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Abstract

Recent laboratory experiments of Bolles et al. (2019) demonstrate that an abrupt change in
bottom topography can trigger anomalous statistics in randomized surface waves. Motivated by
these observations, Majda et al. (2019) developed a theoretical framework, based on determinis-
tic and statistical analysis of the truncated Kortewegde Vries (TKdV) system, that successfully
captures key qualitative features of the experiments, including the robust emergence of anoma-
lous statistics and heightened skewness in the outgoing wavefield. Here, we extend these parallel
experimental and modeling efforts with several new findings that have resulted from a syner-
getic interaction between the two. By precisely relating model parameters to physical ones, we
calibrate the model inverse temperature to the specific conditions present in the experiments,
thereby permitting a quantitative comparison. We find theoretically predicted distributions of
surface displacement to match the experimental measurements with surprising detail. Prompted
by the presence of surface slope in the TKdV Hamiltonian, we present new experimental mea-
surements on surface slope statistics and compare them to model predictions. Analysis of some
deterministic trajectories of TKdV elucidates the experimental length and time scales required
for the statistical transition to a skewed state. Finally, the theory predicts a peculiar relationship
between the outgoing displacement skewness and the change in slope variance, specifically how
their ratio depends on the wave amplitude and depth ratio. New experimental measurements
confirm this prediction in spectacular fashion.

1 Introduction

Rogue waves are abnormally large surface waves, defined by oceanographers as those that exceed
twice the significant wave height [32, 48]. Though such waves were once dismissed as myth, they
have now been recorded in oceans across the globe and pose a recognized threat to seagoing vessels
and naval structures. Rogue waves, also variously known as freak or anomalous waves, have been
observed in shallow [34, 16], intermediate [22], and deep water [12, 11], and certain rogue features
have even been recovered by exact solutions to various wave models [35, 9, 7]. These abnormal waves
can be triggered by a variety of mechanisms, including anomalous wind-forcing [23, 42], opposing
currents [15, 33], focusing due to variable bathymetry [18, 46], and the Benjamin-Feir deep-water
modulational instability [3, 45, 10, 13]. The common tie between these mechanisms is their ability
to generate non-normal statistics in the surface displacement: when governed by Gaussian statistics,
the likelihood of a rogue wave is extremely low, but these events occur much more frequently when
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surface statistics deviate from Gaussian. In this way, anomalous waves can be approached from the
broader perspective of turbulent dynamical systems [41, 40, 39, 8, 28, 26, 27, 4, 17, 20].

A recent series of laboratory [5, 43] and numerical investigations [44, 19] have demonstrated
the emergence of anomalous wave statistics from abrupt variations in bottom topography. Since
topographical variations are strictly one-dimensional, these studies can be viewed as offering a bare
minimum set of conditions capable of generating anomalous waves. In particular, the more complex
mechanism of focusing by 2D bottom topography is absent. The studies thus offer a paradigm
system, with emergent anomalous features similar to those seen in more complex systems, but in a
tractable context that is amenable to analysis.

Our particular focus is the laboratory experiments of Bolles et al. (2019) [5], who demonstrated
the emergence of anomalous statistics from a randomized wave-field encountering an abrupt depth
change (ADC). In these experiments, the incoming wave-field is generated with nearly Gaussian
statistics, and a plexiglass step placed near the middle of the tank creates the depth change. Upon
passing over the step, the wave distribution skews strongly towards positive displacement, with
deviation from Gaussian being most pronounced a short distance downstream of the ADC. Inspired
by these experimental observations, Majda et al. (2019) [29] developed a theoretical framework
that accurately captures several key aspects of the anomalous behavior. The theory is based on
deterministic and statistical analysis of the truncated Kortewegde Vries (TKdV) equations, and
uses a combination of computational, statistical, and analytical tools. In subsequent work, Majda
& Qi (2019) [30] analyzed more severely truncated systems — as low as two interacting modes —
that exhibit a statistical phase transition to anomalous statistics and the creation of extreme events
while enjoying a more tractable structure. More recently, Qi & Majda (2019) [36] demonstrated
the capability of machine learning strategies to accurately predict these extreme events. That
work employs a deep neural network coupled with a judicious choice of the entropy loss function
that emphasizes the dominant structures of the turbulent field [36]. It should be noted that, in
these studies, extreme events are represented by strong skewness of the wave-field. They occur
intermittently and on a relatively frequent basis, which is in contrast to the simpler situation of
isolated, rare events [17].

The purpose of the present manuscript is to provide a more comprehensive treatment of the com-
bined experimental and theoretical efforts of Bolles et al. (2019) [5] and Majda et al. (2019) [29, 30].
We present a variety of new findings that have resulted from a synergetic interaction between theory
and experiments – a cooperative strategy with a proven record of success [6, 38, 14]. That outline of
the paper is as follows. In Section 2 we detail the laboratory experiments of Bolles et al. (2019) [5]
and summarize previously reported findings on anomalous statistics of the surface displacement.
We also present new experimental data on surface slope statistics — a line of inquiry motivated by
the theoretical advancements of Majda et al. (2019) [29], specifically the central role played by the
slope in the Hamiltonian structure of TKdV. Section 3 discusses the TKdV theoretical framework,
including both the deterministic and the statistical mechanics perspectives. In this section, we flesh
out details of the non-dimensionalization, which, for brevity, were only briefly discussed in previous
work. This exercise provides a more precise link between model and experimental parameters, ulti-
mately facilitating a closer comparison between the two. We then discuss TKdV as a deterministic
dynamical system, approachable from the viewpoint of statistical mechanics. The later perspective
is based on the Hamiltonian structure and novel ensemble distributions that incorporate canonical
and micro-canonical aspects [1].

Section 4 presents a systematic comparison between experiments and theory, focusing on both
surface displacement and surface slope. We find the statistical distributions of these two quanti-
ties to agree well across experiments and theory. In particular, we find remarkably quantitative
agreement in the displacement statistics. We then examine numerical simulations of the TKdV de-
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Figure 1: (a) Experimental schematic: randomized waves are generated by a pivoting paddle and
propagate over a step in bottom topography. (b)–(c) Surface displacement measured at representa-
tive locations upstream and downstream of the abrupt depth change (ADC). (d)–(e) Corresponding
histograms showing symmetric upstream statistics and highly skewed downstream statistics. Figure
adapted from [5].

terministic dynamics, which elucidates the length and timescales required for statistical transitions
in the experiments. Finally, this section discusses a peculiar power-law relationship between surface-
displacement skewness and surface-slope variance predicted by the statistical mechanics framework
[29]. New experimental measurements conclusively confirm this prediction, further demonstrating
the predictive power of the TKdV framework developed by Majda et al. (2019) [29]. We close with
some final remarks in Section 5.

2 The experiments

As diagrammed in Fig. 1(a), the experiments consist of a long, narrow wave tank (6 m long x 20
cm wide x 30 cm high), with waves generated by a plexiglass paddle at one end [5]. The waves
propagate through the tank and, roughly midway through, pass over an abrupt depth change (ADC)
created by a plexiglass step. The waves continue to propagate through the shallower depth until
reaching the far end of the tank, at which point their energy is dissipated by a horse-hair dampener.
Since the dampener minimizes backscatter, the waves in this experiment propagate primarily in
one direction, from left to right in Fig. 1(a).

