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Abstract Singular spectrum analysis (SSA) or extended empirical orthogonal function methods
are powerful, commonly used data-driven techniques to identify modes of variability in time series
and space-time data sets. Due to the time-lagged embedding, these methods can provide inaccurate
reconstructions of leading modes near the endpoints, which can hinder the use of these methods in real
time. A modified version of the traditional SSA algorithm, referred to as SSA with conditional predictions
(SSA-CP), is presented to address these issues. It is tested on low-dimensional, approximately Gaussian
data, high-dimensional non-Gaussian data, and partially observed data from a multiscale model. In each
case, SSA-CP provides a more accurate real-time estimate of the leading modes of variability than the
traditional reconstruction. SSA-CP also provides predictions of the leading modes and is easy to implement.
SSA-CP is optimal in the case of Gaussian data, and the uncertainty in real-time estimates of leading modes
is easily quantified.

Plain Language Summary Singular spectrum analysis (SSA) is a powerful, commonly used
technique to identify prominent patterns in observed data. However, SSA has some difficulty in providing
accurate estimates near the endpoints of the time series, which can hinder its use in real time. A modified
version of the SSA algorithm, referred to as SSA with conditional predictions, is presented to address
these issues. SSA with conditional predictions provides a more accurate real-time estimate of the leading
modes of variability than the traditional method in a variety of tests. It can also be used to predict these
patterns, and it is easy to implement. The uncertainty in the real-time estimates of leading patterns is easily
quantified as well.

1. Introduction
Singular spectrum analysis (SSA) or extended empirical orthogonal function (EEOF) methods are power-
ful, commonly used tools available for identifying modes of variability in time series and space-time data
sets. SSA's usefulness has been demonstrated in a variety of fields over the last 3–4 decades, including, for
example, nonlinear dynamics (e.g., Broomhead & King, 1986), geoscience (e.g., Keppenne & Ghil, 1990;
Kikuchi & Wang, 2008; Mo, 2001; Roundy & Schreck III, 2009; Weare & Nasstrom, 1982; Vautard & Ghil,
1989; Vautard et al., 1992), and economics (e.g., Hassani et al., 2014; Lisi & Medio, 1997). Its popularity is
due both to its ease of implementation and to its ability to eliminate noise and extract trends, oscillations,
and other signals in both univariate and multivariate time series.

As with some other methods for mode identification in space-time data (e.g., Fourier filtering), SSA suf-
fers from endpoint issues; that is, estimates of leading modes can be inaccurate in real-time without future
information. Therefore, SSA may provide inaccurate initial conditions for real-time forecasts. Despite these
challenges, it is sometimes used either as a filtering step prior to generating real-time forecasts (e.g.,
Hassani et al., 2014; Mo, 2001) or in tests of forecast models (e.g., Chen & Majda, 2016; Kang & Kim, 2010;
Kondrashov et al., 2013), due to its effectiveness at mode identification.

This motivates the question: Is there a modified version of SSA that (i) is as straightforward to imple-
ment as SSA but that (ii) provides the most accurate real-time state estimation possible of leading modes of
variability?
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This question, along with the related question of how to best modify SSA for use on data sets with gaps
in the data, has motivated the proposal and study of numerous modified versions of SSA. These methods
include schemes for modifying incomplete columns of the lag-embedded matrix by weighting known values
(Schoellhamer, 2001), iterative SSA methods (Kondrashov & Ghil, 2006; Kondrashov et al., 2010), methods
based on linear recurrent formulas (Golyandina & Osipov, 2007), methods that project smoothed data onto
leading SSA modes computed with Fourier-filtered data (Roundy & Schreck III, 2009), combined recurrent
forecasting and hindcasting (Rodrigues & de Carvalho, 2013), energy-minimizing reconstructions of princi-
pal components (PCs; Shen et al., 2014, 2015), and a method utilizing a predicted spatial basis (Chen et al.,
2018). Some of these methods will be discussed in section 5.

Here we propose and study yet another modification of SSA. This method makes use of conditional mean
predictions based on the covariance matrix of the lag-embedded data, and we refer to it as SSA with con-
ditional predictions (SSA-CP). Another appropriate name would be real-time SSA, though we use SSA-CP
here to avoid confusion with other methods proposed for using SSA in real time, some of which are discussed
further in section 5.

