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Abstract
We consider the time-sequential state estimation of a flow field given a stream of noisy measurements
that are provided by instruments advected by the flow, known as Lagrangian tracers or drifters.
Lagrangian drifters collect real-time data as they move through the velocity field and are an important
data collection method for atmospheric and ocean measurements. Here, we quantify the recovery of
the Eulerian energy spectra from observations of Lagrangian drifters. This is performed by utilizing
special Lagrangian data assimilation algorithms, known as conditionally Gaussian nonlinear filters.
Here we address the following questions: how much of the turbulent Eulerian energy spectra can be
recovered from assimilation of Lagrangian trajectory data and how accurately are the various energetic
scales recovered relative to the truth. These issues are primarily studied in the perfect model scenario,
but we quantify recovery due to model error by reduced order models via spectral truncation of the
forecast model. We demonstrate high recovery skill of the two-dimensional turbulent energy spectra
for both an exact filter and an imperfect filter, based on extreme localization of the covariance matrix,
which is vastly cheaper than the exact filter, for both an inverse cascade spectrum with slope k−5/3

and a direct cascade spectrum with slope k−3. The dependence of the spectral energy recovery skill
on the number of tracers and the spectral truncation grid size is also studied.
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1 Introduction

We consider the time-sequential state estimation of a flow field given a stream of noisy measurements that
are provided by instruments that are advected by the flow, referred to as Lagrangian tracers or drifters.
Lagrangian drifters collect real-time observation as they move through the velocity field and are a crucial
data collection source for atmospheric and ocean measurements [27, 20].

The setup of Lagrangian data assimilation involves the assimilation of massless particles that are advected
by the fluid velocity field for the purpose of estimating the underlying velocity field state. The flow model
is assumed incompressible. We utilize the Bayesian formulation, where the posterior probability of the
system state is updated using the model prediction (prior information) and the next available measurement
data from the Lagrangian observation process.

A central problem in Lagrangian data assimilation is the highly nonlinear nature of the observation process,
since the drifter observations are coupled to the fluid velocity. In general, the resulting nonlinear filtering
problem would necessitate the use of approximate filtering strategies (e.g. particle filters or ensemble
Kalman filters, see [22, 16, 12]). However, if the velocity field is a linear stochastic turbulence model (of the
type discussed in [22, chap. 5]), the resulting problem has a special conditionally Gaussian structure. This
structure permits the use of a conditionally Gaussian nonlinear filter for the Lagrangian data assimilation
of linear stochastic turbulence velocity models. The conditionally Gaussian nonlinear filter is exact (in the
mean square sense), and thus no filter approximation errors are made, as with e.g. extended Kalman filters
or particle filters for non-Gaussian systems. This fact was first noted and used for the nonlinear filtering of
tracer observation data in [8] for incompressible flows. The conditionally Gaussian Kalman filter, originally
due to Liptser and Shiryaev in [18, chap. 12], was also used in [9] for special types of compressible flows
that are relevant in geophysical applications. The analysis in [8, 9] focused on theoretical properties of the
filter and the numerical experiments involved a small grid consisting of order 20 points for two-dimensional
flows, resolving only the very largest scales of the flow.

1.1 Background

The Lagrangian characterization of diffusion processes and their statistics from observation and experiments
has been investigated in various works, such as [15, 3]. A typical approach involves studying the statistics
of single particles or multiple (pairs or groups) of particles as they are advected by the flow to understand
dispersion and other properties of the flow. The Eulerian characterization of turbulent diffusion is also
an important perspective, see for instance [21, 23]. Connecting the statistics derived from Lagrangian
data to Eulerian properties of flow field has also been explored in works such as [15, sec. 2.8] and [23]. On
the other hand, simplified stochastic models of tracer particle trajectories that reproduce their observed
frequency spectrum from a data modeling perspective where considered in [17].

Lagrangian statistics are closely related to data assimilation methods. The assimilation of Lagrangian
particles in various contexts has been considered in [25, 26, 13], focusing on incorporating Lagrangian
measurements into general ocean circulation models. On the other hand, studies on various Bayesian
strategies for Lagrangian data assimilation have been considered in works including [1, 14], which explore
various approximate filters based on Kalman type methods and Markov chain Monte Carlo sampling.

Filtering spatially extended systems, of the type considered in this work, has been extensively studied in
various settings. The setup addressed here considers forecast models with higher resolution than the number
of drifter particles. The filtering prediction problem thus involves ‘super-resolution’ [10, 7] or recovery
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of scales unobserved. Super-resolution and filtering algorithms have been analyzed in different setups
for one-dimensional turbulent advection systems [7, 22] and two-dimensional turbulent Navier-Stokes
flows [5]. The super-resolution problem is more delicate in the Lagrangian data assimilation context, since
the observation operator mixes information from all the scales in the flow as the Lagrangian particles
are advected throughout the fluid; as opposed to the more direct study of filter skill when observing the
spatial scales of the flow directly (see [5]).

Information theory and criteria has been explored in the literature for model improvement and Bayesian
class selection for dynamical systems. For spectra recovery, a Bayesian class selection framework was
studied in [28, 2] for input-output measurement systems and output only measurements systems. We refer
to [6] for information-theoretic approaches towards model prediction improvement and [4] for information-
based criteria for filtering dynamical systems. However, in the twin-experiment or perfect model scenario,
studied here, model improvement is not relevant, as we assume the forward model parameters match
the true model parameters. We mention these works, since model selection is a crucial aspect for the
real-world filtering of turbulent signals. Our goal here is to first study the twin-experiment setting to
establish base guidelines and understand the inherent recovery skill of the algorithms. This understanding
can be utilized to inform more intricate setups with imperfect models.

1.2 Objectives

One of the central goals in this work is to study the skill in the recovery of the Eulerian kinetic energy
spectra of fluid flow models from a finite number of tracers, primarily in the perfect model setting
(twin-experiment scenario). In the perfect model setting the forecast and true velocity model are exactly
equivalent. We investigate filter performance and accuracy for realistic setups with moderately large grid
sizes on the order of 1000 dimensions. We study performance of a conditionally Gaussian nonlinear filter
(i.e. the full or exact filter) in addition to a reduced, diagonal approximation of the exact filter, which is
is vastly more computationally efficient, that is derived by extreme localization of the filter covariance
matrix. We also study recovery skill of the turbulent velocity spectra in the small tracer limit, as well as
when the number of tracer observations are large, since both are relevant configuration from a practical
standpoint.

The main sources of error in filtering that are considered here include: model error from using forward
models with dynamics that have coarser resolution (reduced order models) compared to the (high
dimensional) truth and observation errors that result from a nonlinear observation operator that mixes
information from all the scales in the flow, i.e. ‘sub-grid’ effects, (refereed to as representation error [10,
11, 19]) and sparse measurements due to a finite number of tracers (incomplete and noisy measurements).
Model error in the forecast or forward dynamics considered here is exclusively due to spectral truncation
(in general it would also include misspecified system parameters). Furthermore, we consider the skill of a
cheap imperfect filter, which ignores all particle correlations in the filter covariance.

1.3 Contributions and overview

The following summarize the main contributions of this work

• Quantification of the recovery of the Eulerian velocity spectra from observations of Lagrangian
tracers (inverse problem).

• Recovery in the context of model error due to reduced-order models that are based on spectrally
truncated forecast models.

