− KM
∞ g) lim

m→∞
E(um+1 − ūm+1|m), (80)

which indicates that the error in the filtering mean is always smaller than that in the prediction mean
in the sense of standard mean deviation, with the existence of observational error.

Next, comparing the asymptotic prediction variance (75) and filtering variance (79), we have

rA
∞ − rP

∞ =
ro

g
KM

∞ −
|FM|2ro

g
KM

∞ − rM = (1− |FM|2)rP
∞ − rM < 0. (81)

See Appendix C for the detailed derivations. This implies that filtering state always results in a
smaller uncertainty (variance) than the prediction state. Such an uncertainty reduction is due to the
extra information in the noisy observations.

Note that the conclusions made from (80) and (81) are valid only when full observations are
available. In high dimensional situations, if the observations are only available on part of the
variables (known as partial observations), then the prediction error can be smaller than filtering
error. See Section 3.5.1 for simple examples.
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3.3. An Information Theoretical Framework for State Estimation and Prediction

3.3.1. Motivation Examples

To illustrate the importance and necessity of developing an information theoretical framework
in assessing the filtering and predicting skill, let us first review the two traditional path-wise
measurements that are widely used in filtering and prediction [13,131–135]. Denote ui, i = 1, . . . , n the
true signal and ûi the filtering/prediction estimate. These measurements are given by

1. The root-mean-square error (RMSE):

RMSE =

√
∑n

i=1(ûi − ui)2

n
. (82)

2. The pattern correlation (PC):

PC =
∑n

i=1(ûi − ûi)(ui − ui)√
∑n

i=1(ûi − ûi)2
√

∑n
i=1(ui − ui)2

, (83)

where ûi and ui denotes the mean of ûi and ui, respectively.

While these two path-wise measurements are easy to implement and are able to quantify the
filtering/prediction skill to some extent, they have fundamental limitations. To see this, let us consider a
simple motivation example, where the true dynamics is given by

du
dt

= −γu + f0 + f1eiω1t + σẆ. (84)

with parameters
γ = 1, f0 = 0, f1 = 1, ω1 = 1, σ = 2. (85)

For the imperfect forecast model, we assume the same ansatz as the prefect one in (84) but
the parameters related to the forcing amplitudes contain model errors. Consider the following two
imperfect models:

Imperfect forecast model (a) : γ = 1, f M
0 = 0, f M

1 = 0, ω1 = 1, σ = 2,

Imperfect forecast model (b) : γ = 1, f M
0 = 0, f M

1 = 2, ω1 = 1, σ = 2.
(86)

In panels (a) and (b) of Figure 12, we show the predictions using these two imperfect forecast
model (green curve) and they are compared with the truth (blue curve). Here, the observational time
step is ∆tobs = 0.5 which is less than the decorrelation time τ = 1/γ = 1, and the observational noise
level is ro = 1. In terms of the RMSE and PC, the two predictions are comparable with each other and
the one in panel (a) is even slightly more skillful. However, the prediction in panel (a) by intuition
is worse than that in panel (b). In fact, the amplitude of the prediction using the imperfect model (a)
is severely underestimated. The consequence is that the prediction fails to capture all the important
extreme events in the true signal. On the other hand, the prediction using the imperfect model (b)
results in a time series which has the same amplitude as the truth. See the PDFs associated with
the time series in panel (d) for estimating the amplitudes. Therefore, the two traditional path-wise
measurements—RMSE and PC—are misleading here in providing the prediction skill. In addition,
according to the definitions of the RMSE and the PC in (82) and (83), both the measurements take into
account the information only up to the second-order statistics. Therefore, they are not able to capture
the information beyond Gaussian statistics and are not suitable to assess the filtering/prediction skill
for any non-Gaussian models as in nature.

Due to the above fundamental limitations of these two traditional path-wise measurements,
various information measurements become useful in assessing the filtering/predictino skill.
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In [34,56,136–138], an information measurement called Shannon entropy difference was introduced
and was used to assess the filtering/prediction skill. The Shannon entropy difference is defined as

S(π)− S(πM) = −
∫

π log π +
∫

πM log πM. (87)

In particular, if both π ≡ πG and πM ≡ πM
G are Gaussian (as in the linear models), then the

Shannon entropy difference has the following explicit formula:

S(πG)− S(πM
G ) =

(
1
2

log det R +
1
2
(1 + log(2π))

)
−
(

1
2

log det RM +
1
2
(1 + log(2π))

)
=

1
2

log det
(

RRM
)

,
(88)

where R and RM are the covariance of πG and πM
G . Intuitively, the Shannon entropy difference

quantifies the uncertainty between π and πM. For Gaussian distributions, the uncertainty is reflected
by the variance. Connecting the Shannon entropy difference with the two predictions in panels (a)
and (b) of Figure 12, it is expected that the Shannon entropy difference is able to distinguish the two
predictions since the associated PDFs of the two predictions have different variances. In fact, the
Shannon entropy difference in the imperfect model (a) (0.7122) is much larger than that in the imperfect
model (b) (0.1502), which indicates that the prediction in panel (b) is more skillful than that in panel (a).

However, relying solely on the Shannon entropy difference in assessing the filtering/prediction
skill is also misleading. Consider an imperfect model with the following parameters:

Imperfect forecast model (c) : γ = 1, f M
0 = 2, f M

1 = 2, ω1 = 1, σ = 2. (89)

Comparing with the perfect model and the other two imperfect models in (86), a non-zero constant
forcing f M

0 = 2 is imposed in (89). The prediction results are shown in panel (c) of Figure 12. Since the
Shannon entropy difference in Gaussian framework (88) takes into account only the the variance but
completely ignores the information in the mean, the resulting Shannon entropy difference using the
imperfect models (b) and (c) give exactly the same value. In addition, the pattern correlations in these
two models are also identical to each other. However, the prediction using the imperfect model (c)
has an obvious mean bias and therefore the prediction is not as skillful as that using the imperfect
model (b).

From these simple motivation examples, it seems that the combination of the RMSE, the PC and the
Shannon entropy difference can overcome the fundamental limitations as discussed above. However,
there are at least two extra shortcomings even in the combination of these three measurements.
First, two different PDFs associated with the imperfect model, namely πM

{1} and πM
{2}, may result in the

same Shannon entropy difference compared with the truth. For example, such situation happens when
πM
{2} has a mean shift compared with πM

{1}. This is because the Shannon entropy difference computes
the uncertainty of the two distributions separately rather than considering the pointwise difference
between the two PDFs. Therefore, a more sophisticated measurement should take into account the
relative difference between the PDFs associated with the perfect and imperfect models. Second, as has
been discussed above, the RMSE and PC only make use of the information up to the second order
statistics. The important non-Gaussian features as they appeared in many realistic applications are not
reflected in these path-wise measurements.
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Figure 12. Motivation examples for the limitations of assessing the prediction error based only the
Root-mean-square error (RMSE) and the pattern correlation (a,b) and based only on the Shannon
entropy difference (b,c). Here, the truth is the same in (a–c), which is generated from (84) and (85).
The three imperfect forecast models are given by (86) and (89). In column (d), the associated PDFs are
shown. In all the panels, only the real part of u is shown.

3.3.2. Assessing the Skill of Estimation and Prediction Using Information Theory

Due to the fundamental limitations in the two classical path-wise measurement, RMSE and PC,
as well as those in the Shannon entropy difference, a new information-theoretic framework [102] has
developed to assess the filtering/prediction skill. Again, denote π ≡ π(u) and πM ≡ π(uM) the
PDFs associated with truth u and the filtering/prediction estimate uM, respectively. Denote p(u, uM)

the joint PDF of u and uM. Let U = u − uM be the residual between the truth and the estimate.
This information-theoretic framework involves three information measurements:

1. The Shannon entropy residual,

S(U ) = −
∫

p(U ) log p(U ). (90)

2. The mutual information,

M(π, πM) =
∫∫

p(u, uM) log
(

p(u, uM)

π(u)π(uM)

)
. (91)

3. The relative entropy,

R(π, πM) = −
∫

π log
( π

πM

)
. (92)

The Shannon entropy residual quantifies the uncertainty in the point-wise difference between
u and uM. It is an information surrogate of the RMSE in the Gaussian framework. The mutual
information quantifies the dependence between the two processes. It measures the lack of information
in the factorized density π(u)π(uM) relative to the joint density p(u, uM), which follows the identity,

M(π, πM) = P
(

p(u, uM), π(u)π(uM)
)

. (93)

The mutual information is an information surrogate of the PC in the Gaussian framework.
On the other hand, the relative entropy quantifies the lack of information in πM related to π and
it is a good indicator of the skill of uM in capturing the peaks and extreme events of u. It also
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takes into account the pointwise discrepancy between π and πM rather than only computing the
difference between the uncertainties associated with the two individual PDFs (as in the Shannon
entropy difference). Therefore, the combination of these three information measurements is able to
capture all the features in assessing the filtering/prediction skill and overcomes the shortcomings as
discussed in the previous subsection.

Note that when π ∼ N (u, R) and πM ∼ N (uM, RM) are both Gaussian, then the above three
information measurements have explicit expressions:

1. The Shannon entropy residual (Gaussian framework),

S(U ) = 1
2

log det
(

R + RM − 2Re[Cov(u, uM)]
)
. (94)

2. The mutual information (Gaussian framework),

M(π, πM) = −1
2

log det
(

I − R−1
M Cov∗(u, uM)R−1Cov(u, uM)

)
. (95)

3. The relative entropy (Gaussian framework),

R(π, πM) =
1
2
(u− uM)∗R−1

M (u− uM) +
1
2

(
− log det(RR−1

M ) + tr(RR−1
M )− N

)
. (96)

In (94)–(96), N is the dimension of π and πM, I is the identity matrix with size N × N, and
Cov(u, uM) is the covariance between u and uM. More discussions of Gaussian and non-Gaussian
cases can be found in [56] and [54], respectively.

The information-theoretic framework (90)–(92) or (94)–(96) is usually defined in the
super-ensemble sense [31] in accessing the data assimilation and prediction skill of the imperfect model
given the perfect one. However, in some more realistic situations, although the imperfect models can
be run in the ensemble mode, the ensemble run of the perfect model or the truth is never available.
This is because the perfect model that describes nature is unknown. The only available information is
one realization from observations (e.g., satellites). Nevertheless, the information-theoretic framework
can also be used in a path-wise way, where the statistics are computed by collecting all the sample
points in the given realization. Some realistic applications of the information-theoretic framework for
filtering and prediction can be found in [31,61,139].

3.4. State Estimation and Prediction for Complex Scalar Forced Ornstein–Uhlenbeck (OU) Processes

Now, we study the state estimation (filtering) and prediction. The focus here is a complex scalar
forced Ornstein–Uhlenbeck (OU) process,

du
dt

= (−γ + iω0)u + f0 + f1eiω1t + σẆ, (97)

where γ and ω0 are the damping and oscillation frequency while f0 and f1eiω1t are a constant and
time-periodic large-scale forcing, respectively, and σẆ is stochastic noise. Despite the simplicity of this
model in (97), it can be used to mimic some climate physics [15,120]. For example, the deterministic
forcing f0 + f1eiω1t can be regarded as the annual cycle while ω0 can be treated as internal oscillation
which may occur in the intreaseasonal time scale. The damping term γ measures the system memory
and the stochastic term represents the input to the system from small or unresolved scales. The model
in (97) can also be regarded as one Fourier mode of complex spatially-extended systems.

The information-theoretic framework developed above will be used to assess the filtering/prediction
skill and quantify the model error. The complex scalar forced OU process in (97) will be used to generate
the true signal. The imperfect forecast model has the same structure as (97) but with model errors in the



Entropy 2018, 20, 644 32 of 98

parameters. The goal here is to systematically study the model error as functions of the observational
time step, observational noise and the forcing amplitude.

The exact solution of (97) can be written down explicitly,

u(t) = u(t0)e(−γ+iω0)(t−t0) +
f0

γ− iω0
(1− e(−γ+iω0)(t−t0))

+
f1eiω1t

γ + i(−ω0 + ω1)

(
1− e−(γ+iω1−iω0)(t−t0)

)
+ σ

∫ t

t0

e(−γ+iω0)(t−s)dW(s),
(98)

which provides the analytical forms of the time evolution of the forecast mean u(t) and the forecast
variance r(t),

u(t) = u(t0)e(−γ+iω0)(t−t0) +
f0

γ− iω0
(1− e(−γ+iω0)(t−t0))

+
f1eiω1t

γ + i(−ω0 + ω1)

(
1− e−(γ+iω1−iω0)(t−t0)

)
,

r(t) = r(t0)e−2γ(t−t0) +
σ2

2γ

(
1− e−2γ(t−t0)

)
.

(99)

With the explicit expressions in (98) and (99), it is easy to write down the corresponding operators
F,Fm+1 and σm+1 in (67) or those in the imperfect forecast model (68) in each prediction/filtering
assimilation step.

To understand the prediction and filtering skill of the complex scalar forced OU process (97), we
start with a simple case which involves only a constant forcing. We also adopt the perfect forecast
model in this example. The parameters of (97) are given as follows:

γ = 0.4, ω0 = 1, f0 = 2, f1 = 0, ω1 = 0, σ = 1, (100)

and the observational operator g = 1. Here, we take ∆tobs = 0.5 and ro = 0.5 as the default values of
the observational time step and the observational noise level, respectively. Since the phase ω0 = 1 is
nonzero, the autocorrelation function has an oscillation structure. Therefore, the decorrelation time
which includes the cancellation of the positive and negative values in the autocorrelation function
may be misleading for measuring the system memory. Here, we have checked both the standard
decorrelation time, namely the integral of the autocorrelation function (ACF), and the integral of
the absolute value of the ACF. These two quantities have values τACF = 0.34 and τ|ACF| = 1.63.
Thus, ∆tobs = 0.5 is a reasonable observational time step that includes some memory of the information
in the previous assimilation step. On the other hand, ro = 0.5 here results in a polluted signal with
roughly 10% observational noise.

Figure 13 show the prediction and filtering skill in terms of the three information measurements,
namely the Shannon entropy residual, the mutual information and the relative entropy, as a function
of ∆tobs (panels (a)–(c)) and ro (panels (d)–(f)), respectively. First, the filtering estimate is always more
skillful than the prediction one. This is consistent with the theoretical analysis in Section 3.2 in that
the filter estimate combines the prediction result with the information observation and the error is
therefore reduced. Next, it is clear from all the panels in Figure 13 that with the increase of either
∆tobs or ro, both the prediction and filtering skill deteriorates, which is as expected. Nevertheless,
the prediction skill decreases more quickly with the increase of the observational time step ∆tobs.
In particular, the model error in terms of the relative entropy increases exponentially. As comparison,
the filtering skill only has a slight deterioration with the change of ∆tobs. On the other hand, the error in
the filter estimate increases quickly with the observational noise ro when ro is small. When ro becomes
moderate to large, the error in the filter estimate increases steadily. The error in the prediction estimate
always increases steadily as a function of ro.
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To have a more intuitive understanding of these results, the time series of the truth, the filter estimate
and the prediction estimate are shown in Figure 14 with three different ∆tobs or ro. Comparing with
panels (a) and (b), it is clear that a long observational time step ∆tobs leads to a smaller fluctuation of the
prediction estimate around its steady state mean value. In fact, the signal due to the memory effect in the
previous assimilation step is strongly damped with a long observational time step and the resulting signal
is dominated by the constant forcing. The consequence is that the PDF associated with the predicted
time series has a much smaller variance compared with the truth and the prediction fails to capture the
extreme events and large variabilities in the true signal. On the other hand, due to the incorporation of the
information from the observations, the filter estimate even with a long observational time step provides a
quite skillful result in terms of both the correlation and the signal amplitude. Note that the asymptotic
Kalman gain in the filtering in panel (b) is K∞ = 0.9, which means the observations play an important role
in regaining the skill in the filter estimate. In panel (c), the observational time step ∆tobs = 0.5 is the same
as that in panel (a) but the observational noise level is increased from ro = 0.5 to ro = 3. Both the filtering
and prediction skill becomes worse as compared with those in panel (a). Nevertheless, the deterioration is
not quite significant which is consistent with the statistics shown in Figure 13.

0 1 2 3
−1.5

−1

−0.5

0

0.5

∆t
obs

(a)  Shannon entropy residual

 

 

Prediction
Filtering

0 1 2 3
0

0.5

1

1.5

2
(b)  Mutual information

∆t
obs

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5
(c)  Relative entropy

∆t
obs

0 1 2 3
−1.5

−1

−0.5

0

0.5

ro

(d)  Shannon entropy residual

 

 

0 1 2 3
0

0.5

1

1.5

2

ro

(e)  Mutual information

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

ro

(f)  Relative entropy

0 5 10 15
−0.5

0

0.5

1

Best

Best

Best

Best

BestWorst

Worst

Worst

Worst

Worst

∫ ACF( Re[u] )
 = 0.34

∫ ACF( | Re[u] | ) 
= 1.63

Worst

Best

obs noise ∼  60%

Figure 13. The three information measurements, namely the Shannon entropy residual, the mutual
information and the relative entropy, as a function of ∆tobs (a–c) and ro (d–f). Here, the experiments are
based on the perfect model (97) with parameters in (100). The left small panel shows the autocorrelation
function of Re[u].
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Figure 14. Comparison of the time series of the truth, the prediction estimate and the filter estimate.
(a): ∆tobs = 0.5, ro = 0.5; (b): ∆tobs = 3.0, ro = 0.5; (c): ∆tobs = 0.5, ro = 3.0; (d): the associated PDFs.
Here, the experiments are based on the perfect model (97) with parameters in (100).
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Next, we consider the complex forced scalar system with a time-periodic forcing in (97).
The parameters are as follows:

γ = 0.4, f0 = 0, f1 = 2, ω1 = 1, σ = 2, (101)

and the observational operator g = 1. Two dynamical regimes are studied here:

Regime I: ω0 = 0.5, and Regime II: ω0 = 1. (102)

It is important to note that, in Regime II, the phase ω0 and the forcing period ω1 are equal to each
other, which means this dynamical regime has a resonance forcing. On the other hand, the dynamical
Regime I has a non-resonance forcing. We take ∆tobs = 0.5 and ro = 9 as the default values of the
observational time step and the observational noise level, respectively. Note that although ro = 9 is
much larger than that in the previous example, the signal amplitude due to the periodic forcing also
increases. The observational noise here is about 25% compared with the true signal. See Figure 15 for
the true signal and the noisy observations.

Now, let us assume the imperfect model shares the same model structure as the perfect one
in (97). The imperfect part comes from the parameter ωM

0 . This comes from the motivation that
the situation that the large-scale forcing f0 + f1eiω1t is in general known quite well but measuring
the internal oscillation ω0 usually contains error. In Figure 16, we show the model error in terms of
the three information measurements, namely the Shannon entropy residual, the mutual information
and the relative entropy, as a function of ωM

0 . Here, the information measurements are computed
based on the Gaussian framework (94)–(96) due to their simplicity from a practical point of view,
where the statistics here are averaged directly over the time series. Note that such direct average
results in a bimodal distribution in the true model due to the large amplitude of the periodic forcing
such that the mixing and ergodicity are not satisfied [108] (see Figure 15 and a detailed discussion
in Appendix D). Nevertheless, the Gaussian approximation in the information measurements here
provides a qualitatively accurate estimate of the model error as can be seen in Figures 15–17. There is
an alternative way of computing the model error by first collecting all the points t′ + mT, m = 1, 2, . . .
with t′ fixed and T being the period of the time series. These points appear in the same location within
a period and the collection forms a Gaussian distribution. Compute the information measurements
for these Gaussian distributions. Then, let t′ vary within t′ ∈ (0, T] and repeat the above procedure.
Eventually, take the average of the information measurements within one period to finalize the
results. This alternative method is more rigorous in terms of applying the Gaussian framework of the
information measurements. However, it requires a very long time series to guarantee the sampling
size (the number of period) is sufficient. It also requires knowing the perfect information of the period,
which may not be realistic in practice if the period contains randomness.

In Figure 16, the minimum of the model error appears around the perfect value. The small bias
in the optimal value compared with the truth comes from applying the Gaussian framework of the
information measurements. When the discrepancy between ωM

0 and the truth ω0 increases, the model
error in all the three information measurements becomes large as well. Despite the similar profiles in
the model error curves in the two regimes, the model error increases significantly faster in Regime II
(the resonance regime). In fact, according to (98) or (99), the contribution of the time-periodic forcing
to the forecast solution is given by

Contribution of the time-periodic forcing =
f1eiω1t

γ + i(−ω0 + ω1)

(
1− e−(γ+iω1−iω0)(t−t0)

)
. (103)

In addition to the error appears in the phase e−(γ+iω1−iω0) due to an imperfect ωM
0 , the resonance

forcing also greatly modifies the amplitude of the contribution in (103). With a resonance forcing
ω0 = ω1, the amplitude in the contribution (103) reduces to f1/γ which can be much larger than
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f1/(γ + i(−ω0 + ω1)) if ω0 is quite different from ω1 and γ is small. Recall in (101) that γ = 0.4
here. If in the imperfect model ωM

0 = 0 6= 1 = ω0, then a large error in the amplitude of the forcing
contribution using the imperfect is expected. This is shown in Panel (b) of Figure 15. It is clear that
in addition to the phase shift in both the filtering and prediction estimates, the amplitudes of these
estimates are severely underestimated as well. Notably, the relative entropy here unambiguously
indicates such underestimations of the amplitudes and extreme events, which cannot be captured by
the RMS error and the pattern correlation.

