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Extreme events appear in many complex nonlinear dynamical systems. Predicting11

extreme events has important scientific significance and large societal impacts. In12

this paper, a new mathematical framework of building suitable nonlinear approxi-13

mate models is developed, which aims at predicting both the observed and hidden14

extreme events in complex nonlinear dynamical systems for short-, medium- and15

long-range forecasting using only short and partially observed training time series.16

Different from many ad-hoc data-driven regression models, these new nonlinear mod-17

els take into account physically motivated processes and physics constraints. They18

also allow efficient and accurate algorithms for parameter estimation, data assimila-19

tion and prediction. Cheap stochastic parameterizations, judicious linear feedback20

control and suitable noise inflation strategies are incorporated into the new nonlin-21

ear modeling framework, which provide accurate predictions of both the observed22

and hidden extreme events as well as the strongly non-Gaussian statistics in various23

highly intermittent nonlinear dyad and triad models, including the Lorenz 63 model.24

Then a stochastic mode reduction strategy is applied to a 21-dimensional nonlinear25

paradigm model for topographic mean flow interaction. The resulting 5-dimensional26

physics-constrained nonlinear approximate model is able to accurately predict the ex-27

treme events and the regime switching between zonally blocked and unblocked flow28

patterns. Finally, incorporating judicious linear stochastic processes into a simple29

nonlinear approximate model succeeds in learning certain complicated nonlinear ef-30

fects of a 6-dimensional low-order Charney-DeVore model with strong chaotic and31

regime switching behavior. The simple nonlinear approximate model then allows32

accurate online state estimation and the short- and medium-range forecasting of ex-33

treme events.34
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Extreme events appear in many complex nonlinear dynamical systems. These36

extreme events are associated with the sudden changes of states in the underly-37

ing complex systems and the occurrence of extreme events often results in large38

social impact. Therefore, predicting extreme events has both scientific signifi-39

cance and practical implications. However, the big challanges of prdicting the40

extreme events in complex nonlinear systems include the lack of understand-41

ing of physics, the huge computational cost in running the complex models42

and data assimilation, as well as the availability of only short and partially ob-43

served training data. In this paper, a new mathematical framework of building44

suitable nonlinear approximate models is developed, which aims at predicting45

both the observed and hidden extreme events in complex nonlinear dynamical46

systems for short-, medium- and long-range forecasting using only short and47

partially observed training time series. This framework also allows efficient and48

accurate data assimilation, parameter estimation and prediction algorithms. D-49

ifferent effective and practical strategies are incorporated into the framework to50

develop suitable approximate models for predicting extreme events and other51

non-Gaussian features in various complex turbulent dynamical systems.52

I. INTRODUCTION53

Extreme events appear in many complex nonlinear dynamical systems in geoscience, en-54

gineering, excitable media, neural science and material science1–8. Examples include oceanic55

rogue waves9,12, extreme weather and climate patterns10,11 such as blocking events and tur-56

bulent tracers13–15, and bursting neurons16. These extreme events are associated with the57

sudden changes of states in the underlying complex systems and the occurrence of extreme58

events often results in large social impact. Therefore, predicting extreme events has both59

scientific significance and practical implications.60

However, predicting the extreme events in complex nonlinear systems is quite challenging.61

First, nature or the perfect model is never known in practice. Model error due to the lack of62

the understanding of physics may prevent the skillful predictions of the extreme events1,17–19.63

Second, even if the perfect model is known, the underlying nonlinear dynamics of nature64

can be extremely complicated with strong non-Gaussian characteristics, multiscale features65
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and high dimensionality10,20,21. Thus, running the perfect model is usually computationally66

unaffordable for real-time prediction. On the other hand, despite that coarse-graining the67

numerical resolutions improves the computational efficiency, such a numerical approximation68

often results in missing the key nonlinear interactions between different temporal and spatial69

scales and brings about large errors, especially for extreme events. Third, it is important to70

notice that only partial and noisy observations are available in many practical situations22–24,71

which implies the states of the unobserved variables have to be estimated via online data72

assimilation algorithms. Unfortunately, the existing data assimilation algorithms for general73

complex nonlinear dynamical systems are either quite expensive (e.g., particle filter) or74

involving intrinsic approximate errors due to the coarse-grained statistics (e.g., ensemble75

Kalman filter)21,25–28. The assimilated states from the latter may also contain large biases76

due to the fact that high order moments are important contributors to the extreme events.77

Finally, the actual climate signal is often measured through time series. However, since the78

high-resolution satellites and other refined measurements were not widely developed until79

recent times, the available useful training data is very limited with about only 50 years in80

many real applications. Thus, predicting extreme events using short and partially observed81

training time series is another remarkably challenging task.82

For the reasons given above, developing suitable approximate models for predicting ex-83

treme events is crucial in practice. These approximate models aim at capturing the key84

nonlinear dynamical and non-Gaussian statistical features of nature. They also need to be85

computationally tractable and allow efficient algorithms for online data assimilation, pa-86

rameter estimation and prediction. There have been some recent progress in the extreme87

events prediction. For example, a new statistical dynamical model was developed to predict88

extreme events and anomalous features in shallow water waves12. A suite of reduced-order89

stochastic models was built, which succeeds in predicting the extreme events in complex90

geophysical flows29 and their long-term non-Gaussian features30 as well as forecasting the91

associated statistical responses and quantifying the uncertainty31. In addition, mode decom-92

position techniques were applied for probing the most unstable modes and building low-order93

models for extreme events prediction32,33.94

In this paper, a new mathematical framework of building suitable nonlinear approximate95

models is developed, which aims at predicting both the observed and hidden extreme events96

in complex nonlinear dynamical systems using only short and partially observed training97
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time series. The models belonging to this mathematical framework are highly nonlinear and98

are able to capture many key non-Gaussian characteristics as observed in nature34. Unlike99

traditional regression and other ad hoc models with prescribed basis functions or structures,100

this framework contains a rich class of statistical dynamical models and is amenable to a101

wide range of applications. One important feature of this nonlinear modeling framework is102

that physically motivated processes and physics constraints35,36 can be incorporated into the103

models, which is fundamentally different from many purely data-driven statistical models104

that have no clear physical meanings. Such a trait not only enables the models to take105

into account both the dynamical and statistical information but also allows using only a106

short training time series for model calibration. The latter is due to the (partially) iden-107

tified dynamical structures from some physics reasoning and physics constraints. Another108

key advantage of this new framework is that despite the intrinsic nonlinearity, it allows109

closed analytic formulae for assimilating the states of the unobserved variables37,38, which is110

computationally efficient and accurate. This provides an extremely useful and practical ap-111

proach for predicting extreme events and other non-Gaussian features in complex nonlinear112

dynamical systems.113

Short-, medium- and long-range forecasting of extreme events all have practical significance10,39–41.114

The efficient data assimilation scheme associated with the nonlinear models within the above115

framework provides an accurate estimation of the initial values, which play a crucial role in116

improving the short-term prediction skill. On the other hand, the focus of the long-term117

prediction is on the statistics, which is calculated by making use of a long trajectory together118

with the ergodic property of many complex turbulent systems1. In particular, reproducing119

the statistical equilibrium non-Gaussian probability density function (PDF) with fat tails is120

a good evidence of the successful prediction of extreme events, where the extreme events and121

intermittency are the main contributors to the fat tails. The medium-range forecast aims at122

recovering the transition behavior of the underlying dynamics. A skillful medium-range pre-123

diction requires both an accurate estimation of the initial values and a suitable description124

of the time evolution of the approximate model, and is often a challenging task. Finally,125

certain internal or external perturbations are able to kick the model variables outside the126

attractor. Therefore, predicting the time evolution of the extreme events that start from a127

state outside the attractor also has practical importance. It is worth remarking that many128

purely data-driven or machine learning methods fail to predict extreme events even though129
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most of those methods show high skill in fitting the observed time series. For example,130

as has been pointed out in some recent work42,43, even one of the most advanced neural131

networks with long short-term memory44 and the Gaussian process regression45 suffer from132

a finite time blowup issue when they are applied for predicting extreme events. Such a133

pathological behavior can only be overcome by using hybrid strategies that combine these134

methods with suitable models42. Note that these purely data-driven methods often demand135

tremendous training data46,47, which is not practical in many scientific scenarios where only136

short training time series are available. In addition, without suitable models, predicting137

extreme events in the unobserved processes becomes extremely difficult.138

This paper aims at incorporating practical strategies into the development of suitable139

approximate models for predicting both the observed and hidden extreme events. These140

approximate models belong to the new nonlinear modeling framework, which allows an ef-141

ficient and accurate data assimilation scheme and only short and partially observed time142

series are needed for model calibration. The first effective strategy is to adopt simple s-143

tochastic parameterizations for approximating complicated hidden processes. Despite the144

simple forms, the judicious applications of these stochastic parameterizations are neverthe-145

less able to capture the nonlinear interactions between the observed and hidden variables146

and predict the associated extreme events. Such an idea has been successfully applied to147

the stochastic parameterized extended Kalman filter (SPEKF) forecast models48,49, dynamic148

stochastic superresolution of sparsely observed turbulent systems50,51 and stochastic super-149

parameterization for geophysical turbulence52. The second strategy here is motivated from150

control theory, which involves incorporating simple feedback control terms into the approx-151

imate models for model simplification. This simple feedback control strategy succeeds in152

capturing the key nonlinear statistical interactions as well as the causal effects between153

the observed and hidden variables, which are essential to accurately predicting the extreme154

events in the hidden processes. Note that predicting the hidden extreme events is typical-155

ly a great challenge given only partial observations. The third strategy makes use of the156

stochastic mode reduction technique53–56, which allows a significant dimension reduction in157

the approximate models for many multiscale turbulent dynamical systems while the reduced158

order models retain the crucial nonlinear and non-Gaussian features. Applying this strategy,159

the nonlinear effects of the unresolved fast modes in the motion of the resolved variables160

are represented by effective damping and stochastic forcing. The resulting approximate161
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models naturally belong to the new nonlinear modeling framework that allows extremely162

efficient data assimilation and prediction schemes. These approximate models also preserve163

physics-constrained properties. Another extremely useful strategy is to incorporate simple164

stochastic processes with additive noise and memory into the approximate models, which165

aim at effectively describing certain complicated nonlinear components that are hard to166

deal with in strongly nonlinear and chaotic dynamical systems. Due to the unique feature167

of the new nonlinear modeling framework, it allows an efficient and accurate way of using168

simple stochastic processes to learn these complex nonlinear components on the fly, which169

greatly facilitates the short- and medium-range forecasts of both the observed and hidden170

extreme events. Other approaches of building approximate predictive models that can be171

incorporated into the new nonlinear framework developed here involve using the noise in-172

flation technique to effectively characterize the contributions from small-scale variables and173

fast-wave averaging of the variables with rapid decaying57.174

The rest of the paper is organized as follows. Section II describes the new nonlinear175

mathematical framework for developing suitable approximate models. Section III contains176

the efficient and accurate data assimilation, parameter estimation and prediction algorithms.177

Both the path-wise and information measurements in quantifying the prediction skill are also178

included in this section. Section IV illustrates the skill of predicting intermittent extreme179

events using cheap stochastic parameterizations with significant model error. Section V180

makes use of a nonlinear energy-conserving dyad model to show the success of applying181

the simple feedback control strategy in facilitating the prediction of the hidden extreme182

events. The effect of noise inflation in approximate models for predicting extreme events is183

illustrated based on the chaotic Lorenz 63 model in Section VI. Section VII starts with a184

21-dimensional nonlinear topographic mean flow interaction model with regime switching.185

Stochastic mode reduction strategy is applied in a suitable way to develop an approximate186

nonlinear model with only 5 dimensions, which is nevertheless able to predict the observed187

and hidden extreme events as well as the regime switching between zonally blocked and188

unblocked flow patterns with high accuracy. In Section VIII, it is shown that incorporating189

judicious linear stochastic processes into a simple nonlinear approximate model succeeds in190

learning certain complicated nonlinear effects of a 6-dimensional low-order chaotic Charney-191

DeVore model with strong chaotic and regime switching behavior. The resulting nonlinear192

approximate model allows accurate online state estimation and the short- and medium-range193
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forecasting of extreme events. The paper is concluded in Section IX.194

II. A NONLINEAR MATHEMATICAL MODELING FRAMEWORK195

WITH SOLVABLE CONDITIONAL STATISTICS196

A nonlinear mathematical modeling framework is established in this section, which will

be used to the development of suitable approximate models for predicting extreme events.

The general form of the nonlinear models within this framework is the following38,

duI = [A0(t,uI) + A1(t,uI)uII]dt+ ΣI(t,uI)dWI(t), (1a)

duII = [a0(t,uI) + a1(t,uI)uII]dt+ ΣII(t,uI)dWII(t), (1b)

where the state variables are written in the form u = (uI,uII) with both uI ∈ RNI and197

uII ∈ RNII being multidimensional variables. In (1), A0,A1, a0, a1,ΣI and ΣII are vectors198

and matrices that depend only on time t and the state variables uI, and WI(t) and WII(t)199

are independent Wiener processes. The systems in (1) are named as conditional Gaussian200

systems due to the fact that once uI(s) for s ≤ t is given, uII(t) conditioned on uI(s)201

becomes a Gaussian process with mean ūII(t) and covariance RII(t), i.e.,202

p
(
uII(t)|uI(s ≤ t)

)
∼ N (ūII(t),RII(t)). (2)

Despite the conditional Gaussianity, the coupled system (1) remains highly nonlinear and203

is able to capture the non-Gaussian features as in nature. This conditional Gaussian nonlin-204

ear modeling framework includes many physics-constrained nonlinear stochastic models35,36,205

large-scale dynamical models in turbulence, fluids and geophysical flows, as well as stochas-206

tically coupled reaction-diffusion models in neuroscience and ecology. See a recent work34
207

for a gallery of examples of the conditional Gaussian systems. Applications of the condition-208

al Gaussian systems to strongly nonlinear systems include developing low-order nonlinear209

stochastic models for predicting the intermittent time series of the Madden-Julian oscilla-210

tion (MJO) and the monsoon intraseasonal variabilities58–60, filtering the stochastic skeleton211

model for the MJO61, and recovering the turbulent ocean flows with noisy observations from212

Lagrangian tracers62–64. Other studies that also fit into the conditional Gaussian framework213

includes the cheap exactly solvable forecast models in dynamic stochastic superresolution of214

sparsely observed turbulent systems50,51, stochastic superparameterization for geophysical215

turbulence52 and blended particle filters for large-dimensional chaotic systems65.216
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One important feature of the above conditional Gaussian nonlinear framework is that the

conditional Gaussian distribution p
(
uII(t)|uI(s ≤ t)

)
in (2) has closed analytic form37,

duII(t) =[a0(t,uI) + a1(t,uI)uII]dt+ (RIIA
∗
1(t,uI))(ΣIΣ

∗
I)
−1(t,uI)×

[duI − (A0(t,uI) + A1(t,uI)uII)dt] , (3a)

dRII(t) =
{

a1(t,uI)RII + RIIa
∗
1(t,uI) + (ΣIIΣ

∗
II)(t,uI)

− (RIIA
∗
1(t,uI))(ΣIΣ

∗
I)
−1(t,uI)(RIIA

∗
1(t,uI))

∗
}
dt. (3b)