• How much of the turbulent velocity spectrum can be recovered and just how accurately. Are there
energetic scales that are easy or hard to recover? What kind of velocity spectrum shape is recovered
relative to the true energy spectrum.

• Assessment of the relevant issues for moderately large dimensional velocity models on the order of
1000 grid points and for various flow regimes. Furthermore, study skill in the small drifter scenario.

• In addition to the assessment of the exact nonlinear filter, demonstration of the skill of an imperfect
filter that is derived based on a mean-field theory of the tracer observations, which is vastly cheaper
than the exact filter.
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1.4 Outline

In section 2, we describe the general stochastic turbulence velocity models and the Lagrangian observation
process. An overview overview of the assimilation problem is included in section 2.3 and, in section 3, we
provide a full description of the filter problem formulation. In section 4, the exact and an inexact filtering
algorithms are described in full detail. In section 5, we discuss and define the Eulerian energy spectra of
the stochastic turbulence velocity models and, in section 6, we discuss how the kinetic energy spectra
of the velocity models can be recovered through filtering strategies. Performance and accuracy of the
filtering algorithms are provided in section 7. Concluding remarks are made in section 8.

2 General velocity models and the tracer observation process

Here we discuss the velocity models and the observation process. The velocity models are formulated
based on linear stochastic models, which are described in detail here, along with flow regimes of the model.
After the description of the velocity and observation process, we state the filtering problem and also
discuss simplified velocity models that serve as instructive test problems.

2.1 The general incompressible stochastic velocity field model

As the velocity model we consider a two-dimensional flow in a periodic domain D = [0, 2π)d, d = 2, where
the velocity field is a superposition of divergence free modes with random amplitudes:

v(x, t) = w(t) +
∑

k∈IΛ

v̂k(t)ψk(x), v ∈ Rd, x ∈ [0, 2π)d. (1)

The term w(t) is a spatially uniform sweeping component, in other words the time-dependent background
velocity field. The system is resolved on wavenumbers IΛ := {k ∈ Zd \{0} : −Λ 6 ki 6 Λ for i = 1, . . . , d},
on a total grid of Nd = (2Λ + 1)d points. The basis are divergence free Fourier modes that are given by

ψk(x) = rke
ik·x, where rk = ik⊥

k
; (2)

note ψ−k = ψ∗k and we also require v̂∗k = v̂−k to ensure the velocity field is real valued. The vector rk

is orthogonal to the wavevector k in order to enforce the incompressibility constraint ∇ · v = 0. The
imaginary unit in rk ensures that wavevector k is conjugate to −k and the denominator term ensures the
vector rk is non-dimensional. The random coefficients are described by independent Ornstein-Uhlenbeck
(OU) processes

dv̂k(t) = −dkv̂k(t) + fk dt+ σk dBk(t), (3)

where dk is damping, fk is deterministic forcing, and Bk = 1√
2 (B1

k + iB2
k) is a unit complex Wiener process

with real valued amplitude σk and 1√
2 (B1

−k + iB2
−k) = 1√

2 (B1
k − iB2

k), to ensure conjugate symmetry of
the basis coefficients.

The dynamics of the sweeping flow w(t) is given by,

dw(t) = −d0ω(t) dt+ Ω0ω(t) dt+ f0 dt+ σ0 dW0(t), (4)

where Ω0 is a skew-symmetric matrix representing rotation effects, andW 0 is a real valued Wiener process
in Rd with independent components. The sweeping flow mimics inhomogeneous flows at large scales in
nature, which can strongly impact spectral recovery of the Eulerian velocity.

Eqs. (2) and (4) define the stochastic turbulence velocity models that are utilized in this work. The
description of the Eulerian velocity spectra for these stochastic velocity models is provided in section 5.

2.1.1 Terminology of various flow regimes

We define some common terminology here that pertains to various flow states of the velocity model. Sweeping
flows are flows where the spatially uniform background velocity component is nonzero wt = wt + w̃t 6= 0.
The sweeping flow may be constant with a nonzero mean (implying nonzero forcing) or may be fluctuating
in time with a zero or nonzero mean. For simplicity, we denote a flow with constant sweeps as a flow with
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a nonzero mean and no fluctuations and fluctuating sweeps as a flow with zero forcing f0 = 0 and nonzero
fluctuations σ0 6= 0; thus fluctuating and forced sweeps have f0 6= 0 and σ0 6= 0, fluctuating sweeping
flows have f0 = 0 and σ0 6= 0, constant sweeps have σ0 = 0 and f0 6= 0, and zero background flows when
wt ≡ 0.

Mean flows are flows where fk 6= 0 for at least one wavenumber. In other words, velocity models with a
mean flow have spatial variations in the mean velocity field v(x, t) 6= 0 due to forcing. Note, the mean
flow terminology defined here does not imply any structure on the sweeping component of the velocity
field. If we do not specify that the velocity field has a mean flow, it is assumed that it is a zero mean flow.

2.2 The Lagrangian tracer observation process

As our observation process, we are given L noisy trajectories of Lagrangian driftersX l ∈ Rd with dynamics
given by

dX l(t) = v(X l(t), t) dt+ σl dWXl
(t) dt, l = 1, . . . , L, (5)

where WXl
(t) is a d-dimensional real valued independent Wiener process. Furthermore, we assume all the

tracers have the same instrumental or observational error level so that σl = σx for l = 1, . . . , L.

2.3 Overview of filtering the velocity field via Lagrangian tracer observations

In the filtering problem, our aim is to recover the signals w(t) and v̂k(t) from the L noisy observations of
X l(t). Thus in the general setting, the combined forecast model and observation process is given by:

forecast model: vf (x, t) = wf (t) +
∑

k∈IΛf

v̂fk(t)ψk(x), (6)

dwf (t) = −df0ω(t) dt+ Ωf0ω(t) dt+ ff0 dt+ σf0 dW0(t), (7)

dv̂fk(t) = −dfkv̂k(t) dt+ ffk (t) dt+ σk
f dBk(t), (8)

observation process: dX l(t) = v(X l(t), t) dt+ σx dWXl
(t), l = 1, . . . , L. (9)

For simplicity, we assume deterministic forcing, although in general the forcing may contain a periodic
component, and no rotation in the background velocity field and hence Ω0 = 0.

As mentioned earlier, in the twin-experiment scenario, the forecast model eq. (6) is identical the truth
model in eq. (1). Even if perfect model parameters are specified (i.e. df = d, Ωf0 = Ω0, ff = f , σf = σ),
which we assume, model error may exists due to model truncation. Namely, model error due to truncation
exists when the forecast model is resolved on wavenumbers that differ from the true model IΛf

6= IΛ,
where IΛf

are the modes resolved by the forecast velocity field and IΛ are the modes resolved by the
true model. Typically, in realistic applications, the forecast resolution is much lower than the true model
resolution, i.e. IΛf

� IΛ, so this scenario is useful to study from a practical perspective.

The key filtering idea is that although the tracer evolution eq. (5) is nonlinear, given drifter observations
X l(t), the signal processes v̂k are conditionally linear on these observations. In other words, although the
observations depend nonlinearly on the signal (the velocity field), once we observe the drifter process,
the velocity is then conditionally Gaussian given these observations. Hence, the posterior distribution is
also Gaussian, assuming the signal is initially Gaussian distributed. This conditionally Gaussian structure
is exploited for filtering. The optimal minimum variance filter in this case is given by the conditionally
Gaussian nonlinear Kalman filter, as first described in [18], with explicit closed-form differential equations
for the posterior mean and covariance.