In order to reduce the model error in the imperfect model, a typical strategy is to optimize the
noise coefficient σM [1,13,15,101,140]. In Figure 17, we show the model error in the perfect model as
a function of σM, where ωM

0 = 0. Comparing to the non-optimized values σM = σ = 2 as indicated
by the blue ‘x’, the model error with the optimal value σM = 7 for the filter estimate (which is also
nearly the optimal value for the prediction estimate) has a significant decrease. This noise inflation
strategy is in fact consistent with that in dealing with many operational models or complex dynamical
systems [18,141,142]. Figure 17 also confirms that noise inflation leads to a much smaller model error
than the underdispersion [15,18,100,140]. In Panel (c) of Figure 15, the filter and prediction estimates
with this optimized noise are shown. The amplitudes of the true signal are recaptured by the imperfect
model estimates. Interestingly, the filter estimates are now almost perfectly in phase with the true
signal and even the discrepancy between prediction estimates and the truth is greatly decreased.
See Panel (b) for a comparison. In fact, we note that the Kalman gain has increased from K∞ = 0.27 to
K∞ = 0.73, which implies that the observations now play a more important role in obtaining the filter
estimates. This is the underlying reason that the filtering becomes more skillful, which also increases
the skill of the prediction since the filter estimate now provides a much more accurate initial value of
the prediction.

200 210 220 230 240 250 260

−10

0

10

K
∞
 = 0.27,  RMSE (Pred) = 1.5332,  PC (Pred) = 0.92079,  RMSE (Filter) = 1.252,  PC (Filter) = 0.94798

(a)  Time series of Re(u) with ω
0
M = ω

0
 = 1

 

 
Truth Prediction Filtering Obs

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2
(d)  PDFs

200 210 220 230 240 250 260

−10

0

10

K
∞
 = 0.27,  RMSE (Pred) = 3.7985,  PC (Pred) = 0.38958,  RMSE (Filter) = 2.8437,  PC (Filter) = 0.6903

(b)  Time series of Re(u) with ω
0
M = 0

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

200 210 220 230 240 250 260

−10

0

10

K
∞
 = 0.73,  RMSE (Pred) = 2.9603,  PC (Pred) = 0.70983,  RMSE (Filter) = 1.7401,  PC (Filter) = 0.9043

(c)  Time series of Re(u) with ω
0
M = 0 and σM = 7

t
−10 −5 0 5 10

0

0.05

0.1

0.15

0.2

Figure 15. The true signal and filter and prediction estimates. (a): perfect model simulation; (b): imperfect
forecast model with ωM

0 = 0 6= 1 = ω0; (c): imperfect forecast model with ωM
0 = 0 6= 1 = ω0 and

optimized noise coefficient σM = 7. Here, the true model is given by (97) and the parameters are shown
in (101) and (102); (d): the associated PDFs formed by directly collecting all the points in the time series
(solid curves) and the Gaussian fits (dashed curves).



Entropy 2018, 20, 644 36 of 98

−1 0 1 2
0

0.5

1

1.5

2

ω
0
M

(d)  Shannon entropy residual

 

 

−1 0 1 2
0

0.5

1

1.5

ω
0
M

(e)  Mutual information

−1 0 1 2
0

0.5

1

1.5

2

ω
0
M

(f)  Relative entropy

−1 0 1 2
0

0.5

1

1.5

2

ω
0
M

(a)  Shannon entropy residual

 

 

Prediction
Filtering

−1 0 1 2
0

0.5

1

1.5

ω
0
M

(b)  Mutual information

−1 0 1 2
0

0.5

1

1.5

2

ω
0
M

(c)  Relative entropy

Best Best

Best Best

Worst

Worst

Best

Best

Worst

Worst

Worst

Worst

Regime I. 
(Non−resonance)

ω
0
 = 0.5

ω
1
 = 1.0

Regime II. 
(Resonance)

ω
0
 = 1.0

ω
1
 = 1.0

Figure 16. The three information measurements, namely the Shannon entropy residual, the mutual
information and the relative entropy, as a function of ωM

0 in the imperfect model. The information
measures are given using the Gaussian approximation (94)–(96) and the statistics here are averaged
directly over the time series. (a–c): Regime I (the non-resonance regime); (d–f): Regime II (the resonance
regime). The true model is given by (97) and the parameters are shown in (101) and (102). The imperfect
model has the same structure and the same other parameters expect ωM
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Figure 17. Model error as a function of σM in the imperfect model where ωM
0 = 0 6= 1 = ω0. The blue

’x’ shows the non-optimized values σM = σ = 2. The dot σM = 7 indicates the optimal value for the
filter estimate which is also nearly the optimal value for the prediction estimate. (a) Shannon entropy
residual, (b) Mutual information, (c) Relative entropy.

3.5. State Estimation and Prediction for Multiscale Slow-Fast Systems

Multiscale slow-fast systems are commonly seen in many geophysical and engineering
turbulent flows [18,143–146]. A concrete example involves the coupling of random incompressible
geostrophically balanced (GB) flows and random rotating compressible gravity waves in the middle
latitude atmosphere [8]. Under the situation with a small Rossby number, the coupled system becomes
a multiscale slow-fast system where the GB component dominates the slow-varying geophysical
flows [8,147–149].
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3.5.1. A 3× 3 Linear Coupled Multiscale Slow-Fast System

Here, we start with a simple 3× 3 linear coupled multiscale slow-fast system,

du1

dt
= −du1 u1 + L12u2 + L13u3 + F1(t) + σ1Ẇ1,

du2

dt
= L21u1 − du2 u2 +

L23

ε
u3 + F2(t) + σ2Ẇ2,

du3

dt
= L31u1 +

L32

ε
u2 − du3 u3 + F3(t) + σ3Ẇ3.

(104)

In (104), we assume the linear coefficients L12 = −L21, L13 = −L31 and L23 = −L32 such that the
Lij forms a skew-symmetric matrix. The three damping coefficients −du1 ,−du2 ,−du3 < 0 to guarantee
the mean stability. F1(t), F2(t) and F3(t) are external forcing that can depend on time t. Here, ε is a
controllable parameter. With ε � 1, the coupled system has a fast oscillation structure in u2 and u3

while u1 remains as a slow variable. All the variables here are real.
The coupled system in (104) can be regarded as one Fourier mode of the shallow water equations,

where u1 mimics the large-scale GB flow while u2 and u3 represent the analogies of the real and
imaginary parts of the gravity waves. Note that the gravity waves appear in pairs and therefore the
linear combinations of u2 and u3 in the complex plane are good surrogates of the two components
of the gravity waves associated with one Fourier mode in the shallow water equation. These three
variables are coupled in a linear way in (104).

Below, we study the filtering/prediction skill. The following parameters are taken:

du1 = du2 = du3 = 1, σ1 = σ2 = σ3 = 1, L12 = L13 = 1, L21 = L31 = −1,

L23 = 1, L32 = −1, F1 = 2 cos(0.5t), F2 = F3 = 0.
(105)

Here, we only impose the deterministic time-periodic forcing to u1. This is because we denote u1

as the slow (or large) scale variable, which is typically driven by external forcing, such as the seasonal
cycle or annual cycle [15]. On the other hand, the other two variables mostly occur in a faster time
scale and the forcing is basically stochastic.

To understand the filtering/prediction skill, the following four setups are adopted:

1. Full observations, full forecast model (F/F). The observational operator g is an identity such that v1

v2

v3

 =

 1
1

1


 u1

u2

u3

+

 σo
1

σo
2

σo
3

 . (106)

The forecast model is the same as in (105). Although this straightforward setup may not be
practical (see below) and can be expensive when a much larger dimension of the system is
considered (see next subsection), the results from such a setup can be used as a baseline for testing
various modifications and reduced models as will be presented below.

2. Partial observations, full forecast model (P/F). The real observations typically involve the
superposition of different wave components. It is usually impossible to artificially separate
these components from the noisy observations. Therefore, here we let the observational operator
be g = (1, 1, 1), namely the observation is the combination of the three variables,

v =
(

1 1 1
) u1

u2

u3

+ σo. (107)

The forecast model remains the same as that in (105).
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3. Partial observations, reduced forecast model (P/R). In practice, only part of the state variables are of
particular interest in filtering and prediction. These state variables usually lie in large or resolved
scales, such as the GB flow. Therefore, simple reduced forecast models are typically designed
to reduce the computational cost and retain the key features in filtering and predicting these
variables. To this end, the following reduced forecast model is used

duM
1

dt
= −du1 uM

1 + F1(t) + σ1Ẇ1, (108)

and the observation remains the same as that in (107). Here, we have completely dropped the
dependence of u1 on u2 and u3 since their mean is zero according to the setup above.

4. Partial observations, reduced forecast model and tuned observational noise level with inflation (P/R
tuned). It is easy to notice that in the previous setup (P/R), the signals of u2 and u3 actually
become part of the observational noise in filtering and predicting u1. This is known as the
representation error [53,100,150–154]. However, if the original observational noise level ro is still
used in updating the Kalman gain, then the filtering and prediction skill may be affected by
the representation error. To resolve this issue, we utilize an inflated ro

M in the analysis step to
compute the Kalman gain while the other setups remain the same as in the P/R case. Here, the
inflated ro

M is given by
ro

M = ro + var(u2) + var(u3), (109)

where var(u2) and var(u3) are the variance of u2 and u3 respectively at the statistical steady state.
The inflation in (109) is the most straightforward one. More elaborate inflation techniques can
be reached by applying the information theory in the training phase. Nevertheless, with such
a simple inflation of the observational noise, the signals of u2 and u3 are treated as part of the
observational noise. The estimation of the Kalman gain using the imperfect forecast model (108)
is therefore expected to be improved.

Below, we consider two dynamical regimes with ε = 0.1 and ε = 1, respectively. The two
variables u2 and u3 evolve in a much faster time scale than u1 in the regime with ε = 0.1 while the
three variables lie in the same time scale with ε = 1.

Now, we compare the filtering and prediction skill using the four setups as discussed above.
In Figures 18 and 19, the skill as a function of the observational time step ∆tobs is shown in Regime
ε = 0.1. The following conclusions are reached. First, both the filtering and prediction skill overall
deteriorates with the increase of the observational time step ∆tobs. Second, the filter estimates are
almost always more accurate than the prediction estimates since the former contains extra information
from observations. Third, the results with F/F is the best among all the four setups, as expected.
Nevertheless, the filtering and prediction results of u1 based on the other three setups remain
comparable to that of F/F. However, the predictions of u2 and u3 using both the full and partial
observations (F/F and P/F) contain a large error when the observational time step becomes large.
Such an error is not reflected by the RMSE and PC but is clearly indicated by the relative entropy.
In fact, since u2 and u3 both lie in faster time scales, their decorrelation times become much shorter
than the observational time step when the latter increases. The consequence is that, regardless of the
initial value, the prediction estimates always relax to the equilibrium mean and the amplitudes are
thus severely weakened. Despite the success in capturing the pattern correlation, the prediction fails to
catch any extreme events. On the other hand, the observations help the state estimation of filtering.
In fact, the filter estimates with full observations (F/F) can almost perfectly capture the amplitudes of
the truth while the partial observations (P/F) at least allow the filter estimates to reach some of the
events with large amplitudes, which is nevertheless more skillful than the prediction. See Figures 20
and 21 for the true time series as well as the prediction and filtering estimates.

Next, in Figures 22 and 23, the filtering and prediction skill in Regime ε = 1 is shown. Now,
the difference in the results between using different setups becomes more significant. The filtering
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and prediction skill of u1 using P/F remains good but the gap compared with that using F/F is more
obvious. Interestingly, the reduced strategy P/R now becomes much worse and the filtering results
are even worse than the predictions especially with short observational time step ∆tobs (see also the
time series in Figures 24 and 25). In fact, there are two sources of error that bring about such unskillful
results. First, the variances of u2 and u3 with ε = 1 are now much larger, which leads to a large
representation error. Such representation error leads to a larger error in the filtering than prediction
(For comparison, see Section 3.2 for the conclusion with no representation error). Second, recall that in
Regime ε = 0.1, u2 and u3 evolve in a much faster time scale and therefore they can be treated as noise.
Ignoring them in the dynamics of u1 provides a good approximation in (108). This is however not true
in Regime ε = 1 where the long memory of u2 and u3 plays an important role in the reduced dynamics
of u1. In other words, the reduced forecast model in (108) results in a large model error in Regime
ε = 1 due to the ignorance of u2 and u3. Thus, the combined effect from both the representation
error and the imperfect model leads to the large error in filtering as well as prediction. With a short
observational time step (for example, ∆tobs = 0.2 in Figure 24), the representation error becomes
dominant. Therefore, an inflation of the observational noise to compensate the representation error
(P/R tuned in Figure 23) improves the filtering and prediction skill. However, with a much longer
observational time step, say ∆tobs = 2, an inflation of the observational noise (P/R tuned) will reduce
the Kalman gain and the model rather than the observation provide more information to the filter
results. When ∆tobs is large, the model will relax towards its equilibrium mean and thus the amplitude
will be underestimated. See Figure 23. This again indicates the importance of using the relative entropy
as one of the quantification criteria. Note that, with ∆tobs = 2, Figure 23 clearly states that both the
RMSE and PC of the filtering estimates in P/R tuned setup are better than those in P/R setup, but the
relative entropy in P/R tuned setup is much larger. This is a good example to show the importance and
necessity of using the information-theoretic framework in quantifying the filtering and prediction skill
instead of using only the path-wise RMSE and PC. Finally, we note that the signals of u2 and u3 here do
not behave as a pair of oscillator as in the Regime with ε = 0.1. This is because all the three variables
now lie in the same time scale and they interact with each other. Here, the large-scale time-periodic
forcing in u1 leads to a time-periodic pattern in u2 as well. However, the strong anti-correlation in u1

and u2 provides a cancelation in the feedback to u3, which makes the signal of u3 more noisy than u2.
The consequence is that the filtering and prediction skill in u3 is much worse than those in u2 due to
the much larger noise to signal ratio in u3.

To summarize, in the Regime with ε = 0.1, all four of the setups lead to comparable results for
both filtering and predicting the slow variable u1. In particular, the most efficient strategy P/R works
quite well. The filtering and prediction of the two fast variables u2 and u3 using F/F and P/F also show
skillful results when the observational time step ∆tobs is short. When ∆tobs exceeds the decorrelation
time of u2 and u3, the filter estimates tend to miss some large events while the prediction results fail
to capture all the extreme events. In the Regime with ε = 1, the reduced strategy (P/R) for u1 does
not work well especially with small observational time step ∆tobs. Nevertheless, if an observational
noise inflation is adopted (P/R tuned), then both the filtering and prediction skill can be improved and
becomes nearly comparable to those to the full filter with full observations (F/F) when ∆tobs is small
to moderate. When the ∆tobs is large, the model error in the reduced forecast model (108) becomes
dominant. In such a situation, only a full forecast model provides skillful prediction and filtering
results while a partial observation (P/F) is allowed for retaining the skill. The partial observation (P/F)
also gives a comparable skill as the full observation (F/F) in filtering and predicting u2 but only in the
setup with both the full forecast model and the full observations (F/F) leads to skillful results for u3.
A summary is shown in Table 1.
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Table 1. Summary of the four setups in filtering the 3 × 3 system in (104). The four setups
are: Full observations, full forecast model (F/F); partial observations, full forecast model (P/F);
partial observations, reduced forecast model (P/R); and partial observations, reduced forecast model
and tuned observational noise level with inflation (P/R tuned). Here,

√
means the strategy works

for small, moderate and moderately large ∆obs. Small ∆obs implies ∆obs ≤ 0.4 which is roughly the
decorrelation time of u2 and u3 in ε = 0.1 regime. Moderate ∆obs means 0.4 ≤ ∆obs ≤ 1.2 and
moderately large ∆obs is up to ∆obs ≤ 2, which is nevertheless below the decorrelation time of u1 since
u1 has a slow-varying time-periodic forcing.

F/F P/F P/R P/R Tuned

ε = 0.1
Filter u1

√ √ √ √

Pred. u1
√ √ √ √

Filter u2, u3 small and moderate ∆obs small and moderate ∆obs N/A N/A
Pred. u2, u3 small and moderate ∆obs small ∆obs N/A N/A

ε = 1.0
Filter u1

√
small to moderate ∆obs moderate ∆obs small to moderate ∆obs

Pred. u1
√

small to moderate ∆obs moderate ∆obs small to moderate ∆obs
Filter u2, u3 small to moderate ∆obs small ∆obs for u2 N/A N/A
Pred. u2, u3 small to moderate ∆obs for u2 small ∆obs for u2 N/A N/A

and small ∆obs for u3
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Figure 18. Regime ε = 0.1. Prediction and filtering skill as a function of the observational time step
∆tobs using the three information measures: (a) Shannon entropy of residual, (b) mutual information
and (c) relative entropy as well as the two traditional path-wise measures (d) root-mean-square error
(RMSE) and (e) pattern correlation (PC). The green curves are for prediction and the red curves are for
filtering. The solid curves correspond to the situation with full observations and full forecast model
(F/F); the dashed curves correspond to the situation with partial observations and full forecast model
(P/F); and the dotted curves are for that with partial observations and reduced forecast model (P/R).
The three rows are shown for the skill of u1, u2 and u3, respectively. The numerical simulation is based
on time series with total length Ttotal = 5000 while the largest observational time step here is ∆tobs = 2.
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Figure 19. Regime ε = 0.1. Similar to Figure 18 but the comparison of the skill of filtering and
predicting u1 based on the setup with partial observations and reduced forecast model (P/R) (dotted
line) and that with partial observations, reduced forecast model and tuned observational noise level
with inflation (P/R tuned) (thin solid line).
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Figure 20. Regime ε = 0.1 and ∆tobs = 0.2. Comparison of the filtering and prediction skill in different
setups. (a): full observations and full forecast model (F/F); (b): partial observations and full forecast
model (P/F); (c): partial observations and reduced forecast model (P/R); and (d): partial observations,
reduced forecast model and tuned observational noise level (P/R tuned).
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Figure 22. Similar to Figure 18 but for Regime ε = 1.
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Figure 23. Similar to Figure 19 but for Regime ε = 1.
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Figure 24. Similar to in Figure 20 but for Regime ε = 1.0 and ∆tobs = 0.2.
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Figure 25. Similar to in Figure 20 but for Regime ε = 1.0 and ∆tobs = 1.0.

3.5.2. Shallow Water Flows

Finally, let us study the filtering and prediction for spatially-extended systems. Consider the
linearized two-dimensional rotating shallow water equation [8,143]

∂u
∂t

+ ε−1u⊥ = −ε−1∇η,

∂η

∂t
+ ε−1∇ · u = 0,

(110)

where u = (u, v)T is the two-dimensional velocity field and η is the geophysical height. Here, ε is
the Rossby number representing the ratio between the Coriolis term and the advection term. We also
set the Froude number equal to the Rossby number, which is the typical case in realistic geophysical
flows [8]. Applying the Fourier decomposition method (See Section 4.4 in [8]) to (110), a 3× 3 system
is obtained for each Fourier wavenumber. In particular, associated with each Fourier wavenumber,
there are:

1. One geostrophically balanced (GB) mode with eigenvalue

ωk,B = 0. (111)

The GB mode is incompressible.
2. Two gravity modes with eigenvalues

ωk,± = ±ε−1
√
|k|2 + 1. (112)

The gravity modes are compressible.

Therefore, the solution of the shallow water equation in (110) can be written as a superposition of
different Fourier modes, [

u(x, t)
η(x, t)

]
= ∑

k∈K,α∈{B,±}
ûk,α(t) exp(ik · x)rk,α, (113)
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where the eigenvectors associated with the GB and gravity modes, i.e., rk,0 and rk,±, are given by

rk,B =
1√
|k|2 + 1

 −ik2

ik1

1

 , rk,± =
1

|k|2
√

2|k|2 + 2

 ik2 ± k1
√
|k|2 + 1

−ik1 ± k2
√
|k|2 + 1

|k|2

 , (114)

respectively, for |k| 6= 0 and

rk,B =

 0
0
1

 , rk,± =
1√
2

 ±i
1
0

 , (115)

respectively, for |k| = 0. Here, in (111)–(115), k = (k1, k2) and x = (x, y).
The time evolution of the random Fourier amplitudes ûk,α(t) associated with each Fourier

wavenumber k can be described by the 3× 3 system as introduced in (104)

dûk,1

dt
= −dûk,1 ûk,1 + Lk,12ûk,2 + Lk,13ûk,3 + Fk,1(t) + σk,1Ẇk,1,

dûk,2

dt
= Lk,21ûk,1 − dûk,2 ûk,2 +

Lk,23

ε
ûk,3 + σk,2Ẇk,2,

dûk,3

dt
= Lk,31ûk,1 +

Lk,32

ε
ûk,2 − dûk,3 ûk,3 + σk,3Ẇk,3.