It is natural to assume uI contains the observed variables while uII is a collection of the217

unobserved ones. Therefore, the analytically solvable conditional statistics in (3) allows an218

extremely efficient and accurate way of estimating the hidden states given the observations,219

known as the data assimilation, which facilitates predictions. Note that in the data assimi-220

lation language the conditional mean and conditional covariance in (3) are also known as the221

posterior mean and posterior covariance. In addition, the conditional Gaussian nonlinear222

modeling framework (1) and its closed analytical form of the conditional statistics (3) offer a223

statistical efficient and accurate way of solving the time evolution of the associated Fokker-224

Planck equation in high dimensions66–68, which also provides a powerful tool for carrying225

out ensemble forecasts.226

III. DATA ASSIMILATION, PREDICTION, AND THE227

QUANTIFICATION OF PREDICTION SKILL228

A. Data assimilation of the unobserved variables229

Data assimilation (also known as state estimation or filtering)21,25–28, a procedure of es-230

timating the states of the unobserved variables, is the precondition of predicting complex231

dynamical systems. In fact, data assimilation of the unobserved variables can also be re-232

garded as the online “prediction” of these variables due to the fact that the recovered states233

of the unobserved variables are given by combining the information in the dynamics with234

the values of the observed variables.235

Data assimilation of the unobserved variables plays an important role in short- and236

medium-range forecasts. This is because the ensemble prediction algorithm requires running237

the model forward with the given initial values for all the state variables. Since there is no238
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direct observations of the hidden or unresolved variables, assimilating their initial states239

becomes a necessity part of the ensemble forecast. In practice, the data assimilation is often240

required in an “online” form in the sense that the states of the unobserved variables need241

to be estimated at each time instant as time evolves. Therefore, developing an efficient and242

accurate data assimilation method is a crucial first step for predicting nonlinear complex243

dynamical systems and the associated extreme events. However, the classical Kalman filter244

or its continuous form Kalman-Bucy filter69–71 works only for linear models. On the other245

hand, for assimilating general complex nonlinear dynamical systems, the particle filter is246

quite expensive and contains sampling error while the ensemble Kalman filter takes into247

account only the first two moments which may end up with large biases for assimilating248

extreme events.249

The conditional Gaussian nonlinear modeling framework in Section II provides an ef-250

ficient way of estimating the states of the highly non-Gaussian hidden variables uII(t) in251

the complex nonlinear dynamical systems given the observations up to the current time252

uI(s ≤ t). The closed analytic formula in (3) avoids numerical and sampling errors, and it253

results in an extremely efficient and accurate way of computing the optimal states of uII(t).254

B. Short-, medium- and long-range forecasting255

Prediction problems have been described by Lorenz as falling into two categories72,73.256

Problems that depend on the initial condition, such as short- to medium-range weather257

forecasting, are described as “predictions of the first kind”, while problems for predicting258

the longer-term climatology, are referred to as “predictions of the second kind”.259

For short- and medium-range forecasts, the system starts from an initial time t0, where260

the initial values of the unobserved variables are determined by data assimilation. Then261

an ensemble prediction algorithm is applied by running the model forward up to a given262

time t1. Typically, t1 is not quite far from t0 and therefore the system has not completely263

lost its memory of the initial values. Therefore, a good state estimation of the initial values264

via data assimilation plays an important role in providing an accurate short- and medium-265

range forecasting skill. The ensemble mean, which is the average value of all the ensemble266

members, is often used as a predictor for the evolution of the trajectories and the ensemble267

spread measures the uncertainty in the ensemble mean forecasts. The difference between268
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short- and medium-range forecasts is that the prediction skill at very short lead time largely269

depends on the accuracy of the initial values while both the dynamical structures and the270

initial values will be essential in predicting the model transition behavior in the medium271

range. Capturing the time evolution of the large bursts in intermittent time series with272

small uncertainty is the goal of short- and medium-range forecasts of the extreme events.273

On the other hand, for the long-range forecast where t1 is much larger than t0, the system274

will lose its memory from the initial time and arrives at the statistical equilibrium state. In275

such a scenario, the ensemble mean prediction provides no information beyond the mean of276

the statistical equilibrium state. Therefore, the aim of the long-range forecast is to predict277

the statistical behavior. In particular, reproducing the statistical equilibrium non-Gaussian278

probability density function (PDF) with fat tails is a good evidence of successfully predicting279

the extreme events, where the extreme events and intermittency are the main contributors280

to the fat tails.281

Note that different models may have the same characteristics for the long-term statistics282

but they often have significantly different skill for short and medium range prediction as283

well as the forced response. In a recent paper74, several instructive examples using both a284

simple linear 2× 2 system and more complicated nonlinear models unambiguously illustrate285

such a feature of predicting complex turbulent dynamical systems. It is also shown in the286

paper74 that in the presence of model error, developing suitable approximate models that287

are skillful in one of the short-, medium- or long-range forecasting is already a quite difficult288

task. In many cases, there exists an information barrier75 that prevents the approximate289

models predicting the exact statistics and capturing the perfect response.290

It is worthwhile to mention that a grand challenge in contemporary climate, atmosphere,291

and ocean science is to understand and predict intraseasonal variability for time scales from292

30 to 60 days, which is longer than standard weather time scales of at most a week and293

much shorter than the yearly time scales of short-term climate. Therefore, it belongs to the294

medium-range forecasts. Von Neumann76 called such problems at the intersection of weather295

and climate the greatest challenge in future meteorology10,77. The Indian-Asian monsoon296

and the MJO10,78–80 are the most significant intraseasonal variability occurs in the tropical297

areas. Notably, it is shown in the recent work58–60 that the nonlinear modeling framework298

in Section II facilitates the development of effective low-order nonlinear stochastic models299

for predicting the intermittent time series of the MJO and the monsoon as well as extending300
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the predictability of these intraseasonal variabilities.301

C. Prediction of the dynamical evolution towards to the attractor302

The short-, medium-, and long-range forecasts discussed above typically assume the ini-303

tial values lie in the statistical equilibrium states. On the other hand, certain internal or304

external perturbations are able to kick the model variables outside the attractor. Therefore,305

predicting the time evolution of the extreme events that start from a state outside the at-306

tractor and its returning path to the statistical equilibrium state is another important issue.307

Since most approximate models are calibrated using the training data from the attractor,308

there is no guarantee that these approximate models are automatically able to predict the309

relaxation towards the attractor. This results in a great challenge of predicting the extreme310

events starting outside the attractor. Some instructive studies of the prediction and linear311

response skill with the initial condition being off the attractor can be found in a recent312

paper74.313

D. Calibration of the model through parameter estimation314

One important issue before applying approximate models for predicting extreme events is315

the model calibration through parameter estimation. The method adopted here follows the316

algorithm in a recent work81. The main difficulty in estimating the parameters in general317

nonlinear systems with only partial observations is that the closed form of the likelihood318

function is typically unavailable. Therefore, data augmentation of trajectories associated319

with the hidden variables is often applied82–85, which then allows using the Markov Chain320

Monte Carlo (MCMC) methods to sample the parameters and the hidden trajectories in321

an alternative way for parameter estimation. Yet, since the hidden trajectories lie in an322

infinitely dimensional space (or finite but large dimensional with the discrete approximation),323

the data augmentation can be quite slow in many applications.324

Here, in light of the closed analytic formulae (3) of the conditional Gaussian nonlin-

ear approximate models (1), data assimilation can be incorporated into a classical MCMC

algorithm to circumvent the most expensive part of the parameter estimation algorithm,

namely sampling the unobserved trajectories using data augmentation. Specifically, in each
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iteration step k of the MCMC, we make use of the observed trajectories uI and the current

updated parameters θ(k) to recover the unobserved trajectories of uII, namely u
mis,(k)
II via

data assimilation (3) in a deterministic and optimal way. Then u
mis,(k)
II , uI and θ(k) are used

together to compute the likelihood function

p(uI|θ(k)) = p(uI|θ(k); u
mis,(k)
II ),

which will be used in the MCMC algorithm for updating the parameters in the k+1 iteration325

step. For a complete description of the algorithm, see81 for details. The slight difference of326

the algorithm applied here compared to the original version in81 is that an adaptive MCMC327

procedure86 for choosing the proposal function is applied.328

E. Quantifying the prediction skill329

1. Path-wise measurements330

The root-mean-square error (RMSE) and the pattern correlation (Corr).331

The root-mean-square error (RMSE) and the pattern correlation (Corr) are the two path-

wise measurements that have been widely applied to quantify the prediction skill21,87–91.

Denote ui the true signal and ûi the prediction estimate, where i = 1, . . . , n is an index in

time. These measurements are given by

RMSE =

√∑n
i=1(ûi − ui)2

n
, (4)

Corr =

∑n
i=1(ûi − ûi)(ui − ui)√∑n

i=1(ûi − ûi)2
√∑n

i=1(ui − ui)2

, (5)

where ûi and ui denote the mean of ûi and ui respectively.332

In practice, the trajectory of the ensemble mean is often used as ûi in measuring the333

RMSE and Corr. These two path-wise measurements are intuitive and easy to be applied.334

Typically, a prediction is said to be skillful if the RMSE is below one standard deviation of335

the true signal and the Corr is above the threshold Corr = 0.5.336

Yet, we have to point out several potential issues in these measurements. First, since only337

the ensemble mean is used as the predictor, the predicted uncertainty which involves the338

ensemble spread (or the confidence interval of the ensemble mean prediction) is not involved339
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in these path-wise measurements. Second, these path-wise measurements fail to quantify340

the skill of the long-term forecast, since the ensemble mean simply becomes the equilibrium341

mean state of the system. In addition, both the RMSE and Corr take into account only the342

information up to the second order statistics. Thus, they may lead to biased conclusions343

for predicting extreme events and non-Gaussian features. Nevertheless, due to the simple344

form, these path-wise measurements can still be applied to provide some useful information345

for the short- and medium-range forecasts.346

The temporal autocorrelation function (ACF).347

Autocorrelation is the correlation of a signal with a delayed copy of itself, as a function348

of delay. For a zero mean and stationary random process u, the autocorrelation function349

(ACF) can be calculated as350

ACF(t) = lim
T→∞

1

T

∫ T

0

u(t+ τ)u∗(τ)

Var(u)
dτ, (6)

where ·∗ denotes the complex conjugate. The ACF has been widely used to measure the351

system memory. It also plays an important role in improving the linear response via the352

fluctuation-dissipation theorem31,92. If the perfect model and the approximate model share353

the similar ACFs, then the two systems usually have a similar dynamical behavior at least354

up to the second order statistics. However, for nonlinear and chaotic systems, high order355

statistics may play an important roles for extreme events. Therefore, the ACF can only be356

regarded as a crude indicator of the overall predictability of the underlying system. As a357

remark, the information theory is able to provide a rigorous and practical way to quantify358

the error in the two ACFs associated with the perfect and approximate models by making359

use of their spectral representations. See30,93 for details.360

2. Information measurements361

Information theory provides a natural way to quantify the prediction skill and model362

error by measuring the lack of information. Different from the path-wise measurements,363

the information measurements assess the statistical behavior of the systems. The lack of364

information in one probability density q compared with another p is through the relative365

entropy P(p, q)2,94–98,366

P(p, q) =

∫
p log

(
p

q

)
, (7)
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which is also known as the Kullback-Leibler divergence or information divergence99–101. De-367

spite the lack of symmetry, the relative entropy has two attractive features. First, P(p, q) ≥ 0368

with equality if and only if p = q. Second, P(p, q) is invariant under general nonlinear369

changes of variables.370

Long-term prediction.371

The long range forecast using the approximate model aims at capturing the non-Gaussian372

statistical equilibrium states of the truth, especially the fat tails that correspond to the ex-373

treme events. This is very different from the short- or medium-range forecasts, where the374

path-wise measurements of the ensemble mean are informative. In fact, the path-wise mea-375

surements completely fail to quantify the long range forecasting skill. Information theory,376

on the other hand, provides a natural quantification of the statistical prediction skill in the377

approximate model, which is given by378

Eeq = P(peq, p
M
eq ), (8)

where peq and pMeq are the equilibrium PDFs of the perfect model and the approximate379

model, respectively. The information measurement in (8) is able to quantify the skill of the380

approximate model in capturing both the majority of the events represented by the mode of381

the PDF and the intermittent extreme events in the PDF tails. Note that minimizing the382

information score in (8) is also known as capturing the model fidelity94 using approximate383

models.384

The short- and medium-range forecasts.385

The information theory can also be applied to quantify the short- and medium-range386

forecasting skill. The fundamental difference between the information measurements and387

the path-wise ones is that the information measurements are able to take into account388

the predicted uncertainty. Denote pt and pMt the PDFs of the time-dependent perfect and389

approximate models starting from the same initial time. Similar to (8), an information390

metric for quantifying the predicted model error as a function of time can be defined as391

Et = P(pt, p
M
t ). (9)

A suitable approximate model is expected to have a small model error throughout the time.392
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The information measurements can also be used to assess the predictability, also known as393

the internal prediction skill, of both the perfect and approximate models using the following394

matric74,102,103,395

Dt = P(pt, peq), and DMt = P(pMt , p
M
eq ). (10)

Clearly, the measurement in (10) quantifies the information provided by the initial condi-396

tions about the future state of the system beyond the prior knowledge available through397

equilibrium statistics. Obviously, both Dt and DMt will decay to zero eventually. Therefore,398

the measurement in (10) can be regarded as an analog to the ACF but it takes into account399

the entire predicted PDF rather than simply the path associated with the ensemble mean400

prediction.401

IV. A SIMPLE MODEL WITH HIGHLY NON-GAUSSIAN BEHAVIOR IN402

THE HIDDEN PROCESS403

Stochastic parameterizations are widely used in developing approximate models for com-404

plex dynamical systems with partial observations1,104–106. The idea of applying stochastic405

parameterizations is to use simple stochastic processes to describe the complicated dynam-406

ics of the unobserved or unresolved scales such that the overall computational cost of the407

approximate models is greatly reduced. One important practical issue is to develop suitable408

stochastic parameterizations for the hidden processes such that the intermittent features409

are captured and the approximate models with the stochastic parameterizations are able to410

accurately predict the extreme events in the observed variables.411

The goal of this section is to test the skill of a simple and efficient stochastic parameter-412

ization strategy in predicting intermittent non-Gaussian features and extreme events based413

on a low-order highly non-Gaussian test model given only a short period of training data414

with partial observations.415

A. The perfect and approximate models416

The perfect model.417

The perfect test model here is given by a two-dimensional system where only a short
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trajectory of one variable u is observed. The model reads,

du =
(
− γu+ Fu

)
dt+ σudWu, (11a)

dγ = (aγγ + bγγ
2 + cγγ

3 + fγ)dt+ (Aγ +Bγγ)dWγ,1 + σγdWγ,2. (11b)

In this model, the variable γ acts as a stochastic damping in the equation of u and the aver-418

aged value of γ over time needs to be positive to guarantee the mean stability of u107. Once419

the sign of γ switches from positive values to negative values, γ becomes anti-damping and420

it leads to the intermittent events in u. On the other hand, γ is driven by a cubic nonlinear421

equation with correlated additive and multiplicative noise. This cubic model is a canon-422

ical model for low frequency atmospheric variability108,109. This one-dimensional, normal423

form has been applied in a regression strategy for data from a prototype atmosphere and424

ocean model to build one-dimensional stochastic models for low-frequency patterns such as425

the North Atlantic Oscillation and the leading principal component that has features of the426

Arctic Oscillation. Given the non-Gaussian features and the potential physical explanations,427

the low-order model (11) becomes a useful testbed for developing suitable stochastic param-428

eterization strategies of the hidden process that allows skillful prediction of the extreme429

events in the observed variable.430

The following parameters are taken in the perfect model,431

Fu = 0.3, σu = 0.1, aγ = −3

8
, bγ = 1, cγ = −1

2
,

Aγ = 0, Bγ =
1

2
√

2
, fγ = 0.1, σγ =

1

2
√

2
.