The results of tests shown here suggest that this method is effective at addressing these endpoint issues in a
variety of settings. The data sets used in these tests include both univariate data sets and multivariate data
sets with small (2–3) or somewhat large (64) number of spatial dimensions, partially observed systems and
data sets with all dynamical variables observed, Gaussian and non-Gaussian data, and synthetic time series
and time series generated by observational data.

Given these results, there are at least four reasons for using this method. First, it is simple and easy to
implement, requiring only small additional steps during the normal SSA algorithm. Second, it provides both
state estimation and prediction of leading modes of variability. Third, it provides an optimal reconstruction
if the data are Gaussian using the statistics of the first two moments. Fourth, it outperforms many other
proposed methods of SSA state estimation for both Gaussian and non-Gaussian data.

The rest of the paper is organized as follows: Section 2 describes the traditional SSA method and the proposed
modification. Section 3 lists data sets and models used in tests of this method. Results are presented in
section 4. Discussion of the methods and results is given in section 5, including a brief comparison of the
results with those of other modified SSA methods. Conclusions are given in section 6.

2. SSA Algorithms
A brief review of the traditional SSA algorithm is now given, followed by a description of the proposed
modification. When used on multivariate time series, SSA is often referred to as multichannel SSA (MSSA)
in the literature; here SSA will be used to refer to either the univariate or multivariate cases. The theory of
SSA, which has been developed over the last several decades, is not discussed here; see, for example, (Aubry
et al., 1991; Ghil et al., 2002; Golyandina et al., 2001; Hassani, 2007) for discussion of this underlying theory.

2.1. Traditional SSA
We briefly describe the traditional SSA algorithm for a data set with spatial dimension D; the traditional
univariate SSA algorithm can be reproduced by setting D = 1 below.

Let x⃗i be a D-dimensional column vector at time i, with 1 ≤ i ≤ N. The four steps of SSA are as follows:

Step 1. Create the time-lagged embedding matrix X of size (MD) × (N − M + 1):

X =

⎡⎢⎢⎢⎢⎢⎣

x⃗1 x⃗2 … x⃗N−M+1
x⃗2 x⃗3 … x⃗N−M+2
⋮ ⋮ ⋮
x⃗M−1 x⃗M … x⃗N−1
x⃗M x⃗M+1 … x⃗N

⎤⎥⎥⎥⎥⎥⎦
, (1)

where M is the length of the embedding window.
Step 2. Find eigenvalues and eigenvectors of the covariance matrix C = XXT∕(N − M + 1). Each eigenvec-

tor v⃗ (sometimes referred to as an EOF) is an (MD)-dimensional column vector with corresponding
eigenvalue 𝜆:
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v⃗ = [v⃗T
1 , … , v⃗T

M]T , (2)

where v⃗s is a D-dimensional column vector used to denote the lag-s portion of the eigenvector.
Step 3. Find the PC of each mode by projecting the lag-embedded data onto the appropriate eigenvector:

𝜙 = XTv⃗. (3)

The entries of each PC will be denoted 𝜙 = [𝜙1, … , 𝜙N−M+1]T .
Step 4. Reconstruct the data corresponding to each mode by calculating the reconstructed component

(RC) z⃗(t):

z⃗(t) = 1
Mt

Ut∑
i=Lt

𝜙t−i+1v⃗i, (4)

where (Mt,Lt,Ut) are defined by (see, e.g., Ghil et al., 2002)

(Mt,Lt,Ut, ) =
⎧⎪⎨⎪⎩
(t, 1, t), 1 ≤ t ≤ M − 1,
(M, 1,M), M ≤ t ≤ N − M + 1,
(N − t + 1, t − N + M,M) , N − M + 2 ≤ t ≤ N,

(5)

so that each RC z⃗ is a (possibly multivariate) time series of length N, with each z⃗(t) a D-dimensional
column vector.

Each RC entry at time t∗ depends directly on one embedding window of PC entries, and each PC entry
depends on one embedding window of data. As a result, each RC entry at time t∗ is influenced primarily by
the values of x⃗t∗−M+1 through x⃗t∗+M−1; that is, two embedding windows worth of data, spanning the window
immediately prior to t∗ and the window immediately following t∗, contribute directly to the reconstruction
at t∗. For t∗ > N − M, the embedding window's worth of data immediately following t∗ is not entirely
known. The reconstruction process makes use of the known data by averaging over the available products
𝜙t−i+1v⃗i in (4), but these final M − 1 entries of each reconstruction are only estimates of the state of each
mode, and can be expected to change as data becomes available at times occurring after the end of the time
series. (The same endpoint issues affect the reconstruction for t∗ < M.)