2.4 Reduced velocity models: the aligned shear modes model

The general velocity model in eq. (1) contains a rich number of interesting representative flow regimes. It
is instructive to study reduced velocity models that represent certain general flow regimes. Shear flows
represent one such flow regime contained in the general velocity model. An instructive testbed problem
consists of a velocity model where all the wavenumbers are aligned in the same direction k̂, and the modes
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that are not aligned in this direction are neglected. Suppose that all the modes are aligned in the x-axis,
i.e. k̂ = e1 = [1; 0], then the aligned shear modes model is explicitly given by:

v(x, t) = w(t) +
Λ∑

k=−Λ
k 6=0

v̂k(t)i
[
0
1

]
eikx, v̂∗k = −v̂−k (10)

dw(t) = −d0ω(t) dt+ Ω0ω(t) dt+ f0 dt+ σ0 dW 0(t), (11)
dv̂n(t) = −dnv̂n(t) dt+ fn dt+ σn dBn(t). (12)

The vast reduction in the number of wavenumbers in the aligned shear modes model makes it a practically
useful testbed for studying filter skill and related issues in Lagrangian tracer recovery (a total of 2Λ
modes compared to (2Λ)d of the full model). Moreover, these are the simplest flows that can be used
to test spectral recovery and model error, such as those due to mixing in the observation process and
representation error due to model truncation. Although we mention this model, we focus on the full
two-dimensional system defined in eq. (1) in this work.

2.5 General remarks on the velocity models

The general velocity model in eq. (1), despite its conceptual simplicity, can generate a rich number of
interesting flow regimes (from jet like flows to purely random flows), and thus serves as a practical test
model to study the inherent skill of filter approximations and model error. We explicitly included a
sweeping flow component wt in the velocity model and the dynamics of this component also follows general
linear, stochastic dynamics with added mixing due to rotation. This background term may represent, for
example, seasonal affects and other important inhomogeneous time-dependent, large-scale flow features
that are observed in nature, which are prevalent in geophysical applications. It is therefore instructive to
understand the impact of this spatially uniform background flow in the observation process and its affects
on filter skill.

As an aside, we mention that special cases of the velocity models in eq. (1) are solutions of the two-
dimensional quasi-geostrophic equations used in the study of geophysical flows [24]. The velocity models are
exact solutions under Kolmogorov shell forcing and general damping and topography. The spatially uniform
background component wt is constant when there is rotation and no topography. When topography and
rotation affects are present, the sweeping component is time dependent. We can understand the sweeping
component wt as being generated due to topography, but this interpretation is not necessary. For further
details regarding this connection to geophysical flows, we refer to [24, Chap. 1].

We remark that the velocity model can be written in terms of the streamfunction ψ(x, t) as v(x, t) =
w(t)+∇⊥ψ(x, t), where∇⊥ = (−∂y, ∂x). Explicitly, the streamfunction, in terms of the spectral coefficients
v̂k(t), is given by

ψ(x, t) =
∑

k∈IΛ

ψ̂k(t)eik·x =
∑

k∈IΛ

v̂k(t)
k

eik·x. (13)

The vorticity, on the other hand, defined by ω = ∇× v = ∇×∇⊥ψ = ∆ψ, is given by

ω(x, t) =
∑

k∈IΛ

ω̂k(t)eik·x =
∑

k∈IΛ

−kv̂k(t)eik·x. (14)

3 Formulation of the assimilation of Lagrangian trajectories for turbulence velocity models

Here we formulate the filter for the given problem involving a general d-dimensional flow with a background
velocity field. In section 4, we use the setup here to describe the exact filter along with the imperfect filter
algorithm. The description is adapted from [8], with the additional inclusion of a background velocity
term.

First group the signals w and v̂k into a (2Λ)d + d dimensional vector,

U(t) =


w(t)
...

v̂k(t)
...

 (15)
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so that we can compactly write the velocity field dynamics as

v(x, t) = w(t) +
∑

k∈IΛ

v̂k(t)ψk(x) = P (x)U(t), (16)

where
P (x) =

[
e1, e2, · · · , ed, · · · ,ψk(x), · · ·

]
(17)

is a d × ((2Λ)d + d) dimensional matrix, where the columns correspond to basis vectors and the rows
the spatial dimensions. The dynamics of the vector of combined background velocity and random basis
coefficients can also be compactly written as

dU(t) = −ΓU(t) dt+ F dt+ Σu dBu(t). (18)

Above, Γ is a diagonal matrix representing the damping terms with entries [Γ]k,k = dk and [Γ]0,0 = d0Id×d
(the notation [A]0,0 denotes the diagonal entries of matrix A corresponding to the background velocity
field wt). The term F is a vector of the deterministic forcing terms where [F ]k = fk and [F ]0 = f0. The
noise Σu is a real diagonal matrix where Σu = ΣuΣ∗u has entries [Σu]k,k = σ2

k and [Σu]0,0 = σ0I2×2.

Given a realization of the velocity field v, the trajectory of one of the L tracers is given by

dX l(t) =
(
w(t) +

∑
k∈IΛ

v̂k(t)ψk(X l(t))
)
dt+ σx dWXl

(t), (19)

= P (X l(t))U(t) dt+ σx dWXl
(t). (20)

We can group all X l(t) into d× L dimensional observation vector:

X(t) =

X1(t)
...

XL(t)

 . (21)

The dynamics of the observation process can thus be compactly written as

dX(t) = P (X(t))U(t) dt+ σx dWX(t), (22)

with

P (X(t)) =

P (X1(t))
...

P (XL(t))

 and WX(t) =

WX1(t)
...

WXL
(t)

 , (23)

where we abuse the P notation, to keep the notation simple.

In summary, using the notation defined above, we have that filtering v(x, t) from the observations
(X1(s), . . . ,XL(s))s≤t is equivalent to filtering U(t) using X(s ≤ t), where:

forecast model: dU(t) = −ΓU(t) dt+ F (t) dt+ Σu dB(t), (24)
observation process: dX(t) = P (X(t))U(t) dt+ σxdWX(t). (25)

3.1 Distribution of the statistical attractor or prior model density

The equilibrium distribution or statistical attractor (the long time limiting distribution) of the velocity
field U can be computed from the Fokker-Planck equation, which provides the least biased estimate
without any observational drifter data and serves as the prior distribution of the estimate of the velocity
field. We denote this limiting equilibrium density by πatt = N (Uatt, Ratt), where the mean and covariance
satisfy, respectively,

dUatt

dt
= −ΓUatt + F = 0 =⇒ Uatt = Γ−1F , (26)

dRatt

dt
= −ΓRatt −RattΓ∗ + ΣΣ∗ = 0 =⇒ Ratt = 1

2Γ−1ΣΣ∗. (27)
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4 Exact and imperfect filtering algorithms for Lagrangian data assimilation

Here we describe the exact filter for Lagrangian data assimilation for the velocity models discussed
in section 2. We then motivate and describe the inexact filter, which is based on a mean-field theory in the
large tracer limit. The inexact filter approximation amounts to ignoring the correlations of the non-aligned
modes due to the observation process.

4.1 Exact filtering algorithm for Lagrangian tracers

The conditionally Gaussian Kalman nonlinear filter [18] states that conditioned on observations of the
tracer, the optimal state of U t is Gaussian with covariance Rt and mean Û t given by the following
algorithm.