The pivoting motion of the paddle is driven by a 5-phase stepper motor. To generate a ran-
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domized wave field, the paddle angle φ is specified by a psuedo-random signal

φ(t) = φ0 + ∆φ
N∑
n=1

an cos(ωnt+ δn) , (1)

an =

√
2∆ω

π1/2σω
exp

(
−(ωn − ω0)2

2σ2
ω

)
, (2)

The angular frequencies are evenly spaced ωn = n∆ω with step size ∆ω = (ω0 + 4σω)/N , where ω0

and σω represent the mean and the bandwidth of ω respectively. As in prior work, all experiments
reported here use the values ω0 = σω = 12.5 rad/s, corresponding to a peak forcing frequency of
2 Hz and bandwidth of 2 Hz. The phases δn are uniformly distributed random variables, which
results in a randomized wave train. The standard deviation of the paddle angle, ∆φ, controls the
overall amplitude of the waves. In a single experiment ∆φ is fixed, and we will present a series of
experiments with ∆φ varied systematically.

The free surface is illuminated by light-emitting diodes and is imaged from the sideview with a
Nikon D3300 at 60 frames per second. The illumination technique, coupled with high pixel count of
the camera, allows surface displacements to be resolved with accuracy better than 1/3 millimeter.
Furthermore, these optical measurements permit extraction of wave statistics continuously in space,
rather than at a few discrete locations, which is crucial for identifying regions of anomalous wave
activity. Further details of the experimental setup can be found in [5].

Example measurements of free-surface displacements η are shown in Figs. 1(b)–(c). These
measurements are extracted from the images at two representative locations: one a short distance (9
cm) upstream of the ADC and the other a short distance (15 cm) downstream. Both signals exhibit
a combination of periodic and random behavior, with the dominant oscillations corresponding to
the peak forcing frequency of 2 Hz.

The nature of the random fluctuations is revealed by the corresponding histograms shown in
Fig. 1(d)–(e) on a semi-log scale. The upstream measurements are symmetrically distributed about
the mean, η = 0. In fact, Bolles et al. (2019) found that these measurements follow a Gaussian
distribution closely [5]. The downstream measurements, however, skew strongly towards positive
displacement, η > 0. Bolles et al. (2019) found these measurements to be well described by a mean-
zero gamma distribution [5]. The slower decay of the gamma distribution indicates an elevated level
of extreme surface displacement, i.e. rogue waves. Bolles et al. (2019) estimated that a rogue wave
can be up to 65 times more likely in these experiments than if displacements were Gaussian [5].

The paddle amplitude in Fig. 1 is ∆φ = 1.38◦, and this value was varied systematically in the
range ∆φ = 0.125◦–2◦ to probe the different regimes of wave behavior, from linear to strongly
nonlinear waves. Figure 2 shows long-time statistics of both surface displacement η and the surface
slope ηx as they vary in space for six different driving amplitudes (see legend).

In this paper, we only examine statistic of mean-zero quantities, and so, for an arbitrary mean-
zero quantity q, we have the following definitions

std(q) = qstd =
√
〈q2〉 standard deviation (3)

skew(q) =
〈
q3
〉
/q3
std skewness (4)

kurt(q) =
〈
q4
〉
/q4
std − 3 (excess) kurtosis (5)

where 〈〉 indicates a mean — here a long-time mean at a fixed spatial location. Hereafter, we will
simply refer to the excess kurtosis as kurtosis.

Figure 2 shows how these statistics vary in the vicinity of the ADC, located at x = 0, for
both displacement and slope. First, the standard deviation of displacement, ηstd, gives the coarsest
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Figure 2: Wave statistics as they vary in space for several experiments of different driving amplitudes
(see legend). (a)–(c) Standard deviation, skewness, and kurtosis of the surface displacement η. (d)–
(f) The same for surface slope ηx. (a) ηstd, which sets a scale for wave amplitude, does not vary
significantly crossing the ADC. (b)–(c) Skewness and kurtosis of η, however, show a strong response
to the ADC. (d)–(f) The measurements of surface slope, ηx, are negatively skewed and also exhibit
large kurtosis downstream of the ADC.

possible estimate for the amplitude of waves. Figure 2(a) shows that while ηstd increases with driving
amplitude, it remains relatively uniform in space for each individual experiment, indicating that
the overall amplitude of the wave train is not significantly altered by the presence of the ADC. The
skewness and kurtosis, however, respond strongly to the ADC as long as the amplitude is sufficiently
high. As seen in 2(b)–(c), both the skewness and kurtosis are relatively small upstream of the ADC,
indicating nearly Gaussian statistics, but then increase dramatically downstream and reach a peak
near x = 15 cm. Interestingly, the location of the peak is the same for skewness and kurtosis and
appears insensitive to driving amplitude. The maximum values of skewness and kurtosis (roughly
0.9 and 0.7 respectively) seen in the figure indicate a significant departure from Gaussian statistics,
as is constant with the histogram in Fig. 1(e). Bolles et al. (2019) found that, once a threshold
driving amplitude is exceeded (roughly ∆φ = 0.5◦), the displacement statistics in this anomalous
region are robustly described by the gamma distribution across all of the experiments. We note
that we have gathered data for 15 different driving amplitudes, but only display 6 in Fig. 2 to avoid
clutter.

To complement the displacement statistics, we report here statistics for the surface slope ηx
in the right column of Fig. 2. Our attention to slope statistics was motivated by new theoretical
developments by Majda et al. (2019) [29], as will be expanded upon in later sections. We extract the
surface slope by numerical differentiating images of the free surface using Savitzky-Golay smoothing
filters. This ability to extract surface slope is another advantage of our optical measurements over
the more commonly used technique of placing a set of discrete wave probes in the tank. As seen in
Fig. 2(a) the standard deviation of slope behaves similar to displacement: std(ηx) increases with
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driving amplitude, but remains nearly uniform in space for each individual experiment and is not
affected by the ADC. The higher-order moments, however, respond strongly to the ADC if the
driving amplitude is sufficiently high. The skewness of slope becomes highly negative and reaches
a minimum near x = 8 cm, which is downstream of the ADC but upstream of the position where
the displacement statistics peak. The kurtosis of ηx reaches a peak at nearly the same location as
skewness. We note that the large negative skewness of ηx indicates a bias towards negative slope,
which is consistent with a right-moving wave of steep leading surface and shallower trailing surface,
i.e. a wave that is near overturning.

To have a simple baseline for comparison against theory, we refer to the data from Fig. 1 as the
reference experiments. In these experiments, the driving amplitude is ∆φ = 1.38◦ (intermediate
between the two largest amplitudes shown in Fig. 2), the upstream depth is d− = 12.5 cm, and
the downstream depth is d+ = 3 cm, giving a depth ratio of D+ = d+/d− = 0.24. From the data
represented in Fig. 2, we extract a characteristic wave amplitude for the representative experiments
of ηstd = 0.21 cm, which will be important for setting dimensionless parameters that enter the
theory. Table 1 lists the range of experimental parameters and the representative values, as well as
values of dimensionless parameters that will be introduced later.