(12)

With these parameters, the model trajectories together with the equilibrium PDFs and ACFs432

are shown in Panels (a)–(c) of Figure 1. Note that the time series in Panel (a) only contains433

a length of 500 time units but the PDFs and ACFs in Panels (b)–(c) are computed based434

on the model simulation with a length of 10, 000 units in order to minimize the sampling435

bias in showing these statistics.436

In this dynamical regime, the time series of γ shows a stochastic switching behavior.437

Roughly speaking, γ has two statistical states. The averaged value in one state is slightly438

negative, corresponding to the intermittent phase of u, while another state of γ is positive,439

corresponding to the quiescent phase of u. The PDF of u, due to the intermittent extreme440

events, is highly skewed with an one-sided fat tail. On the other hand, the PDF of γ shows a441
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bimodal behavior, which is also significantly non-Gaussian. The ACFs indicate that overall442

u has a longer memory than γ.443

The approximate model.444

The perfect model (11) here can be regarded as a paradigm model in many real applica-445

tions, where the hidden variables are driven by some unknown complicated processes that446

interact with the observed variables in a highly nonlinear way. From a practical point of447

view, it is important to develop a simple and computationally tractable approximate mod-448

el which is nevertheless able to capture the key nonlinear feedback from the unobserved449

variable γ to the observed variable u. The approximate model is expected to predict the450

extreme events of the observed process u.451

One commonly used reduced order modeling strategy is to adopt a mean stochastic model452

(MSM) for the observed process u. The MSM makes use of the averaged value of γ as the453

damping term and the resulting system is454

du = (−γ̂u+ Fu)dt+ σudWu. (13)

Since the mean stability is guaranteed in the original system, the constant γ̂ is positive.455

Thus, the MSM is a linear model with Gaussian statistics. It has been shown in22,107 that456

the MSM is unable to capture the short-term rapid increment of the intermittent trajectory457

of u due to the lack of intermittent instability mechanism. Such a Gaussian model also fails458

to predict the long-term non-Gaussian PDF with skewness and fat tails.459

Here, a new approximate model is developed using the stochastic parameterized equation

technique48,49, the idea of which has been applied to the extended Kalman filters (known as

the SPEKF-type model) and other prediction and data assimilation forecast models. The

approximate model has the following form,

du = (−γu+ Fu)dt+ σudWu, (14a)

dγ = −dγ(γ − γ̂)dt+ σγdWγ. (14b)

In (14), the nonlinear process γ with correlated additive and multiplicative noise in (11b)460

has been simplified to a linear process with only Gaussian additive noise. Nevertheless, the461

variable γ remains switching between positive and negative phases, representing damping462

and anti-damping effects as a feedback to u. Therefore, the variable γ is still able to trigger463
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intermittent extreme events in u. One important feature is that the approximate model464

(14) belongs to the conditional Gaussian nonlinear framework as was described in Section465

II, which allows the effective algorithm (3) to solve the conditional statistics of the hidden466

variable γ given the observations from u. This greatly facilitates the data assimilation and467

predictions.468

B. Parameter estimation469

Before applying the approximate model for prediction, the parameters (Fu, σu, dγ, γ̂, σγ)470

in the approximate model (14) need to be estimated. The training time series only involves471

the observed variable u and the training data has only a short period with 500 units as472

shown in Panel (a) of Figure 1. Applying the parameter estimation algorithm described473

in Section III D, the results are shown in Figure 2. The trace plots associated with all the474

parameters clearly indicate the convergence towards certain values with small uncertainties.475

Notably, the estimation values of the two parameters σu and Fu in the observed process are476

almost the same as the ones in the perfect model. The averaged values of the trace plots477

from iteration k = 5000 to iteration k = 10000 are utilized as the estimated parameters in478

the approximate model for prediction:479

dγ = 0.2545, γ̂ = 1.121, Fu = 0.2489, σγ = 0.4362, σu = 0.1008. (15)

C. Long-term prediction480

With the estimated parameters, we begin with studying the long-term prediction using481

the approximate model (14). As an analogy to Panels (a)–(c) in Figure 1 for the perfect482

model, Panels (d)–(f) in Figure 1 show the trajectories, PDFs and ACFs of the approximate483

model. Note that Panel (d) is simply a free run of the model. Therefore, there is no point-484

to-point correspondence between the trajectories shown in Panels (a) and (d) for the perfect485

and approximate models. Nevertheless, it is easy to see that the trajectories from the perfect486

and approximate models are qualitatively similar to each other, indicating the skill of the487

approximate model in capturing the long-term dynamical and statistical behavior. Next, to488

understand the quantitative similarity between the two models, the equilibrium PDFs and489

the ACFs are compared.490
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Panels (c) and (f) show that both the ACFs of u and γ associated with the two models491

are very similar to each other, indicating the success of the approximate model in capturing492

the temporal information of the perfect system. On the other hand, as shown in Panels493

(b) and (e), the PDF of u is also perfectly recovered by the approximate model, where494

using the information distance (7) the difference between the PDFs associated with the495

approximate and perfect models P(peq(u), pMeq (u)) = 0.0345 is a negligible value. The PDF496

of γ is not perfectly recovered because the approximate model uses only a linear system with497

additive noise for γ, which fails to capture the non-Gaussian PDF of γ. This is known as498

the information barrier22. Nevertheless, the PDF of γ associated the approximate model is499

nearly exact the same as the Gaussian fit of the bimodal distribution associated with the500

truth. This in fact implies that the approximate model has reached its predictability limit501

in predicting the long-term statistics of the hidden variable γ.502
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FIG. 1. Model trajectories, PDFs and ACFs of the perfect model (11) with parameters in (12).504

Top: u ; Bottom: γ. Note that the PDFs and ACFs are computed based on the model simulation505

with a length of 10, 000 units. But in panels (a) and (c) only time series with a length of 500 time506

units are shown. The black curves in the PDFs show the Gaussian fits.507508
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FIG. 2. Parameter estimation of the approximate model (14). Top: trace plot. Bottom: posterior

PDFs of the parameters from the trace plot taking the values from k = 5000 to k = 10000. The

black lines show the values of σu and Fu in the perfect model (11), serving as reference values.
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D. Data assimilation510

One key feature of the approximate model (14) is that it belongs to the conditional511

Gaussian model family (1), which allows using the closed analytic formulae (3) to solve the512

the conditional distribution p(γ|u) for assimilating the unobserved variable γ. Note that513

the perfect model (11) is not a conditional Gaussian system and expensive particle methods514

have to be used in order to assimilate the unobserved variable γ even in this two-dimensional515

system. Therefore, the approximate model (14) is much more computationally efficient for516

state estimation, data assimilation and prediction.517

Figure 3 shows the data assimilation results using the approximate model (14) as the518

forecast model. It is clear that the γ values associated with the intermittent phase of u519

are recovered with both high accuracy and low uncertainty. The accurate recovery of the520

hidden variable γ at the intermittent phase of u indicates its potential for predicting the521

extreme events. On the other hand, assimilating the γ states corresponding to the quiescent522

phase of u are recovered with high uncertainty. The posterior mean also fails to track the523

fluctuations in the true trajectory. This is not surprising since the quiescent phases of u524

have weak amplitudes and therefore the noise-to-signal ratio is large. In fact, as long as the525

hidden variable γ stays positive, playing the role as a damping, it has very weak influence526

on the dynamics u at the quiescent phases. The assimilated values and uncertainties of γ527

accurately reflect these features.528

22



0 50 100 150 200 250 300 350 400 450 500
0

2

4

(a)  True signal of u

0 50 100 150 200 250 300 350 400 450 500
0
2
4

(b)  Truth signal and the assimilated posterior mean of γ

 

 Truth
Assimilated

0 50 100 150 200 250 300 350 400 450 500
0

0.1
0.2

(c)  Assimilated posterior variance of γ

t

FIG. 3. Data assimilation of the hidden variable γ using the approximate model (14) as the

forecast model. The true signal of the observed variable (panel (a)) is generated from (11). Panel

(b) shows the true signal of γ from (11) and the assimilated (filtered) posterior mean of γ using

the approximate forecast model (14). Panel (c) shows the posterior variance. The black dashed

boxes indicates the events that will be studied for short-term prediction in the next subsections.
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E. Short- and medium- range forecasts529

To study the short- and medium-range forecast, we first show the RMSE and the Corr530

between the predicted time series and the truth as a function of lead time. Here the ensemble531

mean is used as the predicted time series. As illustrated in Panels (a)–(b) of Figure 4,532

the approximate model with the assimilated initial conditions has an overall comparable533

prediction skill as the perfect model prediction with the perfect initial conditions. The only534

main difference lies in the very short term for predicting γ, where the prediction using the535

approximate model with the assimilated initial conditions has a larger error. This is due536

to the large uncertainty in the assimilated initial conditions at the quiescent phases. In537

fact, if we adopt the approximate model as the forecast model but use the perfect initial538

conditions (green curves), then the prediction skill is almost the same as using the perfect539

model prediction. Note that the overall skillful prediction of u lasts up to 5 units while that540

of γ is around 2 units.541

Panels (c)–(d) and (e)–(f) of Figure 4 show the lead time prediction at 0.2, 0.5 and 1.5542

units using the approximate model with the assimilated initial conditions and the perfect543

model with the perfect initial conditions, respectively. The prediction of u, especially the544

extreme events, is quite accurate at all the three lead times for both the models. The545

prediction of the negative phase of γ is also nearly perfect. The only difference between the546

two models lies in predicting the positive phases of γ, where the approximate model cannot547

provide an accurate prediction even at a very short lead time. This is due to the error and548

the uncertainty in the assimilated initial conditions as was discussed above. On the other549

hand, while the perfect model is able to predict the positive phase of γ (corresponding to the550

quiescent phases of u) in a very short term, it is interesting to see that even with the perfect551

model and perfect initial conditions, some significant errors already appear in predicting the552

positive phases of γ at a lead time 0.5. At a lead time 1.5, the perfect model essentially gives553

the same results as the approximate model, where an accurate prediction is found in both554

u and the negative phase of γ while the model is not very skillful in predicting the positive555

phase of γ. These facts indicate that when γ is positive it only has a weak influence on u556

and therefore the system has an intrinsic weak dependence of γ.557

To conclude, the approximate model has almost the same short- and medium-range fore-558

casting skill as the perfect model, especially in predicting the extreme events in u and the559
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corresponding triggering phases in γ.560
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FIG. 4. Short- and medium-range forecasts. Panels (a)–(b): RMS error and pattern correlation562

between the predicted time series and the truth as a function of lead time. Red: prediction563

using the approximate model (14), where the initial values of γ are obtained by data assimilation.564

Dashed blue: prediction using the perfect model (11) with perfect initial conditions. Dashed green:565

prediction using the approximate model (14) but with perfect initial conditions. Panels (c)–(d):566

Ensemble mean prediction using the approximate model with assimilated initial condition (IC) at567

lead times 0.2, 0.5 and 1.5. The blue curves show the truth while the red ones show the prediction.568

Panels (e)–(f): Similar to (c)–(d) but using the perfect model and perfect initial condition.569
570

571
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F. Prediction with an initial value starting outside the attractor572

Finally, we study the prediction skill of the approximate model if the initial value is out-573

side the attractor (the statistical equilibrium state). In Figure 5, we consider the situations574

where either the initial value of u or that of γ is outside the attractor. It is clear that when575

u(0) is outside the attractor while γ stays in the attractor (Panels (a) and (c)), the trajectory576

of u releases to the attractor in a similar fashion using both the approximate model and577

the perfect model. This is because there is no approximation in the observed process u and578

the time evolution of γ at the attractor has already been shown to be accurately described579

using the approximate model. On the other hand, if γ starts from a value that is outside the580

attractor (Panels (b) and (d)), then the approximate model in capturing the relaxation of γ581

towards the attractor may contain errors. In fact, when γ starts from a large value as shown582

in Panel (b), the cubic damping plays an important role in strongly pushing the system583

towards the attractor. Starting from a large value of γ, the impact of the cubic damping is584

much stronger than that at the attractor and therefore the approximate model with a linear585

damping in γ fails to capture this feature. Nevertheless, if u stays on the attractor, then as586

long as γ is positive it has only a weak influence on the observed variable u. Therefore, the587

overall dynamics of u can still be described quite well using the approximate model.588589
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FIG. 5. Ensemble predictions with the initial values starting outside the attractor. Panels (a)

and (c): u(0) = 10 starts from a value that is off the attractor. γ(0) = 1 is inside the attractor.

Panels (b) and (d): u(0) = 0.5 starts from a value that is inside the attractor. γ(0) = 10 is off the

attractor. Here Panels (a)–(b) show the results using the approximate model while Panels (c)–(d)

show those using the perfect model. In all the panels, blue curves show the truth and red curves

show the ensemble mean which is the average value of 50 ensembles showing in green color.
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V. A DYAD MODEL WITH ENERGY-CONSERVING NONLINEAR590

INTERACTION591

The nonlinear test model in the previous section involves only an one-way influence from592

γ to u. Yet, in many applications, the observed variables and the unobserved ones have593

mutual interactions, which are also often though energy-conserving nonlinear terms35,36.594

Therefore, it is important to understand different strategies in building approximate models595

to predict the extreme events and other non-Gaussian behavior in such kind of the systems.596

In this section, a simple but judicious feedback control strategy is adopted to facilitate the597

prediction of the hidden extreme events in an energy-conserving nonlinear dyad model.598

A. The models599

The perfect model.600

Consider a nonlinear dyad model with energy-conserving nonlinear interaction,601

dv =
(
− dvv − cu2

)
dt+ σvdWv,

du =
(

(−du + cv)u+ Fu

)
dt+ σudWu.