Algorithm 1 (exact filter for Lagrangian tracers)
The posterior distribution of the state U t given Lagrangian tracer observations of Xs6t, where

dU(t) = −ΓU(t) dt+ F (t) dt+ Σu dB(t), (28)
dX(t) = P (X(t))U(t) dt+ σxdWX(t), (29)

is given by the density p(U t | Xs6t) = N (Û t, Rt), where the filter mean and covariance satisfy the
following system of equations

dÛ t = (−ΓÛ t + F t) dt+ σ−2
x RtP

∗(Xt)
(
dXt − P (Xt)Û t dt

)
, (30)

dRt
dt

= −ΓRt −RtΓ∗ + Σu − σ−2
x RtPtRt, (31)

where the interaction matrix is defined as

Pt = P ∗(Xt)P (Xt) =
L∑
l=1

P ∗(X l(t))P (X l(t)). (32)

Note, that the covariance Rt satisfies a random matrix Riccati differential equation.

Explicitly the entries of the matrix of interactions P t, corresponding to the wavenumber entries (excluding
the background), is given by

[Pt]n,m =
L∑
l=1

ei(m−n)·Xl(t)r∗nrm. (33)

We see that unless the two wavenumbers in the covariance are aligned, their interaction represented
through Pt is zero. The corresponding entries representing interactions with the background velocity can
also be explicitly written out, where a similar conclusion holds.

4.2 A reduced, diagonal imperfect filtering strategy and its properties

Most realistic systems have a high dimensional state space, which prohibits the use of even the most
simple filtering algorithms. For a state space of dimension O(Nd) the covariance is of size O(Nd ×Nd),
thus propagating the matrix Riccati differential equation in eq. (31) costs O(Nd×3), which is impractical
or impossible for all but the smallest problems, and is especially challenging for stiff systems with
shallow energy spectra. Inexpensive, imperfect filters are necessary to mitigate the problem associated
with propagating a high dimensional covariance equation. We describe a cheap filter here, which avoids
propagating the covariance matrix by neglecting all tracer interaction terms: a type of extreme covariance
localization. We discuss this cheap algorithm and also describe the filter’s theoretical behavior and
performance under special limits. As our aim is not to repeat certain theoretical results and their proofs,
we include only the essential theorems and restate them in a setting suitable to motivate and provide
rigorous intuition for the inexact filter.

The reduced filter strategy for Lagrangian recovery consists of utilizing the mean-field dynamics of the
observations in the limit of a large number of tracers L. Recall that the covariance equation in eq. (31) is
random since the observations enter through the interaction matrix Pt, which is a function of the tracer
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trajectories. In the mean field limit of a large number of tracers, the random affects are averaged out and
the covariance equation is deterministic. Furthermore, in this large tracer limit the interaction matrix Pt

is in fact diagonal.

The mean field limit argument relies upon ergodicity of the tracer observations, which have been shown to
converge to the uniform distribution. Note, conditioned on v(x, t) the tracers X l(t) for l = 1, . . . , L are
independent. Ergodicity and convergence of the tracer observations to the uniform distribution given a
realization of the velocity field is the first main theoretical result from [8, Theorem 3.1].

Theorem 1 (tracer observations limiting distribution)
The distribution of X l(t) given an almost sure realization v(x, t) converges (geometrically) fast towards
the uniform distribution on [0, 2π)d.

Based on the result above, we have the following result regarding the limiting behavior of the posterior
covariance Rt for large L.

Theorem 2 (posterior covariance limit)
Assume that the initial location of each tracer is independently and uniformly distributed in the domain.
The fixed point solution of eq. (31) denoted by RL in the limit of a large number of tracers L→∞ is a
diagonal matrix with diagonal entries corresponding to the wavenumber k being

[RL]k,k = σ2
k

dk +
√
d2

k + Lσ−2
x σ2

k

. (34)

See [8, Theorem 3.3] and [8, Lemma 4.1] for the proof and further details. Briefly, taking the mean field
average of the interaction matrix Pt, when L is large, results in a diagonal matrix with diagonal entries
equal to L. Under this condition, it is then possible to show that the posterior matrix equation is diagonal
and the fixed point solution of the resulting differential equations for the diagonal entries of the covariance
matrix are equal to

dr

dt
= −2dkr + σ2

k − Lσ−2
x r2, where r := [RL]k,k, (35)

which has the solution given in eq. (34).

Utilizing this mean field reduced diagonal covariance approximation yields the following imperfect, diagonal
filter which is vastly cheaper than the optimal filter.

Algorithm 2 (approximate diagonal filter for Lagrangian tracers)
The diagonally reduced approximate filter based on the mean field limit of the covariance equation of the
exact filter is given by the density p(U t |Xs6t) ≈ N (Û t, RL), where the filter mean and covariance satisfy

dÛ t = (−ΓÛ t + F t) dt+ σ−2
x RLP

∗(Xt)
(
dXt − P (Xt)Û t dt

)
, (36)

[RL]k,k = σ2
k

dk +
√
d2

k + Lσ−2
x σ2

k

. (37)

The diagonal filter completely avoids propagation of the full covariance matrix and only involves a
differential equation involving the filter mean, which brings to cost to O(Nd) differential equation solves,
compared to the O(Nd×3) cost of the perfect filter. We study the numerical performance of this approximate
filter in section 7, and show high recovery skill of the approximate filter, even when it used in small tracer
regimes, away from the asymptotic conditions that the algorithm’s approximations are based upon.

We can gain more intuition on the behavior of Û t by substituting in the observation process

dÛ t =
(
−ΓÛ t + F t + σ−2

x RtPt(U t − Û t)
)
dt+ σ−1

x RLP
∗(Xt) dWX(t). (38)

In the mean-field limit we have that Rt → RL and Pt → LI, where I is a diagonal matrix. If we further
define et ≡ U t − Û t we obtain an equation for the deviation of filter mean from the truth signal for the
imperfect filter:

det = −(Γ + Lσ−2
x RL)et dt+ ΣudWu(t)− σ−1

x RLP
∗(Xt) dWX(t). (39)
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We see that the error of the filter mean is a randomly driven system, where the noise is dependent upon
tracer observations.

Further, we can rigorously show that this filtering mean error goes to zero and the posterior covariance
approaches RL in the asymptotic limit of a large number of drifters, which justifies alg. 2. We refrain from
repeating the derivations, but refer to [8, Theorem 3] for the precise statement and proof.

Theorem 3 (asymptotic convergence of the posterior filter distribution)
In the limit that the number of tracers L goes to infinity, given a fixed, almost sure realization of the
velocity field v(x, t), the filtering mean Û t in eq. (36) converges to the truth U t and the posterior covariance
Rt approaches RL. In other words, the error between the truth converges to zero et → 0 and the posterior
covariance approaches a deterministic limit ‖RL −Rt‖ → 0.

The above theorem means that the posterior distribution p(U t | Xs6t) asymptotically converges to
N (Û t, RL) as the number of tracer observations L increases to infinity.

5 Energy spectra of the turbulence velocity models

Here we define and discuss the energy spectrum of the turbulence velocity models in eq. (1). The general
spectral inversion problem involves estimation of the energy of the various scales of the flow from realtime
drifter observation. This is performed by first recovering the velocity field and then computing the energy
spectrum of the recovered signal through a suitable (online) average. The performance of the recovered
spectrum depends on the accuracy of the posterior distribution of the filter, the observation time length,
observation process noise, and the forecast model (because of model error).