Table 1: Table of parameters
Description Notation Experimental range ‘Representative’ values

Peak forcing frequency fp 2 Hz 2 Hz
Characteristic amplitude ηstd 0.03–0.3 cm 0.21 cm
Upstream depth d− 12.5 cm 12.5 cm
Downstream depth d+ 2.2–5.3 cm 3 cm

Upstream wavelength λ− =
√
gd−/fp 55 cm 55 cm

Downstream wavelength λ+ =
√
gd+/fp 23–36 cm 27 cm

Amplitude-to-depth ratio ε0 = ηstd/d− 0.0024–0.024 0.017
Depth-to-wavelength ratio δ0 = d−/λ− 0.23 0.23
Depth ratio D+ = d+/d− 0.18–0.42 0.24

3 Theoretical framework

We now introduce the theoretical framework that will be used to understand and quantify the
experimental observations. This framework is based on a Galerkin truncation of the variable-depth
Kortewegde Vries (KdV) equation. The KdV equation is a well established model for describing
the propagation of unidirectional, shallow-water waves, accounting for weak nonlinearity and weak
dispersion over long timescales and large spatial scales. We will perform Galerkin truncation of
KdV to obtain a finite-dimensional dynamical system that exhibits weak turbulence. We outline
the Hamiltonian structure of both the traditional KdV and the truncated systems. This structure
is exploited to obtain invariant measures of the underlying dynamics and, ultimately, to rationalize
the experimental findings on anomalous wave statistics triggered by an ADC.

3.1 The Kortewegde Vries equation with variable depth

We consider the surface displacement η(x, t) of unidirectional, shallow-water waves in a reference
frame moving with the characteristic wave speed, ξ = x − ct. Here, c =

√
gd is leading-order
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approximation to the wave speed (i.e. from linear theory), where g is gravity and d is the local depth.
The leading-order dynamics are corrected to first order in small amplitude by the Kortewegde Vries
equation (KdV), which in dimensional form is given by [47]

ηt +
3c

2d
ηηξ +

cd2

6
ηξξξ = 0 (6)

Motivated by the experiments, we consider waves that originate from a region of constant depth,
encounter an abrupt depth change, and continue into another region of constant depth. Thus,
depth will be piecewise constant

d =

{
d− if x < 0

d+ if x > 0
(7)

Most often, we consider waves moving into shallower depth, so that d− > d+. Throughout this
paper, we use the subscript ‘-’ to represent upstream variables and ‘+’ for downstream variables.

In the experiments, the randomized incoming wave-field is generated with a peak forcing fre-
quency of fp = 2 Hz, which gives rise to the characteristic wavelength of λ = c/fp =

√
gd/fp.

Note that both the characteristic wave speed c = c± and wavelength λ = λ± take different values
upstream and downstream of the ADC. We remark that experimental measurements indicate that
ηstd is nearly the same on both sides of the ADC. Hence, we will not distinguish between upstream
and downstream values of ηstd.

3.2 Nondimensionalization and relation to experimental scales

In this section, the variable-depth KdV equation (6) will be recast into a dimensionless form
that is chosen for convenience in working with the statistical-mechanics framework of Majda et
al. (2019) [29]. Since the choice of normalization is not unique, it is instructive to first introduce a
generic normalization to facilitate comparison with other possible choices. To this end, we consider
characteristic scales, A,L, T for the wave amplitude, longitudinal length, and time respectively,
which can remain unspecified for the moment. We introduce the dimensionless variables

u = η/A dimensionless surface displacement (8)

x̃ = (x− ct)/L dimensionless position (in moving frame) (9)

t̃ = t/T dimensionless time (10)

Recasting (6) in terms of these variables gives the generic dimensionless KdV equation:

ut +
3

2

(
cT A
Ld

)
uux +

1

6

(
cT d2

L3

)
uxxx = 0 (11)

We have dropped the tilde notation above for simplicity and will henceforth use tildes only in cases
of possible ambiguity.

Now it is possible to choose the scales A,L, T for ease in working with a particular framework.
We make the following choices,

A = π1/2 ηstd , L± =
Nλ±
2π

, T± =
Nλ±

2πfpd±
(12)

where N is an integer to be chosen later. The explanation for these choices is as follows. First,
we have chosen the characteristic amplitude, A, to normalize the energy of the state-variable
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u to unity, as will be demonstrated in Section 3.4. Second, regarding L, recall that λ is the
characteristic wavelength corresponding to the peak forcing frequency fp in the experiments. If
only integer multiples of fp were imposed (e.g. lower frequencies were not present), then the forcing
would produce waves that are periodic over lengthscale λ. Since lower frequencies do exist, strict
periodicity is not satisfied, but rather waves may be nearly periodic over the physical domain ξ ∈
[−λ/2, λ/2]. The approximation of near-periodicity becomes more accurate if integer multiples are
considered, i.e. ξ ∈ [−Nλ/2, Nλ/2]. Thus, we have chosen L above so that, over the dimensionless
domain x̃ ∈ [−π, π], periodic boundary conditions can be imposed on u with an accuracy that
increases with N .

Lastly, regarding the characteristic timescale T , the most basic timescale in the experiments is
simply f−1

p , i.e. the period of waves passing a fixed reference point. Of course, the leading-order
behavior in shallow water is simply wave propagation with uniform speed c, i.e. no dispersion. The
KdV equation provides the first correction to this behavior and describes dynamics that evolve
over longer timescales. Hence we have rescaled f−1

p by the factor Nλ/(2πd) � 1, which provides
a suitably long timescale in line with other normalizations [21]. The scales L = L± and T = T±
change value across the ADC, which is important to note when comparing the theory against
experimental measurements.

With the above choices, the dimensionless KdV equation takes the form

ut + C3D−3/2 uux + C2D1/2 uxxx = 0 for x ∈ [−π, π] (13)

C3 =
3

2
π1/2ε0δ

−1
0 , C2 =

2π2δ0

3N2
(14)

The constants C3 and C2 do not change value crossing the ADC and are given in terms of the
dimensionless parameters

ε0 = ηstd/d− upstream amplitude-to-depth ratio (15)

δ0 = d−/λ− upstream depth-to-wavelength ratio (16)

The reason for the subscripts 3 and 2 will become evident in the next section.
Meanwhile, the dimensionless depth D = d/d− does change value across the ADC since the

depth d changes. Recall that the reference frame of (13) moves with the local wave speed via the
variable ξ = x− ct from (6). Thus, the ADC is met at some time TADC , and for simplicity we set
TADC = 0. Therefore, we can regard D as a piece-wise-constant function of dimensionless time

D =

{
1 for t < 0

D+ = d+/d− for t > 0
(17)

See Table 1 for a summary of these dimensionless parameters and their values in experiments.
A few comments are in order. First, we note that the original formulation of this theory

utilized a slightly different normalization [29], with identical powers of D in (13) but with different
expressions for the other dimensionless parameters. These differences are purely cosmetic, and
we have made the choices above simply to facilitate comparison with experiments. Second, an
alternate formulation of the variable-depth KdV equation has been proposed in which the product
d1/4η, rather than η, is conjectured to vary continuously across the ADC [21]. Of course, that
assumption implies a discontinuity in surface displacement, which, though perhaps small, would be
physically unrealistic. We have chosen to enforce continuity of surface displacement on the basis of
physical realism. Furthermore, our direct experimental measurements of ηstd give no indication of a
significant change across the ADC, thus supporting the formulation used here. We note, however,
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that the only modification resulting from the alternate formulation would be in the power of D in
the second term of (13): the power D−3/2 would become D−7/4. Thus, in this alternate formulation,
the second term in (13) would be scaled by a negative power of D and the third term by exactly
the same positive power of D. Hence, the two formulations are qualitatively very similar with only
slight quantitative differences expected.