(16)

Again only partial observations are available in this nonlinear dyad model, where v is the602

observed variable while u is unobserved. This low-order nonlinear model can be regarded603

as a toy model of complex turbulent flows. For example, v can be treated as one of the604

Fourier modes associated with the large-scale observed variables while u is associated with605

the hidden mechanism that drives v. If u represents unresolved or small-scale variables, then606

its statistics can be highly non-Gaussian. Here, v plays the role of the stochastic damping607

in the process of u such that intermittent extreme events appear in the trajectory of u.608

Note that this model is very different from the SPEKF-type of the model described in the609

previous section. In fact, in the dyad model (16), the variable u also provides a nonlinear610

feedback to v via −cu2 such that the total energy in the nonlinear terms of the coupled611

system is conserved, which is known as the physics constraint35,36.612

Below, the nonlinear dyad model (16) is used as the perfect model. The focus of this613

section is to predict the extreme events in the unobserved process u. To this end, the614
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following parameters are taken in the nonlinear dyad model (16),615

Fu = 1, du = 0.8, dv = 0.8, σu = 0.2, σv = 2, c = 1.2. (17)

As shown in Panels (a)–(c) of Figure 6, the nearly Gaussian observed variable v switches616

between positive and negative states, which leads to the intermittency in the hidden process617

u. The non-zero forcing Fu = 1 makes the signal of u stay almost within the positive values618

and the PDF of u is skewed with an one-side fat tail. Note that the amplitude of this forcing619

term provides different dynamical behavior of the model. In the last part of this section, the620

prediction skill in different dynamical regimes with various values of Fu will be reported.621

The approximate model.622

Again, a suitable approximate model is able to predict the extreme events and other623

important non-Gaussian features of the perfect model. Meanwhile, the approximate model624

is expected to be computationally efficient for data assimilation and prediction. Due to625

the closed analytic formulae of the conditional Gaussian models in assimilating the unob-626

served variables, we now aim at developing a suitable approximate model that belongs to627

the conditional Gaussian framework. Note that by observing v, the perfect model (16) is628

not a conditional Gaussian nonlinear system. One starting idea for building an approximate629

model is to apply a bare truncation strategy, which ignores the quadratic feedback term −u2
630

in the process of v in (16). This is actually a commonly used strategy in developing approx-631

imate models for many complicated systems in practice, where some nonlinear terms are632

dropped. However, this strategy does not work for studying the extreme events with partial633

observations. In fact, without this feedback term, the variable u is completely decoupled634

from the process of v. In other words, given only the observations in v, the processes and635

the parameters of u are not even identifiable. What is more, using the same parameters as636

in (17), such an approximate model suffers from a finite-time blowup of the signals35,110.637

The failure of the bare truncation model is due to the complete ignorance of the nonlinear638

feedback term from u to v. This nonlinear feedback not only provides the observability of639

u in the v process but also offers the important causal effects between the two processes.640

Therefore, a suitable approximate model is supposed to take into account such an interaction641
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between the two processes. To this end, the following approximate model is adopted,642

dv =
(
− dvv − cu

)
dt+ σvdWv,

du =
(

(−du + cv)u+ Fu

)
dt+ σudWu.

(18)

This approximate model uses a linear feedback −cu to approximate the nonlinear interaction643

−cu2 in the original dyad model. This simplification can be regarded as using a linear control644

term to retain the mutual dependence of u and v. It also allows the approximate model to645

belong to the conditional Gaussian framework that facilitates efficient data assimilation and646

prediction algorithms.647

B. Parameter estimation648

For the parameter estimation of the approximate model (18), we make use of a short649

training data of v with only 500 time units as shown in Panel (a) of Figure 6. The parameter650

estimation algorithm is run for K = 15000 steps and the averaged values from the trace651

plots between k = 5000 to k = 15000 is used as the estimated parameters,652

dv = 0.9234, du = 0.6672, c = 1.8249, Fu = 0.6041,

σu = 0.0527, σv = 2.0203.
(19)

It is useful to compare the estimated parameter values in the approximate model (19) with653

those in the perfect model (17). This helps understand the dynamical properties of the654

approximate model.655

The feedback parameter c in the approximate model (17) is increased. This is due to656

the fact that cu2 in the perfect model is replaced by cu in the approximate model while657

the amplitude of u in the perfect model is often larger than 1 especially in the intermittent658

phases. Therefore, the coefficient c has to be increased in order to retain the amplitude of659

the feedback from u to v. On the other hand, according to the second equation in (18), due660

to the increase of c, the amplitude of u will increase as well especially for the intermittent661

phase. Therefore, the forcing Fu in the approximate model is decreased in order to retain662

the amplitude of the observed variable u as in the perfect model.663
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C. Long-term prediction664

With the estimated parameters in hand, we first compare the long range forecasts between665

the perfect dyad model (16) and the approximate model with the linear feedback (18).666

In Panels (d)–(f) of Figure 6, the trajectories, the PDFs and the ACFs associated with667

the approximate model are shown, where for a fair comparison of the time series, the same668

random number seeds are used. The recovered trajectory of the observed variable v using669

the approximate model with the linear feedback term almost perfectly matches that of the670

truth (with Corr = 0.998 and RMSE = 0.011).671

Now let us focus on the hidden intermittent variable u. Comparing the second and the672

fourth rows of Figure 6, it is clear that the approximate model with the linear feedback673

(18) is skillful in generating the intermittent extreme events in u. In fact, the pattern674

correlation between the two time series in these two rows is 0.93, which also indicates that675

the approximate model is able to capture the timing of the occurrence of extreme events.676

Yet, there are two main errors in the approximate model. First, the amplitudes of the677

intermittent events seem to be slightly overestimated. This is easy to understand because in678

order to reach the same observed trajectory v, the linear feedback requires a larger u in the679

approximate model than the quadratic nonlinear feedback in the perfect model. Second, the680

quiescent events also seem to be slightly underestimated in the approximate model. This681

results in the fact that the peak of the associated PDF is closer to zero than that of the true682

signal. The model error683

Eeq = P(peq, p
M
eq ) = 0.46, (20)

which, although is non-negligible, comes largely from the quiescent events. The PDFs of684

u associated with both the perfect and approximate models are skewed with an one-sided685

fat tail. Therefore, the long range behavior of the approximate model in capturing the686

information in the tail that corresponds to the extreme events remains similar to that of the687

perfect model.688

Another conclusion drawn from Figure 6 is that the ACFs of u and v associated with689

both the perfect model and the approximate model are very similar to each other, decaying690

to zero after one time unit.691692
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FIG. 6. Panels (a)–(c): Time series, PDFs and ACFs of the dyad model (16) with the parameters

in (17). Panels (d)–(f): those of the approximate model (17) with the estimated parameters in

(19).
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D. Data assimilation, Short- and medium-range forecasts693

Given the observation in v, the assimilated u is shown in Figure 7. Overall, the assimilated694

signal of the hidden variable u and the truth have a very good match in terms of the patterns.695

Yet, due to the intrinsic model error as discussed above, the quiescent and intermittent696

phases are slightly underestimated and overestimated, respectively.697

Panels (a)–(b) of Figure 8 show the RMSE and the Corr between the true signal and the698

ensemble mean predictions as a function of lead time. Except at the very short lead time,699

where the data assimilation results in some uncertainties in the initial values, the approxi-700

mate model essentially gives the same prediction skill as the perfect model in terms of the701

RMSE and the Corr. This indicates the overall skillful prediction using the approximate702

model. Note that since our focus is the extreme events in the hidden process, some extra703

information beyond the RMSE and Corr needs to be explored. In Panels (c)–(d), a compar-704

ison of the medium range forecasts and the forecast PDFs at lead time t = 0.6 is shown. It705

is clear that the approximate model is more skillful in capturing the extreme events and the706

fat tail of the predicted PDF than the perfect model. This is not surprising. In fact, it is707

well known that the amplitude of the ensemble mean prediction decays as time evolves. On708

the other hand, the slight overestimation of the amplitude of u in the approximate model709

compensates the underestimation of the amplitudes in the ensemble mean forecast, which is710

crucial in predicting extreme events at the medium range.711

Figure 9 shows four case studies of the time evolution of the predicted PDFs starting712

from different initial phases. The predictions of v using both the perfect model and the713

approximate model are overall similar to each other. Note that more ensemble members in714

the prediction using the approximate model are actually able to forecast the extreme events715

than the perfect model. This feature is quite useful for medium-range forecast, especially716

when the starting time is an onset phase of the extreme events in u (Cases 1 and 2). In717

addition, even with some errors in the initial condition due to the data assimilation (Case718

4), the approximate model is still able to capture the time evolution of extreme events.719
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(18).
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perfect initial condition. Green: approximate model prediction with assimilated initial conditions.
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of the medium range forecast PDFs at lead time t = 0.6.
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FIG. 9. Case studies. Time evolution of the predicted PDFs starting from different initial phases.

Each PDF is shown with 50 thin curves, which represent the 1st, 3nd, 5th, . . . , 97th and 99th

percentiles of the of the PDF. The green curve represents the mode of the PDF since the PDF is

non-Gaussian. The black dashed curve is the true signal. Columns (a)–(b): starting from an onset
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E. Prediction with an initial value starting outside the attractor720

In this subsection, we compare the predictions when the initial values are outside the721

attractor. According to Figure 6, the attractor of u contains values that are positive but722

almost always stay below u = 4. Thus, we consider the following two situations: A). the723

hidden variable u starting from a negative value, and B). the hidden variable u starting from724

a large positive value.725

A. The hidden variable u starting from a negative value.726

In Panels (a)–(f) of Figure 10, we show the prediction where u starts from a negative727

value u(0) < 0. Here, v always starts from its equilibrium mean value v(0) = −0.9584.728

In Panels (a)–(b), u(0) = −0.2 is slightly negative. The approximate model behaves in a729

similar way as the perfect model, where after a short term, the trajectory will arrive at the730

attractor. However, when u(0) = −0.5 as shown in Panels (c)–(d), some of the ensemble731

members in the approximate model blows up in finite time (around t = 1.5). See the second732

row of Panel (d). Such a behavior becomes even worse when u(0) is decreased to u(0) = −0.8733

as shown in Panels (e)–(f), where quite a few ensemble members blow up in a short finite734

time (around t = 0.5 to t = 1.5). Panel (g) of Figure 10 shows the percentage of the events735

that blow up as a function of the initial value u(0). As expected, with the decrease of u(0),736

the number of blowup events increases.737

Now we look at both the perfect and approximate models (16) and (18) to understand the738

mechanism that leads to such a finite time blowup issue in the approximate model. First,739

when u and v are at the attractor, u stays in positive values. When the amplitude of u740

increases due to a negative value of v, both the linear and nonlinear feedback in (16) and741

(18) will push v back to a negative value and the consequence is that v will strongly damp742

u and decreases the amplitude of u. However, when u is negative, the nonlinear feedback743

−cu2 and the linear feedback −cu will play completely different roles since −cu2 < 0 while744

−cu > 0. The dynamical property of the perfect dyad model (16) remains unchanged. But745

the blowup issue appears in the approximate model (18). In fact, once u is negative, the746

linear feedback will make v become positive. As a result, the positive anti-damping of v747

will further increase the amplitude of u, which makes u blow up in a short time. When the748

initial value u(0) has a small amplitude (e.g., u(0) = −0.2), the forcing Fu = 1 > 0 may be749

able to overcome the anti-damping in the short term and push the solution to the attractor.750
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But if the amplitude of u(0) is large, then the role of Fu is weaker than the anti-damping751

from v, and the solution has a much higher chance to blow up.752

B. the hidden variable u starting from a large positive value.753

Now we let the hidden variable u start from a large positive value and study how the754

solution adjusts to the attractor. See Panels (h)–(k) in Figure 10.755

First, with a moderately large initial condition u(0) = 5 as shown in Panels (h)–(i), the756

hidden variable u using the approximate model releases to the attractor in almost the same757

way as that using the perfect model. The trajectories of v are slightly different, but since758

v is always very negative, the strong damping of v makes the trajectories of u in the two759

models have very similar behavior.760

Next, we increase the initial condition to u(0) = 10. Then we first notice a more significant761

different in the predicted trajectory of v, where in a short term t = 0.2 the true trajectory762

and the perfect model prediction can reach v = −8 while the approximate model only allows763

v = −3. This is due to the model error in the feedback terms. In fact, when u is large, −cu2
764

in the perfect model will be much larger than −cu in the approximate model. This leads to765

the large error in v. As a result, the damping in the approximate model then becomes much766

weaker compared with the perfect model. Therefore, u releases slower in the approximate767

model (see the second row of Panel (k)). Notably, the ensemble prediction in the second768

row of Panel (k) seems not to be too far from the truth (black dashed curve). But the truth769

is outside 99 percentile of the prediction (the most bottom red curve) when t is between770

t = 0.1 and t = 0.5.771
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FIG. 10. Prediction of the dyad model with initial values being outside the attractor. Panels

(a)–(f) and (h)–(k): Time evolution of the predicted PDFs starting from different initial phases.

Each PDF is shown with 50 thin curves, which represent the 1st, 3nd, 5th, . . . , 97th and 99th

percentiles of the of the PDF. The green curve represents the mode of the PDF since the PDF is

non-Gaussian. The black dashed curve is the true signal. In Panels (a)–(f), the hidden variable

u starting from a negative value. In panels (h)–(k), the hidden variable u starting from a large

positive value. Panel (g) shows the percentage of the events that blow up as a function of the

initial value u(0).
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F. Dynamical regimes with different Fu772

So far, we have focused on the regime with Fu = 1. In this subsection, the role of Fu773

will be explored and dynamical regimes with different Fu will be studied for predicting the774

hidden extreme events.775

In Panel (a) of Figure 11, the trajectories of u from the perfect model (16) with different776

Fu are shown. Here, the same random number seeds are used in generating these time series777

for a fair comparison.778

Regime I: 0.7 ≤ Fu.779

When Fu is sufficiently large, the approximate model with the linear feedback (18) is a780

suitable model for predicting the hidden extreme events.781

Regime II: 0 ≤ Fu < 0.3.782

When Fu approaches zero, the intermittent events in u can have both signs. As was783

discussed in Section V E, when u is negative, the linear feedback −cu in (18) will play a784

significant different role compared with the nonlinear feedback −cu2 in the perfect model785

(16). In fact, the linear feedback −cu becomes positive and make v to be positive. Then786

the anti-damping of v in the process of u leads to the finite time blowup. Therefore, we787

conclude that using the approximate model (18) with a linear feedback to predict the hidden788

extreme events in u requires that the forcing Fu in the perfect dyad model cannot be too789

small. If the forcing Fu in the perfect dyad model is too small, then the approximate model790

does not have a mechanism to recover the intermittent events in u when u is negative. A791

new approximate model that has skill in capturing the extreme events with both signs needs792

to be developed.793

Regime III: 0.3 ≤ Fu < 0.5.794

When Fu ≥ 0.3, the intermittent events in the true signal of u only occur in the positive795

phase. However, the true trajectory of u still goes below 0 quite frequently (with small796

amplitudes). Panel (c) of Figure 11 shows the data assimilation of u using the approximate797

model with the linear feedback (18), where the parameters are re-estimated based on the798

observed signal of v in Fu = 0.3 regime. One important result is that the assimilated state799

of u can occasionally become quite negative! In fact, as is shown in Panels (b)–(c), before800

the assimilated u goes to a negative value, the signal of v is large and positive while u is801
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nearly zero. Therefore, when the trajectory of u becomes slightly negative in the true signal,802

the anti-damping v will amplify the negative phase of u. Since the positive forcing Fu = 0.3803

here is pretty weak, this forcing is unable to push u back to the attractor with positive804

values immediately and therefore the assimilated state of u will stay in the negative phase805

for a while. According to the discussions in Section V E, if the prediction starts with a large806

negative value of u, then even for a short term, the prediction using the approximate model807

may suffer from a short-term blowup110.808

Regime IV: 0.5 ≤ Fu < 0.7.809

Now the data assimilation results using the approximate model (18) provides the state810

of u that is always positive. Thus, there will be no issue in data assimilation. However, as811

shown in Panels (d)–(f) of Figure 11, the approximate model can still suffer from a long (but812

finite) time blow up issue. This is again related to the insufficient strength of Fu. In fact,813

the trajectory of u still has some chances to become slightly negative and the corresponding814

values of v at these time instants are usually large. Therefore, the anti-damping v and the815

forcing Fu in the process of u compete with each other. If the strength of forcing is not816

strong enough, then for some events, the anti-damping can results in the blowup issue of817

u110.818
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FIG. 11. Dynamical regimes with different Fu. Panel (a): trajectories of u from the perfect model