The total kinetic energy of the velocity field for a fixed realization is given by

E(t;ω) = 1
2

1
AD

∫
D

‖v(x, t;ω)‖2 = 1
2‖w(t;ω)‖2 + 1

2
∑

k

|v̂k(t;ω)|2, (40)

where AD is the area of the domain D = [0, 2π)d, d = 2. As the velocity field is random, we are interested
in recovering the ensemble averaged energy,

E(t) = 〈E(t;ω)〉 = 1
2 〈‖w(t;ω)‖2〉+ 1

2
∑

k

〈|v̂k(t;ω)|2〉 = E0(t) +
∑

k

Ek(t), (41)

where E0 is the energy of the background flow and Ek is the energy spectrum of the various spatial scales
of the flow.

Now decompose the mode v̂k(t) into its mean 〈v̂k(t;ω)〉 = v̂k(t) and fluctuations v̂′k(t;ω) = v̂k(t;ω)− v̂k(t).
The energy spectrum in wavenumber space can be written as,

Ek = Ek + Ẽk, where Ek = 1
2 〈|v̂k|2〉, Ek = 1

2 |v̂k|2, Ẽk = 1
2 〈|v̂

′
k|2〉, (42)

which consists of the mean spectrum Ek and the variance spectrum Ẽk. The variance spectrum tells us
how much energy is distributed across the scales in the system. To compute the variance spectra from
a time series requires the time dependent mean, which is a statistical average and is not available from
a single realization of the flow. The time averaged squared amplitude or (total) energy spectra Ek, on
the other hand, does not require knowledge of the time dependent values of the mean. As we assume
ergodicity of the velocity models, we replace the statistical averages in the quantities above by their long
time averages instead, which is why we drop dependence on t in the notation above.

We define the radial summation of the energy spectra (sometimes referred to as the omnidirectional
spectra) by the following integral where k = k(cos(θ), sin(θ)):

Ek =
2π∫
0

E(k)k dθ. (43)
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We employ the omnidirectional spectra to quantify spectra recovery skill, since it is often used in
applications and since it succinctly summarizes recovery accuracy for various spatial resolutions in the
flow.

The velocity model in eq. (1) can be easily shown to have the following steady state energy spectrum [22,
chap. 5]

Ek = 1
2

(f2
k

d2
k

+ σ2
k

2dk

)
, where v̂k = fk

dk
and 〈|v̂′k|2〉 = σ2

k

2dk
. (44)

Typical turbulent spectra involve power laws Ẽk = E0|k|−α, but there is interest in more rough energy
spectra, such as white noise (i.e. equipartition), where Ẽk is constant. A spectra with constant energy for
the largest scales or lowest frequency modes and a power law for the small, high frequency, scales mimics
realistic turbulent processes:

Ẽk =
{
kE0, k 6 k0,

k0E0
∣∣ k
k0

∣∣−α, k > k0
, where α = 5/3 (inverse cascade) or α = 3 (direct cascade). (45)

When the power law exponent is α = 5/3, the spectra mimics turbulent systems with inverse cascade of
energy, typically refereed as a Kolmogorov spectrum. When the power law exponent is α = 3 the spectra
mimics direct cascade of energy in turbulent processes. We focus specifically on these two regimes when
testing filter performance, later in section 7.

The energy spectrum depends on the noise σk and damping dk. The damping processes include viscosity
νk2, which is scale dependent, and uniform damping d > 0, i.e. linear drag, which can represent idealized
geophysical processes, such as radiative damping:

dk = d+ νk2. (46)

The mean model decorrelation time scale, in other words the decorrelation time of the largest scales, is
based on the damping model, and is approximately 1/d time units or 1/ν time units if d = 0 (ν is typically
very small).

6 Eulerian velocity spectra estimation through filtering

Here we describe how spectrum estimates are obtained through filtering. As we will see in the numerical
experiments, the filter posterior mean prediction deteriorates at high wavenumbers. For the smallest scales
where the filtering mean performance is poor, we can rely on the filter model (i.e. model prior) to improve
the estimate of the energy spectrum. In the twin-experiment scenario this should yield exact recovery if
the filter is exact. We describe the conditions necessary in order to estimate the spectra through a single
(long time) realization of the Lagrangian drifter observation process and how the model covariance can be
utilized to enhance spectrum estimation.

For simplicity consider a complex scalar valued stochastic process denoted by ut ∈ C. Our aim is to
estimate the statistical energy of this process, in other words the average square amplitude of the process
〈|ut|2〉. Ultimately, we are interested in the equilibrium statistics of the attractor, in the long time limit
for t→∞, after initial conditions are forgotten 〈|u∞|2〉. Moreover, we assume the process is ergodic, so
we can replace statistical averages by time averages of a single realization in the equilibrium state:

〈|u∞|2〉 = lim
T→∞

1
T

t0+T∫
t0

|ut|2 dt (47)

for t0 sufficiently large to ensure we have reached the equilibrium state.

In the context of velocity recovery from Lagrangian particles, the state estimation problem of the velocity
field is solved using special filtering algorithms. Consider again the variable ut, we assume ut is conditionally
Gaussian given observations of the process zt and that we can utilize an exact filtering algorithm for
the state estimation problem. The Bayesian resolution of the hidden state ut, is the distribution of the
underlying process at the current time conditioned on the observations zt up to the current time:

p(ut | zs6t) = N(ût, rt). (48)
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In other words, the filtering problem involves estimating ut from observations {zs, s 6 t}. The optimal
mean-square filter estimate is the conditional expectation

ût = E(ut | zs6t) =
∫
utp(ut | zs6t) dut, (49)

which minimizes the mean-square error

rt = E(|ut − ût|2 | zs6t) =
∫
|ut − ût|2p(ut | zs6t) dut. (50)

Through manipulation of conditional distributions we can relate the statistical estimate of the energy at
time t with the posterior prediction that depends on the observations, through

〈|ut|2〉 =
∫
|ut|2p(ut) dut =

∫∫
|ut|2p(ut | zs6t)p(zs6t) dut d(zs6t). (51)

Next write |ut|2 = −|ût|2 +2 Re(ûtu)+ |ut− ût|2. Substituting this into the equation above and recognizing
terms from eqs. (49) and (50), we find

〈|ut|2〉 =
∫
rt p(zs6t) d(zs6t) +

∫
|ût|2p(zs6t) d(zs6t) (52)

= 〈rt〉z + 〈|ût|2〉z. (53)

The statistical averages on the right hand side of the equation above are with respect to the observation
process zt and involve an ensemble average over multiple realizations of the observations. If the observations
are ergodic, we can replace the ensemble averages with a suitable average in time. Under this condition
we find

〈|ut|2〉 = lim
T→∞

1
T

t0+T∫
t0

(rt + |ût|2) dt; (54)

which clearly shows how the energy of the truth signal is related to the filtering mean and covariance.