3.3 Hamiltonian structure of KdV

The variable-depth KdV (13), though not Hamiltonian throughout the entire domain, admits a
Hamiltonian structure on each side of the ADC. Indeed, (13) can be expressed as

∂tu = J δH
±

δu
(18)

where J = ∂x is the symplectic operator and H = H± is the Hamiltonian, which takes different
forms on either side of the ADC. It is convenient to decompose the Hamiltonian into a so-called
cubic and quadratic component, given respectively by

H3 =
1

6

∫ π

−π
u3 dx , H2 =

1

2

∫ π

−π
u2
x dx . (19)

Then the Hamiltonian can be expressed as

H± = C2D1/2
± H2 − C3D−3/2

± H3 (20)

where D = D± changes value across the ADC. More explicitly, substituting (17) gives the separate
upstream and downstream Hamiltonians as

H− = C2H2 − C3H3 for t < 0 (21)

H+ = C2D1/2
+ H2 − C3D−3/2

+ H3 for t > 0 (22)

As seen in (19), the cubic component, H3, represents the skewness of the wave-field, while the
quadratic component, H2, represents the energy of the surface slope. The sign difference between
the two in (20) thus represents a competition between wave skewness and slope energy. In particular,
the appearance of the slope energy in the theory motivated the new experimental measurements
on surface slope statistics reported in this paper.

We remark that, in defining the Hamiltonian, we have chosen the sign convention of Lax (1975)
[25]. More recent work of Bajars et al. (2013) [2] and Majda et al. (2019) [29] use a different
convention, in which both the signs of J and H are opposite. Clearly, these sign differences cancel
in (18) and thus the two conventions are completely equivalent. Using the second convention,
Majda et al. (2019) found that a negative inverse temperature is required to accurately describe
the experimental observations [29]. We have chosen the convention above so that a positive inverse
temperature may be used, allowing our theory to fit into the most standard form of statistical
mechanics.

We introduce two important invariants of KdV, namely the momentum and the energy

M[u] ≡
∫ π

−π
u dx = 0, E [u] ≡ 1

2

∫ π

−π
u2 dx = 1 (23)

As indicated above, the momentum of u vanishes since it is measured as displacement from equi-
librium. Second, due to the choice of A in (12), the energy has been normalized to unity.
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3.4 Truncated KdV

We now introduce the truncated KdV (TKdV) system, which is the main focus of the present study.
Consider the state variable represented as a spatial Fourier series

u(x, t) =
∞∑

k=−∞
ûk(t) e

ikx , (24)

ûk(t) =
1

2π

∫ π

−π
u(x, t) e−ikx dx , (25)

where ûk(t) ∈ C. Since u(x, t) is real valued, û−k = û∗k, and since momentum vanishes û0 = 0.
Next, consider the Galerkin truncation at wave number Λ

uΛ(x, t) = PΛu =
∑
|k|≤Λ

ûk(t) e
ikx , (26)

where PΛ is a projection operator and (25) still holds. Inserting the projected variable, uΛ, into
the KdV equation and applying the projection operator, PΛ, again where necessary produces the
truncated KdV equation (TKdV)

∂uΛ

∂t
+

1

2
C3D−3/2 ∂

∂x
PΛ(uΛ)2 + C2D1/2 ∂

3uΛ

∂x3
= 0 for x ∈ [−π, π] (27)

C3 =
3

2
π1/2ε0δ

−1
0 , C2 =

2π2δ0

3N2
(28)

Note the additional projection operator in front of the quadratic term u2
Λ, which removes the aliased

modes of wavenumber larger than Λ. Since all wavenumbers larger than Λ have been removed, (27)
represents a finite dimensional dynamical system, of dimension Λ over C. The constants C3 and
C2 are the same as before and have been repeated here for convenience.

Briefly, consider the parameter N , the number of characteristic wavelengths in the physical do-
main. We require 1 ≤ N ≤ Λ, so that the mode ûN , corresponding to the characteristic wavelength
λ in the experiments, is resolved in the truncated dynamical system. If N = Λ, then λ corresponds
to the smallest resolved wavelength. If instead N is chosen as an intermediate value between 1
and Λ, then the truncated system will resolve scales that are both bigger and smaller than the
characteristic value λ.

Remarkably, the TKdV system (27) retains the Hamiltonian structure described in Section 3.3,
with the only modification being the inclusion of the projection operator [2, 29]. The piecewise
defined Hamiltonian for TKdV is given by

H±Λ = C2D1/2
± H2[uΛ]− C3D−3/2

± H3[uΛ] (29)

where H3 and H2 are defined exactly as before (19), but now are simply applied to the projected
variable uΛ = PΛu. Then TKdV (27) can be expressed as

∂tuΛ = ∂xPΛ
δH±Λ
δuΛ

(30)

where the truncated symplectic operator is JΛ = ∂xPΛ.
The momentum and energy defined in (23) remain invariants of TKdV, with the same normal-

ized values M[uΛ] = 0 and E [uΛ] = 1. Note that Parseval’s identity implies

E [uΛ] = 2π

Λ∑
k=1

|ûk|2 = 1 (31)

10



Thus, the dynamics of interest are confined to the unit hypersphere, E = 1 in CΛ. In summary, the
TKdV system possesses three important invariants: momentum, energy, and Hamiltonian. The
untruncated KdV equation possesses an infinite sequence of additional invariants [25, 47], but their
truncated counterparts are not generally invariants of TKdV.

3.5 Mixed microcanonical-canonical Gibbs ensemble

In examining statistical mechanics of this Hamiltonian system, we will appeal to the idea of a mixed
microcanonical-canonical Gibbs ensemble, as originally introduced by Abramov et al. (2003) for the
Burgers-Hopf system [1]. Specifically, this ensemble is microcanonical in energy and canonical in
the Hamiltonian. The reason this ensemble is needed is the sign indefiniteness of the cubic term
H3 in the Hamiltonian, which would cause a simple canonical distribution to diverge at infinity.
The mixed ensemble, however, fixes the energy and hence confines dynamics to the compact set of
the unit hypersphere E = 1. Since the Hamiltonian is continuous, its value is bounded on the unit
hypersphere, and thus the mixed ensemble produces a normalizable distribution. This construction
applies equally well to the truncated or untruncated KdV system and hence we will not distinguish
between the two. We note that other possible constructions may be applicable too [24].

On either side of the ADC, the mixed ensemble, or Gibbs measure, follows directly from the
corresponding Hamiltonian via

G± = Z−1
θ± exp(−θ±H±)δ(E − 1) (32)

Here θ = θ± is the inverse temperature, which will take a different value on either side of the ADC,
and Zθ a constant that depends on θ. Each measure G± induces a corresponding ensemble average,
denoted 〈·〉±.

We note that, in the current formulation, a positive inverse temperature θ > 0 produces physi-
cally realistic statistics with a decaying energy spectrum, as is consistent with experiments [29, 2].
Negative inverse temperature produces a physically unrealistic spectrum that has more energy at
smaller scales. Hence, we will hereafter focus on the physically realistic case of θ > 0.

3.6 Matching at the ADC

Recall that the abrupt depth change is met by traveling waves at dimensionless time TADC = 0,
set to zero for convenience. The KdV equations describe wave dynamics over long timescales,
physically t� T , capturing weakly nonlinear and weakly dispersive effects. Meanwhile, evolution
over shorter timescales is simply described by linear theory. The event of a wave crossing the ADC
is precisely such a short-time event, and so we will employ the same matching conditions at the
ADC that would result from linear theory.