(116)

Note that the variables ûk,1, ûk,2 and ûk,3 are all real variables while the gravity modes are a pair
of complex conjugate. Nevertheless, we can make use of a combination of ûk,2 and ûk,3 to form the
two gravity waves:

ûk,+ = ûk,2 + iûk,3,

ûk,− = ûk,3 + iûk,2.
(117)

On the other hand, ûk,1 = ûk,B. Without Lk,12, Lk,21, Lk,13 and Lk,31, these setups are similar to
those in [139,155] except that the starting 3× 3 systems in [139,155] are complex and there are two
extra freedoms for noise in the pair of the gravity modes. In (116), the GB and gravity modes are
coupled with each other linearly through nonzero coefficients Lk,12, Lk,21, Lk,13 and Lk,31.

Next, the noisy observations are given by the velocity fields u and v at each grid point in physical
space. This is known as the Euler observations. Note that Lagrangian observations (via Lagrangian
tracers) are also widely used in filtering the shallow water flows or more generally the geophysical
flows [49,139,155–159]. Here, the Fourier expansion is applied to the noisy observational data of u
and v. We assume the observational noise is white. Therefore, the noise level associated with each
Fourier wavenumber is the same [108]. Note that the observations are not the Fourier coefficients
in (116). They are the summation of the three Fourier components ûk,α for α = {B,±} multiplying
by the associated eigenvectors rk,α in (114) and (115) according to the expression of the velocity
in (113). These correspond to the setups of P/F, P/R and P/R as discussed in Section 3.5. We will
also report the filtering and prediction skill using the F/F as introduced in Section 3.5, which assumes
that the observation for each GB and gravity mode is available. Although such a setup is idealized,
it provides the optimal filtering and prediction results and can be used to examine the skill in the other
setups. Once the results are obtained for each Fourier mode associated with the 3× 3 system in (116),
the summation of different Fourier modes are taken to recover the velocity field in the physical space.
In practice, recovering and predicting the GB flow are of particular interest since GB flows lie in a
longer time scale. Therefore, we focus on the study of the GB flow in different setups (F/F, P/F, P/R
and P/R tuned). Since the GB modes are incompressible, it is more convenient to show the stream
function ψ instead of the velocity field, where (u, v) = (∂ψ/∂y,−∂ψ/∂x).
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In the following, we consider the Fourier wavenumbers k in [−2, 2]2, where there are 25 GB
modes and 50 gravity modes. The modes with k = (0, 0) are the background modes, which are usually
deterministic. Thus, we filter and predict the other 24 wavenumbers. Note that the mode k and −k
are complex conjugate. The following parameters are taken in rotating shallow water Equation (110),

dk,u1 = dk,u2 = dk,u3 = 1, σk,1 = 3, σk,2 = σk,3 = 2,

Lk,12 = Lk,13 = 1, Lk,21 = Lk,31 = −1,

Lk,23 =
√
|k|2 + 1, Lk,32 = −

√
|k|2 + 1, Fk,1 = 2 cos(0.5t), Fk,2 = Fk,3 = 0.

(118)

Two dynamical regimes will be studied. They are ε = 0.1 (fast rotation regime) and ε = 1.0
(moderate rotation regime). The observational noise level is ro

k = 1.5. The noise to signal ratio varies in
different Fourier modes, but the noise is about 30% to 40% compared with the amplitude of the true
signals multiplying by the eigenvectors (which is also the observational operator here) when the mode
has observability [15,140,160,161]. The observability issue will be discussed at the end of this section.

The statistical behavior in filtering and predicting each Fourier wavenumber based on the
information-theoretic framework are quite similar to those in Section 3.5.1. Therefore, in the following,
we focus only on the comparison in the physical space, the results of which are given by taking the
summation of different Fourier modes. In Figures 26 and 27, the prediction and filtering results in
Regime ε = 0.1 are shown. With a short observational time step ∆tobs (shorter than the decorrelation
time of the gravity waves), both the filtering and prediction estimates are quite accurate, despite
the fact that the prediction estimates in Figure 26 contain small errors in recovering the vortex in
the right bottom corner. When ∆tobs is increased to ∆tobs = 1, which is longer than the memory
time of the gravity waves, obvious errors are found in the predicted GB flows as shown in Figure 27.
Nevertheless, the overall patterns and the amplitudes of the predicted GB flows in all the setups remain
acceptable. The filtering estimates are more accurate than the predictions, especially in recovering the
vortex near the left edge. On the other hand, in Regime ε = 1, even with a short observational time
step ∆tobs = 0.1, the prediction is inaccurate. See Figure 28. The error comes from both the pattern and
the amplitude, the latter of which is quantified by the relative entropy. When ∆tobs becomes ∆tobs = 1,
the filtering skills using the three practical setups (P/F, P/R and P/R tuned) all contain significant
errors while the prediction estimates provide completely wrong patterns such as those at the right
bottom corner. See Figure 29.

One interesting question to ask is that whether the observations of both the velocity fields u
and v are needed in filtering and predicting the rotation shallow water flows since these two velocity
components are strongly linked through the eigenvectors (114). To answer this question, we show the
filtering and prediction estimates in physical space by observing both u and v (Panels (b) and (d)) and
observing only u (Panels (c) and (e)). See the first two rows of Figure 30. Here, the fast rotation regime
ε = 0.1 is chosen and a short observational time step ∆tobs = 0.1 is adopted. It is clear that by observing
only u, both the filtering and prediction estimates contain significant errors under the setups of both
F/F and P/R (and others, not shown here). In fact, it is expected from Section 3.5 that with such a
small ∆tobs and in the small ε regime, both the filtering and prediction results are accurate. This is true
for most of the Fourier modes, such as k = (1, 1) as shown in the last row of Figure 30. However, it is
seen in the third row that the estimates of mode k = (1, 0) for both filtering and predictions are quite
different from the truth by observing only u. The reason is that the first component of rk,B in (114)
which multiplies ûk,B in obtaining the observation of u is zero for all modes with k = (k1, 0). This
means any mode ûk,B with k = (k1, 0) has no observability. In other words, the observation u plays
no role in the filtering process. The consequence is that both the filtering and prediction estimates of
ûk,B follow exactly the mean evolution of the dynamics. This is clearly demonstrated in column (e) for
P/R. On the other hand, the small fluctuations in the estimates of ûk,B in F/F are due to the coupling
between ûk,B and ûk,± where the latter is observable. These findings indicate the importance and
necessity of observing both u and v.
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There are a few issues that have not been fully addressed here but can be good directions
for future works. First, there might not be necessary to observe all the components of u and v.
For example, observing v only for the modes that u has no observability may provide a cheaper strategy.
Second, comparing the Euler and Lagrangian observations is an interesting topic. In fact, it has been
shown in [49] that there exists an information barrier in recovering the velocity field using the Lagrangian
observations. Whether this information barrier can be rigorously quantified by using Euler measurements
and how to combine Euler and Lagrangian observations to maximize the information are both important
topics that deserve further explorations. Finally, as has been noticed here, the P/R tuned setup does not
significantly reduce the biases due to the representation error. Therefore, a more systematical study of
understanding and improving the representation error is a good future direction.
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Figure 26. Regime ε = 0.1 with observational time ∆tobs = 0.1. Comparison of the prediction
and filtering estimates in physical space at a fixed time t = 26 using different setups: (b) F/F (full
observations, full forecast model); (c) P/F (partial observations, full forecast model); (d) P/R (partial
observations, reduced forecast model) and (e) P/R tuned (partial observations, reduced forecast model
and tuned observational noise level with inflation). The truth is shown in column (a).

x

y

 

 
(a) Truth

−2 0 2

−2

0

2

x

y

 

 

−2 0 2

−2

0

2

x

y

 

 
(b) F/F

−2 0 2

−2

0

2

x

y

 

 

−2 0 2

−2

0

2

x

y

 

 
(c) P/F

−2 0 2

−2

0

2

x

y

 

 

−2 0 2

−2

0

2

x

y

 

 
(d) P/R

−2 0 2

−2

0

2

x

y

 

 

−2 0 2

−2

0

2

x

y

 

 
(e) P/R tuned

−2 0 2

−2

0

2

−20

−10

0

10

20

30

x

y

 

 

−2 0 2

−2

0

2

Prediction

Filtering

      ε = 0.1
∆t

obs
 = 1.0

Figure 27. Regime ε = 0.1 with observational time ∆tobs = 1.0. The caption is similar to that in Figure 26.
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Figure 28. Regime ε = 1.0 with short observational time ∆tobs = 0.1. The caption is similar to that in
Figure 26.
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Figure 29. Regime ε = 1.0 with observational time ∆tobs = 1.0. The caption is similar to that in Figure 26.
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Figure 30. Comparison of the filtering and prediction estimates in physical space using F/F and P/R
with two different types of observations. (a): the truth; (b,d): observing both u and v; (c,e): observing
only u. Here, ε = 0.1 and ∆tobs = 0.1. The first two rows show the snapshots of the steam function at a
fixed time t = 15. The third and fourth rows show the time series of the two Fourier modes k = (1, 0)
and k = (0, 1), where the filtering and prediction estimates are largely overlapped with each other.
Note that the first component of vector~rk,B with k = (1, 0) is zero.

4. Information, Sensitivity and Linear Statistical Response—Fluctuation–Dissipation Theorem (FDT)

In Sections 2.3 and 2.4, we have shown the response in the statistical mean as a function of the
external forcing perturbation in linear models, where analytic formulae were available and they were
used to explicitly illustrate the response. For complex nonlinear dynamical systems, computing the
system response due to different types of external perturbations is an important issue in many areas
including climate change in climate science and feedback control in engineering. These external
perturbations can be forcing (as in the examples shown in Sections 2.3 and 2.4), dissipation, phase as
well as all other types of perturbations. In addition, the response function of interest is not only
the statistical mean but also the energy (variance) and many other nonlinear functions of the state
variables. Clearly, for most of the nonlinear systems, analytic formulae for the statistical response are
not available and direct numerical methods are too expensive to adopt. Therefore, it is important to
develop a general strategy of efficiently computing the system response to any external perturbation
in complex nonlinear dynamical systems.

The fluctuation–dissipation theorem (FDT) [38–40,162] is an attractive way to assess the system
response by using the statistics of the present states. For example, the important practical and
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conceptual advantages for climate change science when a skillful FDT algorithm can be established is
that the linear statistical response operator produced by FDT can be used directly for multiple climate
change scenarios, multiple changes in forcing, dissipation and other parameters and inverse modelling
directly [163,164] without the need of running the complex climate model in each individual case, often
a computational problem of overwhelming complexity. With systematic approximations, FDT has
been shown to have high skill for suitable regimes of general circulation models (GCMs), which are
extremely complicated with an order of a million degrees of freedom [163,164].

4.1. Fluctuation–Dissipation Theorem (FDT)

4.1.1. The General Framework

Here, we summarize the general framework of the FDT [40]. Consider a general nonlinear
dynamical system with noise

du
dt

= F(u) + σ(u)Ẇ, (119)

where u ∈ RN is the state variables, σ is an N × K noise matrix and Ẇ ∈ RK is a K-dimensional
white noise. The evolution of the PDF p(u) associated with u is driven by the so-called Fokker–Planck
equation [108],

∂p
∂t

= −divu[F(u)p] +
1
2

divu∇u(Σp) ≡ LFP p, (120)

where Σ = σσT and p|t=0 = p0(u). Let peq(u) be the smooth equilibrium PDF that satisfies LFP peq = 0.
The statistics of some function A(u) are determined by

〈A(u)〉 =
∫

A(u)peq(u)du. (121)

Now, consider the dynamical in (119) by a small external forcing perturbation δF(u, t). The perturbed
system reads

du
dt

= F(u) + δF(u, t) + σ(u)Ẇ. (122)

We further assume an explicit time-separable structure for δF(u, t), which occurs in many
applications [40,97,165], namely

δF(u, t) = δw(u) f (t). (123)

Then, the Fokker–Planck equation associated with the perturbed system (122) is given by

∂pδ

∂t
= LFP pδ + δLext pδ,

where δLext pδ = Lext p·δF(t), Lext p = − ∂

∂ui

(
wi(u)p

)
, 1 ≤ i ≤ N.

(124)

Similar to (121), for the perturbed system (124) the expected value of the nonlinear functional
A(u) is given by

〈A(u)〉δ =
∫

A(u)pδ(u)du. (125)

The goal here is to calculate the change in the expected value

δ〈A(u)〉 = 〈A(u)〉δ − 〈A(u)〉. (126)

To this end, let’s take the difference between (120) and (124),

∂

∂t
δp = LFPδpp + δLext peq + δLextδp, (127)
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where δp = pδ − peq is the small perturbation in the PDF. Ignoring the higher order term δLextδp
assuming δ is small, (127) reduces to

∂

∂t
δp = LFPδpp + δLext peq,

δp|t=0 = 0.
(128)

Since LFP is a linear operator, with the semigroup notation, exp[tLFP], for this solution operator,
the solution of (128) is written concisely as

δp =
∫ T

0
exp

[
(t− t′)LFP

](
δLext(t′)peq

)
dt′. (129)

Now, combining (129) with (124) and (126), we arrive at the linear response formula

δ〈A(u)〉(t) =
∫
RN

A(u)δp(u, t)du =
∫ t

0
R(t− t′) · δF(t′)dt′, (130)

where the vector linear response operator is given by

R(t) =
∫
RN

A(u)
(

exp[tLFP][Lext peq]
)
(u)du. (131)

This general calculation is the first step in the FDT. However, for nonlinear systems with many
degrees of freedom, direct use of the formula in (131) is completely impractical because the exponential
exp[tLFP], cannot be calculated directly.

FDT states that, if δ is small enough, then the leading-order correction to the statistics in (121)
becomes [40]

δ〈A(u)〉(t) =
∫ t

0
R(t− s)δ f (s)ds, (132)

where R(t) is the linear response operator, which is calculated through correlation functions in the
unperturbed climate:

R(t) = 〈A[u(t)]B[u(0)]〉, B(u) = −
divu(wpeq)

peq
. (133)

See [40] for a rigorous proof of (132) and (133). Clearly, calculating the correlation functions in (133)
via FDT is much cheaper and practical than directly computing the linear response operator (131).

Before we move on to the more specific FDT algorithms, let’s comment on the perturbation
function in (122) and (123). In fact, if w has no dependence on u, then δF(t) naturally represents the
forcing perturbation. If w(u) is a linear function of u, then δF(u, t) represents the perturbation in
dissipation. It is also clear that if the functional A(u) in (132) is given by A(u) = u, then the response
computed is for the statistical mean. Likewise, A(u) = (u− ū)2 is used for computing the response in
the variance.

Notably, despite the small perturbation, FDT (132) and (133) does not require any linearization
of the underlying dynamics in (119). Therefore, it captures the nonlinear features in the underlying
turbulent systems.

4.1.2. Approximate FDT Methods

One major issue in applying FDT directly in the form of (133) is that the equilibrium measure
peq(u) is not known exactly. Therefore, different approximate methods have been proposed to compute
the linear response operator.
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Quasi-Gaussian (qG) FDT. Among all the approximate methods, the quasi-Gaussian (qG)
approximation is one of the most effective approaches. It uses the approximate equilibrium measure

pG
eq = CN exp

[
−1

2
(u− ū)∗R−1(u− ū)

]
, (134)

where the mean ū and covariance matrix R match those in the equilibrium peq. One then calculates

BG(u) = −
divu(wpG

eq)

pG
eq

(135)

and replaces B(u) by BG(u) in the qG FDT. The correlation in (133) with this approximation is
calculated by integrating the original system in (119) over a long trajectory or an ensemble of trajectories
covering the attractor for shorter times assuming mixing and ergodicity for (133).

For the special case of changes in external forcing w(u)i = ei, i ≤ i ≤ N, the response operator
for the qG FDT is given by the matrix

RG(t) = 〈A(u(t))C−1(u− ū)(0)〉. (136)

The qG FDT will be applied in the simple example in Section 4.2.

Kicked FDT. One strategy to approximate the linear response operator which avoids direct
evaluation of πeq through the FDT formula is through the kicked response of an unperturbed system to
a perturbation δu of the initial state from the equilibrium measure [30], that is,

π |t=0= πeq (u− δu) = πeq − δu · ∇πeq + O
(

δ2
)

. (137)

One important advantage of adopting this kicked response strategy is that higher order statistics
due to nonlinear dynamics will not be ignored (compared with other linearized strategy using
only Gaussian statistics [162]). Then, the kicked response theory gives the following fact [28,40]
for calculating the linear response operator:

Fact: For δ small enough, the linear response operator R (t) can be calculated by solving the
unperturbed system (119) with a perturbed initial distribution in (137). Therefore, the linear response
operator can be achieved through

R (t) =
∫

A (u) δπ + O
(

δ2
)

. (138)

Here, δπ is the resulting leading order expansion of the transient density function from
unperturbed dynamics using initial value perturbation. The straightforward Monte Carlo algorithm to
approximate (138) is sketched elsewhere [40,50]. The use of kicked FDT in calibrating the reduced-order
models will be illustrated in Section 6.3.

4.2. Information Barrier for Linear Reduced Models in Capturing the Response in the Second Order Statistics

In this subsection, we use a simple 2D example to systematically illustrate the procedure of the
FDT as introduced above. We also aim at showing the information barrier for linear reduced models in
capturing the response beyond the first-order statistics. Note that such an information barrier was first
pointed out in [41] with detailed discussions and more complicated examples.
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The perfect model here is the SPEKF type of non-Gaussian model as discussed in (11), except that
for simplicity we adopt a constant forcing fu in the equation of u,

du
dt

= −γu + fu + σuẆu,

dγ

dt
= −dγ(γ− γ̂) + σγẆγ.

(139)

The following parameters are used in (139) in order to generate non-Gaussian statistics of u,

σu = 0.5, dγ = 1.3, σγ = 1, γ̂ = 1, fu = 1. (140)

In Figure 31, sample trajectories and the associated PDFs of the SPEKF type non-Gaussian
model (139) with parameters (140) are shown. Since γ frequently crosses zero and becomes negative,
the corresponding signal of u is intermittent. Consequently, u has a skewed non-Gaussian PDF with a
one-side fat tail.

With this constant forcing fu ≡ 1, the time evolutions of the mean 〈u〉 and variance Var(u) of u
are shown in Figure 32. For simplicity of the discussion below, the initial time here is set to be t0 = −12.
It is clear that after t reaches around t = −6, the model (139) arrives at the statistical equilibrium.

Now, we add a forcing perturbation δ fu(t) to the model in (139),

du
dt

= −γu + fu + δ fu(t) + σuẆu,

dγ

dt
= −dγ(γ− γ̂) + σγẆγ.

(141)

The function δ fu(t) is a ramp-type perturbation with the following form

δ fu(t) = A0
tanh(a(t− tc)) + tanh(atc)

1 + tanh(atc)
, (142)

with
A0 = 0.1, a = 1, tc = 2. (143)

The profile of δ fu(t) is shown in panel (c) of Figure 32. The forcing perturbation δ fu(t) starts
from 0 at time t = 0 and it reaches 0.1 at roughly t = 5. After t = 5, δ fu(t) stays at δ fu(t) = 0.1.
Due to this forcing perturbation, the mean 〈u〉 and variance Var(u) also have corresponding changes,
which are shown in panels (a) and (b) of Figure 32. Note that these responses are computed by using
the analytical formulas of the time evolutions of the statistics, which are accurate. They are known as
the idealized responses.

In most realistic scenarios, the true dynamics is unknown or it is too expensive to run the full
perfect model. Therefore, simplified or reduced models are widely used in computing the responses.
One type of the simple models that are widely adopted is the linear model,

duM = −dM
u uM + f M

u + σM
u Ẇ. (144)

Note that adopting such a linear model to compute the responses shares the same philosophy as
one of the ad-hoc-FDT procedures [166], where linear regression approximate stochastic model [87] is
used for the variables of interest before applying FDT.

The three parameters in (144) are calibrated by matching the equilibrium mean, equilibrium
variance and decorrelation time with those of u in the perfect model (139), where

〈u〉eq =
f M
u

dM
u

, Var(u)eq =
(σM

u )2

2dM
u

, τcorr =
1

dM
u

. (145)
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Note that the autocorrelation function of u in (139) with parameters in (140) does not have a strong
oscillation decaying structure, and therefore matching the decorrelation is sufficient for the calibration
purpose here. With such calibrations, the linear model (144) automatically fit the unperturbed mean
and variance at t = 0. Now, we add the same forcing perturbation to the linear model,

duM = −dM
u uM + f M

u + δ fu(t) + σM
u Ẇ. (146)

Since the statistics in the linear model is Gaussian, the formulas in (134)–(136) become rigorous
with no approximation. In computing the responses to the forcing perturbation δ fu(t) in the mean and
variance of u, the functional A(u(t)) is set to be

Response in the mean : A(u(t)) = uM,

Response in the variance : A(u(t)) = (uM − ūM)2,
(147)

respectively. These responses using such a linear model are shown in Figure 33 (green colors) while the
idealized responses are shown in blue for reference. It is clear that the response in the mean using the
linear model captures the trend of the truth, but the amplitude is severely overestimated. On the other
hand, the response in the variance using the linear model is identically zero and therefore it completely
misses the truth. In fact, inserting the second Equation (147) into (136) yields solving a third-order
centered moment. However, all odd-centered moments automatically vanish for Gaussian distribution
and therefore the response in the variance using the linear model is zero [41], which has already
been mentioned in Sections 2.2.1 and 2.3. These results unambiguously indicate the insufficiency of
using linear approximate models as well as the ad hoc-FDT [166] to compute the responses when the
underlying dynamics is highly nonlinear.