6.1 Spectra recovery from Lagrangian tracers through a single realization

In the general setting of spectrum recovery from Lagrangian tracers, we need to ensure for any fixed
number of tracers L that the tracer locations are ergodic, since we would like to estimate the spectrum
from a single realization of the observation process. Fortunately, this fact has been established in theorem 1,
which proves that the uniform distribution is the attracting equilibrium distribution for the tracers location.
This fact was needed to establish the mean-field limit of the filter in section 4.2, as well. Furthermore, the
mean field limit of the covariance establishes 〈Rt〉z = RL and thus the spectrum estimate utilizing the
diagonal filter takes a simplified form involving a time average of the squared amplitude of the posterior
mean and the asymptotic covariance matrix RL. We state below the method utilized to estimate the
energy spectra from the Lagrangian filtering algorithms.
Algorithm 3 (Eulerian velocity spectra estimation from Lagrangian tracer filtering algorithms)
Assume t0 is sufficiently large to ensure we have reached the equilibrium state and T is large. The exact
filter estimate of the energy spectra is given by

Ek = 1
2 lim
T→∞

1
T

t0+T∫
t0

([Rt]k,k + |v̂k(t)|2) dt, (55)

where v̂k and Rt are from eqs. (30) and (31), respectively.

The reduced, imperfect filter approximation of the energy spectra is given by

Ek ≈
1
2

(
[RL]k,k + lim

T→∞

1
T

t0+T∫
t0

|v̂k(t)|2 dt
)

= 1
2

(
σ2

k

dk +
√
d2

k + Lσ−2
x σ2

k

+ lim
T→∞

1
T

t0+T∫
t0

|v̂k(t)|2 dt
)
, (56)

where v̂k is obtained from eq. (36). The radial summation of the energy spectra is then obtain using eq. (43)
to obtain the estimate Ek from Ek.
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7 Numerical experiments of the performance and accuracy of the filters

Here we quantify and discuss the performance and accuracy of the conditionally Gaussian nonlinear
filters for Lagrangian data assimilation, as described in section 4, and recovery of the Eulerian energy
spectra by the algorithms in section 6. We first discuss the performance metric used to quantify filter
skill in section 7.1, and then in section 7.2, include the results and analysis for our numerical experiments
testing recovery for velocity models without a mean and background, in two different turbulence regimes.

7.1 Performance measures

Here we define quantitative performance measures that describe the accuracy of the filtering estimates
relative to the truth. Recall that the spectrally truncated forecast model is resolved on IΛf

modes and the
truth model on IΛ modes:

vf (x, t) = wf (t) +
∑

k∈IΛf

v̂fk(t)ψk(x) and v(x, t) = w(t) +
∑

k∈IΛ

v̂k(t)ψk(x), (57)

respectively, where vf ∈ HΛf
and v ∈ HΛ, and where the space spanned by the forecast model HΛf

is a
subset of the space spanned by the truth HΛ, which are both finite dimensional subspaces of a Hilbert
space (these distinctions are important, since we can define error measures in either space, which have
different interpretations).

The root mean square error (MSE) between the truth and the filtering estimate is given by the L2 norm
of the residual vN − v in the spaces HΛ and HΛf

:(
RMSE(vf ,v)

)2 := ‖vf − v‖2L2(HΛ) = ‖wf −w‖2 +
∑

k∈IΛ

|v̂fk(t)− v̂k(t)|2, (58)

(
RMSEf (vf ,v)

)2 := ‖vf − PΛf
v‖2L2(HΛf

) = ‖wf −w‖2 +
∑

k∈IΛf

|v̂fk(t)− v̂k(t)|2, (59)

where PΛf
is the projection onto HΛf

, i.e. the modes greater than the Λf modes resolved by the forecast
model are set to zero. We denote the root mean square error by RMSE. Similarly, we define the pattern
correlation 0 6 XC 6 1 (taking the real component, since the real and imaginary parts are equal):

XC(vN ,v) :=
〈vf ,v〉L2(HΛ)

‖vf‖L2(HΛ)‖v‖L2(HΛ)
, XCf (vN ,v) :=

〈vf , PΛf
v〉L2(HΛf

)

‖vf‖L2(HΛf
)‖PΛf

v‖L2(HΛf
)
., (60)

We additionally define the error of the radially averaged spectra, the root mean square spectrum error
(RMSSE) by (

RMSSE(Ek, Efk )
)2 := ‖Ek − Efk ‖

2
`2(HΛ) =

Λ∑
k=0
|E(k)− Ef (k)|2, (61)

where Λ is the maximum wavenumber resolved; a similar definition holds for RMSSEf with the summation
instead from k = 0 to k = Λf . The distinction between the root mean square spectrum error and the root
mean square error, is that the spectrum error measures an error that incorporates the filter posterior
covariance.

The performance measures described above are averaged in time to obtain average filter errors. The
RMSE error quantifies the proximity of the filtered signal relative to the truth signal on the Λ resolved
modes by the truth model. The ratio of the RMS error and the average magnitude of the truth signal
gives the normalized percentage error, which we denote by NRMSE (normalized root mean square error);
the normalized RMS error of the radially averaged spectra is also similarly defined, and is denoted by
NRMSSE (normalized root mean square spectrum error). The pattern correlation, quantifies how close we
recover the pattern of the truth signal, i.e. how closely the two signals align with each other. Although
we include the pattern correlation of the filtering mean in the results below, we note that the pattern
correlation does not predict how well the filtering mean performs for spectra recovery, since that is based
on the ‘closeness’ metric described by the RMSE and RMSSE.

The definitions of the error metrics in the space spanned by the true velocity model HΛ, naturally
introduces an information barrier represented by the sum of the errors from the modes Λf < ki 6 Λ that
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are not resolved by the forecast dynamics. Defining the RMSE, RMSSE, and XC over the Λf modes
resolved by forecast as in RMSEf , RMSSEf , and XCf , represents the performance of the Λf resolved
modes to the truth signal. We include these measures, since they tell us how well the resolved modes
perform relative to the truth, without incorporating errors due to the information barrier represented by
the modes that are impossible to resolve by the forecast model.

7.2 Numerical results for the perfect and approximate filters for flows without a mean
and no background sweeps

In this section, we quantify the performance of the filtering algorithms for the turbulent velocity models
for both a Kolmogorov energy spectrum, representing backwards energy cascade with slope k−5/3, and a
forward cascade energy spectrum with slope k−3, corresponding to direct cascade of energy. The turbulence
models studied here are unforced and do not include sweeping, background velocity component. We
describe the exact numerical setup in section 7.2.1 and in section 7.2.2 discuss and analyze the results.

7.2.1 Setup and summary of the filtering performance

Table 1 Parameter and numerical simulation values for the truth model and filter model. For these model cases there is no
background velocity term w(t) = 0 and model forcing is zero fk = 0.

(a) model parameters

parameter value

computational domain D [0, 2π)2

grid size N2 322

total simulation time tend 105 tdecor
burn in period tburn 5 tdecor

damping dk = d+ µk

linear drag d 0
viscosity µ 0.05

energy spectrum Ẽk

energy level E0 1.0
constant energy modes k0 2
slope α 5/3, 3

(b) filter model parameters

parameter value

grid size N2
f 42, 82, 162, 322

observation noise σx 0.25
number of drifters L 1, 2, 4, 8, 16, 32, 64, 128

(a) spectra: Kolmogorov Ẽk ∝ k−5/3
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(b) spectra: direct cascade Ẽk ∝ k−3
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Figure 1 The normalized root-mean-square spectrum error (NRMSSE) for the Kolmogorov (1a) and third power law (1b)
models, as a function of the forecast model grid size N2

f (true model is N2 = 322) and the number of tracers L. The solid
lines correspond to the perfect filter and the dashed lines to the imperfect filter; see tab. 1 for the model and filter parameters.
For simplicity we do not include all the filter parameters.