More specifically, we assume continuity of the surface displacement, η, across the ADC [47, 37].
Since the propagation speed c changes with depth, waves crossing the ADC must rapidly adjust
in wavelength in order to match the oscillation frequency just upstream of the ADC [47, 37]. The
normalized domain x ∈ [−π, π] is scaled on the characteristic wavelength and so there is no change
in the dimensionless wave-field u(x, t), giving the condition

u(x, t)|t=0− = u(x, t)|t=0+ , Deterministic matching condition (33)

We call (33) the deterministic matching condition to contrast with its statistical counterpart intro-
duced below. This matching condition is employed in the deterministic simulations of TKdV (27).
We note that in the alternate formulation mentioned earlier, it is the product d1/4η that would
match at the ADC [21].
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Now, from the perspective of statistical mechanics, consider the communication between the
statistical ensembles, G±, upstream and downstream of the ADC. These two systems are in contact
at the ADC, and so the upstream state with distribution G− can be regarded as a thermal reservoir
that influences the downstream distribution G+. In fact, the above deterministic condition directly
leads to a simple description for the link. The quantity of interest is the outgoing Hamiltonian
H+, since its value just upstream of the ADC, t = 0−, is set by the incoming dynamics, and
then this particular value is conserved thereafter in the outgoing dynamics. Since u matches at
the ADC, so must H+, and, in fact, this matching holds for every individual trajectory. Recall
that H+(t) is not conserved in the upstream dynamics and so its value varies for t < 0. However,
appealing to weak Ergodicity, the ensemble mean 〈H+(t)〉− is expected to be independent of time.
In particular, the value 〈H+|t=0−〉− is the same as the bare ensemble mean 〈H+〉−. Afterwards, the
particular value H+|t=0− is conserved in the downstream dynamics, on a trajectory-by-trajectory
basis and for all t > 0. Thus, the downstream measure G+ must recover the same ensemble mean
〈H+|t=0−〉− = 〈H+〉−, producing the simple condition〈

H+
〉
− =

〈
H+
〉

+
Statistical matching condition (34)

This statistical matching condition, originally derived by Majda et al. (2019) [29], imposes a
relationship between the two inverse temperatures θ− and θ+. In particular, we view θ− as given
by the random-state of the incoming wave field. Thus, while we will treat θ− as a parameter that
can be varied to study various possible system states, the downstream θ+ is determined directly
by the matching condition (34), giving the functional dependence

θ+ = F
(
θ−
)

Transfer function (35)

The transfer function F will be a key link needed to relate the theory to experiments.

3.7 Numerical computation of the transfer function

To compute the transfer function, we use a weighted random-sampling strategy. That is, we first
sample the Fourier coefficients u = {ûk}Λk=0 from a uniform distribution on the unit hypersphere
E = 1. The uniform sampling is achieved by first sampling from an isotropic Gaussian distribution
and then normalizing to project onto the hypersphere [1]. These samples are then weighted by the
appropriate Gibbs measure (32) to compute the expectations needed in the statistical matching
condition (34). That is, for an arbitrary quantity Q, the ensemble expectation corresponding to
Hamiltonian H and inverse temperature θ is numerically approximated as

〈Q〉θ =

∑Ns
i=1Qi exp(−θHi)∑Ns
i=1 exp(−θHi)

(36)

where Ns is the number of samples. Then, enforcing the statistical matching condition (34) becomes
a root-finding problem for the function

W (θ+) =
〈
H+
〉
θ+
−
〈
H+
〉
θ−

= 0 (37)

Recall that we consider θ− as given, so that 〈H+〉θ− is a constant that can be computed straightaway
from (36). We then use the secant method with respect to the variable θ+ to find a root of W (θ+)
to the desired tolerance.

For simply computing the transfer function, this weighted-sampling approach offers significant
advantages over more sophisticated methods, such as such Markov Chain Monte Carlo (MCMC),
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in its ability to reuse the same samples of u for several different values of θ+. That is, we sample u
from the uniform distribution and compute the list of Hamiltonian values only once, then simply
vary θ+ in (37) with the secant method until the root is found. An MCMC method, on the other
hand, would require the sampling to restart from scratch for each value of θ+, since the random
steps in MCMC depend directly on the target distribution (32). We will however, use MCMC to
initialize direct numerical simulations of TKdV due to the superior efficiency for a single, given
value of θ.

3.8 Deterministic simulations of TKdV

We now detail the method for direct numerical simulation of the TKdV dynamical system (27). In
particular, since the conservation of energy and Hamiltonian plays a central role in the emergent
statistical features of the system, it is important for the numerical scheme to conserve these quan-
tities over long time horizons. We therefore employ a symplectic integrator, which, by preserving
oriented areas in phase space, conserves the energy and Hamiltonian exactly.

Rearranging the TKdV system (27) gives

∂uΛ

∂t
= −1

2
C3D−3/2 ∂

∂x
PΛ(uΛ)2 − C2D1/2 ∂

3uΛ

∂x3
= F [uΛ] (38)

where we have represented the right-hand side by the operator F [uΛ]. We employ a pseudo-spectral
discretization of (38), with de-aliasing applied to the quadratic nonlinear term PΛ(uΛ)2 according
to the standard 2/3-rule. That is, we first pad ûk with zeros for Λ < |k| ≤ 3Λ/2, transform
to physical space and square to obtain u2

Λ on a fine grid, then transform back to spectral space
and truncate to obtain the Fourier coefficients of PΛ(uΛ)2 For simplicity, we denote these Fourier
coefficients v̂k,

PΛ(uΛ)2 =
∑
|k|≤Λ

v̂ke
ikx (39)

With this discretization, (38) can be recast in spectral space as a nonlinear ODE system

d

dt
ûk = −1

2
C3D−3/2 ikv̂k + C2D1/2 ik3ûk = F̂k (40)

The quadratic nonlinearity represented by v̂k mixes the modes during evolution. We note the
third-order linear term may become stiff for large Λ.

For time integration of (40), we employ a 4th-order midpoint symplectic scheme [31]. We

introduce the spectral vectors u = {ûk}Λk=0 and F =
{
F̂k

}Λ

k=0
, and let un denote the solution at

time tn. The midpoint method has two intermediate stages and the auxiliary vectors y1,y2:

y1 − un = w1∆tF

[
1

2
(y1 + un)

]
, (41)

y2 − y1 = w2∆tF

[
1

2
(y2 + y1)

]
, (42)

un+1 − y2 = w3∆tF

[
1

2

(
un+1 + y2

)]
, (43)

with the time increments w1 =
(
2 + 21/3 + 2−1/3

)
/3, w2 = 1−2w1, and w3 = w1. The semi-implicit

nature of (41)–(43) combined with the nonlinearity in F requires iteration. We split F into linear
and nonlinear components, with the linear component being easily inverted since it is diagonal in
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spectral space. At each step of (41)–(43), we perform Picard iteration on the nonlinear component
until convergence is achieved with a tolerance of δ = 1×10−10. The starting guess for the iterations
is determined by quadratic extrapolation from the previous three stages.