(16) with different Fu are shown. Here, the same random number seeds are used in generating

these time series for a fair comparison. Panel (b): True signal of v in Fu = 0.3 regime from the

perfect model. Panel (d): True signal of u in Fu = 0.3 regime from the perfect model (blue) and

the assimilated posterior mean using the approximate model. Panels (e) and (f): trajectories of the

approximate model with the estimated parameters from the observed true signal of v in Fu = 0.5

regime.
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VI. THE LORENZ 63 MODEL819

In many applications with chaotic or turbulent phenomena, due to the incomplete knowl-820

edge of the underlying dynamics, noise inflation is often incorporated into the dynamical821

processes21,104,111. The enhanced noise plays the role of parameterizing small-scale fluctua-822

tions, which helps increase the variability of the system and has a potential of improving823

the data assimilation and prediction skill. Yet, it has not been well understood the effect of824

noise inflation in the extreme events prediction. Therefore, in this and the next two sections825

(Section VII and Section VIII), noise inflation will be incorporated into the dynamical sys-826

tems for testing the ensemble prediction skill of the observed and hidden extreme events as827

well as other non-Gaussian characteristics. The difference between the studies in these three828

sections is as follows. In Section VII and Section VIII, the noise inflation will be combined829

with various effective and practical strategies for developing effective and simple approxi-830

mate models for improving the prediction of the extreme events resulting from complicated831

turbulent dynamical systems with regime switching. In this section, the chaotic Lorenz 63832

model is used as a testbed to understand the skill of the extreme events predictions, where833

the inflated noise acts as the only source of the model error.834

A. The perfect and approximate models835

The model considered in this section is the Lorenz 63 model72. It is a simplified mathe-836

matical model for atmospheric convection with chaotic behavior. The equations relate the837

properties of a two-dimensional fluid layer uniformly warmed from below and cooled from838

above. In particular, the equations describe the rate of change of three quantities with839

respect to time: x is proportional to the rate of convection, y to the horizontal tempera-840

ture variation, and z to the vertical temperature variation. The constants σ, ρ, and β are841

system parameters proportional to the Prandtl number, Rayleigh number, and certain phys-842

ical dimensions of the layer itself112. The Lorenz 63 model is also widely used as simplified843

models for lasers, dynamos, thermosyphons, electric circuits, chemical reactions and forward844

osmosis113–119.845

Here, we study a slightly different version of the original Lorenz 63 model by adding a

small noise into the x process. We also assume that only a short trajectory of x is observed
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as the training data while y and z are the unobserved variables. The model reads:

dx = σ(y − x)dt+ σxdWx, (21a)

dy =
(
x(ρ− z)− y

)
dt, (21b)

dz = (xy − βz)dt, (21c)

The small noise here can be regarded as the observational or measurement uncertainty. It846

also helps prevent the singularity in the data assimilation formula in (3), which requires a847

non-zero noise in the observational process. Nevertheless, with a small noise coefficient, the848

dynamical behavior of the model in (21) remains almost the same as the original noise-free849

Lorenz 63 model. Below, we always take σx = 1, which is a sufficiently small value. The850

other parameters that are used to generate the true signals of (21) are851

σ = 10, ρ = 28, β = 8/3. (22)

These are the classical choices of the Lorenz 63 model. Figure 12 shows the trajectories,852

PDFs and phase plots of the Lorenz 63 model (21), where the butterfly profile in the phase853

plots and the chaotic features in the model trajectories are clearly demonstrated. Notably,854

there are quite a few extreme events that appear in all the three components due to the855

fact that one of the Lyapunov exponents of the Lorenz 63 system is positive. These extreme856

events occur when the system states switch between the two branches of the “butterfly857

wings”.858

The short trajectory of x in Panel (a) of Figure 12 with only 50 units will be used as the859

observed training data for the approximate models below.860

The approximate models.861

Below, we aim at understanding the model error that comes from the noise inflation. To862

this end, it is natural to propose the following approximate model,863

dx = σ(y − x)dt+ σxdWx,

dy =
(
x(ρ− z)− y

)
dt+ σydWy,

dz = (xy − βz)dt+ σzdWz,

(23)

where the noise coefficients σy and σz are given and fixed empirically, which account for the864

noise inflation in the hidden variables. Note that here the deterministic parts in the perfect865

model (21) and the approximate model (23) are the same, which is not always the case in866
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FIG. 12. Trajectories (Panels (a)–(c)), PDFs (Panels (d)–(f)) and the phase plots (Panels (g)–(j))

of the noisy Lorenz 63 model (21) with parameters in (22) and a small noise coefficient σx = 1.

real applications where noise inflation is often used to compensate other model errors and867

simplifications. Nevertheless, the setup here allows us to understand the model error that868

comes purely from the noise inflation and its effect on the prediction skill.869

The noise coefficient σx will be estimated from the parameter estimation algorithm. Note870

that since σx is associated with the quadratic variation of the continuously observed training871

data, a prescribed value with inflation may lead to pathological behavior of the parameter872

estimation. Depending on the level of noise inflation, we consider the following three ap-873

proximate models,874

Approximate model I. Small noise inflation: σy = σz = 1,

Approximate model II. Moderate noise inflation: σy = σz = 3,

Approximate model III. Large noise inflation: σy = σz = 5.

(24)

44



B. Parameter estimation875

In the approximate models, there are four parameters to be estimated: ρ, σ, β and σx.876

Here the parameter estimation algorithm as described in Section III D is run up toK = 15000877

steps and the averaged values of the trace plots from k = 5000 to k = 15000 are used as the878

estimated parameters, which are:879

Approx model I: ρ = 27.48, σ = 10.34, β = 2.70, σx = 1.03,

Approx model II: ρ = 31.04, σ = 9.051, β = 2.33, σx = 1.06,

Approx model III: ρ = 34.17, σ = 7.525, β = 2.20, σx = 1.08.

(25)

Note that due to the model error from noise inflation, the estimated parameters in the880

approximate models are not exactly the same as those in the perfect model. In particular,881

with the increase of the noise coefficients σy and σz, the estimated parameter ρ and σ seem882

to be more different compared with the one in the perfect model in order to compensate the883

model error.884

C. Data assimilation885

Figure 13 shows the data assimilation results using the approximate model (23) with the886

estimated parameters, where the true signal of the observed variable x is generated using887

the perfect model (21).888

In the approximate model I, due to the small model error in the inflated noise coefficients,889

the assimilated values of y and z are nearly perfect and the uncertainty reflected by the890

posterior variance in both variables is small. In the approximate model II, the assimilated891

values of y are still quite accurate but those of z show some errors where the mean state of892

z has a slight shift towards the positive value. Such a bias in the assimilated posterior mean893

state is possibly due to the fact that the noise σy leads to the change of the mean value of894

xy in z process since x and y are highly correlated. On the other hand, x and z are not so895

closely correlated, and therefore the mean value of xz that contributes to the mean state of896

y is hardly polluted by the noise. Finally, in the approximate model III, where the inflated897

noise coefficients are large, there are some non-negligible errors in the assimilated states of898

z and the associated uncertainty increases as well. Nevertheless, despite such a mean state899

shift, the overall patterns and amplitudes of z are assimilated quite well.900901
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FIG. 13. Data assimilation using the approximate model (23) with different noise inflation levels

(24). The first row shows the true trajectory of x. The second and third rows show the true signals

of y and z as well as the posterior mean estimations from data assimilation (red). The fourth and

fifth rows show the posterior variance of y and z, respectively.
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D. Long-range forecast902

To quantify the long-range forecast skill, the comparison of the equilibrium PDFs and903

the ACFs between the perfect model and approximate models is shown in Figure 14.904

First, all the three approximate models are able to capture the equilibrium non-Gaussian905

PDFs of both x and y with high accuracy, where the information model error in the equilib-906

rium PDF P(peq, p
M
eq ) ≤ 0.05 is tiny even using the approximate model III. For the variable907

z using the approximate model III, the error is slightly larger P(peq, p
M
eq ) = 0.28 but is still908

acceptable. Such a model error is due to the fact that the PDF associated with z using the909

approximate model has a mean shift compared with the truth, which has already been seen910

in the data assimilation results.911

Next, the approximate models and the perfect model overall share quite similar ACFs,912

indicating similar time evolution behavior (at least up to the second order statistics in time).913

In particular, the direct relaxation of the ACFs of x, y and the oscillated relaxation of that of914

z are both captured by the approximate models. The only non-negligible difference appears915

in the ACF of z when the noise inflation level is large, i.e., in approximate model III, where916

the approximate model has a slightly faster decaying ACF.917
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FIG. 14. Comparison of the PDFs and the ACFs of the perfect model and the approximate model.919
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E. Short- and medium-range forecasts920

To study the short- and medium-range forecasts, we show in Figure 15 three skill scores921

of the predictions as a function of lead time. Two of them, namely the RMSE and the Corr,922

are the classical path-wise measurements while the third one is an information criterion, that923

is, the relative entropy (7) between the PDF of the predicted time series and that of the924

truth. In order to distinguish the errors due to the noise inflation and the initial uncertainty925

with data assimilation, we show the predictions using the approximate model with either926

assimilated initial conditions (ICs) or with perfect initial conditions. All the predictions927

here are based on the ensemble mean, which is the average of 50 ensemble members.928

Columns (a)–(b) and Columns (d)–(e) show the RMSE and Corr of the predictions using929

the approximate models I and II, respectively. These path-wise measurements indicate that930

the skillful predictions of the approximate models regardless of using perfect or assimilated931

initial conditions are up to nearly 3 time units. However, the conclusion based on these932

path-wise measurements can be misleading in this strongly chaotic system. In Columns933

(g)–(h), the relative entropy has a significant increase as the lead time, especially using the934

approximate model II. This implies certain non-negligible errors are not captured by the935

two path-wise measurements. To see such errors, the ensemble mean prediction using the936

approximate models (green) and the truth (blue) at lead time t = 1 are compared in Figure937

16. Both the trajectories and the PDFs are shown in order to compare the path-wise and the938

information measurements. Note that only the Gaussian fits of the PDFs are shown here for939

the purpose of comparing the variance in the truth and the predicted PDFs which reflects940

the skill of capturing the amplitudes especially those of the extreme events. In Column941

(b) of Figure 16, it is shown that although the patterns of the predicted signal are quite942

consistent with the truth, the amplitudes of all the extreme events are underestimated to943

some extent. Thus, the predicted PDF has a narrower shape compared with the truth. Such944

a phenomenon becomes more significant in Column (c) of Figure 16 where the approximate945

model III is used. At lead time t = 1, despite that Corr ≈ 0.8 for x and y and Corr ≈ 0.5946

for z remain skillful, the large values of the relative entropy clearly indicate the discrepancy947

between the predicted PDF and the truth, which is due to the fact that the amplitudes948

of the extreme evens are severely underestimated. These facts conclude the importance of949

using the information criterion in quantifying the model error in the PDFs in addition to950
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the path-wise measurements.951

Figure 17 includes a case study of the ensemble prediction for short- and medium range952

forecasts using approximate models I and III starting from t = 16.5. First, the ensemble953

mean (green) using the approximate model I is skillful up to 2.5 units of the lead time954

while that using the approximate model III has a much shorter skillful prediction. These955

are consistent with the results shown in Figure 16. Next, the uncertainty of the prediction956

is reflected in the ensemble spread. It is clear that in the perfect model prediction the957

ensembles do not spread out until t = 19 while those in the approximate models start958

spreading out around t = 17. This is obviously due to the fact that the noise level is959

higher in the approximate models. Using approximate model I, despite some members960

give false prediction due to the intrinsic chaotic behavior, most of the ensemble members961

are still able to follow the true trajectories, which also results in the skillful ensemble mean962

prediction. However, using the approximate model III, both the large noise inflation and the963

initial uncertainty due to the data assimilation lead to a quick divergence of the ensembles.964

The ensemble spread is able to tell the uncertainty but the ensembles reach the attractor965

much faster than those using the perfect model and therefore the ensemble mean using the966

approximate model losses its skill.967968
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FIG. 15. RMSE (Panels (a)–(c)), Corr (Panels (d)–(f)) and relative entropy (R.E.; Panels (g)–(i))

as a function of lead time for short- and medium-range forecasts using the perfect model (21) (blue)

and the three approximate models (23)–(24) with perfect initial conditions (red) and assimilated

initial conditions (green). The prediction here is based on the ensemble mean. The dashed black

lines in the RMSE panels show one standard deviation of the true signal and those in the Corr

panels show the Corr = 0.5 threshold.
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FIG. 16. Comparison of the ensemble mean prediction using the approximate models and the

assimilated initial conditions (green) with the truth (blue) at lead time t = 1. In each panel, both

the trajectories and the Gaussian fits of the PDFs are shown.
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FIG. 17. Case studies of the ensemble forecasts. Panels (a)–(c): a case study using the approximate

model I. Panels (d)–(f): the same case study using the approximate model III. Each subpanel shows

the time evolution of the prediction, as represented by the time dependent PDF of the ensemble

forecast. Note that each PDF is shown with 50 thin curves, which represent the 1st, 3nd, 5th, . . . ,

97th and 99th percentiles of the of the PDF. The green curve represents the mode of the PDF

since the PDF is non-Gaussian. The black dashed curve is the true signal.
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F. Prediction with an initial value starting outside the attractor969

Panels (a)–(f) and Panels (g)–(l) in Figure 18 show the prediction where the initial values970

of the observed variables x(0) = 150 and those of the unobserved ones y(0) = z(0) = 150971

are outside the attractor, respectively.972

The skill of capturing the transition behavior of the approximate models depends on the973

model error in the noise inflation. The approximate model I behaves almost the same as the974

perfect model due to its small noise inflation. The approximate model II is able to capture975

the transition behavior in short and medium ranges if the initial values of y and z are off976

the attractor. However, it fails to predict the two hidden variables after a very short period977

if the initial value of x is off the attractor. On the other hand, the approximate model978

III, which has the largest noise inflation coefficients, only has skillful prediction for a short979

period no matter which variable starts from a value that is outside the attractor.980
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FIG. 18. Prediction with an initial value starting outside the attractor. Panels (a)–(d): Prediction

where x starts at x = 150, which is a value that is off the attractor. Panels (e)–(h): Prediction

where both y and z start at y = z = 150, which are values that are off the attractor. Each PDF is

shown with 50 thin curves (blue for the perfect model and red for the approximate model), which

represent the 1st, 3nd, 5th, . . . , 97th and 99th percentiles of the of the PDF. The green curve

represents the mode of the PDF since the PDF is non-Gaussian. The black dashed curve is the

true signal.
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VII. A PARADIGM MODELS FOR TOPOGRAPHIC MEAN FLOW981

INTERACTION WITH REGIME SWITCHING BEHAVIOR982

Regime switching between multiple metastable states is a key feature in many nonlinear983

turbulent dynamical systems120–122. One example is the atmospheric flow regimes, which rep-984

resent the recurrence of certain flow structures despite the intrinsic chaotic behavior of the985

underlying system. The existence of persistent or recurrent weather patterns123 with block-986

ings is one of the most pronounced illustrations of synoptic-scale circulation regimes124,125
987

while different circulation regimes and their switching were also found in planetary-scale988

patterns126,127. The metastable states have their unique dynamical behavior and the regime989

switching often triggers extreme events and other important nonlinear phenomena. Notably,990

the regimes can appear even though the observed data have a nearly Gaussian probability991

distribution122,128,129. Due to the highly complex nature of these regimes and their switching992

behavior as well as only the availability of the partial observations, it is important to develop993

suitable approximate models for capturing both the dynamical and statistical features of the994

regime switching and for predicting the associated extreme events. In this section, we con-995

centrate on the development of nonlinear low-order models to achieve the above tasks, where996

the topographic effect is regarded as the result of random structures from either atmosphere997

or ocean in intermediate and small scale.998

A. The perfect model999

Consider the barotropic quasi-geostrophic equations2,

∂q

∂t
+∇⊥ψ · ∇q + u(t)