The reconstruction method in (4) has been shown to be an optimal method, in the sense that, for D = 1, for
example, it produces the Hankel matrix that is closest to the matrix 𝜙v⃗T in matrix norm (Golyandina et al.,
2001; Hassani, 2007). However, other reconstruction formulas may be considered, including ones that avoid
the endpoint issues of the traditional reconstruction in (4). One such method is the “predicted spatial basis”
method of Chen et al. (2018), in which a method that shifts future information to the spatial basis (and not
the PCs) is tested on a monsoon intraseasonal oscillation index. The method in (4) is used as the primary
basis for comparison here due to its optimality with respect to Hankelization and its somewhat standard use.

2.2. SSA-CP
The primary goal of this section is to present a simple method, SSA-CP, that improves the estimates of the
final M − 1 entries of each RC, including in particular the current state estimate. In addition, SSA-CP will
provide a prediction of RCs for t > N. (The same procedure may be directly applied to the first M − 1 entries
of each reconstruction, but for simplicity of presentation, we focus solely on the last M − 1 entries.)

The steps of SSA-CP are as follows:

Step 1. Perform steps 1 and 2 of traditional SSA.
Step 2. Construct an extended lag-embedded matrix X̃ of size (MD) × N. The first N columns of X̃ are iden-

tical to the columns of X. For the final M − 1 columns, those entries that are known from the time
series are filled in. The unknown entries below the diagonal consisting of xN s are estimated using
their conditional mean prediction,

X̃ =

⎡⎢⎢⎢⎢⎢⎣

x⃗1 … x⃗N−M+1 x⃗N−M+2 … x⃗N−1 x⃗N
x⃗2 … x⃗N−M+2 x⃗N−M+3 … x⃗N 𝜇N+1|N
⋮ ⋮ ⋮ ⋮ ⋮
x⃗M−1 … x⃗N−1 x⃗N … 𝜇N+M−3|N−1,N 𝜇N+M−2|N
x⃗M … x⃗N 𝜇N+1|N−M+2,… ,N … 𝜇N+M−2|N−1,N 𝜇N+M−1|N

⎤⎥⎥⎥⎥⎥⎦
. (6)
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The calculation of each 𝜇i|N−l,… ,N in (6) is as follows.
Let 𝑦 refer to the kth column of X̃, with N + 1 ≤ k ≤ N + M − 1, and let 𝑦1, 𝑦2 refer to the known
and unknown portions of 𝑦 = [𝑦T

1 , 𝑦
T
2 ]

T , respectively. If 𝑦 is a Gaussian random variable with mean
𝜇 = 0 and covariance matrix C, then 𝑦2 has a conditional distribution that is Gaussian with mean

𝜇2|1 = C21C−1
11 𝑦1. (7)

where C can be written as

C =
[

C11 C12
C21 C22

]
(8)

with C11 describing the covariance of the known values with themselves and so forth (Kaipio &
Somersalo, 2005). The unknown entries 𝑦2 are then filled in with the appropriate entries of 𝜇2|1,
where 𝜇N+𝑗|k−M+1,… ,N in (6) denotes a D-dimensional column vector, that is, the jth set of D entries
of the vector 𝜇2|1, calculated for the kth column of X̃ (with N + 1 ≤ k ≤ N + M − 1). If necessary,
a small amount of noise may be added to the covariance matrix in order to evaluate C−1

11 in (7).
Step 3. Modify step 3 of traditional SSA by replacing X with X̃; this change results in extended PCs ̃⃗

𝜙 = X̃Tv⃗;
each extended PC is a column vector of length N.

Step 4. Modify step 4 of traditional SSA by replacing 𝜙 with �̃� to construct an extended RC:

̃⃗z(t) = 1
M̃t

Ũt∑
i=L̃t

�̃�t−i+1v⃗i, (9)

where (M̃t, L̃t, Ũt) are defined by

(M̃t, L̃t, Ũt, ) =
⎧⎪⎨⎪⎩
(t, 1, t) , 1 ≤ t ≤ M − 1,
(M, 1,M) , M ≤ t ≤ N,

(N − t + M, t − N + 1,M) , N + 1 ≤ t ≤ N + M − 1,
(10)

so that each extended RC ̃⃗z is a (possibly multivariate) time series of length N + M − 1, with the last
M − 1 entries corresponding to predictions of the future state of the mode.