For the initial conditions, u0, of the direct numerical simulation we sample from the upstream
Gibbs ensemble G− (32) with a prescribed inverse temperature θ−. We achieve this sampling via a
Metropolis-Hasting Monte-Carlo algorithm as detailed in [29].

3.9 Scaling analysis to link inverse temperature to experiments

Since the inverse temperature, θ, is a key modeling parameter, it would be highly desirable to
normalize the system such that the value of θ does not depend sensitively on the truncation index
as Λ grows large. That way, θ can be interpreted as a real physical parameter that can be linked
to the experiments and whose value does not depend sensitively on where one chooses to truncate
the system. The one modeling parameter that is left to be set is N , which represents the number
of characteristic wavelengths in the periodic domain. In what follows, we will determine reasonable
constraints on N that allow θ to be asymptotically independent of Λ.

The invariant measure exhibits the proportionality GΛ ∝ exp(−θΛHΛ), where we have made
explicit the dependence of all quantities on Λ. In particular, if HΛ were to depend sensitively on Λ
in expectation, then θΛ would need to compensate in order to produce the same invariant measure.
Hence, it would be desirable to scale the system in such a way that HΛ does not depend sensitively
on Λ, at least in expectation. To achieve this insensitivity, we will appeal to the uniform measure G0

and the idea of equipartition of energy [1], since these two concepts afford simple scaling estimates.
Recall that HΛ is composed of the cubic and quadratic components H3 and H2. Due to the

odd symmetry of H3, it is easy to see that 〈H3〉0 = 0 with respect to the uniform measure G0. The
quadratic component, however, requires closer inspection. Due to Parseval’s identity, H2 can be
written as

H2 =
1

2

∫ π

−π
u2
x dx = 2π

Λ∑
k=1

k2 |ûk|2 (44)

Due to the constraint E [uΛ] = 1, the equipartioned microstate is given by

|ûk|2 ≈
1

2πΛ
for equipartition of energy (45)

Then the expected value of H2 under the uniform measure is

〈H2〉0 = 2π

Λ∑
k=1

k2
〈
|ûk|2

〉
0
∼ 1

3
Λ2 (46)

where we have used the identity for the Gauss-like sum

n∑
k=1

k2 =
1

6
n(n+ 1)(2n+ 1) ≈ 1

3
n3 (47)

Importantly, (46) shows that the expected value of H2 grows like Λ2, which appears problematic
for obtaining independence as Λ → ∞. However, H2 enters H in product with the coefficient C2,
which itself scales as C2 ∼ N−2. Hence, obtaining the desired asymptotic independence with respect
to Λ simply requires that N grow proportionally to Λ, as was already argued on physical grounds
in Section 3.4. Thus, any of the choices N = Λ, Λ/2, or Λ/4, discussed in that section would be
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Figure 3: Analysis of the transfer function, θ+ = F (θ−), and calibration of the inverse tempera-
ture. (a)–(b) The transfer function for three values of Λ with either (a) N = 8 fixed or (b) N = Λ/2
scaled. Scaling N with Λ mitigates the sensitivity to Λ. (c) The incoming and outgoing skewness
versus θ− implied by the matching condition. In line with experiments, the skewness is enhanced
significantly in the outgoing wave field.

valid. In particular, if N = Λ, then the characteristic wavelength in experiments corresponds to
the smallest resolved wavelength in the dynamical system. It is perhaps more sensible to choose
N to be an intermediate value between 1 and Λ, so that some scales both larger than and smaller
than the characteristic wavelength λ are resolved. As default, we will choose N = Λ/2, so that on
a log-scale, the characteristic wavelength lies directly in the middle of the resolved wavelengths.

We note that the experiments discussed here preceded the development of the theory, and hence
had no intent of mimicking a Gibbs measure in the wave forcing. We expect that if the experimental
forcing were designed to mimic the Gibbs measure, in particular the precise spectral decay, then it
would be more straightforward to assign a value to the model parameter N . We, however, leave that
task for future research due to the significant cost of performing an entirely new set of experiments
compared to the relative ease and great value in re-analyzing existing experimental data in light of
the new theoretical developments.

4 Comparison between theory and experiments

With the experimental setup described and the theory outlined, we now present results comparing
the two. Unless stated otherwise, all parameters used in the theory are taken directly from their
experimental values listed in Table 1.

4.1 Calibration of the inverse temperature

At this point, all parameters appearing in the theoretical model have been linked directly to exper-
imental parameters with the exception of the inverse temperature of the incoming flow, θ−. Our
strategy is to use the outgoing skewness as the main diagnostic to determine a realistic range for
θ−. That is, for an input θ−, the downstream inverse temperature θ+ is determined by (34), which
ultimately sets the skewness of the outgoing wave-field.

Figures 3(a)-(b) show the transfer function θ+ = F(θ−) that results from the statistical match-
ing condition (34), for an incoming inverse temperature in the range 0 ≤ θ− ≤ 25. Figure 3(a)
shows the cases Λ = 12, 16, and 20 with N = 8 fixed in each. In this figure, the transfer function
changes significantly with Λ. Figure 3(b) shows the same but with the scaling N = Λ/2 that was
argued in the previous section. In this figure, the three curves come much closer to one another.
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Figure 4: Comparison of displacement histograms from experiment and theory. Upon calibrating
the inverse temperature θ−, the TKdV simulations recover the experimentally measured distri-
butions in remarkable detail. In particular, they exhibit the transition from a nearly symmetric
distribution upstream to a highly skewed distribution downstream.

Thus scaling N appropriately greatly mitigates the sensitivity of the transfer function to Λ, though
it does not completely remove the dependence.

Next, Fig. 3(b) shows the skewness of the incoming (green) and outgoing (blue) wave fields, as
they depend on the incoming inverse temperature θ− for the case (Λ, N) = (16, 8). In line with
experimental observations, the incoming skewness is small, while the outgoing wave skewness is
much higher. Specifically, to capture the experimentally observed peak skewness range of 0.6-0.9
seen for the larger amplitudes in Fig. 2(b), requires selecting θ− in the range 10–25.

4.2 Statistical comparison between theory and experiments

We now aim to compare the wave statistics measured in experiments against those that emerge
from the TKdV theory. Throughout, we will focus on the representative set of experiments detailed
in Table 1, in which the peak downstream skewness was measured to be 0.83. With (Λ, N) = (16, 8)
fixed, Fig. 3(c) indicates θ− = 20 as a reasonable value to attain the desired skewness. We thus
run the deterministic TKdV simulations with these model parameters and with ε0, δ0, and D+ set
to the representative values in Table 1. We run the simulations to a sufficiently long dimensionless
time of tf = 10, with dt = 5 × 10−4, and with 103 trajectories sampled from the upstream Gibbs
measure G−.

In Fig. 4 we show the distributions of surface displacement that were measured in the ex-
periments (top row) versus those that emerge from the TKdV simulations (bottom row). The
experimental histograms represent exactly the same data depicted in Fig. 1, only converted to di-
mensionless displacement, u, for comparison against theory. Meanwhile, the TKdV distributions
are extracted from the long-time history of several trajectories sampled from the Gibbs ensemble,
i.e. mixed long-time/ensemble histograms. All histograms are shown on a semi-log scale to facilitate
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Figure 5: Comparison of surface slope histograms. The experiments and TKdV simulations show
very similar slope distributions upstream. Downstream, the theory accounts for the spread of the
distribution and the long exponential tails, while differences in the detailed shape of the distribu-
tions are also visible. Note the elevated uncertainty in the experimental data due to numerical
differentiation of free-surface measurements.

comparison of the tails, where extreme events lie.
The comparison between experiments and theory in Fig. 4 is striking. As seen in the figure, both

the experiments and theory show a transition from a nearly symmetric upstream distribution to a
highly skewed distribution downstream. The TKdV theory not only captures this transition, but
also recovers the shape of the resulting downstream distribution in remarkable detail. Nearly every
feature that can be compared — the decay rate of the tail, the position and value of the peak, the
rapid cutoff for negative u — matches surprisingly well. This comparison offers compelling visual
evidence for: (a) the predictive power of the TKdV framework, and (b) the successful calibration
of the incoming inverse temperature.