∂q

∂x
+ β

∂ψ

∂x
= 0, (26a)

q = ∆ψ + h, (26b)

du

dt
= −
∫
h
∂ψ

∂x
. (26c)

This is an ideal model to study the complex nonlinear interaction of the large-scale and1000

the small-scale flow and the role of the topography. The model exhibits a regime switching1001

behavior with blocked and unblocked zonal flow structure despite that the associated PDF1002

of the zonal flow has only a single modal. The study of this model for understanding its1003

mathematical properties, developing reduced order models and uncertainty quantification1004
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can be found in a series of papers2,36,53,130,131. In particular, rigorous statistical bounds in1005

quantifying the uncertainty for the ensemble prediction of barotropic flow over topography1006

has been shown in a recent paper132.1007

In this model, the small-scale flow is given in terms of the stream function ψ, and q is the1008

small-scale potential vorticity. The large-scale velocity field only has the zonal component1009

u(t), and the topography is given by the function h = h(x, y). The parameter β > 0 is the1010

contribution from the beta-plane effect. Both the small-scale potential vorticity q and the1011

small-scale stream function ψ, as well as the topography h, are assumed to be 2π-periodic1012

functions in both variables x and y with zero average. The large-scale velocity u(t) is strongly1013

coupled with the small-scale flow through equation (26c), where the bar across the integral1014

sign indicates that the integral has been normalized by the area of the domain of integration.1015

Below, we consider a special situation to the full nonlinear system, which inherits the1016

nonlinear coupling of the small-scale flow with the large-scale mean flow via topographic1017

stress. The model is named as the layered topographic equations. Here the topography is1018

layered in the fixed direction ~l = (lx, ly). We assume that both ψ and q only depend on1019

ξ = ~l · ~x with ~x = (x, y). One key feature of the layered topographic equations is that1020

the small-scale nonlinear term in (26a), ∇ψ · ∇⊥q, is identically zero. Nevertheless, the1021

nonlinear coupling due to topographic stress remains and is responsible for much of the1022

complex behavior. Without loss of generality we can always rescale the system with lx 6= 01023

to align to a special case with ~l = (1, 0).1024

In such a situation, the Fourier expansion of ψ and h are given by1025

ψ(x, y, t) =
∑
k 6=0

ψk(t)e
ik~l·~x,

h(x, y) =
∑
k 6=0

hke
ik~l·~x,

(27)

where we have assumed that the topography has zero mean with respect to spatial average,1026

that is h0 = 0. Substituting the ansatz (27) into (26) and adding stochastic forcing and1027

damping, we arrive at the layered topographic equations in Fourier form,1028

dψk
dt

= −dkψk + iklx

(
β

k2|~l|2
− u

)
ψk + i

klx

k2|~l|2
hku+ σkẆk,

du

dt
= −duu− ilx

∑
k 6=0

khkψ
∗
k + σuẆu,

(28)

55



where ∗ denotes the complex conjugate. In (28), ψk, k = 1, 2, . . . ,Λ are the stream functions1029

and u is the large-scale zonal velocity.1030

In the study here, we adopt Λ = 10 and therefore in total there are 21 modes in the1031

model (28), where 1 mode u represents the large-scale zonal flow. The other 20 modes1032

are for the small-scale stream functions with k = ±1, . . . ,±10, which based on the layered1033

topographic functions determine the meridional flows. We assign the following function for1034

the topography,1035

h(x) = H1

(
cos(x) + sin(x)

)
+H2

(
cos(2x) + sin(2x)

)
− i

2

∑
3≤k≤Λ

ei(kx+θk)

kp
+ c.c., (29)

where H1 and H2 are associated with the leading two Fourier modes k = ±1,±2 while1036

the remaining part in (29) represents the amplitudes of the topography for other Fourier1037

modes. Here θk are random phase and p is a power that controls the effects of the small-scale1038

topography. The topography plays an important role in altering the stream functions. With1039

a simple manipulation, it is easy to show that the topographic functions associated with the1040

first two Fourier modes are1041

h1 = H1/2−H1/2i, and h2 = H2/2−H2/2i. (30)

The other hk can also be written explicitly using (29). The following parameters are adopted1042

in the study here. The beta-plane effect is β = 2. The coefficients of the topography are1043

H1 = 1 and H2 = 1/2. The damping coefficients are chosen as1044

dk = du = 0.0125, (31)

which represents a time scale of relaxation time of roughly 80 time units. Such a choice allows1045

a relatively slow (but not infinitely slow) mixing of the system. With different choices of1046

the stochastic noise, the system can also have fast mixing rate. Finally, the stochastic noise1047

coefficients are chosen as follows,1048

σu = σ1 = σ2 =
1

20
√

2
, σk =

1

20
√

2

1

kp
, for p = 3, . . . ,Λ. (32)

Dynamical regimes.1049

Two dynamical regimes will be studied below, which correspond to different values of p1050

with p = 1 and p = 0.5. Note that the “dynamical regimes” here should not be confused1051
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with the “regime switching”. The latter stands for the switching of the model variables1052

between different values or states within a given dynamical regime.1053

Figure 19 shows the time series of the zonal flow u, its associated PDFs and ACFs as1054

well as the accumulated energy in the small-scale stream functions. Here, the accumulated1055

energy E[ψ1:s] is defined as1056

E[ψ1:s] =
s∑

k=1

|ψk|2. (33)

In the regime with p = 1, the trajectory of the zonal velocity u switches between roughly1057

two different states and it stays in each state for a while before switching to the other1058

(see Panel (a)). One state with positive u corresponding to the eastward zonal flow contain1059

extreme events. Despite the nearly “two-state” time series, the associated PDF of u is single1060

modal and is slightly skewed where a single (positive) side fat tail correspond to extreme1061

events for the eastward zonal flow. Note that the regime (state) switching behavior with1062

such a single modal distribution has been systematically studied in122. Despite the single1063

modal distribution, the ACF is highly different from a Gaussian model with exponential1064

decay. In fact, the ACF here first experiences a sharp decrease to ACF = 0.5 and then it1065

decays slowly with almost a linear decaying rate to zero. The total decaying time is about1066

60 time units. On the other hand, regarding the small-scale stream functions ψk, the leading1067

two modes contain about 84% of the total energy. The ACF associated with ψ1 has a strong1068

oscillation with a long memory while that associated with ψ2 only has a weak oscillation.1069

For modes ψk with k ≥ 3, the ACFs decay quite fast.1070

Next, in p = 0.5 regime, the trajectory of the zonal velocity u has a relatively strong1071

mixing rate. The direction of the zonal velocity alternates between eastward and westward1072

quite frequently. Despite the Gaussian statistics, the dynamical regime is still chaotic. The1073

ACF associated with u now behaves in a very different way, where it oscillates and decays1074

quickly to zero. The leading two modes of the small-scale stream functions ψ1 and ψ2 contain1075

about 61% of the total energy, and the ACFs associated with ψk with k ≥ 3 now decay more1076

slowly compared with those in p = 1 regime.1077

Notably, in both regimes, the total flow field alternatives between zonally blocked and1078

unblocked patterns as shown in Panels (j)–(k) and (u)–(v). Recall in (27) the topographic1079

effect is imposed on the layered modes with ~l = (1, 0). This implies that the contributions1080

of all the small-scale stream functions ψk are on the meridional flows while the zonal flow1081
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is driven by the large-scale zonal mode u. As a consequence, when the total flow field is1082

zonally blocked, the large scale zonal velocity u = 0 and the total energy lies in the small-1083

scale stream functions (see Panels (j) and (u)). Similarly, when the zonal flow becomes1084

dominant, its kinetic energy accounts for a large portion of the total energy (see Panels (k)1085

and (v)). Therefore, the regime switching not only alters the flow patterns but also adjusts1086

the energy contributions in the total flow field.1087
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FIG. 19. Dynamical regimes of the layered topographic model (28). Panels (a)–(k): regime with1089

p = 1. Panels (a)–(d) show the time series, PDF, PDF in logarithm scale and the ACF of u. Panel1090

(e) shows the accumulated energy E[ψ1:s] defined in (33). Panels (f)–(i) show the ACFs of the1091

first four stream functions. Panels (j)–(k) show the total streamline at two different time instants1092

marked in red dots in Panel (a). At these two time instants, the model shows the blocked and1093

unblocked zonal flow structure, respectively. Panels (l)–(v) are similar to (a)–(k) but for regime1094

with p = 0.5.1095
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B. The approximate model1096

Recall that the perfect model (28) has a 21-degree of freedom. The approximate model1097

developed here has a much simpler form, which includes only the zonal flow u and the leading1098

two Fourier wavenumbers (with k = ±1 and ±2).1099

The motivation of such a choice of the approximate model comes from the rapid decay1100

of the ACFs associated with the small-scale stream functions. In fact, as shown in Figure1101

19, the stream functions ψk with k = 3, . . . , 10 decorrelate very fast while ψ1 has a much1102

longer relaxation time and ψ2 also has some memory. Therefore, it is natural to retain the1103

dynamics of the leading two modes and incorporate the effects of the small- and fast-scale1104

modes using extra damping and stochastic forcing in the approximate model. This follows1105

the basic idea of the stochastic mode reduction strategy53–56, though the manipulation here1106

is less sophisticated. It is also important to notice that the extra stochastic noise added into1107

the approximate model is crucial since the energy in modes ψk for k = 3, . . . , 10 as shown1108

in Panels (e) and (p) of Figure 19 is non-negligible. Without these extra stochastic noise,1109

the total variance will be underestimated, which will severely affect the prediction skill of1110

the extreme events in the system.1111

For the simplicity of notation, we make a change of variables,1112

ψ1 =
1

2
√

2

(
(v2 − v1)− (v2 + v1)i

)
, and ψ2 =

1

2
√

2

(
(v4 − v3)− (v4 + v3)i

)
. (34)

and therefore the 5-mode approximate model is given by,1113

du

dt
= ω1v1 + 2ω3v3 − duu+ σuẆu,

dv1

dt
= −βv2 + v2u− 2ω1u− dv1v1 + σ1Ẇ1,

dv2

dt
= βv1 − v1u− dv2v2 + σ2Ẇ2,

dv3

dt
= −β

2
v4 + 2v4u− ω3u− dv3v3 + σ3Ẇ3,

dv4

dt
=
β

2
v3 − 2v3u− dv4v4 + σ4Ẇ4,

(35)

where ω1 = H1/
√

2 and ω3 = H2/
√

2. In (35), all the variables u, v1, v2, v3 and v4 are real.1114

The damping and stochastic forcing here are different from the perfect model since they now1115

also include some effects from the smaller scale modes of the perfect model that are ignored1116

here. Notably, the approximate model (35) satisfies the physics constraint, where the total1117

energy in the nonlinear terms is conserved35,36.1118
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C. Parameter estimation, data assimilation and long-term prediction skill1119

The system in (35) is a nonlinear system. In practice, the observational data of the leading1120

a few stream functions can be obtained. Therefore, we assume here the observational time1121

series of ψ1 and ψ2 are available. As in many real applications of atmosphere and ocean, the1122

observational training data is very limited. Here only the short period as shown in Panel1123

(a) or Panel (l) of Figure 19 is used for model calibration. On the other hand, we assume1124

that there is no observations for the zonal flow u. Recall that u plays an important role in1125

transferring energy with the small-scale stream functions in a nonlinear way and altering the1126

system between zonally blocked and unblocked patterns. Thus, for predicting the extreme1127

events in the system, assimilating the unobserved zonal flow u becomes necessary. Note1128

that despite the intrinsic nonlinearity in the coupled system (35), the system belongs to the1129

conditional Gaussian framework as was discussed in Section II, which allows an efficient way1130

of implementing parameter estimation and data assimilation.1131

Parameter estimation.1132

Applying the parameter estimation algorithm described in Section III D, we arrive at the1133

following estimated parameters in the approximate model (35),1134

Regime p = 1 : du = 0.0132, dv = 0.0187, σu = 0.0515, σv = 0.0501,

ω1 = 0.7035, ω3 = 0.3508, β = 1.9954,

Regime p = 0.5 : du = 0.1417, dv = 0.0205, σu = 0.1450, σv = 0.0504,

ω1 = 0.6712, ω3 = 0.3485, β = 1.9963,

(36)

where we have assumed all the damping coefficients in the vi equations are the same and1135

all equal to dv. Similar assumption is used for the stochastic forcing coefficients in the vi1136

equations which all equal to σv.1137

For the estimated parameters, those with clear physical meanings, for example β, ω1 and1138

ω3, are quite close to the truth. The other parameters, mainly the stochastic forcing and1139

damping coefficients, are different from those in the perfect model. Note in particular that1140

the noise coefficients in the approximate model are larger than those in the perfect model.1141

Such a judicious model error with noise inflation compensates the error in the approximate1142

model due to the ignorance of the small-scale stream functions ψk from k = ±3 to ±10.1143
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Data assimilation.1144

Using the approximate model (35) as the forecast model for data assimilation of the1145

zonal flow u, the assimilated values are almost the same as the truth (figures not shown1146

here) with a pattern correlation between the truth and the posterior mean states being 0.981147

and 0.95 in p = 1 and p = 0.5 regimes, respectively. In addition, the amplitudes of the1148

assimilated states and the truth are also comparable with each other, implying the success1149

of assimilating the extreme events. These results indicate the skill of using the approximate1150

model in real-time state estimation of the unobserved process and accurately recovering the1151

overall flow structure.1152

Long-range forecast.1153

Figure 20 shows the long-term forecast results. Panels (a)–(b) present model trajectories1154

of ψ1, ψ2 and u simulated from the perfect model (28) and the approximate model (35)1155

in p = 1 regime. These are simply a free run of each model and therefore we do not1156

expect point-to-point correspondence between the two simulations due to the randomness.1157

Nevertheless, these trajectories indicate that the qualitative features from both the models1158

are similar. In particular, the approximate model succeeds in recovering the regime switching1159

behavior in u. In Panels (c)–(d), the ACFs and PDFs associated with both the models are1160

illustrated. The approximate model is quite skillful in capturing the strong oscillation, weak1161

oscillation and the slowly but non-exponential decay in the ACFs associated with ψ1, ψ2 and1162

u respectively. The approximate model also succeeds in recovering the PDFs of all the three1163

variables, especially the variance which is important for predicting the extreme events in1164

short- and medium-range, as will be discussed in the next subsection. Similar conclusions1165

can be made in p = 0.5 regime. The only slight error lies in tracing the fast decay ACF of1166

u in the approximate model. But the equilibrium PDFs and the ACFs associated with ψ11167

and ψ2 are recovered with high accuracy.1168
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FIG. 20. Long-range forecasts of the layered topographic model. Panels (a)–(d): trajectories of

the perfect model, trajectories of the approximate model, ACFs and PDFs in p = 1 regime. Panels