As a comparison, we also show the responses using the qG FDT based on the perfect model (139).
Since the forcing perturbation is only on the direction of u, w(u) in (135) is given by w(u) = [1, 0]T .
In Figure 33, it is clear that the qG FDT based on the perfect model (red) captures the response in
the mean quite accurately. In addition, this qG FDT also results in a response in the variance and the
skill in recovering the time evolution of the variance response is pretty good. Notably, although the
response operator R(t) in (132) is linear and the Gaussian approximation (134) is used in computing the
equilibrium PDF of the unperturbed system, the underlying nonlinear dynamics is used in computing
the functional A(u(t)) in (147). Therefore, the nonlinear interaction is included in the FDT and the
response in the variance is captured to a large extent. It is of importance to keep in mind that FDT
does not implement linearization on the original underlying nonlinear system. Thus, the nonlinear
dynamical features are reflected in the FDT. The linearization is applied only in the response operator
due to small perturbations.

Although the simple test example here deals with a constant forcing in the unperturbed system,
the FDT technique can be easily generalized to the systems with time-periodic settings, which usually
corresponds to annual or seasonal cycles in climate, atmosphere and ocean sciences. Mathematical
theories of the generalizations of FDT to time-dependent ensembles can be found in [162]. In [167],
a triad nonlinear stochastic model with time-periodic setting was developed, which mimics the
nonlinear interaction of two Rossby waves forced by baroclinic processes with a zonal jet forced by a
polar temperature gradient. Systematical studies showed that qG FDT has surprisingly high skill for
the mean response to the changes in forcing. The performance of qG FDT for the variance response to
the perturbations of dissipation is good in the nearly Gaussian regime and deteriorates in the strongly
non-Gaussian regime. More examples can be found in [15,40].
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Figure 31. (a,b): Sample trajectories of u and γ in the stochastic parameterized extended Kalman filter
(SPEKF) type of non-Gaussian model (139); (c,d): the corresponding PDFs. The subpanel within (b)
shows the PDF in logarithm scale, with the red curves representing the Gaussian fit. The parameters
associated with these figures are given in (140).
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Figure 32. Time evolution of the mean 〈u〉 and variance Var(u(t)) of u (a,b) and the corresponding
forcing fu(t) (panel (c)). The forcing fu(t) is perturbed at time t = 0 with δ f (t) given in (142). The mean
and variance of u have corresponding responses and eventually arrive at a new equilibrium.
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Figure 33. Responses to the mean 〈u〉 (panel (a)) and variance Var(u(t)) (panel (b)) of u with the
forcing perturbation δ f (t) given in (142). The perturbation starts at time t = 0, which is consistent with
that in Figure 32.

Other FDT techniques that have skillful performance in dealing with complex nonlinear dynamical
systems includes blended response algorithms [168,169] and kicked FDT [30]. FDT has been
demonstrated to have high skill for the mean and variance response in the upper troposphere for
changes in tropical heating in a prototype atmospheric GCM and can be utilized for complex multiple
forcing and inverse modeling issues of interest in climate change science [163,164]. Note that GCMs
usually have a huge number of state variables and applying FDT on the entire phase space is impractical
due to the limitations in calculating the covariance matrix. Practical strategies involve computing
the response operator on a reduced subspace. Mathematical principles of applying FDT on reduced
subspaces can be found in [41].

4.3. Information Theory for Finding the Most Sensitive Change Directions

An important question in climate change is how to find the most sensitive directions for climate
change given the present climate. To quantify these most sensitive directions, consider a family of
parameters λ ∈ Rp with πλ the PDF of the true climate as a function of λ. Here λ = 0 corresponds to
the unperturbed state or the present climate π. Note that λ can consist of external parameters such
as changes in forcing or parameters of internal variability such as a change in dissipation. In light of
the information theoretic framework, the most sensitive perturbed climate is the one with the largest
uncertainty related to the unperturbed one,

P(πλ∗ , π) = max
λ∈Rp

P(πλ, π). (148)

The calculation of the most sensitive perturbation for the present climate in (148) is through the
information theoretical framework. Assume that πλ is differentiable with respect to the parameter
λ [90,162,170]. Since πλ|λ=0 = π, for small values of λ, we have

P(πλ, π) = λ · I(π)λ + O(|λ|3), (149)

where λ · I(π)λ is the quadratic form in λ given by the Fisher information [40,93,162,171]

λ · I(π)λ =
∫

(λ · ∇λπ)2

π
, (150)

and the elements of the matrix of this quadratic form are given by

Ikj(π) =
∫ ∂π

∂λk
∂π
∂λj

π
. (151)

Detailed derivations of (149)–(151) are included in Appendix A. Note that the gradients are
calculated at the unperturbed state λ = 0. Therefore, if both the unperturbed state π and the gradients
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λ · ∇λπ are known, then the most sensitive perturbation direction occurs along the unit direction
e∗π ∈ Rp which is associated with the largest eigenvalue λ∗π of the quadratic form in (150).

Below, we use two simple examples to provide insights of the above information theoretical
framework in finding the most sensitive change direction in the underlying models. We will start
with a linear example, where all the results using the direct calculation method can be written down
explicitly. We aim at comparing the results using the direct method and using the Fisher information
in (150). The analytic formulae associated with this linear example also allow us to understand
the contributions of the uncertainty in the perturbation from the signal and the dispersion parts,
respectively. Then, we will use a more complicated nonlinear example with non-Gaussian noise to
show the efficiency and accuracy of using the information criterion in (150).

The first example is an one-dimensional linear model,

du
dt

= −au + f + σẆ, (152)

the equilibrium PDF of which is Gaussian and is given by N (ū, C),

π(u) = NC exp
(
− (u− ū)2

2C

)
, (153)

with

ū =
f
a

, C =
σ2

2a
. (154)

The two-dimensional parameters λ = ( f , a)T ∈ R2 for external forcing and dissipation are the
natural parameters which are varied in this model. Therefore, the corresponding I(λ) in (150) is a
2× 2 matrix with entries Iij, i, j = 1, 2. Using (153), it is straightforward to compute the first-order
derivatives of π with respect to f and a,

∂π

∂ f
=

u− ū
aC

π,

∂π

∂a
=

σ2

4a2C
π − f (u− ū)

a2C
π − σ2(u− ū)2

4a2C2 π.

(155)

In light of (151) and (155), the four elements of I have the following explicit expressions:

I11 =
∫ (

∂π
∂ f

)2

π
du =

∫
(u− ū)2

C2
π

a2 du =
1

Ca2 ,

I12 = I21 =
∫ ∂π

∂ f
∂π
∂a

π
du =

∫ u− ū
aC

(
σ2

4a2C
− f (u− ū)

a2C
− σ2(u− ū)2

4a2C2

)
πdu = − f

a3C
,

I22 =
∫ (

∂π
∂a

)2

π
=
∫ (

σ2

4a2C
− f (u− ū)

a2C
π − σ2(u− ū)2

4a2C2

)2

πdu

=
∫ [(

σ2

4a2C

)2

+

(
f (u− ū)

a2C

)2

+

(
σ2(u− ū)2

4a2C2

)2

− 2
σ2

4a2C
σ2(u− ū)2

4a2C2

]
πdu

= − f 2

Ca4 +
σ4

8C2a4 .

(156)

Now, let’s implement numerical experiments. The following two groups of parameters are used:

(a) : a = 1, f = 1, σ = 1,

(b) : a = 1, f = 1, σ = 3.
(157)
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Since I is a 2× 2 matrix, there are only two eigenmodes. The eigenvector w associated with the larger
eigenvalue corresponds to the most sensitive direction with respect to the perturbation (δ f , δa)T .

By plugging the model parameters (157) into the I matrix in (156), we find the most sensitive
direction in both of the cases:

(a) : e∗π =

(
−0.6618
0.7497

)
, (b) : e∗π =

(
−0.3554
0.9347

)
. (158)

To gain more intuition on the results of these most sensitive directions, we make use of the
simple structure of (152) to solve this problem in an alternative way. In fact, given small perturbations
(δ f , δa)T to ( f , a)T , the corresponding perturbed mean and variance can be written down explicitly

ūδ =
f + δ f
a + δa

, Cδ =
σ2

2(a + δa)
. (159)

Since both the unperturbed and perturbed PDFs are Gaussian, we can easily make use of the
explicit formula of the relative entropy in (6) to compute the uncertainty due to the perturbation
P(π, πδ) and find the most sensitive direction in the two-dimensional parameter space. Recall in (6)
that the total uncertainty can be decomposed into signal and dispersion parts. Making use of (154)
and (159), we have

Signal =
1
2

(
f
a
− f + δ f

a + δa

)2 (σ2

2a

)−1

=
1
2
( f a + f δa− f a− aδ f )2

a2(a + δa)2
2a
σ2

=
( f δa− aδ f )2

aσ2 + o
(

δa3
)
+ o

(
δa2δ f

)
+ o

(
δaδ f 2

)
Dispersion = −1

2
ln
(

a + δa
a

)
+

1
2

(
a + δa

a
− 1
)
= −1

2
ln
(

1 +
δa
a

)
+

1
2

δa
a

= −1
2

(
δa
a
− 1

2

(
δa
a

)2
+ o

(
δa
a

)3
)
+

1
2

δa
a

=
1
4

(
δa
a

)2
+ o

(
δa
a

)3
.

(160)

Note that the dispersion part depends only on the perturbation in the dissipation δa since f has
no effect on the variance. In addition, it is clear that δa and δ f should have opposite signs in order to
maximize the relative entropy in the signal part.

Figure 34 shows the total relative entropy as well as its two components, namely signal and
dispersion, as a function of the perturbations in the two-dimensional parameter space (δ f , δa)T using
the direct formula (160). The numerical simulation here assumes

√
δ f 2 + δa2 ≤ 0.05 to guarantee

the perturbation is small enough. In both cases, the most sensible direction with respect to only the
dispersion part lies in the direction (δa, δ f )T = (1, 0)T , due to the fact that δ f has no effect on the
dispersion part. In the signal part, the most sensitive direction satisfies aδ f = − f δa. The overall
most sensitive direction depends naturally on the weights of signal and dispersion parts. When σ

becomes larger, the weight on the signal part reduces since the signal part is proportional to the inverse
of the model variance. It is easy to see that the most sensitive directions as indicated by the black
dashed lines in Figure 34 are consistent with the theoretical prediction from (158) using the Fisher
information (148)–(151).
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Figure 34. Uncertainty dependence of the perturbation in the two-dimensional parameter space
(δa, δ f )T in the linear model (152). (a): a = 1, f = 1, σ = 1; (b): a = 1, f = 1, σ = 3. The total
uncertainty (left column) is decomposed into signal (middle column) and dispersion (right column)
parts according to (6). The black dashed line shows the direction of the maximum uncertainty, namely
the most sensitive direction of perturbation.

Now, we consider a second example with a nonlinear model [116,170],

du
dt

= ( f + au + bu2 − cu3) + (A− Bu)ẆC + σẆA. (161)

The nonlinear model in (161) is a canonical model for low frequency atmospheric variability
and was derived based on stochastic mode reduction strategies. This one-dimensional, normal form
was applied in a regression strategy in [116] for data from a prototype AOS model [112] to build
one-dimensional stochastic models for low-frequency patterns such as the North Atlantic Oscillation
(NAO) and the leading principal component (PC-1) that has features of the Arctic Oscillation. Note that
the model in (161) has both correlated additive and multiplicative noise (A− Bu)ẆC as well as an
extra uncorrelated additive noise σẆA. The nonlinearity interacting with noise allows a rich dynamical
features in the model such as strongly non-Gaussian PDFs and multiple attractors. Different from the
previous example with linear dynamics, the direct method has no explicit solution for the nonlinear
system (161). The goal here is to find the most sensitive directions using the information theory
developed above in different dynamical regimes.

Here, we consider a simple case with A = B = 0 such that the model has only additive noise.
Nevertheless, the cubic nonlinearity still allows the model to have strong non-Gaussian characteristics.
With A = B = 0, the equilibrium PDF of (161) is given by the following explicit formula

π(u) = N0 exp
(

2
σ2

(
f u +

a
2

u2 +
b
3

u3 − c
4

u4
))

. (162)

We again look at the perturbation in the two-dimensional parameter space λ = ( f , a)T ,
which represent the changes in forcing and damping. Following (149)–(151), we aim at solving
the eigenvectors of the 2× 2 matrix I(λ). To explicitly write down the elements in I(λ), we define

Hk =
∫

ukψ(u)du, k ≥ 0 with ψ(u) = exp
(

2
σ2

(
f u +

a
2

u2 +
b
3

u3 − c
4

u4
))

. (163)
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Straightforward calculations show that

I11 =
∫ ( ∂π

∂ f )
2

π
du =

4
σ4H4

0
(H0H2 − H2

1),

I12 = I21 =
∫ ∂π

∂ f
∂π
∂a

π
du =

2
σ4H4

0
(H0H3 − H1H2),

I22 =
∫ ( ∂π

∂a )
2

π
du =

1
σ4H4

0
(H0H2 − H2

2).

(164)

Now, we focus on the case studies in the following three regimes,

Regime I : f = 1.8, a = 0, b = −5.4, c = 4, σ =
√

0.5,

Regime II : f = −0.005, a = −0.018, b = 0.006, c = 0.003, σ = 0.226,

Regime III : f = −1.44, a = −0.55, b = −0.073, c = 0.003, σ = 0.253.

(165)

The sample trajectories and equilibrium PDFs associated with these regimes are shown in Figure 35.
The PDF in Regime I is unimodal with skewness and an one-side fat tail. Interestingly, the time

series in Regime I shows a distinct regimes of behavior [172,173]. Regimes II and III correspond to
PC-1 and NAO for the low frequency data as discussed above, where Regime II has a slight skewed
PDF with sub-Gaussian tails while Regime III is nearly Gaussian.

With the parameters in (165) and the explicit expression of I(λ) in (164), the most sensitive
direction of the parameter perturbation in the two-dimensional space (δ f , δa)T is given by respectively

Regime I : e∗π = (0.9545, 0.2981)T ,

Regime II : e∗π = (0.9685, 0.2488)T ,

Regime III : e∗π = (−0.0760, 0.9971)T .

(166)

The results in (166) imply that the forcing perturbation leads to more significant changes of
the system in Regimes I and II while damping perturbation is more crucial in Regime III for the
NAO. In column (c) of Figure 35, we show the numerical simulations of the relative entropy in (1)
with perturbations in all the directions within the entire two-dimensional parameter space (δ f , δa)T .
Here, we take smaller (δ f , δa)T in Regime II than those in Regimes I and III due to the smaller
parameter values ( f , a)T in Regime II. These numerical results, which are more expensive to compute,
are consistent with the theoretical predictions in (166). Note that, although the most sensitive directions
in Regimes I and II are close to each other, the ratio of the larger to smaller eigenvalues in the two
regimes are quite different with 18.2979 in Regime I and 2.5307 in Regime II. This means that there is a
direction of (δ f , δa)T in Regime I in which the perturbation results in almost no change in the PDF,
which can also be seen in column (c) of Figure 35.

Note that both the simple examples shown above contain the perfect knowledge of the present
climate given by the unperturbed equilibrium PDFs. However, it is often quite difficult in practice to
know the exact expression of these PDFs or it is computationally unaffordable to compute the gradient
in high dimensions. Therefore, many approximations are combined with the information theoretical
framework developed above. One common practical strategy is to adopt some approximated PDFs
based on a few measurements such as the mean and covariance. It is also common to use imperfect
or reduced models from a practical point of view, where FDT can also be incorporated to calculate
the gradient of the present climate. Then, quantifying the model error in finding the most sensitive
directions using imperfect models is an important issue. For detailed discussions of these topics,
please see the reference [26].
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Figure 35. Time series (column (a)), equilibrium PDF (column (b)) and error due to the parameter
perturbation (δ f , δa)T in the two-dimensional parameter space (column (c)). The subpanels in
column (b) are the PDFs in logarithm scale and the red dashed curves are the Gaussian fits.
The parameter values of the three regimes are given in (166). The black dashed line shows the
direction of the maximum uncertainty, namely the most sensitive direction of perturbation.

5. Given Time Series, Using Information Theory for Physics-Constrained Nonlinear Stochastic
Model for Prediction

5.1. A General Framework

A central issue in contemporary science is the development of data-driven statistical dynamical
models for the time series of a partial set of observed variables which arise from suitable observations
from nature ([174] and references therein). Examples involve multi-level linear autoregressive models
as well as ad hoc quadratic nonlinear regression models. It has been established recently [111] that ad
hoc quadratic multilevel regression models can have finite time blow up of statistical solutions and
pathological behavior of their invariant measure even though they match the data with high precision.
Recently, a new class of physics-constrained multi-level nonlinear regression models was developed
which involve both memory effects in time as well as physics constrained energy conserving nonlinear
interactions [47,48] and completely avoid the above pathological behavior with full mathematical rigor.

The physics-constrained multi-level nonlinear regression models have the following forms:

du
dt

= Lu + B(u, u) + F + r1,

dr
dt

= Qu + Ar + σẆ,
(167)

where B(u, u) is a quadratic nonlinearity which imposes the physical constraint of energy conservation
on the nonlinear terms, namely

u · B(u, u) = 0. (168)
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In (167), the noise has the form r = (r1, . . . , rp)T where p denotes the number of memory levels
and these noises are characterizes by the triangular matrix A. The situation with p = 0 denotes the
special zero-memory level model

du
dt

= Lu + B(u, u) + F + σẆ. (169)

See [47,48] for more details.
The ideas of developing physics-constrained nonlinear regression models can be combined with

information calibration for predicting strongly nonlinear time series. The general procedure is shown
in Figure 36. Here, the observed time series are divided into two parts, namely the training phase and
the prediction phase. In the first step, physics-constrained nonlinear stochastic models are developed
based on the characteristics of the given time series in the training phase. The second step involves
applying information theory for model calibration using the time series again in the training phase.
Then, the remaining time series is used for testing the prediction skill of the calibrated model.

tCalibration Phase Prediction Phase

(Using Information Theory)
Step 2: Model Calibration

Step 1: Model Development

Step 3: Prediction

Figure 36. A general procedure for predicting time series.

5.2. Model Calibration via Information Theory

The key step above is the model calibration. As has been seen in Section 2, an effective model
is expected to capture both the fidelity and sensitivity of nature. Therefore, two objective functions
are utilized here for model calibration. The first one aims at capturing the model fidelity, which
is given by minimizing the information distance between the PDF associated with the time series
π(u) and that associated with the model πM(u). The model fidelity guarantees the model’s ability in
recovering the long-term statistics of nature. However, the model fidelity does not necessarily provide
skillful predictions at short and medium ranges. See examples in Figures 9 and 10. Thus, a second
objective function is launched, which aims at minimizing the distance between the two autocorrelation
functions associated with the observed time series and the model, respectively. As has been shown in
Section 2.5, the autocorrelation function is associated with the mean response of the system. In fact,
autocorrelation function characterizes the overall time-evolving patterns of the underlying dynamical
system. Capturing the autocorrelation function ensures the dynamical consistency and is crucial for
skillful short and medium-range forecasts using the proposed model.

Denote θ the parameters in the physics-constrained nonlinear stochastic model. If both the model
and nature are stationary, then the model calibration is given by the following optimization problem:

L = min
θ

(
w1P(π(u), πM(u)) + w2P(E(λ), EM(λ))

)
, (170)

where w1 and w2 are weight functions. In (170), E(λ) and EM(λ) are the energy spectra corresponding
to the autocorrelation functions R(t) and RM(t) of nature and the model, respectively, as studied in
Section 2.5. In practice, time-periodic forcing may be involved in both the observed time series and
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the physics-constrained model. In such a situation, both πM and RM(t) can be formed by making
use of the sample points in a long trajectory from the model. Since the stationary assumption is
broken, the target function in (170) can be modified as the average value of the minimizations at
different points within one period. Alternatively, an even cruder but practically useful target function
involves a modified version of the first part in (170) given by the empirical measurements based on
the time-averaged PDFs while the second part in (170) is replaced by directly computing the difference
between the two autocorrelation functions. The important issue here is that both the PDF and the
temporal correlation must be included in the target function.

The model calibration based on (170) or its modified versions has several salient features.
First, the information distance P(π, πM) is able to quantify the difference in the non-Gaussian statistics
between the model and nature. Particularly, it is able to assess the skill of the model in recovering extreme
events. Second, the two target functions play the role of improving long-term and short-term prediction
skill, respectively. Therefore, the calibrated model can be used for predicting both transit phases and
the statistical equilibrium state. Third, although the number of the parameters, namely the dimension
of θ, can be large, the cost function L is in general robust with respect to the perturbation of θ around
the optimal values with a suitable choice of the physics-constrained nonlinear model. This is crucial
in practice because it requires only a crude estimation of the parameters for the model, which greatly
reduces the computational cost for searching in high-dimensional parameter space. In fact, as has been
shown in [46], the energy-conserving nonlinear interaction in these physics-constrained nonlinear models
is the underlying mechanism for such robustness property even in the presence of strong nonlinearity
and intermittency. Finally, the physics-constrained nonlinear stochastic models require only a short
training period [61,175] because the model development automatically involves a large portion of the
information of nature. Thus, the data-driven physics-constrained modeling framework as discussed
above is much cheaper and more practical than most non-parametric methods where a massive training
data is typically required.