The model parameters are provided in tab. 1a and the filter model parameters in tab. 1b. The numerical
simulations for both the perfect and diagonal filter equations are simulated according to algs. 1 and 2,
respectively. In our implementation, we note that the perfect filter runs at roughly 10 times the cost of the
diagonal filter, and quickly becomes prohibitive for all but the fewest number of tracer observations and
model grid sizes.
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In fig. 1, the (normalized root mean) spectra error is included for the Kolmogorov and direct cascade
turbulent velocity models. In fig. 2, we include comparisons of the spectrum recovery performance as a
function of the number of tracers, when the forecast grid size is N2

f = 162, for the Kolmogorov turbulence
model. Fig. 2a, directly compares the filter mean performance to the true spectra; in fig. 2b, the spectra of
the filter mean plus the variance component is shown, computed according to eqs. (55) and (56), in order
to understand the affect of the variance term of the perfect and approximate filters on spectra recovery.
In fig. 4, we include a summary of the performance measures that are based on the filtering mean solution,
for the Kolmogorov turbulence model. In fig. 3, we plot the recovered streamfunctions of both the perfect
and diagonal filter and compare them relative to the true streamfunction, for Nf = N = 32, when L = 4
and L = 128. Additional supporting information is included in appendix B.1.

7.2.2 Analysis and discussion

We observe that the filter performance results are more marked for velocity models with shallow spectra
(intuitively expected, since the system is more energetic), which can be seen in fig. 1 and the supporting
data in appendix B.1. As a consequence, in the following discussion, we directly refer to the Kolmogorov
velocity model, with the understanding that the conclusions also hold for models with steeper spectra,
including the direct cascade turbulence model.

(a) Eulerian energy spectra recovery from the filter mean for the Kolmogorov model Ẽk ∝ k−5/3
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(b) Eulerian energy spectra recovery from the filter mean plus variance for the Kolmogorov model Ẽk ∝ k−5/3
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Figure 2 Eulerian energy spectra recovery for the Kolmogorov turbulence model, comparing the full filter in solid blue, the
approximate diagonal filter in dashed blue line, and the true spectrum in solid black. The Eulerian spectra are shown for a
forecast model of grid size N2

f = 162, where the true model grid size is N2 = 322. The columns denote filter results with
different numbers of tracer observations L. The approximations involving the variance are obtained from eqs. (55) and (56);
see tab. 1 for the model and filter parameters.

From fig. 1, we see that when the forecast grid is coarse relative to the true model grid, there is little
difference in spectrum recovery in running the approximate filter compared to the full filter, even when
the number of tracer observations is low. On the other hand, when the forecast grid size approaches
the true model grid size, and for a very small umber of tracers, we find the largest discrepancy in the
spectrum recovery skill of the imperfect filter compared to the exact filter. For a moderate to large
number of tracer observations, the approximate filter’s performance is comparable to the exact filter.
We additionally observe that equivalent skill is achievable by running an imperfect filter with more
observations relative to running an exact filter but with fewer observations. This is interesting since the
diagonal filter is much more inexpensive compared to the perfect filter; for computational demanding
models with plentiful tracer observations, it may be advantageous to simply run the diagonal filter and
assimilate more observations, instead of running the perfect filter but limiting the number observations

15



(due to computational constraints). However, after a large enough number of tracers, both the imperfect
filter and perfect filter errors are observed to converge to the same values. We summarize these conclusions
below:

• When the forecast grid is coarse relative to the true mesh size, the approximate filter performance is
almost as good as the full filter, even for small number of tracer observations.

• If the forecast model fully resolves the mesh scale of the true model, there is a large discrepancy
in spectrum recovery skill using the imperfect filter relative to the true filter, when the number of
tracer observations are small.

• For a moderate to large number of tracer observations, the approximate filter’s performance is
comparable to the exact filter.

• Equivalent performance is achievable with an imperfect filter assimilating more observations compared
to running the perfect filter with fewer observations.
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3

resolution Nf
2 = N 2 = 322

L = 4
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truth perfect filter imperfect filter

Figure 3 Streamfunction recovery performance for the Kolmogorov turbulence model, comparing the truth (left) to the
perfect filter (middle) and the diagonal filter (right), when the forecast and model resolution are equivalent N2

f = N2 = 322.
The red dots in the truth streamfunction (left) plots mark the location of the tracer observations. The top row shows the
performance with L = 4 tracers and the bottom row with L = 128 tracers.

From the spectrum recovery figures in fig. 2 and also figs. 5 and 6 in appendix B.1, we observe that the
approximate filter’s mean tends to over estimate the energy in the smaller scales and under estimate the
energy in the larger scales, relative to the perfect filter, regardless of the forecast grid size and number of
tracer observations (this can also be observed in fig. 3). These affects are especially pronounced when the
number of tracer observations are small. For energy spectra estimation, including the component due to
the posterior variance, we also find that the approximate filter systematically underestimates the energy
of the largest scales, but here the inclusion of the variance factor appropriately inflates the energy of
the prediction of the small scales so that it closely matches the performance of the perfect filter. Again,
these effects are most pronounced when the number of tracer observations are small. Additionally, we
note that the perfect filter with the variance contribution, systemically underestimates the energy of the
smallest scales and over estimates the energy of the largest scales, in cases where there are small tracer
observations. When there is severe model truncation and for very shallow spectra, we see that perfect
filter overestimates the true spectra; interestingly the under dispersion of the imperfect filter spectrum
estimate, in these cases, leads to smaller estimation errors (see also fig. 1). In summary we find that:
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Kolmogorov model Ẽk ∝ k−5/3

1 8 16 64 128
L

0.4

0.6

0.8

1

1.2

forecast grid size

0.4

0.6

0.8

1

1.2

42 82 162 322

0

0.2

0.4

0.6

0.8

1 N = 42

N = 82
N = 162

N = 322

1 8 16 64 128
L

0

0.2

0.4

0.6

0.8

1 L = 1
L = 16

L = 64
L = 128

42 82 162 322
forecast grid size

be
tte
r

be
tte
r

wo
rs
e

be
tte
r

be
tte
r

wo
rs
e

be
tte
r

be
tte
r

wo
rs
e

be
tte
r

be
tte
r

wo
rs
e

wo
rs
e

wo
rs
e

be
tte
r

wo
rs
e

wo
rs
e

be
tte
r

0.4

0.6

0.8

1

1.2

1.4

42 82 162 322
forecast grid size

0.4

0.6

0.8

1

1.2

1.4

1 8 16 64 128
L

imperfect filter (dashed lines)perfect filter (solid lines)

Figure 4 The normalized root-mean-square error (NRMSE) and pattern correlation (XC) for the Kolmogorov turbulence
model, as a function of the forecast model grid size and the number of tracers. The solid lines correspond to the perfect filter
and the dashed lines to the imperfect filter; see tab. 1 for further details on the model and filter parameters.

• The general trend for both the imperfect and perfect filter for spectrum estimation is a relative
under dispersion of the small scales and over dispersion of the largest scales, relative to the true
spectrum.

• The imperfect filter mean tends to underestimate the energy of the largest scales and overestimate
the energy of the smallest scales, relative to the perfect filter.

• For severely truncated forecast models, lower error is achievable by the imperfect filter, for the
spectrum estimate that include the filter variance; this is observed in turbulence models with shallow
spectra.

The results in fig. 4 demonstrate robustness of the approximate filter to both the number of tracer
observations and model truncation. It is a key point that the imperfect filter performs well even when
the number of tracer observations are few, since the derivation of the algorithm is based on a limiting
argument as the number of observations L tends to infinity. Robustness of the results in this section have
also been shown in numerical experiments for various flow configurations involving forcing and various
background velocity terms, see appendix B.2.