(e)–(h): similar but for p = 0.5 regime.
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D. Short- and medium-range forecast1169

With the approximate model and the assimilated initial conditions of u, the ensemble1170

forecast is applied to study the short- and medium-range forecasts.1171

Figure 21 shows the RMSE and Corr in the ensemble mean forecast as a function of the1172

lead time. As comparison, the prediction using the perfect model is also included (blue). The1173

approximate model has essentially the same skill as the perfect model in predicting all the1174

three variables ψ1, ψ2 and u. The useful prediction based on these path-wise measurements1175

as well as the information criterion for comparing the predicted amplitudes (not shown here)1176

in p = 1 regime is about 5 units for all the three variables and that in p = 0.5 regime is1177

3.5, 2.5 and 1 units for ψ1, ψ2 and u, respectively. Figure 22 shows the predicted trajectories1178

at lead time 1, 2 and 3 units. The prediction of the extreme events up to 3 lead time units1179

in p = 1 is quite accurate in terms of both the predicted patterns and the amplitudes. The1180

p = 0.5 regime has a shorter range of useful predictions, but the overall skill up to 1 unit1181

for both quiescent and extreme events are significant.1182

Some case studies are included in Figure 23. In Panels (a)–(c), the ensemble prediction1183

starts from t = 300, 1390 and 1460, respectively, and each prediction is run for 30 units1184

forward. Although the overall skillful prediction in p = 1 regime as shown in Figure 21 is1185

5 units, the three events in Panels (a)–(c) of Figure 23 indicate that the useful prediction1186

depends on the initial phase and the follow-up structure of the signal. Despite the intrinsic1187

chaotic behavior, the useful prediction in case study 1 reaches 12 units, where all the extreme1188

events within this time interval are captured accurately by the approximate model. On the1189

other hand, the prediction in case study 2 is completely unskillful due to the fact that u has1190

no internal oscillation structure for this particular event while the long-term trend cannot1191

be captured by the ensemble mean forecast. Case study 3 shows a skillful prediction up1192

to 6 units where again the extreme events within this time interval are captured with high1193

accuracy.1194

Panels (d)–(e) in Figure 23 compare the predicted stream functions using the approximate1195

model with the truth in the case study 1 from Panel (a) at lead times 1.5 and 6.3, where the1196

truth is generated from the perfect 21-mode model. The true values of the large-scale zonal1197

flow at these two time instants are u = 0.727 and u = −0.03, respectively. The approximate1198

model is quite skillful in predicting the overall flow patterns. In particular, the predictions1199
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succeed in capturing the regime switching phenomenon with a zonally unblocked structure1200

at t = 301.5 and a zonally blocked structure at t = 306.3. There are some small errors in the1201

prediction. For example, in Panel (d) the true signal at x = 0.8 has a sudden increase in the1202

meridional velocity while it is missed in the prediction using the 5-mode approximate model.1203

This meridional velocity is actually triggered by the modes ψk, k = 3, 4, . . ., which are not1204

included approximate model. Therefore, even if u, ψ1 and ψ2 are predicted almost perfectly,1205

which is the case here, there can be a small intrinsic barrier in recovering the original field1206

because of the simplification of the model by dropping the smaller scale modes.1207

Similar conclusions are reached for p = 0.5 regime, as can be see in Panels (f)–(j) in Figure1208

23, despite that the useful prediction becomes shorter due to the more intrinsic turbulent1209

behavior in this regime.1210

0 5 10
0

0.1

0.2

0.3

0.4
(a)  RMSE (p = 1 regime)

 

 

0 5 10
0

0.05

0.1

0.15

0.2

0 5 10
0

0.2

0.4

0.6

0.8

lead time

0 5 10
0

0.5

1
(b)  Corr (p = 1 regime)

0 5 10
0

0.5

1

0 5 10
0

0.5

1

lead time

0 5 10
0

0.2

0.4

0.6

0.8
(c)  RMSE (p = 0.5 regime)

0 5 10
0

0.1

0.2

0.3

0.4

0 5 10
0

0.2

0.4

0.6

0.8

lead time

0 5 10
0

0.5

1
(d)  Corr (p = 0.5 regime)

0 5 10
0

0.5

1

0 5 10
0

0.5

1

lead time

Approx model
Perfect model

u

ψ
1

ψ
2

1211

FIG. 21. Short- and medium-range forecasts of the layered topographic model. Panels (a)–(b)1212

show the RMSE and Corr as a function of the lead time in p = 1 regime. Panels (c)–(d) show1213

those in p = 0.5 regime. The black dashed lines in the RMSE panels show the standard deviation1214

of the true signal and those in the Corr panels show the Corr= 0.5 threshold.1215
1216
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65



300 310 320 330
−0.5

0

0.5
(a)  Case study 1 (p = 1 regime)

300 310 320 330
−0.5

0

0.5

300 310 320 330
−0.5

0
0.5

1

1390 1400 1410 1420
−0.5

0

0.5
(b)  Case study 2 (p = 1 regime)

1390 1400 1410 1420

−0.5
0

0.5

1390 1400 1410 1420
−0.5

0

0.5
1460 1470 1480 1490

−0.5

0

0.5

(c)  Case study 3 (p = 1 regime)

1460 1470 1480 1490
−0.5

0

0.5

1460 1470 1480 1490

−1
0
1

350 360 370 380
−1

0

1
(f)  Case study 1 (p = 0.5 regime)

350 360 370 380
−0.5

0

0.5

350 360 370 380

−1
0
1

t

380 390 400 410
−0.5

0

0.5

(g)  Case study 2 (p = 0.5 regime)

380 390 400 410
−0.5

0

0.5

380 390 400 410
−1

0

1

t

1440 1450 1460 1470
−0.5

0

0.5

(h)  Case study 3 (p = 0.5 regime)

1440 1450 1460 1470
−0.5

0

0.5

1440 1450 1460 1470

−1
0
1

t

(d) True flow at t = 301.5

−2 0 2

−2

0

2

Pred flow at t = 301.5

−2 0 2

−2

0

2

(e) True flow at t = 306.3

−2 0 2

−2

0

2

Pred flow at t = 306.3

−2 0 2

−2

0

2

(i) True flow at t = 351

−2 0 2

−2

0

2

Pred flow at t = 351

−2 0 2

−2

0

2

(j) True flow at t = 352.8

−2 0 2

−2

0

2

Pred flow at t = 352.8

−2 0 2

−2

0

2

ψ
1

ψ
2

ψ
2

ψ
1

y

x

u

u

FIG. 23. Case studies of the ensemble prediction. Panels (a)–(e): p = 1 regime. Panels (f)–(j):

p = 0.5 regime. In each subpanel of (a)–(c) and (f)–(h) the blue curve shows the truth and the

red one shows the ensemble mean forecasts which is averaged over 50 ensemble members in green.

Panels (d)–(e) compare the truth and the predicted overall streamlines in p = 1 regime at t = 301.5

and t = 306.3 (marked in black ’+’ in Panel (a)), where the starting time is t = 300. Panels (i)–(j)

compare the truth and the predicted overall streamlines in p = 0.5 regime at t = 351 and t = 352.8

(marked in black ’+’ in Panel (f)), where the starting time is t = 350.
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E. Prediction with an initial value starting outside the attractor1218

Finally, we study the prediction skill of the approximate model, which starts from a1219

value that is outside the attractor. In the three columns of Figure 24, we show the ensemble1220

predictions in p = 1 regime by letting the initial value of u, ψ1 and ψ2 be outside the attractor,1221

respectively. It is not difficult to tell that the true trajectories starting from values outside1222

the attractor behave in a very different way from those inside the attractor.1223

When u(0) is outside the attractor (Column (a)), the ensemble mean prediction using1224

the approximate model is accurate up to 3 units. The ensemble spread is very skillful in1225

capturing the envelope of the true signals as time evolves. When ψ1(0) is outside the attractor1226

(Column (b)). The useful ensemble mean prediction using the approximate model is about1227

10 units. The extreme events within this 10-unit interval in the zonal velocity are accurately1228

captured. Again, the ensemble spread clearly and accurately indicates the amplitudes in the1229

true signal. When ψ2(0) is outside the attractor (Column (c)). The skillful ensemble mean1230

prediction using the approximate model extends to 20 units! Note that within the first 101231

units, the ensemble spread is very narrow, indicating the high confidence in the ensemble1232

mean prediction, including all the extreme events.1233
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FIG. 24. Prediction using the approximate model starting from a point that is outside the attractor.1235

Column (a) shows that when generating the true signal from the prefect model, the initial value of1236

ψ1 is outside the attractor. Columns (b) and (c) show that the initial value of φ2 and u are outside1237

the attractor respectively. Again, the blue curve is the true and the red curve is the ensemble mean1238

prediction with the 50 ensemble members shown in green. Here p = 1.1239
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VIII. A 6-DIMENSIONAL LOW-ORDER MODEL MIMICKING THE1240

CHARNEY-DEVORE (CDV) MODEL1241

A. The perfect model and its properties1242

Charney and DeVore (CDV) made an fundamental contribution for the regime switching1243

behavior of the atmosphere120. In this section, a 6-dimensional low-order model that mimics1244

the dynamical behavior of the CDV model is used as the perfect model. Despite the regime1245

switching behavior, this model has distinct mathematical structures and physical mecha-1246

nisms compared with the one studied in the previous section. It also possesses some unique1247

features, as will be discussed at the end of this subsection, that provide a very tough test1248

for predicting the extreme events and the transition behavior. The goal here is to design1249

suitable and efficient strategies of developing an approximate model that is able to predict1250

the extreme events and other non-Gaussian features in such a model.1251

This 6-dimensional low-order model is obtained by a Galerkin projection and truncation1252

of the barotropic vorticity equation on a β-plane channel133,134. The barotropic vorticity1253

equation is the following,1254

∂

∂t
∇2ψ = −J

(
ψ,∇2ψ + f + γh

)
− C∇2(ψ − ψ∗), (37)

where the domain of longitude and latitude (x, y) are given by [0, 2π]×[0, πb]. The parameter

b = 2B/L determines the ratio between the dimensional zonal length L and the meridional

width B of the channel. The stream function ψ is periodic in x. The meridional boundaries

y = 0 and y = π have the conditions ∂ψ/∂x = 0 and
∫ 2π

0
(∂ψ/∂y)dx = 0. The Coriolis

parameter f generates the beta effect in model. Orography enters with h, the orographic

height, and is scaled with γ. J is the Jacobi operator and the damping coefficient C is

the newtonian relaxation to the streamfunction profile ψ∗, which represents the forcing

associated with the two zonal modes as will be discussed shortly. Next, the barotropic

vorticity equation (37) is projected on a set of basis functions which are eigenfunctions of

the Laplace operator ∇2,

φ0m(y) =
√

2 cos(my/b), φnm(x, y) =
√

2einx sin(my/b),

The 6-dimensional model is obtained by truncating the expansion of the stream function

and the topographic height after |n| = 1 and m = 2. Then the time-dependent complex
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variables of the stream functions ψ01, ψ02, ψ±11, ψ±12 are transformed to real variables:

x1 =
1

b
ψ01, x2 =

1

b
√

2
(ψ11 + ψ−11), x3 =

i

b
√

2
(ψ11 − ψ−11),

x4 =
1

b
ψ02, x5 =

1

b
√

2
(ψ12 + ψ−12), x6 =

i

b
√

2
(ψ12 − ψ−12),

while the topography h is chosen to have only the (1, 1) wave profile,

h(x, y) = cos(x) sin(y/b).

These manipulations lead to a 6-dimensional ODE model, where x1, x4 represent the zonal1255

flow, x2, x3 are the topographic Rossby waves and x5, x6 are the Rossby waves.1256

In the study here, extra small noise is added to this model, which allows some effects1257

from the small-scale modes to enter into this low-order model. The noisy version of the1258

6-dimensional CDV model reads,1259

dx1 =
(
γ∗1x3 − C(x1 − x∗1)

)
dt+ σ1dW1,

dx4 =
(
γ∗2x6 − C(x4 − x∗4) + ε(x2x6 − x3x5)

)
dt+ σ4dW4,

dx2 =
(
− (α1x1 − β1)x3 − Cx2 − δ1x4x6

)
dt+ σ2dW2,

dx3 =
(

(α1x1 − β1)x2 − γ1x1 − Cx3 + δ1x4x5

)
dt+ σ3dW3,

dx5 =
(
− (α2x1 − β2)x6 − Cx5 − δ2x4x3

)
dt+ σ5dW5,

dx6 =
(

(α2x1 − β2)x5 − γ2x4 − Cx6 + δ2x4x2

)
dt+ σ6dW6.

(38)

Here the terms multiplied by αi model the advection of the waves by the zonal flow. The1260

βi terms are due to the Coriolis force; the γ terms are generated by the topography. The1261

C terms are the Newtonian damping to the zonal profile x∗ = (x∗1, 0, 0, x
∗
4, 0, 0). The δ−1262

and ε−terms describe the nonlinear triad interaction between the zonal (0, 2) mode and the1263

(1, 1) and (1, 2) waves. This triad is responsible for the possibility of barotropic instability1264

of the (0, 2) mode. Note that the model is scaled such that 1 time unit in the model roughly1265

corresponds to 1 day.1266

Following133,134, the following parameter values are taken: C = 0.1, corresponding to a1267

damping time of 10 days; β = 1.25, corresponding to a channel centered around a latitude1268

of 45o; b = 0.5, the north-south extent of the channel is 25% of its east-west extent; and1269

x∗1 = 0.95 and x∗4 = −0.76095. These parameters allow a combination of topographic and1270

barotropic instabilities. The noise coefficients added here are σ1 = ... = σ6 = 0.005. Such1271
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a choice of the noise coefficients allow the dynamical behavior of this stochastic model to1272

remain similar to its deterministic version as was studied in133,134.1273

Note that x1 and x4 associated with ψ01 and ψ02 describe the zonal flows, and the forcing1274

x∗1 and x∗4 are only imposed on these modes. Therefore, it is natural to assume x1 and x41275

are the observed variables while x2, x3, x5 and x6 are unobserved. The goal is to predict the1276

extreme events in the system given only short trajectories of x1 and x4.1277

Model properties.1278

Panels (a)–(c) of Figure 25 show the chaotic trajectories, non-Gaussian PDFs and the1279

ACFs of the model (38). It is easy to tell from the model trajectories that this model1280

has multiple equilibria, which is confirmed by the phase plot (x1, x4) in Panel (d) (two1281

stable equilibria; top left and bottom right). The spatial patterns associated with these two1282

equilibria are quite different with each other, as shown in Panels (e) and (f) for two sample1283

events corresponding to the time instants marked in red in Panel (a) that lie near these two1284

equilibria. The streamlines shown in Panel (e) corresponds to an equilibria with largely zonal1285

character with strong zonal jets while that in Panel (f) is dominated by topographically1286

effects with vortices and meander jets. When the blocking events happen, x1 reaches its1287

maximum while x4 lies in its minimum value.1288

Panel (b) shows the equilibrium PDFs of all the 6 model variables. The profiles of these1289

PDFs are quite different: x1 and x3 have weakly bimodal distributions; x2, x4 and x6 are1290

highly skewed with an one-sided fat tail towards the negative side; and x5 is skewed with1291

a fat tail towards the positive side. Panel (c) illustrates the ACFs, which imply multiple1292

decorrelation time scales of the system, where x1, x3 and x4 has a much longer memory than1293

x2, x5 and x6.1294

One very interesting and important feature of this model (or more precisely its determinis-1295

tic version) is that projecting this 6-dimensional model to its leading 5 Empirical Orthogonal1296