5.3. Applications: Assessing the Predictability Limits of Time Series Associated with Tropical
Intraseasonal Variability

A striking application combining physics-constrained nonlinear model strategy with the above
procedure is to assess the predictability limits of time series associated with the tropical intraseasonal
variability such as the the Madden–Julian oscillation (MJO) and monsoon [46,61,176]. They yield an
interesting class of low-order turbulent dynamical systems with extreme events and intermittency.
Denote by u1 and u2 the two observed large-scale components of tropical intraseasonal variability.
Here, we focus on the MJO time series [46], which are measured by outgoing longwave radiation (OLR;
a proxy for convective activity) from satellite data [177]. See panel (a) of Figure 37. The PDFs for u1

and u2 (panel (c)) are highly non-Gaussian with fat tails indicative of the temporal intermittency in the
large-scale cloud patterns. To describe the variability of the time series u1 and u2, the following family
of low-order stochastic models are proposed:

du1

dt
=
(
− duu1 + γ(v + v f (t))u1 − (a + ωu)u2

)
+ σuẆu1 ,

du2

dt
=
(
− duu2 + γ(v + v f (t))u2 + (a + ωu)u1

)
+ σuẆu2 ,

dv
dt

=
(
− dv − γ(u2

1 + u2
2)
)
+ σvẆv,

dωu

dt
= (−dωωu) + σωẆω,

(171)

where
v f (t) = f0 + ft sin(ω f t + φ). (172)
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In (171), in addition to the two observed variables u1 and u2, the other two variables v and ωu

are hidden and unobserved, representing the stochastic damping and stochastic phase, respectively.
Here, Ẇu1 , Ẇu2 , Ẇv and Ẇω are independent white noise. The constant coefficients du, dv, dω represent
damping for each stochastic process, and the non-dimensional constant γ is the coefficient of the
nonlinear interaction. The time periodic damping v f (t) in the Equation (171) is utilized to crudely
model the active winter and the quiescent summer in the annual cycle. The constant coefficients ω f and
φ in (172) are the frequency and phase of the damping, respectively. All of the model variables are real.
The energy conserving nonlinear interactions between u1, u2 and v, ωu are seen in the following way.
First, by dropping the linear and external forcing terms in (171), the remaining equations involving
only the nonlinear parts of (171) read

du1

dt
= γvu1 −ωuu2,

du2

dt
= γvu2 + ωuu1,

dv
dt

= −γ(u2
1 + u2

2),

dωu

dt
= 0.

(173)

To form the evolution equation of the energy from nonlinear interactions E = (u2
1 + u2

2 + v2 +

ω2
u)/2, we multiply the four equations in (173) by u1, u2, v, ωu respectively and then sum them up.

The resulting equation yields
dE
dt

= 0. (174)

The vanishing of the right-hand side in (174) is due to the opposite signs of the nonlinear terms
involving v multiplying u1 and u2 in (174) and those in (174) multiplying by v as well as the trivial
cancellation of skew-symmetric terms involving ωu.

Further motivation for the models in (171) is provided by the stochastic skeleton model which
predicts key features of the MJO [178–181]. These are coupled nonlinear oscillator models of
the MJO where if we identify the OLR variables with the envelope of synoptic scale convective
activity, the hidden variables v, ωu, and their dynamics become phenomenological surrogates for the
energy-conserving interactions in the skeleton model involving the synoptic scale convective activity
and the equatorial dynamic equations for temperature, velocity, and moisture.

It is shown in Figure 37 that, with the optimized parameters, the model in (171) almost perfectly
capture the highly non-Gaussian fat-tailed PDFs, the autocorrelation functions (up to three months)
and the power spectrums. In addition, the wiggles around one year in the autocorrelation functions,
representing the annual cycle, are also recovered. Importantly, these parameters are pretty robust
around the optimal values. In panel (b), a sample trajectory of u1 from the model is shown, which shares
many salient features as those of the observed MJO time series in panel (a). Another notable advantage
of the physics-constrained nonlinear low-order stochastic models developed here is that the model
structure allows an efficient nonlinear data assimilation scheme to determine the initial values of
the hidden variables v, ωu [140]. This facilitates the ensemble prediction algorithm since no direct
observation is available for these hidden variables. In [46], significant prediction skill of these MJO
indices using the physics-constrained nonlinear stochastic model (171) was shown. The prediction
based on ensemble mean can have skill even up to 40 days. In addition, the ensemble spread accurately
quantify the forecast uncertainty in both short and long terms. In light of a twin experiment, it was
also revealed in [46] that the model in (171) is able to reach the predictability limit of the large-scale
cloud patterns of the MJO.
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Figure 37. Calibrating the physics-constrained nonlinear stochastic model (171) for the Madden-Julian
oscillation (MJO) time series. (a): the pair of MJO time series from observations; (b): a sample
trajectory of u1 from the model (171), which has the same length as the MJO time series in panel
(a); (c): comparison of the highly intermittent PDFs in logarithm scale; (d): comparison of the
autocorrelation functions, where the black dashed box indicates the time range within the first three
months; (e): comparison of the power spectrums.

6. Reduced-Order Models (ROMs) for Complex Turbulent Dynamical Systems

6.1. Strategies for Reduced-Order Models for Predicting the Statistical Responses and UQ

6.1.1. Turbulent Dynamical System with Energy-Conserving Quadratic Nonlinearity

Let’s consider a general framework of turbulent dynamical system [1],

du
dt

= (L + D) u + B (u, u) + F (t) + σk (t) Ẇk (t; ω) . (175)

The model in (175) has the following properties:

• L = L + D is a linear operator representing dissipation and dispersion. Here, L is skew symmetric
representing dispersion and D is a negative definite symmetric operator representing dissipative
process such as surface drag, radiative damping, viscosity, etc.

• B (u, u) is a bilinear term and it satisfies energy conserving property with u · B (u, u) = 0.

The energy-conserving quadratic nonlinearity is one of the representative features in many
turbulent dynamical systems in nature. The energy is transferred from the unstable modes to stable
modes where the energy is dissipated resulting in a statistical steady state.

We use a finite-dimensional representation of the stochastic field consisting of a fixed-in-time,
N-dimensional, orthonormal basis {vi}N

i=1

u (t) = ū (t) +
N

∑
i=1

Zi (t; ω) vi, (176)
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where ū (t) = 〈u (t)〉 represents the ensemble average of the response, i.e., the mean field, and Zi (t; ω)

are stochastic processes. By taking the average of (175) and using (176), the mean equation is given by

dū
dt

= (L + D) ū + B (ū, ū) + RijB
(
vi, vj

)
+ F(t), (177)

with R = 〈ZZ∗〉 the covariance matrix. Moreover, the random component of the solution, u′ =
Zi (t; ω) vi satisfies

du′

dt
= (L + D) u′ + B

(
ū, u′

)
+ B

(
u′, ū

)
+ B

(
u′, u′

)
− RijB

(
vi, vj

)
+ σk (t) Ẇk (t; ω) . (178)

By projecting the above equation to each basis element vi, we obtain

dZi
dt

= Zj
[
(L + D) vj + B

(
ū, vj

)
+ B

(
vj, ū

) ]
· vi

+
[
B
(
u′, u′

)
− RijB

(
vi, vj

) ]
· vi + σk (t) Ẇk (t; ω) · vi.

(179)

From the last equation, we directly obtain the exact evolution equation of the covariant matrix
R = 〈ZZ∗〉

dR
dt

= LvR + RL∗v + QF + Qσ, (180)

where we have:

1. The linear dynamical operator expressing energy transfers between the mean field and the
stochastic modes (effect due to B), as well as energy dissipation (effect due to D) and non-normal
dynamics (effect due to L)

{Lv}ij =
[
(L + D) vj + B

(
ū, vj

)
+ B

(
vj, ū

)]
· vi. (181)

2. The positive definite operator expressing energy transfer due to the external stochastic forcing

{Qσ}ij = (vi · σk)
(
σk · vj

)
. (182)

3. The energy flux between different modes due to non-Gaussian statistics (or nonlinear terms)
modeled through third-order moments

{QF}ij =
〈

ZmZnZj
〉

B (vm, vn) · vi + 〈ZmZnZi〉 B (vm, vn) · vj. (183)

We note that the energy conservation property of the quadratic operator B is inherited by the
matrix QF since

tr (QF) = 2 〈ZmZnZi〉 B (vm, vn) · vi = 2B
(
u′, u′

)
· u′ = 0. (184)

Based on the observation that the eigenvalues are effectively changed by the existence of the
nonlinear energy transfer mechanism, we propose a special form of the flux QF that will make the
correct steady state statistics a stable equilibrium. More specifically, we split the nonlinear fluxes into a
positive semi-definite part QF,+ and a negative semi-definite part QF,−:

QF = QF,− + QF,+.

As in (184), the nonlinear fluxes should always satisfy the conservative property of B, namely,

tr[QF] = 0 =⇒ tr[QF,−] = −tr[QF,+].
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The positive fluxes QF,+ indicate the energy being ‘fed’ to the stable modes in the form of external
stochastic noise. On the other hand, the negative fluxes QF,− should act directly on the linearly
unstable modes of the spectrum, effectively stabilizing the unstable modes.

6.1.2. Modeling the Effect of Nonlinear Fluxes

The first idea here is to model the effect of the nonlinear energy transfers on each mode by adding
additional damping balancing the linearly unstable character of these modes, and adding additional
(white) stochastic excitation with standard deviation which will model the energy received by the
stable modes,

QM
F = QM

F,− + QM
F,+ = −DM(R)RM − RMD∗M(R) + ΣM(R). (185)

In (185), (DM, ΣM) are N × N matrices that replace the original nonlinear unstable and stable
effects from the original dynamics. Here QM

F,− = −DM(R)RM − RMD∗M(R) represents the additional
damping effect to stabilize the unstable modes with positive Lyapunov coefficients, while QM

F,+ =

ΣM(R) is the positive-definite additional noise to compensate for the overdamped modes. Now, the
problem is converted to finding expressions for DM and ΣM. In the following, by gradually adding
more detailed characterization about the statistical dynamical model, we display the general procedure
of constructing a hierarchy of the closure methods step by step. Below is a review about several model
closure ideas [1,11,50,117] with increasing complexity:

1. Quasilinear Gaussian closure model: The simplest approximation for the closure methods at the first
stage should be simply neglecting the nonlinear part entirely [182–184]. That is, set

DM(R) ≡ 0, ΣM(R) ≡ 0, QQG
F ≡ 0. (186)

Thus, the nonlinear energy transfer mechanism will be entirely neglected in this Gaussian closure
model. This is the similar idea in the eddy-damped Markovian model where the moment
hierarchy is closed at the level of second moments with Gaussian assumption and a much larger
eddy-damped parameter is introduced to replace the molecular viscosity [121,185]. Obviously,
this crude Gaussian approximation will not work well in general due to the cutoff of the energy
flow when strong nonlinear interactions between modes occur. Actually, the deficiency of this
crude approximation has been shown under the Lorenz 96 framework, and in a final equilibrium
state, there exists only one active mode with a critical wavenumber [11,50]. Such closures are
only useful in the weakly nonlinear case where the quasi-linear effects are dominant.

2. Models with consistent equilibrium statistics: The next strategy is to construct the simplest closure
model with consistent equilibrium statistics. Thus, the direct way is to choose constant damping
and noise term scaled with the total variance. We propose two possible choices as in [50] for the
damping and noise in (185) below.
Gaussian closure 1 (GC1): let

DM(R) = εM IN ≡ const., ΣM(R) = σ2
M IN ≡ const., QGC1

F = −(εMR + RεM) + σ2
M IN . (187)

Gaussian closure 2 (GC2): let

DM(R) = εM

(
trR

trReq

)1/2
IN , ΣM(R) = σ2

M

(
trR

trReq

)3/2
IN ,

QGC2
F = −

(
trR

trReq

)1/2
(εMR + RεM) + σ2

M

(
trR

trReq

)3/2
IN .

(188)

Above, only two scalar model parameters (εM, σM) are introduced, and IN represents the N × N
identity matrix. GC1 is the familiar strategy of adding constant damping and white noise forcing
to represent nonlinear interaction; GC2 scales with the total variance trR (or total statistical
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energy) so that the model sensitivity can be further improved as the system is perturbed. From
both GC1 and GC2, we introduce uniform additional damping rate for each spectral mode
controlled by a single scalar parameter εM, while the additional noise with variance σ2

M is added
to make sure climate fidelity in equilibrium.
The statistical model closure QM

F is used to approximate the third-order moments in the true
dynamics, thus the exponents of the total energy trR in GC2 should be consistent in scaling
dimension. In the positive-definite part QM

F+, it calibrates the rate of energy injected into the
spectral mode due to nonlinear effect in the order |u′|3. The factor scales with the total energy with
exponent 3/2 so that the corrections keep consistent with the third-order moment approximations;
In the negative damping rate QM

F,−, the scaling function is used to characterize the amount of
energy that flows out the spectral mode due to nonlinear interactions. Scaling factor with a
square-root of the total energy with exponent 1/2 is applied for this damping rate multiplying
the variance in order |u′|2 to make it consistent in scaling dimension with third moments.
However, the damping and noise are chosen empirically without consideration about the true
dynamical features in each mode. A more sophisticated strategy with slightly more complexity
in computation is to introduce the damping and noise judiciously according to the linearized
dynamics. Then, climate consistency for each mode can be satisfied automatically.

3. Modified quasi-Gaussian (MQG) closure with equilibrium statistics: In this modified quasi-Gaussian
closure model originally proposed in [11,45], we exploit more about the true nonlinear energy
transfer mechanism from the equilibrium statistical information. Thus, the additional damping
and noise proposed as before are calibrated through the equilibrium nonlinear flux by letting

DM(R) = −NM,eq, ΣM(R) = Q+
F,eq, QMQG

F = −(NMR + RN∗M) + Q+
F . (189)

NM,eq is the effective damping from equilibrium, and Q+
F,eq is the effective noise from the

positive-definite component. Unperturbed equilibrium statistics in the nonlinear flux QF,eq are
used to calibrate the higher-order moments as additional energy sink and source. The true
equilibrium higher-order flux can be calculated without error from first and second order
moments in (ūeq, Req) from the unperturbed true dynamics (180) in steady state following the
steady state statistical solution relation:

QF,eq = Q−F,eq + Q+
F,eq = −Lv(ūeq)Req − ReqLv(ūeq)

∗ −Qσ, NM,eq =
1
2

Q−F,eqR−1
eq , (190)

where Q−F,eq, Q+
F,eq are the negative and positive definite components in the unperturbed

equilibrium nonlinear flux QF,eq. Since exact model statistics are used in the imperfect model
approximations, the true mechanism in the nonlinear energy transfer can be modeled under this
first correction form. This is the similar idea used for measuring higher order interactions in [45],
where more sophisticated and expensive calibrations are required to make that model work there.

6.1.3. A Reduced-Order Statistical Energy Model with Optimal Consistency and Sensitivity

The above closure model ideas, especially (187)–(189), have advantages of their own. Models
in (187) and (188) are simple and efficient to construct with consistent equilibrium consistency,
while (189) involves the true information about the higher-order statistics in equilibrium so that
the energy mechanism can be characterized well. The validity of these approaches has been tested and
compared from several papers [11,45,50] using the simplified triad model and L96 model. The methods
have also been applied to the two-layer quasi-geostrophic equation [44,117], where the phase space of
the original system is 5× 105 while the ROM contains only 0.1% of the large scale modes and can cope
with the changes in external forcing. Still, when it comes to the more complicated and realistic flow
systems such as the quasi-geostrophic equations, more detailed calibration for model consistency and
sensitivity is required to achieve the optimal performance. A preferred approach for the nonlinear
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flux QM
F combining both the detailed model energy mechanism and control over model sensitivity is

proposed in the form

QM
F = QM,−

F + QM,+
F = f1(R)

[
−(NM,eq + dM IN)RM

]
+ f2(R)

[
Q+

F,eq + ΣM

]
. (191)

The closure form (191) consists of three indispensable components:

(i). Higher-order corrections from equilibrium statistics: In the first part of the correction using the
damping and noise operator as

(
NM,eq, Q+

F,eq

)
, unperturbed equilibrium statistics in the nonlinear

flux QF,eq are used to calibrate the higher-order moments as additional energy sink and source
following the procedure in (189). Therefore, the equilibrium statistics can be guaranteed to be
consistent with the truth, and the true energy mechanism can be restored.

(ii). Additional damping and noise to model changes in nonlinear flux: The above corrections in step (i)
by using equilibrium information for nonlinear flux is found to be insufficient for accurate
prediction in the reduced-order methods since the scheme is only marginally stable and the energy
transferring mechanism may change with large deviation from the equilibrium case when external
perturbations are applied. Thus, we also introduce the additional damping and noise (dM, ΣM) as
from (187). dM is just a constant scalar parameter to add uniform dissipation on each mode, and
ΣM is the further correction as an additional energy source to maintain climate fidelity.

(iii). Statistical energy scaling to improve model sensitivity: Still note that these additional parameters are
added regardless of the true nonlinear perturbed energy mechanism where only unperturbed
equilibrium statistics are used. To capture the responses to a specific perturbation forcing, it is
better to make the imperfect model parameters change adaptively according to the total energy
structure. Considering this, the additional damping and noise corrections are scaled with factors
f1(R), f2(R) related with the total statistical variance trR as

f1(R) =
(

trR
trReq

)1/2
, f2(R) =

(
trR

trReq

)3/2
. (192)

6.1.4. Calibration Strategy

As discussed in the previous sections, the calibration should involve two criteria: (1) the model
fidelity (consistency) with the same equilibrium statistics as the truth, and (2) the optimal model sensitivity.

Let’s denote πG(u) and πM
G (u) the Gaussian distributions of the truth and the imperfect model,

as in Section 2.1. Here, the Gaussian approximation of the PDFs is adopted since the above
reduced-order model strategy only involves the evolution of mean and variance in the imperfect
model. According to the information-theoretic framework in Section 2.1, the statistical equilibrium
fidelity means that the Gaussian relative entropy satisfies

P(πG(u), πM
G (u)) = 0. (193)

Practically, we can make use of the explicit form (6) to calibrate the parameters such that (193)
is satisfied. Statistical equilibrium fidelity is a natural necessary condition to tune the mean and
variance of the imperfect model to match those of the perfect model; it is far from a sufficient condition.
To see this, recall from Section 2.5 that different dynamical systems can have the same Gaussian
invariant measure and therefore statistical equilibrium fidelity among the models is obviously satisfied
(see [40] for several concrete examples). Thus, the condition in (193) should be regarded as an
important necessary condition. UQ requires an accurate assessment of both the mean and variance
and at least (193) guarantees calibration of this on a subspace, u ∈ RM, for the unperturbed model.
Climate scientists often just tune only the means (see [26] and references therein).
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Next, the prediction skill of imperfect models can be improved by comparing the information
distance through the linear response operator with the true model. The response in the Gaussian
framework P(πδ, πM

δ ) can be computed by making use of (10). This condition has been shown to be
crucial in calibrating the parameters (see examples in Sections 2.5 and 5). The optimal model M∗ ∈ M
that ensures best information consistent responses to various kinds of perturbations is characterized
with the smallest additional information in the linear response operator R among all the imperfect
models, such that ∥∥∥P (πδ, πM∗

δ

)∥∥∥
L1([0,T])

= min
M∈M

∥∥∥P (πδ, πM
δ

)∥∥∥
L1([0,T])

, (194)

where πM
δ can be achieved through a kicked response procedure (138) in the training phase compared

with the actual observed data πδ in nature, and the information distance between perturbed responses
P
(
πδ, πM

δ

)
can be calculated with ease through the expansion formula (10). For the time-periodic

cases, the information distance P
(
πδ (t) , πM

δ (t)
)

is measured at each time instant, so the entire error
is averaged under the L1-norm inside proper time window [0, T] (such as one period). Some low
dimensional examples of this procedure for turbulent systems can be found in [10,30,186].

Below, in the example of predicting passive tracer extreme events using low-order reduced
model (Section 6.3), the imperfect models are all linear Gaussian models. As we have already seen in
Sections 2.2.1 and 2.3, the linear Gaussian models are only able to capture the response in the mean
statistics. Therefore, minimizing the model sensitivity is based on optimizing the mean response in
the imperfect models compared with that in the truth. Note that optimizing the mean response is
equivalent to optimizing the autocorrelation function in the linear Gaussian models. Thus, instead of
applying the general strategy with FDT for the optimization of the response, minimizing the spectral
density (for autocorrelations) using information theory as discussed in Section 2.5 is an efficient
alternative approach, which will be adopted below. The readers should keep in mind that these two
methods share the same goal of optimizing the sensitivity in imperfect models.

6.2. Physics-Tuned Linear Regression Models for Hidden (Latent) Variables

Before we show concrete applications of the reduced-order modeling framework developed
in Section 6.1, let’s briefly discuss the physics-tuned linear regression modeling strategy.
These physics-tuned linear regression models are particularly useful for simplifying the hidden
or latent processes in complex dynamical systems while they preserve the important feedback from the
latent variables to the resolved variables. Thus, such physics-tuned linear regression technique allows
the dynamics and statistical structure of the models to become much more tractable and facilitates the
application of the reduced-order modeling strategy in Section 6.1.