8 Conclusions

We studied the time-sequential state estimation of a flow field given noisy measurements provided
from Lagrangian tracers that are passively advected by the flow. We discussed special Lagrangian data
assimilation algorithms, known as conditionally Gaussian nonlinear filters for two-dimensional linear
stochastic turbulence models. Approximate filters are proposed to alleviate the computational costs
due to high dimensionality of the perfect nonlinear filter, which are based on extreme localization of
the posterior covariance matrix. The proposed diagonal filters are vastly cheaper than the perfect filter
and run approximately ten times faster in numerical experiments with reduced storage costs. Through
comprehensive numerical experiments, we quantify how accurately such filters can recover the various
energetic scales of the true fluid flow model. Although the central questions are addressed in the perfect
model scenario, we study model error due to reduced-order forecast models. We find that the diagonal
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filter performs comparable to the true filter and is robust to various turbulent flow regimes. Even though
the approximation is based on arguments where the number of tracer tends to infinity, we see find that
it performs comparable to the perfect filter, even when the number of tracer observations are small.
This suggests such filtering algorithms may be useful in more complex situations. Future work aims
to investigate issues related to parameter estimation of the forecast model and applying such filtering
methods to prototype models used in climate science.
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A Notation

Below we define the notation used in this work:

• Vector in bold italic notation, such as X,x

• Vectors may be denoted by [a; b; c] or [a, b, c]T

• Matrix in uppercase non-bold notation, e.g. A or bold upright notation, e.g. A

• Entries of matrix A by [A]ij = aij

• Unit vector in the direction a by â

• `2 norm of vector a by ‖a‖ or ‖a‖`2 or simply a

• L2 norm of a function f by ‖f‖ or ‖f‖L2

• Hilbert space by H

• Identity matrix by I or more explicitly In×n for an n× n identity matrix.

• Absolute value or modulus by | · |

• Hermitian transpose of matrix A by A∗

• Statistical mean of a random variable or stochastic process by the notation 〈 · 〉, i.e. for a variable x
we write x = 〈x〉.

• Fluctuations of a random variable or stochastic process x by x̃ = x− x

• Dependence on the probability space of a random variable by x(ω) or for a stochastic process by
x(t;ω), where ω ∈ Ω is an element of the probability space Ω.

• Time dependence of a stochastic process by x(t) or xt
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B Supplementary information

B.1 Numerical results for the perfect and approximate filters for flows without forcing
and no background velocity

In figs. 5 and 6 we include comparisons of the spectral recovery performance for various number of tracers
and forecast grid sizes, for the Kolmogorov and direct cascade spectra, respectively. We include two
subplots in these figures: (a) compares the filter mean without the covariance; and (b) compares the
filter mean plus the covariance, to show the impact of the covariance in the perfect and approximate
assimilation methods on their mean. Additionally, in figs. 7 and 8 we include the NRMSE and XC error
measures as a function of the grid size and number of tracers, also for both turbulence models.
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(a) spectra of the filter mean for the Kolmogorov model Ẽk ∝ k−5/3
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(b) spectra of the filter mean plus variance for the Kolmogorov model Ẽk ∝ k−5/3
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Figure 5 Eulerian energy spectra recovery performance for the Kolmogorov turbulence model, comparing the full filter in
solid blue and the approximate diagonal filter in dashed blue line, where the true spectrum is shown in solid black. In the
matrix of figures above, each columns represents a forecast model when the observations are given by L tracers and rows
denote the forecast model grid size; see tab. 1 for the model and filter parameters.
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(a) spectra of the filter mean for the direct cascade model Ẽk ∝ k−3
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(b) spectra of the filter mean plus variance for the direct cascade model Ẽk ∝ k−3

10-2

100

N
=
82

L = 1 L = 8 L = 16 L = 32 L = 64 L = 128

10-2

100

N
=
16

2

100 101

10-2

100

N
=
32

2

100 101 100 101 100 101 100 101 100 101

truth perfect filter diag. filter

Figure 6 Eulerian energy spectra recovery performance the direct cascade turbulence model, comparing the full filter in
solid blue and the approximate diagonal filter in dashed blue line, where the true spectrum is shown in solid black. In the
matrix of figures above, each columns represents a forecast model when the observations are given by L tracers and rows
denote the forecast model grid size; see tab. 1 for the model and filter parameters.
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(a) spectra: Kolmogorov Ẽk ∝ k−5/3
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(b) spectra: direct cascade Ẽk ∝ k−3
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Figure 7 The normalized room-mean-square error (NRMSE) and pattern correlation (XC), as a function of the number of
tracers L, where dashed lines denote the diagonal filter and solid lines the perfect filter; see tab. 1 for the model and filter
parameters. Fig. 7a includes the results for a Kolmogorov velocity model and in fig. 7b a third power law model.

(a) spectra: Kolmogorov Ẽk ∝ k−5/3
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(b) spectra: direct cascade Ẽk ∝ k−3
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Figure 8 The normalized room-mean-square error (NRMSE) and pattern correlation (XC), as a function of the forecast
model grid size, where dashed lines denote the diagonal filter and solid lines the perfect filter; see tab. 1 for further details on
the model and filter parameters. Fig. 8a includes the results for a Kolmogorov velocity model and in fig. 8b a third power law
model. The dashed lines denote the diagonal filter and solid lines the perfect filter.
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B.2 Numerical results for the diagonal filters in various flow regimes

Here we study the diagonal filter in various flow regimes to demonstrate robustness of the diagonal filter,
when there is no model truncation error and using a truth model with a Kolmogorov spectrum. We
investigate three flow regimes with parameters in tab. 2 (see tab. 1 for the rest of the model parameters).
They include a combination of flows with/without forcing and with/without a background velocity term.
The forcing is applied to induce a dominant shear structure in the flow.

In fig. 9 we include comparisons of the spectra recovery performance as a function of the number of tracers.
We see that model forcing greatly enhances recovery of the total energy spectra, since forcing strongly
biases the forced mode. We find that there is no difference in the skill of the filter for recovery the spectra
of the various scales in the flow when there is a background flow compared to conditions that include a
background term.

Table 2 Different flow regimes including cases with and without a mean velocity and cases with and without a background
velocity term; see tab. 1 for the rest of the model parameters

(a) Unforced flow with no
background.

background

damping d0 0
noise σ0 0
forcing f0 0

model forcing

forcing fk 0

(b) Unforced flow with a
background.

background

damping d0 2
noise σ0 0.8
forcing f0 0

model forcing

forcing fk 0

(c) Forced flow with a
background.

background

damping d0 2
noise σ0 0.8
forcing f0 0

model forcing on k = (1, 0)

forcing fk 0.5
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(a) Unforced flow with no background
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(b) Unforced flow with a background

100 101
10-2

10-1

100

L = 1

100 101

L = 8

100 101

L = 16

100 101

L = 32

100 101

L = 128

diag. filtertruth diag. filter mean

(c) Forced flow with a background
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Figure 9 Eulerian energy spectra recovery performance for the Kolmogorov turbulence model, comparing the full filter in
solid blue and the approximate diagonal filter in dashed blue line, where the true spectrum is shown in solid black; see tab. 2
for the model parameters for the various cases (also tab. 1 for the main model parameters).
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