Next, we aim to make the same comparison for free-surface slopes. We note that the derivative,
∂η/∂x, is already a dimensionless quantity with a simple physical interpretation, namely the slope
of the free surface, whereas the interpretation of ∂u/∂x̃ is tied to the characteristic values A and
L. We therefore convert the theoretical calculated slopes values back to physical slopes via

∂η

∂x
= 2π3/2 ηstd

λ±

∂u±
∂x̃

(48)

So that the peak experimental wavelength λ (corresponding to fp = 2 Hz) would be mapped to the
dominating TKdV spectral mode, k = 1, this conversion formula has not been corrected with the
extra factor of N present in (12).

Figure 5 shows the distributions of surface slope that result from experiments (top) and theory
(bottom). These histograms show intriguing similarities and differences. First, the upstream slope
distribution is captured well by the TKdV simulations, both in its nearly symmetric shape and its
scale. We note that, while the standard deviation of displacement was input into the TKdV theory,
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the slope standard deviation was not. Downstream, both the experimental and theoretical slope
distributions spread significantly. Interestingly, in the experiments, it is not the standard deviation
that increases significantly upon crossing the depth change (std(ηx) increases from 0.15 to 0.17),
but instead the excess kurtosis, which jumps from a value of 0.46 upstream to 3.4 downstream.
Likewise, in the TKdV theory, std(ηx) grows from 0.13 upstream to 0.33 downstream, and kurt(ηx)
grows from -0.04 to 0.50. Thus, the theoretically predicted jump in kurtosis, though not as extreme
as that measured in experiments, is quite significant. These elevated levels of kurtosis are associated
with the distinct appearance of the downstream distributions, most notably the long, flat tails that
appear in both experiments and theory.

Differences in the detailed shapes of these downstream distributions are also visible. First, we
point out that the experimental measurements involve numerical differentiation of surface displace-
ment extracted from optical images, a process that unavoidably amplifies any noise that is present.
We must therefore proceed with caution in comparing the experiment and theory, recognizing the
possibility that observed discrepancies may be due to these measurement errors. Nonetheless, we
notice that the theoretically predicted distributions remain symmetric downstream and the ex-
perimental ones skew towards negative slope. As mentioned in Section 2, negative skewness is
consistent with a right-moving wave of steep leading surface (i.e. negative slope). Additionally, the
peak of the experimental distribution appears sharper than that of the theory.

4.3 Wave dynamics and analysis of time scales

As a complement to the above statistical comparison, we now examine the wave dynamics of a
few individual trajectories from the TKdV simulations. Figure 6 shows example upstream and
downstream solution trajectories from the same TKdV simulations that were used to produce the
histograms in Figs. 4–5. The dimensionless displacement, u, is represented by color in the domain
(x, t) ∈ [−π, π]× [−10, 10], where the ADC is encountered at t = 0.

Visual differences between the upstream and downstream dynamics are apparent in Fig. 6. The
upstream trajectory shows several waves of modest amplitude all propagating leftward. Here, the
magnitude of the positive and negative displacements are comparable. This is in stark contrast
to the downstream dynamics, which feature fewer waves of larger amplitude propagating in either
direction. In particular, one large wave is seen to propagate from the lower-left corner of the figure
to the upper right. A bias towards positive surface displacement is apparent in these downstream
dynamics, without even viewing the histograms.

These observations can be rationalized with some simple observations regarding the structure
of the TKdV system. Upstream of the ADC, since D = 1, the nonlinear effects are relatively
weak and the dynamics are dominated by dispersion. Linearizing (27) and introducing the ansatz
uk = ei(kx−ωkt) produces the dispersion relation for angular frequency ωk = −C2k

3, or for phase
velocity ck = ωk/k = −C2k

2 [30]. In particular, the phase velocity is strictly negative, implying
that waves only propagate leftwards, as is consistent with Fig. 6(a).

Downstream of the ADC, however, the depth ratio changes to D = 0.24. This change signifi-
cantly amplifies nonlinearity while suppressing dispersion, and thereby allows waves to propagate
in either direction. In particular, the dispersionless limit of KdV is the Burgers-Hopf equation, for
which the nonlinear advection is proportional in both amplitude and direction to the value of u.
Hence, positive displacements would be expected to move rightwards, as is seen in Fig. 6(b).

We remind the reader that the KdV framework tracks the long-time evolution of waves in a
reference frame moving with the characteristic speed c =

√
gd from linear theory. Hence, the above

discussion of left-or-right going waves cannot be interpreted in the context of the experiments
without an appropriate Galilean transformation. Thus, in the laboratory frame, all waves indeed
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Figure 6: Sample upstream and downstream solution trajectories from the same ensemble TKdV
simulations featured in Figs. 4 and 5. The upstream solutions exhibit only leftward propagat-
ing waves and a high degree of regularity, while the downstream solutions exhibit both left and
rightward moving waves along with more intermittency.

propagate unidirectionally, from left to right, with a speed near c. The directions and speeds
calculated by the TKdV framework simply quantify the deviation of the true wave speed from c.

Finally, Fig. 6 sheds some light on the timescales required for wave evolution in the TKdV
framework. It appears that the normalized time of t = 10 is roughly the correct timescale to
observe substantial wave dynamics. More precisely, both the left-going waves in Fig. 6(a) and the
right-going waves in Fig. 6(b) require a dimensionless time of about t = 7 to traverse the entire
periodic domain. For the representative experiments, the characteristic timescale, T , is 2.8 sec
upstream and 5.7 sec downstream. Hence, a dimensionless time of t = 7 corresponds to roughly
20 sec and 40 sec upstream and downstream respectively. Given the wave speeds (c = 110 cm/s
upstream and 54 cm/s downstream), these timescales can be converted to distances traveled by the
waves. In fact, a simple calculation using the definitions in Section 3 gives the distance traveled
as 7Ng/(2πf2

p ), which, due to a serendipitous cancellation, is independent of depth. Hence, the
distance traveled by the waves over a dimensionless time of t = 7 is the same value upstream and
downstream, roughly 22 meters. Note that this distance is significantly greater than the 6-meter
length of the experimental wave tank.