Consider the following general nonlinear system,

du
dt

= F1(u, v) + σuẆu,

dv
dt

= F2(u, v) + σvẆv,
(195)

where F1 and F2 are nonlinear functions of u and v. The model in (195) is usually written as a collection
of Fourier modes. In (195), the state variables u are resolved variables that are our primary interest.
The state variables v are the latent or unresolved variables, which nevertheless play an important
role in contributing to the variability of u through nonlinear interactions. Here, the goal is to develop
physics-tuned linear regression models of v such that their dynamics and statistical structure become
much more tractable. Meanwhile, the feedback from v to u under the physics-tuned linear regression
modeling framework are expected to be preserved to a large extent. The physics-tuned linear regression
modeling framework for the latent variables v is given as follows:
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duM

dt
= F1(uM, vM) + σuẆu,

dvM

dt
= ΛMvM + (vM − v̂M) + σM

v ẆM
v ,

(196)

where ΛM are σM
v both diagonal matrices. The i-th diagonal entry of ΛM usually has the form

λM
j = −dM

j + iωM
j , where the real part of each diagonal entry of λM

j , namely−dM
j , is negative. In other

words, each component vj of v satisfies a one-dimensional OU process:

dvM
j

dt
= λM

j vM
j + (vM

j − v̂M
j ) + σM

v,jẆ
M
v,j. (197)

The physics-tuned linear regression modeling strategy requires that each vM
j in (197) satisfies both

the model fidelity and model sensitivity compared with the i-th component of the truth v, namely vj,
in (195). Therefore, the model parameters dM

j , ωM
j , v̂M

j and σM
v,j in (197) are calibrated by matching the

equilibrium Gaussian PDF and the autocorrelation function with those associated with vj in (195).
See Section 2.5 for more technical details. Note that the goal here is to let vM provide the least biased
statistical feedback to u instead of recovering all the point-wise details of the latent random process vM.

Below, we use a simple example to illustrate physics-tuned linear regression modeling strategy
and emphasize the importance of capturing the feedback from v to u. Note that such ideas will be
adopted in Section 6.3 for predicting the extreme events in passive tracers, where v and u can be
thought of as the surrogates of the advection flow and the passive tracer fields there, respectively.

The true model is a two-dimensional nonlinear model:

du
dt

= (−v + iωu)u + σuẆu,

dv
dt

= ( f + av + bv2 − cv3) + (A− Bv)ẆC + σvẆA.
(198)

In (198), u is complex but v is real. The unresolved process v is given by the canonical model for
low frequency atmospheric variability, derived based on stochastic mode reduction strategies [116,170].
It has been used in Section 4.3. The unresolved variable v serves as the stochastic damping for
the resolved variable u. The feedback mechanism of v with suitable parameters can result in the
intermittent instability of u. The parameters in this coupled model are all constants. We consider the
following two dynamical regimes:

Fat-tailed regime: a = −2.20, b = −2.6, c = 0.8, A = 1.0, B = −2.0, f = 2.0, σv =
√

2.

Bimodal regime: a = −2.64, b = 7.8, c = 4.0, A = 0.1, B = 0.1, f = −0.2, σv =
√

2,
(199)

where the fat-tailed regime is a typical non-Gaussian regime for the unresolved process while the
bimodal one is an extremely tough test regime. The other two parameters in the dynamics of u are the
same in the two regimes,

σu = 0.1, ωu = 2. (200)

The reduced model with simplified process of v is given by

duM

dt
= (−vM + iωu)uM + σuẆu,

dvM

dt
= −dM

v (vM − v̂M) + σM
v ẆM

v .
(201)

Since v is real in the true model (198), vM is also real in the reduced model (201). Thus, λM
j ≡ −dM

v

here, which is a special case of the general framework in (197). The three parameters dM, v̂M and σM
v
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are tuned by capturing the model sensitivity (autocorrelation function) and model fidelity (equilibrium
PDF) of the those associated with the truth of v in (198).

The sample trajectories and the statistics of both the truth and the reduced model with the
physics-tuned parameters are shown in Figures 38 and 39 for the fat-tailed and the bimodal regimes,
respectively. In both figures, despite the failure in capturing the non-Gaussianity in the hidden process
v, the non-Gaussian fat-tailed PDFs as well as the intermittent trajectories of the resolved variable u are
both recovered with high accuracy in the reduced model with physics-tuned parameters. One crucial
reason for the high skill in the reduced model is that the autocorrelation function of vM resembles
that of v in the truth. Therefore, the duration and frequency of the intermittent phases of uM are
statistically similar to those of u. In fact, even in the bimodal regime which is an extremely tough test
case (Figure 39), where the PDF of vM is highly biased from that of v, the feedback mechanism from
v to u is well recovered by the reduced model due to the capturing of both the model fidelity and
model sensitivity. In Figure 40, we show that only matching the equilibrium PDF of vM with that of v
but ignoring the autocorrelation function in the calibration process is insufficient in recovering the
key features of u. This emphasizes the importance of physics-tuned calibration strategy and the skill
of using the resulting linear regression model for the hidden unresolved variables in capturing the
non-Gaussian intermittent behavior of the resolved variable u.
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Figure 38. (a,c): sample trajectories of the truth of u and v in the regime where v has a fat-tailed
PDF. (b,d): sample trajectories of uM and vM from the reduced model with physics-tuned parameters;
(e,g): comparison of the PDFs of u and v in the truth and physics-tuned model. The right panels show
the PDFs in the logarithm scale; (f,h): comparison of the autocorrelation function. All the trajectories
and statistics with respect to u means the real part of u.



Entropy 2018, 20, 644 71 of 98

0 20 40 60 80 100 120 140 160 180 200

−1
0
1
2

(c) Sample trajectory of v

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5
(a) Sample trajectory of u

0 20 40 60 80 100 120 140 160 180 200

−1
0
1
2

(d) Sample trajectory of vM; physics−tuned parameters

t

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5
(b) Sample trajectory of uM; physics−tuned parameters

−2 0 2 4
0

1

2
(g) PDF of v

−2 0 2 4

10
0

log scale
0 10 20 30

−0.5

0

0.5

1
(f) Autocorrelation of u

0 10 20 30
−0.5

0

0.5

1
(h) Autocorrelation of v

t

−1 0 1
0

5

10
(e) PDF of u

 

 

Truth
Imperfect; physics−tuned
Gaussian fit

−1 0 1

10
0

log scale

Figure 39. Same as Figure 38 but in bimodal regime of v.
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Figure 40. As in Figure 39 where the process of the truth of v is in a bimodal regime. In the reduced
model, the parameters are not physical-tuned. Thus, a large model error is seen from both the
trajectories in (b,d) compared with the truth (a,c) and the statistics in (e–h).

6.3. Predicting Passive Tracer Extreme Events

Turbulent diffusion models of passive tracers have numerous applications in geophysical science
and engineering. These applications range from, for example, the spread of contaminants or hazardous
plumes in environmental science, to the behavior of anthropogenic and natural tracers in climate
change science, and many related areas [187–190]. The scalar field T(x, t) describes the concentration
of the passive tracer immersed in the fluid which is carried with the local fluid velocity but which does
not itself significantly influence the dynamics of the fluid. The evolution of the passive tracer is driven
by turbulent advection, diffusion and usually uniform damping,

∂T
∂t

+ v · ∇T = −dTT + κ∆T, (202)
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where v(x, y, t) is a velocity field. One key feature of great interest in the tracer turbulent model (202) is
the existence of intermittency, which can be found in atmosphere observational data [190], laboratory
experiments [191], and numerical simulations of idealized models [15,189,192,193].

A special form of the velocity field v, which is a superposition of a spatially uniform but possibly
temporally fluctuating cross-sweep in the x-direction and a random shear flow (with fluctuations
possibly in both time and spatial x-direction) in the y-direction

v(x, y, t) = (U(t), v(x, t)), (203)

has been proposed by Majda et al. [189,193] and tested on simple mathematical models [26,29,194].
Assume the existence of a background mean gradient for the tracer varying in only y-variable and a
tracer fluctuation component dependent with only the x-variable

T(x, t) = T′(x) + αy. (204)

Combining (204) with the tracer dynamics (202) and the simplified flow field (203), the fluctuation
part of the tracer T′ satisfies the following equation:

∂T′

∂t
+ U(T)

∂T′

∂x
= −αv(x, t)− dTT′ + κ

∂2T′

∂x2 . (205)

Despite their simplicity, the model (205) in random shear flow with a mean sweep can capture and
preserve key features for various inertia range statistics for turbulent diffusion [192,195–198] including
intermittency. Even for roughly Gaussian velocity fields v in (203) as observed in turbulent flows,
the linear scalar field can experience rare but very large fluctuations in amplitude, and its statistics can
depart significantly from Gaussianity displaying fatter tails representing the intermittency [199–203].
Explicit formulations about the statistical solutions of the tracers have been derived in [193] under this
simplified flow system, and a rigorous mathematical proof about the intermittent fat tails in tracer
distributions has been achieved recently in [195].

Complex nonlinear and non-Gaussian features in the flow components are unavoidable and
ubiquitous especially in realistic turbulent flows. The complexity and large computational expense in
resolving the highly turbulent advection flow equations require the introduction of simpler and more
tractable imperfect models while still maintaining the ability in capturing the key intermittent features
in the tracer field. Below, we investigate the effects from a nonlinear advection flow on the steady state
passive tracer intermittency, and especially the errors and performances of imperfect approximation
models are tested in a variety of turbulent regimes. In particular, the following two issues will be
addressed in the remaining of this section:

1. Whether a linear Gaussian dynamics in approximating the advection flow is able to capture tracer
non-Gaussian statistical structures?

2. How to design an unambiguous reduced-order stochastic modeling strategy with high prediction
skill of the tracer field?

There are at least two motivations for using linear Gaussian imperfect models for describing
advection flow v. First, the dynamics and statistical structure become much more tractable with explicit
solutions that enable us to design the model and tune parameters with ease. Second, the computational
difficulty and cost are also greatly reduced considering the simple and controllable structure of
the linear model. However, it is challenging by applying these linear Gaussian models with no
positive Lyapunov exponents to estimate the non-Gaussian flow field including various degrees of
internal instabilities. Therefore, a systematic procedure in calibrating the imperfect model parameters
is required.

Here, the information-theoretic framework developed in Section 6.1.4 is applied to train the
imperfect model parameters in a training phase so that the model predicted stationary process can
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possess the least biased estimation in energy and autocorrelation function, the latter of which plays an
particularly important role in determining the structure of tracer statistics. With such a systematical
calibration strategy, these linear stochastic models can be greatly improved through this proposed
tuning strategy under a proper information metric. On the other hand, the reduced-order strategy
aims at using low order equilibrium statistics in the model calibration as a correction to the nonlinear
small scale feedback, which avoids high computational cost.

6.3.1. Approximating Nonlinear Advection Flow Using Physics-Tuned Linear Regression Model

Here, we aim at answering the question that whether a linear Gaussian dynamics is able to
approximate the advection flow such that the non-Gaussian statistical structures in the tracer field is
preserved. One good reference of this topic is [50].

To this end, we consider a background flow, which is driven by the 40-dimensional Lorenz 96
(L96) system [204]. The L96 model is able to mimic baroclinic turbulence in the midlatitude atmosphere
with the effects of energy conserving nonlinear advection and dissipation, displaying a wide range of
distinct dynamical regimes from Gaussian to extremely non-Gaussian statistics. Therefore, the L96
model is a representative testbed for studying the model error here.

The L96 system with state variables u(x, t) = (u0, u1, . . . uJ−1)
T is given by

duj

dt
= (uj+1 − uj−2)uj−1 − du(t)uj + F(t), j = 0, 1, . . . , J − 1, J = 40, (206)

with periodic boundary condition u0 = uJ . Nonlinearity comes from the bilinear quadratic form
Bj(u, u) = (uj+1 − uj−2)uj−1, which conserves energy through u · B(u, u) = 0. By changing the
amplitude of the external forcing F, the L96 system displays a wide range of different dynamical
regimes ranging from weakly chaotic (F = 5), strongly chaotic (F = 8), to finally full turbulence
(F = 16) with varying statistics.

The advection flow field v = (U(t), v(x, t)) is constructed from the L96 model solution. Note that
the system is homogeneous and translation invariant along each grid point, so standard Fourier basis

ek =
{

e2πikj/J
}J−1

j=1
naturally becomes the empirical orthogonal functions (EOFs) of the system [50].

The state variables of the system can be decomposed under Fourier basis as

u(x, t) = ū(t) +
J/2

∑
k=−J/2+1

ûk(t)ek(x), 〈ûk〉 = 0, û−k = û∗k , (207)

where 〈·〉 is the ensemble average. We construct the passive tracer fields nonlinearly advected by the
flow generated through the L-96 system. The gradient cross-sweeping component U(t) is from the
mean state with randomness from zero mode, while the shearing component v(xj, t) simulated by the
flow fluctuation modes with varying values at each grid point,

U(t) = ū(t) + û0(t), v(xj, t) = ∑
k 6=0

ûk(t)e
2πikxj . (208)

Below, we will focus on the statistical features of the scalar tracer field in stationary steady state.
To make sure the system converges to the final stationary state, that is, ū(t)→ ū∞, rk(t) = 〈|ûk|2(t)〉 →
rk,∞ as t→ ∞, we consider the simplified dynamics of (206) with constant damping and forcing terms
du ≡ du(t), F ≡ F(t).
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The exact dynamical equations for each mode in the shearing flow ûk and the mean gradient U
can be derived from the L96 system (206) as

dU
dt

= −duU(t) + ∑
k 6=0

Γk|ûk|2(t) + F, (209)

dûk
dt

= −duûk +

(
e2πi k

j − e−2πi 2k
j

)
U(t)ûk + ∑

m 6=0
ûk+mû∗m

(
e2πi 2m+k

J − e−2πi m+2k
J
)

, (210)

where k = 1, . . . , J/2 and the energy transfer rate is Γk = cos 4πk
J − cos 2πk

J . The cross-sweep field U is
forced by the combined effects from each fluctuation mode ∑k 6=0 Γk|ûk|2, and conversely the shearing
flow is advected by the mean drift through the second term in the first line in (210).

The accuracy in the steady state passive tracer statistics is limited by the modeling and
computation skill of the complex background advection flow v. However, several difficulties cannot
be bypassed if we directly go with the true flow system with nonlinearity. First, simple Galerkin
truncation of high frequency wave-numbers in the dynamical equations may introduce large errors to
the flow system due to strong nonlinear interactions between the (truncated) small scale and large
scale modes. Second, even with a low dimensional Galerkin truncation model, large ensemble size
may still be required to resolve the flow if non-Gaussian features and intermittencies are important
and of interest. On the other hand, returning to our original problem, the central issue of major interest
is the turbulent fluctuation and statistical structure of the passive tracer T rather than the background
flow field v. Considering both sides of the problem, the question that is worth asking is whether we
can predict the crucial features (such as, intermittency) in steady state tracer statistics advected and
forced by nonlinear non-Gaussian background flow v using simpler imperfect models with error for
the background dynamical field.

Now, we adopt the simplest approximation about the advection flow with imperfect models using
linear stochastic dynamics along each spectral mode from the Ornstein–Uhlenbeck process [15,193,196,205].
With the simple structures in these linear Gaussian models, the dynamics and statistical structure become
much more tractable with explicit solutions that enable us to design the model and tune parameters with
ease. The linear stochastic models for each mode can be written as

dûM
k

dt
= (−γuk + iωuk )û

M
k + σuk Ẇk, (211)

with γuk , ωuk and σuk as parameters to be determined, together with the dynamics for the mean

dūM

dt
= −duūM + ∑

k 6=0
ΓkrM

k + F̂, (212)

with rM
k = 〈|ûM

k |
2〉. Note that, in both (211) and (212), we consider all the Fourier modes. In practice,

Galerkin truncation is naturally applied to these imperfect models, which greatly reduces the
dimension of the imperfect system [81]. Since the goal of this subsection is to understand the role of
these linear models with optimized parameters, we do not include the Galerkin truncation here. In the
next subsection, we will apply the Galerkin truncation for ûM

k and reach a suite of low-order models in
approximating both the velocity and the tracer fields.

Under the approximations in (211) and (212), the background flow vM = (UM(t), vM(xj, t) can be
constructed as before for the mean cross-sweep UM and the shearing flow vM in the tracer model (202),

UM(t) = ūM(t) + ûM
0 (t), vM(xj, t) = ∑

k 6=0
ûM

k (t)e2πikxj . (213)

Now, the problem is converted to finding systematic strategies of assigning values to the three
undetermined coefficients γuk , ωuk , σuk so that the tracer structure (intermittency) can be reconstructed
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from this imperfect model. They should be chosen in an unambiguous way according to the true
steady state statistics of the system (which is available from observations). In comparison with the
original equation for each mode described in (210), the linear Gaussian approximation of L96 system
replaces the nonlinear interaction part in the second line of (210) by linear damping and rotation
together with a white noise

∑
m 6=0

ûk+mû∗m
(

e2πi 2m+k
J − e−2πi m+2k

J
)
∼ (−γuk + iωuk )û

M
k + σuk Ẇk. (214)

The white noise σuk Ẇk is added to each Fourier mode in order to make sure that the system
converges to the consistent equilibrium steady state spectra. γuk represents the damping that
neutralizes the additional energy from the white noise. The imaginary component ωuk is the additional
degree of freedom for tuning the autocorrelation function (or in other words, to control the ‘memory’
of this mode of its previous history). Note that the quasi-linear part with U(t) in the first line of the
formula (210) is also included in the coefficients γuk , ωuk . It is discovered that even under this linear
flow field with Gaussian statistics, intermittency with fat-tailed distributions can be generated in the
steady state tracer distributions [193,195]. Here, the challenge is whether we can still capture the correct
structure in the tracer spectra and density functions, especially for the intermittency, under these
imperfect linear models. Therefore, judicious choice of the model parameters needs to be investigated.

One of the simplest and most direction way to estimate the undetermined coefficients γuk , ωuk , σuk

is through the mean stochastic model (MSM) [15,41] by calibrating the energy (variance) Ek = 〈|ûk(t)−
〈ûk〉|2|〉 and decorrelation time τ in (44) of the truth (known as “MSM tuned parameters”). Note that
the decorrelation time τ = Tk + iθk here contains real and imaginary parts, fitting both as well as the
energy provides three conditions. Despite the simplicity in this mean stochastic model, reasonably
skillful prediction in uncertainty quantification as well as filtering under this strategy have been
obtained for some turbulent systems [193,195]. However, MSM still suffers several shortcomings when
strong nonlinearity takes place in the system. Most importantly, the decorrelation time τ = Tk + iθk
involves only the time-integrated effects in each mode. This works well when the system is strongly
mixing within a nearly Gaussian regime, whereas, when non-Gaussian features become crucial
in the system, the pointwise decaying process of the entire autocorrelation function R(t) becomes
important and we need take into account the temporal performance of the autocorrelation in the
linear model approximation. This has already been seen in the simple example in Section 2.5. In fact,
the autocorrelation function becomes strongly oscillatory when F = 5 in the L96 model, which shows
the insufficiency of fitting only the decorrelation time.

Therefore, following the physics-tuned linear regression modeling strategy in Section 6.2 and
the information-theoretic framework of calibrating the autocorrelation function in Section 2.5, we fit
the autocorrelation function of each ûk by the spectral information criteria (47) and (48). Note that
the linear Gaussian model in (211) has explicit solution for the autocorrelation function and power
spectrum (52), which provides an extremely efficient way of calibrating the two parameters γuk , ωuk .
The remaining parameter σuk is calibrated by fitting the energy. Finally, we keep the tracer equation
to be the same in this example. Finding a reduced order model for the tracer equation following the
general strategy in Section 6.1 will be discussed in the next subsection.

In Figure 41, the statistical features of both the advection field v and the tracer T are shown. Here,
the parameters in the true model (205), (209) and (210) are as follows:

dT = 0.1, α = 2, κ = 0.001, du = 1, F = 5. (215)

Note that F = 5 corresponds to the weakly chaotic regime in L96 model, which results in a
very slow mixing and therefore the autocorrelation function in a certain modes decays quite slowly
with strong oscillations. See the black curves Panel (a) of Figure 41. It is expected from Section 2.5
that using the strategy of MSM by fitting only the decorrelation time results in a large bias, which is
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clearly indicated by the blue curve in Panel (a). On the other hand, with the physics-tuned parameters
calibrated based on fitting the autocrrelation function via the spectral density, the imperfect model
provides a significantly accurate estimation of the autocorrelation function even in this tough regime.
Next, the comparison of the PDFs associated with both v and T are shown in Panels (b)–(g). Clearly,
the linear Gaussian models of v fail to capture the sub-Gaussian PDFs of the velocity field, which
indicates an information barrier. Nevertheless, the nonlinear interaction between U and T allows the
imperfect model to capture the non-Gaussian features in the tracer field with fat-tailed PDFs in both
physical space (Panel (e)) and spectrum space (Panels (f)–(g)). The sample time series using the linear
Gaussian velocity model (209) and (210) with the physics-tuned parameters also resembles that of the
truth with significant intermittency (Panels (h) and (i)). On the other hand, the linear model with MSM
tuned parameters (fitting only the decorrelation time) fails to capture these features (not shown here).
See [81] for more discussions and numerical tests in other regimes (F = 8 and F = 16).
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Figure 41. Comparison of the statistical feature of both the advection field v and the tracer T. The true
advection model is given by L96 system (41) with F = 5 (weakly chaotic regime). (a): fitting of the
autocorrelation functions for representative Fourier modes k = 0 and 5 ≤ |k| ≤ 9 of the flow state
variables ûk, where only the real part is shown. The autocorrelation function from the true system is
plotted in thick black lines, and the results from MSM is in blue lines, while the optimal model results
from tuning parameters in spectral density functions are shown in red lines. Note that black and red
lines are largely overlapped together; (b–g): comparison of probability density functions in logarithm
scale, where the brown dashed curves are the Gaussian fit. Note that modes 7 and 8 are the most
energetic modes in L96 model with F = 5; (h,i): sample trajectories of the tracer principal mode from
the perfect model and linear Gaussian model with physics-tuned parameters.