Functions (EOFs) explains 99.5% of the variance. However, such a 5-dimensional projected1297

dynamics completely misses the dynamical features in the original model, where the multiple1298

equilibria disappears and the 5-dimensional model cannot reproduce regime transitions134.1299

Therefore, this 6-dimensional model provides a very useful and tough testbed for developing1300

suitable approximate models in predicting the transition behavior and extreme events in1301

highly chaotic systems.1302
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FIG. 25. Panels (a)–(c): Model trajectories, PDFs and ACFs of the 6-D CDV model (38). The

black dashed lines in column (b) show the Gaussian fits of the PDFs. Panel (d): Phase plot of

(x1, x4). Panels (e)–(f): Streamlines at t = 3333 and t = 2500, corresponding to the time instants

marked in red dots in Panel (a).
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B. The approximate model1303

Our goal here is to develop a suitable approximate model for describing and predicting1304

the key features of the 6-dimensional low-order CDV model (38). Recall that the conditional1305

Gaussian nonlinear models in Section II allow an efficient and accurate data assimilation al-1306

gorithm, which facilitates effective predictions. Therefore, it is natural to develop a suitable1307

approximate model that belongs to the conditional Gaussian nonlinear modeling framework.1308

Note that by observing x1 and x4, the 6-dimensional CDV model (38) is not a conditional1309

Gaussian model due to the nonlinear coupling term ε(x2x6−x3x5). In fact, the topographic1310

Rossby waves x2, x3 and the Rossby waves x5, x6 interact with each other through the above1311

nonlinear coupled term. Only in the absence of the Rossby waves x5, x6, the coupled sys-1312

tem x1, . . . , x4 is a conditional Gaussian system. Therefore, suitable strategies need to be1313

developed to cope with this nonlinear term in the approximate model.1314

Strategy 1: A bare truncation model.1315

The simplest way to deal with this nonlinear term is to build a bare truncation model,1316

where the nonlinear term ε(x2x6 − x3x5) is completely dropped. However, this bare trunca-1317

tion model suffers from finite time blowup issue. In fact, the blowup occurs very quickly and1318

even for a very short lead time (much shorter than the decorrelation time), the predicted1319

values have a large chance to go to infinity.1320

Strategy 2: A nonlinear approximate model with linear feedback terms.1321

Another straightforward idea is to replace the quadratic term ε(x2x6−x3x5) by a combi-1322

nation of four linear terms c1x2 + c2x6− c3x3− c4x5. This approximation is better than the1323

bare truncation model in the sense that the system will not blow up in a very short term.1324

However, the predicted trajectories from this model still have a high probability to blow up1325

in a finite time. In addition, the skillful prediction only lasts for very short time even if the1326

predicted amplitude remains finite within that range.1327

Strategy 3: An approximate model with a stochastic forcing term.1328

Instead of using a deterministic and linear way to parameterize the nonlinear quadratic1329

term, a new strategy is developed here, which involves using a simple stochastic forcing1330

process b1 to describe the effect of the quadratic term ε(x2x6 − x3x5). The approximate1331
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model reads,1332

dx1 =
(
γ∗1x3 − C(x1 − x∗1)

)
dt+ σ1dW1,

dx4 =
(
γ∗2x6 − C(x4 − x∗4) + b1

)
dt+ σ4dW4,

dx2 =
(
− (α1x1 − β1)x3 − Cx2 − δ1x4x6

)
dt+ σ2dW2,

dx3 =
(

(α1x1 − β1)x2 − γ1x1 − Cx3 + δ1x4x5

)
dt+ σ3dW3,

dx5 =
(
− (α2x1 − β2)x6 − Cx5 − δ2x4x3

)
dt+ σ5dW5,

dx6 =
(

(α2x1 − β2)x5 − γ2x4 − Cx6 + δ2x4x2

)
dt+ σ6dW6,

db1 =
(
− dbb1 + σbb2 + fb

)
dt+ σbdWb,

db2 =
(
− dbb2 − σbb1 + fb

)
dt+ σbdWb.

(39)

This is motivated by the SPEKF model48,49, where a stochastic forcing is able to automati-1333

cally learn the missing information on the fly via online data assimilation. Here, we adopt the1334

simplest possible choice — a stochastic forcing b1 driven by a Gaussian process. Note that1335

two new processes b1 and b2 are actually incorporated into the approximate model. They to-1336

gether form a linear stochastic oscillator while only b1 gives feedback to the x4 process. The1337

reason to impose an “oscillated” forcing is that all the variables xi have chaotic oscillator1338

structures and so does the nonlinear term ε(x2x6 − x3x5). As will be seen below, with this1339

cheap stochastic strategy, the approximate model is able to avoid finite time blowup issue1340

and it provides surprisingly skillful predictions in both short and medium ranges. Notably,1341

treating b1 and b2 as the extra unobserved variables, the resulting 8-dimensional nonlin-1342

ear system in (39) is a conditional Gaussian nonlinear model, where only x1 and x2 have1343

observations. The estimated parameters are given by:1344

Fb = 0.0081, ωb = 0.6815, db = 0.1339, σb = 0.01326. (40)

Below the focus will be on the data assimilation and prediction skill using the approximate1345

model in (39).1346

C. Data assimilation1347

Since the approximate model with the stochastic forcing (39) is a conditional Gaussian1348

system, the data assimilation algorithm (3) provides an efficient state estimation of both1349
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the unobserved variables x2, x3, x5, x6 and the stochastic forcing b1, b2, which are shown1350

in Figure 26 (in red color). As comparison, we also show the truth of the unobserved1351

variables x2, x3, x5, x6 (in blue color). It is clear that the data assimilation with the help1352

of such a stochastic forcing term provides very accurate estimation of the hidden variables1353

x2, x3, x5, x6, where the pattern correlation of the assimilated and the true signals is higher1354

than 0.95 for all the variables.1355

Another striking result is presented in Panels (c) and (d) of Figure 26, where a comparison1356

between the assimilated state of the stochastic forcing b1 and the nonlinear term ε(x2x6 −1357

x3x5) computed from the perfect model is illustrated. It is clear that the stochastic forcing1358

b1 almost perfectly recovers the nonlinear feedback, especially at the time instants that the1359

nonlinear feedback is intermittent. This is a very important feature because it guarantees1360

that the stochastic forcing is able to, at least for a short term, play the role of the nonlinear1361

feedback term in prediction.1362
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FIG. 26. Data assimilation of the 6-D CDV model using the approximate model (39). Panel

(a): the true signals of x1 and x4. Panels (b)–(c) the true and the assimilated posterior mean of

x2, x3, x5 and x6, and the assimilated stochastic forcing b2 and b1. Panel (d): the true value of the

nonlinear term ε(x2x6 − x3x5). A zoomed-in period of b1 and the nonlinear term is also shown for

comparison.
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D. Predictions1363

Short- and medium-range forecasts.1364

Our focus now is on the short- and medium-range forecasts. In Figure 27, the prediction1365

skill in terms of the RMSE and Corr as a function of lead time is presented. The blue curves1366

show the predictions using the perfect model with the perfect initial conditions; the red1367

curves show those using the approximate model (39) with the perfect initial conditions; and1368

the green curves show those using the approximate model (39) and the assimilated initial1369

conditions. The ensemble mean is used here for computing the RMSE and Corr.1370

Despite that the prediction using the approximate model (39) is less skillful than that1371

using the perfect model as the increase of lead time, it is clear that the useful prediction for all1372

the variables using the approximate model (39) is still at least 8 units. For some variables1373

such as x3 the useful prediction is 16 days and for x1 it is much longer. In addition,1374

the approximate model (39) using the assimilated initial conditions has nearly the same1375

prediction skill as that using the perfect initial conditions, which verifies the accuracy in the1376

assimilated states. These results imply that the approximate model is a suitable model for1377

both short- and medium-range forecasts of such an extremely tough test model.1378

Figures 28–29 include two case studies of the prediction tests. The ensemble mean pre-1379

diction shown in Figure 28 is extremely accurate for both short and medium ranges. On the1380

other hand, although the ensemble mean prediction in Figure 29 has a slight phase shift,1381

which results in the deterioration of the pattern correlation, the overall prediction using the1382

approximate model remains skillful. From these figures, it is clear that most of the extreme1383

events take around 8 units to develop from the onset phase to the peak, which is within the1384

skillful prediction range of the approximate model (39). Therefore, the approximate model1385

is able to predict the entire development phase of the extreme events. On the other hand,1386

starting from the peak of an extreme event, the approximate model succeeds in predicting1387

the returning path to the quiescent state. In addition to the ensemble mean, the ensemble1388

envelope also plays an important role in the prediction here. In fact, despite a slight phase1389

shift in the ensemble mean prediction in Figure 29, the ensemble envelope clearly predicts1390

the correct overall time evolution trends of the truth. Admittedly, the ensemble spread1391

using the approximate model with the assimilated initial condition is larger than the pre-1392

diction with the perfect initial condition, which is mainly due to the initial uncertainty in1393
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assimilating the hidden variables and the uncertainty introduced from the stochastic forcing.1394

Nevertheless, the correct trends are still unambiguously predicted by the ensemble members1395

in both short and medium terms.1396

Long range forecast.1397

The approximate model (39) fails to reproduce the same long-term equilibrium PDFs as1398

the truth. This is not surprising since the stochastic forcing for the long range forecast loses1399

its memory of the initial condition and essentially becomes a constant. Its contribution to1400

the system is then quite different from the original nonlinear term ε(x2x5 − x3x6), which1401

evolves in time. Note that the study in the previous work74 has already illustrated that in1402

the presence of model error it is extremely difficult to develop suitable approximate models1403

that are able to simultaneously have both short and long range forecast skill. Nevertheless,1404

the approximate model (39) is still able to provide some useful information for the long-1405

range forecasts. First, the approximate model (39) avoids finite-time blowup issue and1406

its equilibrium PDFs contain non-Gaussian features, which already outweighs many other1407

approximation strategies, such as bare truncation and linear approximations, for describing1408

strongly chaotic systems. Second, the ACFs of x1, x2 and x3 from the approximate model1409

(39) are quite similar to the truth and the errors in the ACFs of x4, x5 and x6 are also only1410

moderate. These features in the ACFs together with the accurate data assimilation results1411

actually guarantee the skillful short- and medium-range forecasts.1412
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FIG. 27. Short- and medium-range forecasts using the perfect model and the approximate model

(39). Top and bottom rows show the RMSE and Corr and a function of lead time. The blue curves

show the predictions using the perfect model with the perfect initial conditions; the red curves

show those using the approximate model (39) model with the perfect initial conditions; and the

green curves show those using the approximate model (39) and the assimilated initial conditions.

The ensemble mean is used here for computing the RMSE and Corr with the truth.
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FIG. 28. Case study. Prediction starting from t = 1300. Note that each PDF is shown with 50

thin curves (blue for the perfect model and red for the approximate model), which represent the

1st, 3nd, 5th, . . . , 97th and 99th percentiles of the of the PDF. The green curve represents the

mode of the PDF since the PDF is non-Gaussian. The black dashed curve is the true signal.
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FIG. 29. Case study. Prediction starting from t = 4440.
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IX. CONCLUSION1413

Extreme events appear in many complex nonlinear dynamical systems. Predicting ex-1414

treme events has both scientific significance and practical implications. The main difficulties1415

in predicting the extreme events include the lack of a complete understanding of physics,1416

the unaffordable computational cost of running the complex dynamical systems and the1417

errors in data assimilation or state estimation. Notably, in many practical situations, only1418

partially observed time series are available for model calibration and the training period is1419

often very short. All these facts result in great challenges and lead to the failure of many1420

purely data-driven methods in the extreme events prediction.1421

In this paper, a new mathematical framework of building suitable nonlinear approximate1422

models is developed, which aims at predicting both the observed and hidden extreme events1423

in complex nonlinear dynamical systems using only short and partially observed training1424

time series. The models belonging to this mathematical framework are highly nonlinear and1425

are able to capture many key non-Gaussian characteristics as observed in nature. Physically1426

motivated processes and physics constraints can be incorporated into the models, which make1427

this framework fundamentally different from many purely data-driven statistical models that1428

have no clear physical meanings. Such a feature also allows using only a short training time1429

series for model calibration. In addition, this modeling framework provides closed analytic1430

formulae for assimilating the states of the unobserved variables, which is computationally1431

efficient and accurate. The details of this modeling framework is shown in Section II. Section1432

III contains the efficient and accurate data assimilation, parameter estimation and prediction1433

algorithms as well as the details of using both the path-wise and information measurements1434

in quantifying the prediction skill. Different effective and practical strategies of developing1435

suitable approximate models for predicting extreme events and other non-Gaussian features1436

in various complex turbulent dynamical systems are illustrated in Section IV to Section1437

VIII.1438

In Section IV, the skill of applying a cheap stochastic parameterization to approximate the1439

complicated dynamical behavior in the hidden process is explored. This simple and efficient1440

stochastic parameterization is able to recover the nonlinear feedback from the unresolved1441

variable to the observed one. Notably, the nonlinear approximate model with such a cheap1442

stochastic parameterization has nearly the same skill in predicting the extreme events at1443
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all short, medium and long ranges. Section V makes use of a nonlinear dyad model to1444

show the success of applying a simple feedback control strategy in the approximate model1445

to facilitate the prediction of the hidden extreme events, which is a great challenge given1446

only partial observations. In Section VI, the Lorenz 63 model is used as a simple test model1447

for predicting extreme events in the intrinsic chaotic models. The goal for testing this1448

model is to understand the model error due to the noise inflation in affecting the extreme1449

events prediction, where the noise inflation is a typical strategy of developing approximate1450

models in many real applications. It is shown that a moderate noise inflation retains the1451

skill of the extreme events prediction at all short, medium and long ranges. Next, regime1452

switching between multiple metastable states is a key feature in many nonlinear turbulent1453

dynamical systems. Section VII starts with a 21-dimensional nonlinear topographic mean1454

flow interaction model with regime switching. A simplified version of the stochastic mode1455

reduction strategy is applied in a suitable way to develop an approximate physics-constrained1456

nonlinear model with only 5 dimensions. The 5-dimensional physics-constrained nonlinear1457

model has a significant skill in predicting both the observed and hidden extreme events as1458

well as other non-Gaussian features, nearly the same as the perfect model prediction. It1459

also succeeds in predicting the regime switching between the zonally blocked and unblocked1460

patterns with high accuracy. In Section VIII, a 6-dimensional low-order Charney-DeVore1461

(CDV) model is used as a testbed for predicting extreme events. This model is highly1462

nonlinear and has strong chaotic features. The leading 5 EOFs contain more than 99.5%1463

of the explained variance but they completely miss the nonlinear dynamical features and1464

the regime switching behavior. Therefore, this 6-dimensional model is an extremely tough1465

test model for predicting the intrinsic nonlinear transitions and extreme events. It is shown1466

that a simple but judicious linear stochastic process with additive noise and memory has1467

a significant skill in learning certain complicated nonlinear effects of this model on the fly.1468

The resulting approximate nonlinear model by incorporating such a simple stochastic process1469

allows efficient and accurate data assimilation. It succeeds in predicting both the observed1470

and hidden extreme events in short and medium terms.1471
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