These estimates raise an important question: if a distance of 22 meters is required for significant
wave evolution under the KdV framework, how do the experiments exhibit substantial changes in
wave statistics a much shorter distance downstream of the ADC? The results shown in Fig. 7 help
resolve this question. This figure shows the evolution of surface-displacement skewness (left) and
kurtosis (right) computed by the same deterministic TKdV simulations as pictured in Fig. 6. The
bold black curve shows the ensemble mean (ensemble size of 1000), while the faint gray curves show
the skewness and kurtosis of 100 individual trajectories to give a sense for the variation involved.
Importantly, the skewness and kurtosis evolve on a much shorter timescale than the aforementioned
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Figure 7: Dynamic evolution of surface-displacement skewness and kurtosis from the TKdV
simulations. Faint gray curves show skewness and kurtosis of 100 individual trajectories, and the
bold black curves show the corresponding ensemble mean. Skewness and kurtosis evolve over much
shorter timescales than that required for waves to cross the domain.

t = 7. More precisely, skewness and kurtosis have already saturated to their asymptotic value by
t = 1, and reach half of that value by t = 0.18. These dimensionless times correspond to travel
distances of 310 cm and 56 cm respectively — much shorter than the previously mentioned 22
meters, and on the same order as the relevant distances in the experiments. Thus, after crossing
the ADC, the wave-field rapidly reconfigures itself enough to fundamentally alter its statistical
distributions, and the timescale for this reconfiguration is much shorter than the time required for
waves to cross the entire periodic domain.

4.4 Explicit formula for outgoing skewness and experimental confirmation

We now discuss arguably the most novel single result of the manuscript. In the recent theoretical
study, Majda et al. (2019) derived an explicit formula for the outgoing wave-field skewness in terms
of the system parameters [29]. More specifically, this formula relates the downstream skewness of
surface displacement, skew(η), to the change in slope variance, var(ηx). Here, we recap the deriva-
tion of this formula and then test the prediction against new, direct experimental measurements.

The explicit formula for outgoing skewness arises directly from the statistical matching condition
(34), which states that the downstream Hamiltonian must match in expected value at the ADC,
i.e. with respect to the incoming and outgoing Gibbs measures. This condition can be written more
explicitly as

C2D1/2
+ 〈H2〉− − C3D−3/2

+ 〈H3〉− = C2D1/2
+ 〈H2〉+ − C3D−3/2

+ 〈H3〉+ (49)

Both the experiments and simulations show the upstream skewness to be negligible compared to
its downstream counterpart, allowing the term with 〈H3〉− to be dropped in (49). With this
approximation, (49) yields the relationship

〈H3〉+
〈H2〉+ − 〈H2〉−

=
C2

C3
D2

+ (50)

Our next task is to convert this formula to physical variables so that it can be tested against
experimental data. First, following the definition of H3 in (19) and the definition, u = η/(π1/2ηstd),
a straightforward calculation gives

〈H3〉+ =
π

3

〈
u3
〉

+
=

1

3π1/2

〈
η3
〉

+

η3
std

=
1

3π1/2
skew+(η) (51)
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Figure 8: Experimental confirmation of the explicit formula for outgoing skewness (53). (a)–(b)
Spatial variation of skew(η) and var(ηx) for several different amplitudes. The maximum of skew(η)
and the minimum of var(ηx) each occur at a location that is insensitive to amplitude, x =15 cm
(blue) and -9 cm (green) respectively. (c) Measurements of the ratio skew(η)/∆var(ηx) from 15
different experiments plotted against the dimensionless wave amplitude ε0. For sufficiently large
amplitude, the measurements follow the predicted ε−3

0 power law closely.

This equation expresses a direct relationship between the expected value of H3 and the outgoing
skewness of surface displacement. Next, we must convert the H2-quantities, which involve surface
slope. Using the definition of H2 in (19) and L+ in (12) gives

〈H2〉± = π
〈
u2
x

〉
± =

(
Nλ+

2πηstd

)2

var±(ηx) (52)

We note that the downstream scale L+ is used in this conversion, since it is the downstream
Hamiltonian that is matched in (34). This formula links the expected value of H2 to the variance
of surface slope.

Inserting (51) and (52) into (50), and using the definitions of C2 and C3 from (14), gives the
remarkably explicit formula

skew+(η)

var+(ηx)− var−(ηx)
=

1

3
ε−3

0 D
3
+ (53)

This formula links the skewness of the outgoing wave field to the change in the variance of surface
slope. In particular, it predicts their ratio to scale as the inverse cube of wave amplitude, ε−3

0 ,
and the cube of the depth ratio, D3

+. It is a rather unexpected relationship, as it would have been
difficult to anticipate that the displacement skewness and slope variance, among all possible variable
combinations, are so intimately related.

Fortunately, it is a relationship that can be tested directly against the experimental measure-
ments, specifically the type of data that was presented in Fig. 2. Formula (53) draws focus to
the spatial variation of displacement skewness, which we replot for convenience in Fig. 8(a), and
the variance of surface slope, shown in Fig. 8(b). To test (53), we must select a representative
downstream position to evaluate skew+(η) and var+(ηx), and a representative upstream position
for var−(ηx). In short, we select the same representative locations used to evaluate the histograms
in Figs. 1, 4, and 5, namely x = 15 cm downstream and x = −9 cm upstream. These positions
are indicated by the blue and green vertical dashed lines in Fig. 8(a)–(b). Recall that x = 15 cm
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corresponds to the peak of the downstream skewness and kurtosis. Meanwhile, we see in Fig. 8(b)
that x = −9 cm corresponds to a slight dip in var(ηx).

With these locations selected, we evaluate the ratio skew(η)/∆var(ηx) for each experiment and
plot the result against dimensionless wave amplitude, ε0 = ηstd/d− on a log-log scale in Fig. 8(c).
While the data shows significant variation at small amplitudes, it shows a well defined decreasing
trend at larger amplitudes. In particular, the red dashed line shows the power-law ε−3

0 predicted
by (53), which captures the experimental trend remarkably well.

5 Concluding remarks

This manuscript extends the parallel experimental and modeling efforts of Bolles et al. (2019) [5]
and Majda et al. (2019) [29] concerning the emergence of anomalous wave statistics from abrupt
changes in bottom topography. The theoretical framework is based on deterministic and statistical
analysis of the TKdV system, with exploitation of the Hamiltonian structure and the associated
invariant Gibbs measures. The theory depends crucially on matching the incoming and outgoing
invariant measures at the abrupt depth change, so as to link the incoming and outgoing states.
Throughout, we have emphasized the synergy between the experiments and theory, with experimen-
tal data informing theoretical advancements and model predictions motivating new experimental
measurements.

Careful calibration of the inverse temperature against the experimental data allowed for a
detailed comparison between experimental and theoretically predicted wave statistics. The outgoing
distributions of surface displacement predicted by the TKdV framework capture in remarkable
detail the experimental measurements. We have extended this statistical analysis to surface slope,
a line of inquiry motivated by the importance ofH2, the slope standard deviation, in the theory. The
comparison of slope statistics shows intriguing similarities, while also some quantitative differences
in the shape and skewness of the outgoing distributions.

Finally, Majda et al. (2019) [29] derived an explicit formula for the skewness of the outgoing
wave field, which we have tested against direct experimental measurements. Specifically, the for-
mula predicts how the ratio of displacement skewness to slope variance, skew(η)/∆var(ηx), depends
on wave amplitude. The experimental measurements conclusively confirm the inverse-cube depen-
dence on wave amplitude, thus highlighting the predictive power of the TKdV statistical mechanics
framework.

We note that since the ratio, skew(η)/∆var(ηx), exhibits such a clear dependence on input
parameters, it could prove a useful diagnostic for anomalous wave observations in the ocean. In
particular, this quantity seems to provide a signature for anomalous waves that are triggered by
abrupt depth changes. Examination of this ratio in field data is an exciting avenue for future
research.
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