6.3.2. Predicting Passive Tracer Extreme Events with Low-Order Stochastic Models

Now, we aim at answering the second question proposed at the beginning of this section. That is,
how to design an unambiguous reduced-order modeling (ROM) strategy with high prediction skill of
the tracer field [82]. Here, we consider a more realistic and complicated advection flow v(x, t), which is
described from the solution of the two-layer quasi-geophysics (QG) equation [121,143]

∂qj

∂t
+ vj · ∇qj + (β + k2

dUj)
∂ψj

∂x
= −δ2jr∆ψj − ν∆sqj,

qj = ∆ψj +
k2

d
2
(ψ3−j − ψj), vj = (Uj, 0) + v′j.

(216)
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Above, the subindex j = 1, 2 is used to represent the upper and lower layer of the two-layer flow
model. The two-dimensional incompressible velocity field vj is decomposed into a zonal mean cross
sweep, (Uj, 0), and a fluctuating shear flow v′j = ∇⊥ψj = (−∂yψj, ∂xψj). For the passive tracer field,
now we assume the background mean gradient varying in both x and y directions together with a
tracer fluctuation component

Tj(x, t) = α · x + T′j (x, t), (217)

where α = (αx, αy). Plugging (217) into (202), the fluctuation part of the passive tracer model yields

ε
∂T′j
∂t

+ v′j(x, t) · ∇T′j + Uj
∂T′j
∂x

= −(αxuj + αyvj)(x, t)− dTT′j + κ∆T′j . (218)

In (218), v′j = (uj, vj) is the fluctuating advection flow field from the solution of (216) together
with a zonal mean flow Uj. In addition, a scale separation in the tracer Equation (218) with order ε is
introduced. The difference in time scale in the tracer is through a different time scale, t̃ = ε−1t, in the
tracer time as in various previous works [189,193,195]. As ε < 1, the velocity field is varying at a faster
time scale than the passive tracer process, while on the other hand with ε > 1 the tracer evolves in
a more rapid rate than the advection field. A long time rescaling limit with explicit analytic tracer
solutions is derived in [195] and numerical simulations for varying values of ε among a wide range
are investigated in [192] under a much simpler linear model. In general, different intermittent features
will be generated from near Gaussian statistics to distributions with fat tails as the scale separation
parameter value changes [189,192].

Given periodic boundary condition in both the two-layer flow and the tracer field, we formulate
the flow and tracer fields with Galerkin truncation to finite number of Fourier modes. Spatial Fourier
decomposition in flow potential vorticity qj and passive tracer disturbance T′j can be written in the
expansion under modes exp(ik · x) as

qj = ∑
k

q̂j,keik·x, T′j = ∑
k

T̂j,keik·x. (219)

Note that here we focus on the homogeneous flow on mesoscale and therefore the periodic
condition is reasonable. By projecting the tracer and flow Equations (218) and (216) to each Fourier
spectral mode, equations for the spectral coefficients in each wavenumber of the two-layer tracer field
~Tk = (T̂1,k, T̂2,k)

T , and two-layer advection flow field ~qk = (q̂1,k, q̂2,k)
T , form the set of ODEs in the

spectral domain as

d~Tk
dt

+ ε−1 ∑
m+n=k

(
Akm~qm ◦ ~Tn + Akn~qn ◦ ~Tm

)
= −ε−1(γT,k + iωT,k)~Tk + ε−1Gk~qk, (220)

d~qk
dt

+ ∑
m+n=k

(
Akm~qm ◦ ~Tn + Akn~qn ◦ ~Tm

)
= −(γq,k + iωq,k)~qk, (221)

where ‘◦’ is used to denote the pointwise produce, namely a ◦ b = (aibi). The potential vorticities~qk
and stream function ~ψk in two layers are related by the transform matrix Hk,

~qk = Hk~ψk = −

 |k|2 + k2
d

2 − k2
d

2

− k2
d

2 |k|2 + k2
d

2

 ~ψk (222)
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through the relation qj = ∇2ψj +
k2

d
2 (ψ3−j−ψj) in (216). The other operators and terms in the nonlinear

dynamics (220) and (221) are given by

Akm =
1
2
(kxmy − kymx)H−1

m , Gk = −iα · k⊥H−1
k = ΓkH−1

k , γT,k = dt + κ|k|2,

ωT,k = kx~U, γq,k = (0, 1)T ◦ r|k|2H−1
k + ν|k|2s, ωq,k = kx

(
~U + (β + k2

d
~U)H−1

k

)
.

(223)

In (223), the linear dissipation γT,k is due to the Ekman friction applied only on the bottom layer
and the hyperviscosity. The dispersion ωT,k is from the rotational β-effect as well as the background
zonal mean flow advection from the original Equation (216) applied on the vorticity modes.

The advection terms in the tracer and flow Equations (220) and (221) involve interactions between
modes of different scales along the entire spectrum in a large dimensional phase space, thus usually
high computational cost is required in achieving accurate statistical results from direct numerical
simulations. In general, intermittency in a tracer field is dominated by the variability in largest scales,
thus we will concentrate on the large-scale modes with wavenumber |k| ≤ M� N, where M is the
number of resolved modes and N is the full dimensionality of the system. Usually, we could choose
M much smaller than N that only covers the essential most energetic directions in the flow system.
Below, we first develop the simple strategy with linear corrections to approximate the advection
flow field in the leading modes, which is similar to that in Section 6.3.1. Then, the calibration and
improvement of the imperfect models due to model errors from this approximation will be discussed.

As in Section 6.3.1, in order to approximate the advection flow, the simple Gaussian approximation
is adopted to replace the quadratic interactions (v · ∇q)k in the flow equations by additional linear
damping and random Gaussian noise. Thus, the reduced-order advection flow equations are given by

d~qM,k

dt
= −(γq,k + iωq,k)~qM,k − DM

q,k~qM,k + ΣM
q,k

~̇Wq,k, 1 ≤ |k| ≤ M,

vM = ∇⊥~ψM, ~qM,k = Hk~ψM,k,
(224)

with only Gaussian statistics generated. Only the first M large-scale modes 1 ≤ |k| ≤ M are resolved
in the reduced-order model (224). In addition to the linear dissipation and dispersion operators
(γq,k, ωq,k), additional damping and noise DM

q,k, σM
q,k are introduced to correct model errors due to the

neglected nonlinear interactions in the flow equations. On the other hand, there is no additional model
calibrations of the tracer field statistics in case of over fitting of data. The idea here is to improve the
reduced-order model prediction skill by optimizing the background advection flow field, thus the
reduced order passive tracer equations can be modeled through a direct truncation

d~TM,k

dt̃
+
(

ṽM · ∇~TM

)
k
= Γk~ψM,k − (γT,k + iωT,k)~TM,k, 1 ≤ |k| ≤ M,

ṽM = ∑
|k|≤M1

ik⊥~ψM,keik·x, M1 ≤ M,
(225)

where only the first leading modes of the advection flow 1 ≤ |k| ≤ M� N are resolved in the tracer
approximation model.

Again, the major difficulty in modeling the tracer dynamics is from the accurate approximation
of the tracer advection Akm~qm ◦ ~Tn in (220). Exact modeling about this nonlinear interaction term
requires the flow mode solution ~qM,k along the entire spectrum 0 < |k| ≤ N, while only the first
M leading modes are available through the reduced-order model. One crude approximation idea
could be to replace the nonlinear advection in the tracer field v(x, t) · ∇~T(x, t) with damping and
noise in a similar fashion as the flow approximation model (224). However, as discussed in previous
works [50,195], the nonlinear advection in the tracer equation is crucial in the generation of many
important statistical features including the intermittency. Thus, including of nonlinear effects from the
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flow solution is essential, at least for the large scale modes. On the left-hand side of the Equation (225),
the nonlinear advection ṽM · ∇~TM is modeled explicitly, but only the first M1 ≤ M largest scale flow
modes in the model velocity solution ṽM are used to calculate the imperfect model tracer advection.
This nonlinear advection is essential in generating the accurate spectra in tracer statistics, while it is
also not expensive to calculate since only leading modes are involved. The idea for this approximation
is through the assumption that the dominant features in tracer statistics (such as intermittency and
equilibrium spectrum in large scales) are due to the leading advection flow modes with largest energy.

Now, we calibrate the imperfect low-order linear Gaussian model for advection flow system (225)
using equilibrium statistics and information theory. Such calibration procedure is divided into two steps:

1. Properly reflecting the nonlinear energy mechanism from the true system.
2. Imperfect stochastic model consistency in equilibrium statistics and autocorrelation functions.

In the first step, we aim at making sure that the imperfect model calibration parameters (DM
q,k, ΣM

q,k)

can properly reflect the true nonlinear energy mechanism from the true system. The consistent
imperfect model then can be proposed by consulting the model statistical dynamics. Therefore, it is
useful to investigate the statistical equations for the second order moments from the fluctuation
equations of (221). The dynamics for the covariance matrix Rq

k = 〈~qk~q∗k〉 of flow vorticity can be
derived as a 2× 2 blocked system for each wavenumber [117],

dRq
k

dt
+ Lk(q̄)Rq

k + Rq
kL
∗
k(q̄) + Qq

F = (Lq
k +Dq

k)Rq
k + Rq

k(L
q
k +Dq

k)
∗, |k| ≤ N. (226)

The linear operators (Lq,Dq) represent the skew-symmetric dispersion and dissipation effects
from the right-hand side of (221). The additional operator Lk(q̄) represents the interactions
with a non-zero statistical mean state, where internal instability occurs with positive growth rate.
Most importantly, the nonlinear interactions between different spectral modes introduce the additional
nonlinear flux term Qq

F indicating higher-order interactions, that is,

Qq
F(~qk) =

1
2 ∑

m+n=k
〈(Akm~qm ◦~qn + Akn~qn ◦~qm)~q∗k〉. (227)

Therefore, the small and large scale modes are linked through third-order moments 〈~qm~qn~q∗k〉
in (227) between the triad modes m + n = k. The nonlinear flux Qq

F plays the central role in the energy
mechanism that balances the unstable directions due to internal instability from the linear operators.
Here, our focus is on the low-order stochastic realization in (224) of the statistical closure model of (226),
thus solving the statistical Equation (226) directly is not favorable considering its complexity.

Below, we follow the general framework developed in Section 6.1 to determine the reduced
order model. The nonlinear flux Qq

F in (227) corresponds to the unresolved nonlinear effects in the
stochastic model in (224). Thus, it is useful to exploit the nonlinear flux Qq

F so that the imperfect model
parameters (DM

q , ΣM
q ) in (224) can be proposed according to the true model energy transfer mechanism.

Especially in statistical equilibrium, as t→ ∞ the nonlinear fluxes can be calculated easily from the
localized lower-order moments

Qq
F,eq = (Lq

k +Dq
k −Lk(q̄eq))Rq

k,eq + Rq
k,eq(L

q
k +Dq

k −Lk(q̄eq))
∗. (228)

Next, we further decompose the matrix Qq
F = Qq,+

F + Qq,−
F by singular value decomposition

into positive-definite and negative-definite components. The positive definite part Qq,+
F illustrates

the additional energy that injected into this mode from other scales, while the negative definite part
Qq,−

F shows the extraction of energy through nonlinear transfer to other scales. In adopting the true
equilibrium statistics from Qq

F,eq, the true model energy transfer mechanism is respected and the least
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artificial effect is introduced into the imperfect approximation model. Considering all these aspects,
the first proposal for the linear damping and Gaussian random noise correction can be introduced as

Deq
q,k = −1

2
Qq,−

F,eq,k(Rq
k,eq)

−1, Σeq
q,k = (Qq,+

F,eq,k)
1/2. (229)

The additional damping is from the negative definite equilibrium flux Qq,−
F,eq and the positive

definite equilibrium flux Qq,+
F,eq acts as additional noise to the system. The above additional damping

and noise (229) offer a desirable quantification for the minimum amount of corrections to stabilize the
system with consistent equilibrium statistics for the mean and variance. This is the same idea applied
to the statistical modified quasi-linear Gaussian closures developed in [45].

As discussed in Section 6.1.3, the above estimation of parameters (229) may not be optimal
for the reduced-order Gaussian model considering that: (i) it only guarantees marginal stability in
the unstable modes for equilibrium; and more importantly (ii) the time mixing scale in each mode
(represented by the autocorrelation functions) may still lack the accuracy in the approximation using
only equilibrium information. The nonlinear energy transferring mechanism may change with large
deviation from the equilibrium case when intermittent fluctuations are present. The shortcomings for
purely using the approximation (229) only from equilibrium statistics can be observed from the various
numerical simulations [82]. As a further correction, we propose additional terms on top of (229) with a
simple constant damping for all the spectral modes and an additional noise accordingly to make sure
consistency in energy,

Qadd
M,k = −Dadd

M RM,k +
(

Σadd
M,k

)2
, Dadd

M = diag{dM + iωM, dM − iωM}. (230)

The correction term in (230) is aimed to offer stabilizing effects in the marginal stable equilibrium
form (229), and to offer further corrections in modeling the autocorrelation function that is important
for the mixing rate in each spectral mode. Combining (229) and (230), the additional damping and
noise corrections for the reduced-order flow vorticity model (224) are given in the following form

DM
q,k = −1

2
Qq,−

F,eq,k

(
Rq

k,eq

)−1
, ΣM

q,k =

(
Qq,+

F,eq,k +
(

Σadd
M,k

)2
)1/2

. (231)

Comparing with the exact true system (221), the reduced-order approximation is equivalent
to replacing the nonlinear interaction terms with the judiciously calibrated damping and noise in
consideration with both the equilibrium energy transfer mechanism and further sensitivity correction.

Now, we move to the second step. Here, we tune the undermined model parameters (Dadd
M , Σadd

M )

to guarantee the imperfect stochastic model consistency in equilibrium statistics (the leading two
moments) and autocorrelation functions. The procedure here is exactly the same as that in Section 6.3.1,
where information theory developed in Section 2.5 is used for calibrating the autocorrelation function.
Thus, we neglect the details here.

Finally, let us show a simple example for predicting the tracer statistics using the low-order model
prediction. The example here has the same setup as one of the regimes considered in [81], that is,
the high latitude atmosphere regime, where the parameters are given as follows:

N = 128, β = 1, F = 4, U = 0.1, r = 0.2,

ν = 10−13, s = 4, dT = 0.1 κ = 10−3, α = 1.
(232)

Here, N = 128 is the number of grid points in each direction. The true statistics are calculated by a
pseudo-spectra code with 128× 128× 2 grid points in total. The zonal mean flow ~U = (U,−U) is taken
as the same strength with opposite directions in the two layers. In the tracer simulations, for simplicity,
we consider the mean gradient along y direction, that is to assume, T = T′ + αy. This assumption is
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representative in many previous investigations [117,193,195]. The scale separation parameter ε in this
example is chosen to be ε−1 = 5 such that intermittency is prominent. In the reduced-order model,
we only compute the modes k ≤ M = 10 in largest scales, compared with the true system resolution
N = 128.

The autocorrelation functions of the first four leading modes (1, 0), (0, 1), (1, 1) and (−1, 1) in
both the flow stream functions and the tracer fields are plotted in Figure 42. It is clear that for both the
flow and tracer fields, the reduced order model with optimized parameters calibrated by information
theory succeeds in capturing the autocorrelation function of the truth. As a comparison, equipped
with the parameters with no additional corrections dM = 0, σM = 0, the reduced order model has a
huge bias in recovering the autocorrelation function of the flow field. Next, we test the prediction skill
of the turbulent tracer statistics in the reduced-order model. As we have seen in Section 6.3.1 and
the discussions above, the nonlinear advection in the tracer equation vM · ∇TM is important for the
final tracer statistical structure. The goal here is to see whether the intermittent and other features in
the tracer field can be accurately predicted using only principal modes with largest variance in vM in
calculating the nonlinear term. Figure 43 compares the representative time-series and tracer PDFs of
the leading modes in statistical steady state. Despite only 0.6% of the modes being involved in the flow
field, the fat-tails in the distribution functions of the tracer can be captured, and similar characteristic
structures can be seen in the truth and reduced model time series. In fact, the high skill of recovering
the non-Gaussian features is due to the fact that the advection term vM · ∇TM is captured quite well
even with such a crude truncation of the flow field. The results in Figures 42 and 43 imply the skillful
predictions using the reduced order model with the optimized parameters. In [82], the recovered tracer
field using different truncation size M has been explored. It is important to note that with only the first
two modes M = 2 being included in calculating the nonlinear advection, larger errors appear due to
the insufficient quantification for flow advection. The recovering skill of other statistical features such
as the power spectrum and eddy diffusivity approximations for the tracers in this regime as well as
the test examples in other regimes have also been systematically discussed in [82].
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Figure 42. Prediction of the reduced-order autocorrelation functions in the flow (a–d) and tracer
fields (e–h) in the first four most energetic modes in high latitude atmosphere regime with parameters
(ε−1, dT) = (5, 0.1). The truth is shown in black dashed lines and the reduced-order model (ROM)
prediction in red lines.



Entropy 2018, 20, 644 82 of 98

1000 1500 2000 2500 3000 3500 4000
−5

0

5

(a)  Time−series of mode (1,0) in lower layer, true model

1000 1500 2000 2500 3000 3500 4000
−5

0

5

(b)  Time−series of mode (1,0) in lower layer, reduced−order model

t

1000 1500 2000 2500 3000
−2

0

2
(c)  Time−series of mode (0,1) in lower layer, true model

1000 1500 2000 2500 3000
−2

0

2

t

(d)  Time−series of mode (0,1) in lower layer, reduced−order model

−5 0 5

10
0

(e)  mode (1,0), upper layer

 

 

−2 −1 0 1 2

10
0

(f)  mode (0,1), upper layer

−2 −1 0 1 2

10
0

(g)  mode (1,1), upper layer

−2 −1 0 1 2

10
0

(h)  mode (−1,1), upper layer

−5 0 5

10
0

(i)  mode (1,0), lower layer

−2 −1 0 1 2

10
0

(j)  mode (0,1), lower layer

−2 −1 0 1 2

10
0

(k)  mode (1,1), lower layer

−2 −1 0 1 2

10
0

(l)  mode (−1,1), lower layer

Truth
ROM
Gaussian fit

Figure 43. Prediction of tracer intermittency in high latitude atmosphere regime with parameters
(ε−1, dT) = (5, 0.1). (a–d): the time-series for the first two leading modes (1, 0) and (0, 1) between
true model and reduced-order model (ROM) results; (e–l): comparison of the PDFs in the first four
modes between the truth in blue and reduced model prediction in red with the Gaussian fit in dashed
black lines.

7. Conclusions

This research expository article discusses various important topics related to model error,
information barriers, state estimation and prediction in complex multiscale systems. A recent
information-theoretic framework is developed and summarized, which is applied together with other
mathematical tools to study all these topics. It is also combined with novel reduced-order nonlinear
modeling strategies for understanding and predicting complex multiscale systems. The contents of
this article include the general mathematical framework and theory, effective numerical procedures,
instructive qualitative models, and concrete models from climate, atmosphere and ocean science.
The information-theoretic framework is developed in Section 2 and is applied to understand various
information barriers in the presence of model error via instructive stochastic models. In Section 3,
the information-theoretic framework is adopted to assess model error in state estimation and
prediction with examples coming from both complex scalar models and spatially-extended multiscale
turbulent systems. The advantage of the information-theoretic framework over the traditional
path-wise measurements are illustrated. Section 4 deals with sensitivity and linear statistical response
using the fluctuation–dissipation theorem. An efficient and effective algorithm in finding the most
sensitive change directions using information theory is also included in this section. In Section 5,
a novel framework of data-driven physics-constrained nonlinear stochastic models and predictions is
developed and is applied to predicting the MJO which contains strong intermittent instabilities and
extreme events. Section 6 includes the development of the new effective reduced-order models that
involve higher order statistical features but nevertheless remain computationally efficient. These new
models together with the information-optimization model calibration strategy are applied to predicting
passive tracers extreme events.

The simple imperfect models used in Sections 2 and 4 are all motivated from the strategies that
are commonly used in practice for approximating extremely complicated systems such as GCMs.
Therefore, the information barriers shown in this article clearly indicate the deficiency of these
strategies and point out the directions of improving the imperfect models. The computationally
efficient reduced-order modeling framework developed in Section 6 is promising in dealing with
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many complicated real-world issues. In particular, including higher order statistical features using
the novel approach allows these new reduced-order models to capture the nonlinear evolution and
non-Gaussian characteristics in both the dynamics and statistics. Therefore, these models are able
to overcome those information barriers resulting from the linear tangential or Gaussian closure
approximations as well as the ignorance of the cross-correlations between different modes or grid
points. In addition to studying the spatially-extended systems associated with predicting passive
tracers extreme events, the other applications of these low-order modeling strategies are good future
directions. Note that these low-order modeling strategies combined with FDT can also be powerful
tools to study the effective statistical control of complex turbulent dynamical systems [206]. On the
other hand, although great efforts have been put in understanding the sources of model errors in
data assimilation (or filtering), the representation error was nevertheless overlooked in the past.
In Section 3, the issue of representation error is emphasized and some practical strategies have been
proposed and tested. More systematic studies are required in this area as future works. It is also of
great importance to study filtering and prediction as a whole and understand the model error and
improved strategies for both procedures instead of focusing solely on the filtering part. In addition,
as is briefly discussed in Section 3.5.2, combining the Euler and Lagrangian observations is another
interesting topic in improving the skill of data assimilation and prediction of spatially-extended
systems as well as quantifying the uncertainty reduction. Finally, it has been shown in Section 5 that
the data-driven physics-constrained nonlinear stochastic modeling framework has several salient
advantages over the purely data-driven non-parametric methods in terms of both understanding
the underlying physics and obtaining skillful predictions. These advantages include a much shorter
training phase, a systematic calibration strategy, gaining clear physical insights and reaching model
robustness. Applying the data-driven physics-constrained nonlinear stochastic modeling framework
to many other complex real-world problems is potentially important. Many related issues remain as
future work.
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Appendix A. Derivations of Fisher Information from Relative Entropy

Here, we include the details of the derivations of Fisher information (149) and (150) from the
relative entropy. Let’s consider the two PDFs πθ(u) and πθ′(u) with θ′ = θ + δθ and δθ is a small
increment. Applying the Talyor’s expansion to πθ and ln πθ yields

πθ′ = πθ +∇θπθδθ+
1
2

δθT∇2
θπθδθ+ O(δθ3),

ln πθ′ = ln πθ +
1

πθ
∇θπθδθ+

1
2

δθT

(
− 1

π2
θ

(∇θ)
2 +

1
πθ
∇2

θπθ

)
δθ+ O(δθ3).

(A1)
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With (A1) in hand, now we compute the relative entropy in (149):

P(πθ′ , πθ) =
∫

πθ′ ln
πθ′

πθ

=
∫

πθ′ ln πθ′ −
∫

πθ′ ln πθ

=
∫ (

πθ +∇θπθδθ+
1
2

δθT∇2
θπθδθ

)(
ln πθ +

1
πθ
∇θπθδθ+

1
2

δθT

(
− 1

π2
θ

(∇θ)
2 +

1
πθ
∇2

θπθ

)
δθ

)

−
∫ (

πθ +∇θπθδθ+
1
2

δθT∇2
θπθδθ

)
ln πθ + O(δθ3)

=
∫

πθ ln πθ +∇θπθδθ+
1
2

πθδθT

(
− 1

π2
θ

(∇θ)
2 +

1
πθ
∇2

θπθ

)
δθ+∇θπθ ln πθδθ+ δθT 1

πθ
(∇θπθ)

2δθ

+
1
2

ln πθδθT∇2
θπθδθ− πθ ln πθ−∇θπθ ln πθδθ− 1

2
ln πθδθT∇2

θπθδθ+ O(δθ3)

= ∇θ

∫
πθδθ+

1
2

δθT
(∫ 1

πθ
(∇θπθ)

2
)

δθ+
1
2

δθT
(
∇2

θ

∫
πθ

)
δθ+ O(δθ3)

=
1
2

δθT ·
(∫ 1

πθ
(∇θπθ)

2
)
· δθ+ O(δθ3)

=
1
2

(∫
(δθ · ∇θπθ)

2

πθ

)
+ O(δθ3),

(A2)

where we have made use of the fact that
∫

πθ ≡ 1 and therefore ∇θ

∫
πθ = 0. Some regularity

assumptions are also required [207] such that the integral and gradient operator can be interchanged.
Clearly, the final result is the Fisher information. Note that δθ here is λ in (150).

Appendix B. Details of the Canonical Model for Low Frequency Atmospheric Variability

Here, we provide more details of the canonical model for low frequency atmospheric
variability [116,170] with cubic nonlinearity and correlated additive and multiplicative (CAM) noise,
which has been used in Sections 4.3 and 6.2.

The model reads

dx
dt

= ( f + ax + bx2 − cx3) + (A− Bx)ẆC + σẆA. (A3)

The Fokker–Planck equation for the evolution of the PDF is given by

∂π

∂t
= − ∂

∂x

[
( f + ax + bx2 − cx3)π

]
+

1
2

∂2

∂x2

[
((Bx− A)2 + σ2)π

]
.

For the case of nonzero correlated additive and multiplicative (CAM) noise, i.e., A 6= 0 and B 6= 0,
we find the following equilibrium PDF:

π(x) =
N0

((Bx− A)2 + σ2)a1
ed arctan( Bx−A

σ )e
−c1x2+b1x

B4 , (A4)

where N0 is a normalizing constant to make π(x) integrate to one, and the new parameters can be
computed via

a1 = 1− −3A2c + aB2 + 2AbB + cσ2

B4 , b1 = 2bB2 − 4cAB, c1 = cB2,

d =
d1

σ
+ d2σ, d1 = 2

A2bB− A3c + AaB2 + B3 f
B4 , d2 =

6cA− 2bB
B4 .

On the other hand, in a special case of additive noise only, i.e., A = B = 0, we find the following
invariant PDF

π(x) = N0 exp
(

2
σ2

(
f x +

a
2

x2 +
b
3

x3 − c
4

x4
))

. (A5)
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Appendix C. Augmented System for Prediction and Filtering Distributions

Here, we show the details of using augmented systems for studying the prediction/filtering state
estimates compared to the truth as discussed in Section 3.2.

Appendix C.1. Augmented System for Prediction

In light of the truth (67) and the prediction mean (69), the coupled evolution of the augmented
state Xm := (um, ūm+1|m)

T is given by(
um+1

ūm+1|m

)
=

(
F 0

KM
m gFM (1− KM

m g)FM

)(
um

ūm|m−1

)
+

(
σm+1

KM
m FMσo

m

)
+

(
Fm+1

FM
m+1

)
. (A6)

The system in (A6) is a Gaussian system and therefore its behavior is completely characterized by
its mean and variance. The evolution of the mean of (A6) is given by

E(Xm) =

(
F 0

KM
m gFM (1− KM

m g)FM

)
E(Xm−1) +

(
Fm+1

FM
m+1

)
. (A7)

With the equilibrium mean of the perfect and imperfect model ūeq = F∞
1−F and ūM

eq = FM
∞

1−FM ,
the asymptotic mean of Xm is given by

E(X∞) = lim
m→∞

E(Xm) =

(
ūeq

1
(1 − FM)+FMKM

∞ g

(
KM

∞ gFMūeq + (1 − FM)ūM
eq
) ) , (A8)

where the asymptotic Kalman gain KM
∞ is given by

KM
∞ =

1
2g

1− g2rM

|FM|2ro −
1
|FM|2 +

[(
1− g2rM

|FM|2ro −
1
|FM|2

)2

+
4g2rM

|FM|2ro

]1/2
 .

Clearly, the asymptotic mean of the prediction state is a linear combination of the equilibrium
mean of original true model ūeq and that of the forecast model of the mean ūM

eq . With (A8), the mean
bias yields

lim
m→∞

E(um+1 − ūm+1|m) =
1− FM

(1− FM) + FMKM
∞ KM

∞ g
(ūeq − ūM

eq ). (A9)

According to (A9), the asymptotic prediction mean is equal to the equilibrium mean of the
perfect model if and only if the imperfect model has the same equilibrium mean as the perfect model,
namely ūeq = ūM

eq .
Next, we derive the covariance of the augmented system. Denote the operators FP andRP as

FP =

(
F 0

KM
m gFM (1− KM

m g)FM

)
, RP =

(
r 0
0 (KM

m )2|FM|2ro

)
. (A10)

Denote the covariance of Xm by CP
m = Cov(Xm,Xm), where

CP
m =

(
Cov(um, um) Cov(um, ūm|m−1)

Cov(ūm|m−1, um) Cov(ūm|m−1, ūm|m−1)

)
≡
(

CP
(11)m CP

(12)m
CP
(21)m CP

(22)m

)
. (A11)

The evolution of the covariance matrix of the augmented system is given by

CP
m+1 = F P

mCP
mF P∗

m +RP
m, (A12)
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and the components of the asymptotic limit CP
∞ are

CP
(11)∞ =

r
1− |F|2 , CP

(12)∞ =
FFM∗KM

∞ gCP
(11)∞

1− FFM∗(1− KM
∞ g)

, CP
(21)∞ = CP

(12)∞,

CP
(22)∞ =

|FM|2
1− |FM|2(1− KM

∞ g)2 ((g2(KM
∞ )CP

(11)∞ + 2KM
∞ g(1− KM

∞ g)Re(CP
(12)∞)) + (KM

∞ )2ro).

(A13)

With direct calculation, the dynamics of the prediction variance rm+1|m is

rm+1|m = |FM|2rm|m + rM = |FM|2(1− KM
m g)rm|m−1 + rM. (A14)

Asymptotically, it is given by

rP
∞ = |FM|2(1− KM

∞ g)rP
∞ + rM = |FM|2 rorP

∞
g2rP

∞ + ro + rM =
|FM|2ro

g
KM

∞ + rM. (A15)

Appendix C.2. Augmented System for Filtering

The coupled evolution of the augmented state Ym := (um, ūm|m)
T is(

um+1

ūm+1|m+1

)
=

(
F 0

KM
m+1gF (1− KM

m+1g)FM

)(
um

ūm|m

)
+

(
σm+1

KM
m+1(gσm+1 + σo

m+1)

)

+

(
Fm+1

(1− KM
m+1g)FM

m+1 + KM
m+1gFm+1

)
.

(A16)

Again, the Gaussian statistics of the augmented state Ym is fully characterized by its mean and
covariance. The evolution of its mean is given by

E(Ym) =

(
F 0

KM
m+1gF (1− KM

m+1g)FM

)
E(Ym−1) +

(
Fm+1

(1− KM
m+1g)FM

m+1 + KM
m+1gFm+1

)
.

(A17)
When m→ ∞, the asymptotic mean of Ym is

E(Y∞) = lim
m→∞

E(Ym) =

(
ūeq

1
(1−FM)+FMKM

∞ g
(KM

∞ gūeq + (1− FM)(1− KM
∞ g)ūM

eq )

)
, (A18)

and the deviation of analysis mean from the truth signal is therefore given as follows:

lim
m→∞

E(um+1 − ūm+1|m+1) =
(1− FM)(1− KM

∞ g)
(1− FM) + FMKM

∞ g
(ūeq − ūM

eq ). (A19)

Next, the covariance of prediction mean is

CA
m+1 = FA

m CA
mFA∗

m +RA
m,

where the operator FA andRA are given respectively by

FA
m =

(
F 0

KM
m+1gF (1− KM

m+1g)FM

)
, RA

m =

(
r rgKM

m+1
rgKM

m+1 (KM
m+1)

2(ro + g2r)

)
.
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The elements of covariance matrix are

CA
m =

(
Cov(um, um) Cov(um, ūm|m−1)

Cov(ūm|m−1, um) Cov(ūm|m−1, ūm|m−1)

)
≡
(

CA
(11)m CA

(12)m
CA
(21)m CA

(22)m

)
, (A20)

with the corresponding components of the asymptotic covariance CA
∞,

CA
(11)∞ =

r
1− |F|2 , CA

(12)∞ =
KM

∞ g(|F|2CA
(11)∞ + r)

1− FFM∗(1− KM
∞ g)

, CA
(21)∞ = CA∗

(12)∞,

CA
(22)∞ =

g2(KM
∞ )2|F|2CA

(11)∞ + 2KM
∞ g(1− KM

∞ g)Re(FFMCA
(12)∞) + (KM

∞ )2(ro + g2r)

1− |FM|2(1− KM
∞ g)2 .

(A21)

Thus, direct calculations result in the dynamics of prediction variance rm+1|m+1,

rm+1|m+1 = (1− KM
m+1g)(|FM|2rm|m + rM). (A22)

As discussed in [15], the asymptotic analysis variance is

rA
∞ =

ro

g
KM

∞ . (A23)

Finally, we compare the asymptotic prediction and filtering variance. We have the following
conclusion:

rA
∞ − rP

∞ =
ro

g
KM

∞ −
|FM|2ro

g
KM

∞ − rM = (1− |FM|2)rP
∞ − rM < 0. (A24)

The details are as follows. From [15], rP
∞ satisfies the equation

(rP
∞)2 +

(
rM

|FM|2 +
ro

g2|FM|2 −
ro

g2

)
rP

∞ −
rorM

g2|FM|2 = 0, (A25)

which has a positive and negative solution. For the equilibrium imperfect model variance, we have

(
rM

1− |FM|2

)2

+

(
rM

|FM|2 +
ro

g2|FM|2 −
ro

g2

)
rM

1− |FM|2 −
rorM

g2|FM|2

=
(rM)2

1− |FM|2

(
1

1− |FM|2 +
1
|FM|2

)
> 0.

(A26)

Hence, the equilibrium imperfect model variance is larger than the asymptotic filtering variance.
We have

rA
∞ − rP

∞ = (1− |FM|2)rP
∞ − rM < 0, (A27)

which indicates the filtering estimate has smaller uncertainty (variance) than the prediction.

Appendix D. Possible Non-Gaussian PDFs of a Linear Model with Time-Periodic Forcing Based
on the Sample Points in a Single Trajectory

Recall the complex scalar forced OU process in (97),

du
dt

= (−γ + iω0)u + f0 + f1eiω1t + σẆ, (A28)

where the evolution of the statistics is given by (99). When t is sufficiently large, the effect of initial value
decays to zero. Thus, at any time instant t at the attractor, the PDF u(t) is Gaussian. However, the PDF
computed by taking the time average for a long trajectory at the attractor based on may not be Gaussian
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if the time-periodic forcing f1 6= 0. This can be easily seen in the examples in Figure 15. In other
words, the system is not ergodic [108] when the time-periodic forcing is strong. Below, we provide a
mathematical quantification of such behavior. We focus on the system at the attractor and ignore the
contribution from the initial value. For simplicity, we also assume f0 = 0 since this constant forcing
only shifts the mean of the solution by a constant and won’t affect the non-Gaussian behavior in the
time-averaged PDF. Therefore, the solution of (A28), according to (98), reduces to

u(t) =
f1eiω1t

γ + i(−ω0 + ω1)
+ σ

∫ t

t0

e(−γ+iω0)(t−s)dW(s). (A29)

Clearly, the true signal u(t) can be decomposed into two parts: the deterministic time-periodic
mean state ū(t) and the fluctuation around the time-periodic mean state u′(t):

ū(t) =
f1eiω1t

γ + i(−ω0 + ω1)
,

u′(t) = σ
∫ t

t0

e(−γ+iω0)(t−s)dW(s).
(A30)

For the simplicity of illustration, in the following, we only consider the real part of the true signal.
Thus, ū(t) and u′(t) become

ū(t) = A cos (ω1t + φ) , φ = arg
f1

γ + i(−ω0 + ω1)
, A =

∣∣∣∣ f1

γ + i(−ω0 + ω1)

∣∣∣∣ ,

u′(t) =
σ√
2

∫ t

t0

e(−γ+iω0)(t−s)dW(s).
(A31)

As a simple illustration, we show in Panel (a) of Figure A1 the signal u(t) and its decomposition
ū(t) and u′(t) within one period.

With such a mean-fluctuation decomposition, the PDF based on the samples of the long trajectory
can be computed in the following way. Say the total length of the trajectory is NT, where T = 2π/ω1

is the period. Now, we use take no grid points with uniform increment within one period, namely
nT, nT + ∆T, nT + 2∆T, . . . , nT + (no − 1)∆T, where ∆T = T/no and n = 1, . . . , N. For different n and
fixed i, the time-dependent mean ū(nT + i∆T) is the same while u′(nT + i∆T) is different due to the
randomness in the fluctuation. It is known from (A31) that the collection of the n points u′(nT + i∆T)
with n = 1, . . . , N and fixed i satisfies a Gaussian distribution N (µi, Ri) with

µi = ū(nT + i∆T), and Ri = 〈u′(nT + i∆T)u′∗(nT + i∆T)〉 = σ2

4γ
, (A32)

where the variance is computed from the second equation of (A31) and it has no dependence on t.
Therefore, the PDF of u(t) is given by the summation of all the Gaussian distributions in (A32) for
i = 1, . . . , no with no → ∞. See Figure A2 for an illustration. Mathematically, this can be written as
a convolution,

p(u) =
1
C

pū ∗ pu′ =
1
C

∫ ∞

−∞
pū(v)pu′(u− v)dv, (A33)

with C a normalized constant to guarantee
∫ ∞
−∞ p(u)du = 1. Here, pu′(u− t) is the Gaussian PDF with

mean and variance given by (A32), namely,

pu′(u− v) =
1√

πσ2/(2γ)
exp

(
− (u− v)2

σ2/(2γ)

)
. (A34)

To compute pū(u), we refer to Figure A1. Since ū is bounded by −A and A, the support of pū(u)
is also within [−A, A]. Direct calculation of pū(u) is difficult. Nevertheless, the cumulative distribution
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function (CDF) can be used, which facilitates the derivation of pū(u). Now, consider the interval
[−φ/ω1, (2π − φ)/ω1]. In fact, for any u ∈ [−A, A], the CDF is given by

P(ū < u) =

{
1− 2

ω1
arccos u

A /( 2π
ω1

) = 1− 1
π arccos u

A , |u| ≤ A,

0, |u| > A.
(A35)

The CDF in (A35) is easily derived by making use of the fact that the samples are uniformly
distributed in t ∈ [−φ/ω1, (2π − φ)/ω1], which is of length 2π/ω1. With the CDF (A35) in hand,
the PDF pū(t) is given by the derivative of the CDF. Therefore,

pū =


1

Aπ
1√

1−(u/A)2
, |u| ≤ A,

0, |u| > A.
(A36)

Therefore, combining (A34) and (A36) leads to the calculation of (A33).
It is clear that the full PDF depends on the variation of the time-dependent mean ū, and the

variance of the Gaussian PDF pu′ for the fluctuation part. If the variation of ū is much smaller than the
variance of u′, then the full PDF is nearly Gaussian. With the increase of the variation of ū and a fixed
variance of u′, then the full PDF becomes bimodal. Thus, the ratio of the bandwidths associated with
pū and pu′ can be used to quantify the Gaussianity of the full PDF. The bandwidth of pū is

Lū = 2A = 2
∣∣∣∣ f1

γ + i(−ω1 + ω0)

∣∣∣∣ . (A37)

On the other hand, although there is no finite support of the Gaussian distribution pu′ , the
three-sigma rule of thumb [208] is always used as an empirical bandwidth to quantify the “range” of
the Gaussian distribution, where the three sigma here means the three standard deviation from the
mean of the Gaussian distribution that covers 99.73% of the values of pu′ . Thus, the bandwidth of pu′ is

Lu′ = 2

3

√
σ2

4γ

 . (A38)

The ratio of (A37) and (A38) is given by

r :=
Lū

Lu′
=

∣∣∣ f1
γ+i(−ω1+ω0)

∣∣∣
3
√

σ2

4γ

. (A39)

Figure A3 shows the full PDFs with different ratio r. In Panel (a), the time-periodic forcing f1

increases from f1 = 0 to f1 = 5. When f1 = 0, the PDF is Gaussian and the system is ergodic. When f1

increases, Lū becomes larger while Lu′ is fixed. Note that, in this example, ω1 = ω0, which means the
forcing is resonant and therefore the bandwidth Lū is sensitive to the change of forcing amplitude f1.
With f1 > 1, the bimodality in the PDF becomes significant. In Panel (b), we fix f1 = 5, ω1 = 1 and
let ω0 change. With the resonant forcing ω0 = ω1 = 1, the PDF is significantly bimodal but with a
non-resonant forcing ω0 = 3, the PDF is nearly Gaussian.



Entropy 2018, 20, 644 90 of 98

−A

A

Illustration for the CDF for the time−dependent mean part

(2π − φ)/ω1−φ/ω1

u

P (ū < u) = 1 − arccos(u/A)/π

arccos(u/A)/ω1 (2π − arccos(u/A))/ω1

Figure A1. Illustration of computing the cumulative distribution function (CDF) of the deterministic
mean ū(t).
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Figure A2. Illustration of the mean-fluctuation decomposition and the infinite Gaussian mixture PDF.
(a): the true signal and its mean-fluctuation decomposition. Here, the signal within only five periods is
shown; (b): the collection of the fluctuations at fixed time within each period, namely nT + i∆T with i
fixed and n = 1, . . . , N, which gives a Gaussian PDF in (A32). The left subpanel shows the non-Gaussian
time-averaged PDF of the deterministic mean ū(t) and the Gaussian PDF of $u′(nT + i∆T) for a fixed
i; (c): repeating (b) at different i; (d): the full PDF given by a Gaussian mixture from all the Gaussian
PDFs in (c) with ∆T → 0.
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Figure A3. The PDF of u averaged over a single long trajectory. (a): the PDF as a function of the
amplitude of time-periodic forcing f1 in a resonant forcing setup ω1 = ω0 = 1; (b): the PDF as a
function of oscillation frequency ω0 with fixed f1 = 5 and ω1 = 1.
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