In the case that the data set has a Gaussian distribution, the conditional mean provides an optimal estimate
of the missing data (Kaipio & Somersalo, 2005).

3. Data and Methods
The SSA-CP method will be tested on several data sets and compared to the traditional SSA reconstruction.

3.1. Data
The first test uses a 15-year portion of the daily Real-time Multivariate MJO (RMM) indices (Wheeler &
Hendon, 2004) from 1 January 1999 through 31 December 2013. The RMM indices have a distribution that
is approximately normal with mean and variance approximately 0 and 1, respectively (Chen & Majda, 2015).
For this two-dimensional data set, D = 2 and Ntot = 5, 479, with Ntot referring to the number of days.

Global Precipitation Climatology Project (GPCP) daily precipitation data (Huffman et al., 2012) are used for
the second test. This data set has a spatial resolution of 1◦ × 1◦; the portion from 1 January 1997 through 31
December 2013 is used. Prior to applying SSA, the following steps were taken: (i) a meridional mode trunca-
tion to move from 2-D(x, y) to 1-D(x), (ii) removal of annual mean and seasonal cycle, and (iii) interpolation
to 64 equally spaced zonal grid points. The meridional mode truncation step is a projection of the data onto
the leading meridional mode proportional to e−𝑦2∕2 where y is proportional to latitude; this step is identical
to that used in, for example, Stechmann and Ogrosky (2014) and Stechmann and Majda (2015). Steps (i)
and (iii) reduce the number of dimensions to D = 64, and the number of times is Ntot = 6,209. Note that
these anomalies have a non-Gaussian distribution at each longitude; see the supporting information for the
statistics of these anomalies.
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A simulation of a multiscale model (Majda & Harlim, 2012) is used for the third test. The model equations
are

du1 =
(
−𝛾1u1 + F(t)

)
dt + 𝜎1dW1, (11a)

du2 =
(
−𝛾2 + i𝜔0∕𝜖 + ia0u1

)
u2dt + 𝜎2dW2, (11b)

where 𝛾1 = 𝛾2 = 0.2, 𝜎1 = 𝜎2 = 0.5, 𝜔0 = a0 = 1, 𝜖 = 0.5, and F(t) = sin(t∕5). An approximate
solution was calculated numerically with the Euler-Maruyama method using dt = 0.005 and tend = 2, 000.
The real part of u2 was then sampled every 0.5 time units to create a data set with D = 1 and Ntot = 4, 000.
A portion of this signal can be seen in Figure S2 in the supporting information.

3.2. Methods
The results of each real-time reconstruction method (SSA-CP and traditional) will be compared with the
traditional reconstruction that has knowledge of future data. This is done in two steps.

First, both the traditional SSA and SSA-CP methods were applied to each data set after removing the final
2M − 2 time entries from the data set; for example, using an embedding window of M = 51 days for the
RMM indices, the methods were applied to the first N = Ntot − 2M + 2 = 5, 379 days. The embedding
window was chosen to be large enough to be consistent with the intraseasonal time scale of the indices and
is similar to that used in Chen and Majda (2015); other choices of this parameter value will be discussed
in section 5. The standard reconstruction z(t) for each mode therefore has N = 5, 379 entries, while the
SSA-CP reconstruction z̃(t) has N + M − 1 = 5, 429 entries. Note that the first N − M + 1 = 5, 329 entries
for each reconstruction method are identical to one another; that is, z(t) = z̃(t) for 1 ≤ t ≤ N − M + 1. Next,
the traditional reconstruction method was used again, this time on the full Ntot = 5, 479 entries, resulting
in a reconstruction u(t) with Ntot = 5, 479 entries. The entries of u(t) up to Ntot − M + 1 = 5, 429 are taken
to be “truth,” and each of the methods applied to the shorter time series are compared with this truth.

Second, these tests are repeated for each data set with decreasing Ntot; that is, define Ntot,i = Ntot − i + 1,
and repeat the test described above but using only the first Ntot = Ntot,i entries of the data set, so that
N = Ni ∶= Ntot,i − 2M + 2. For the RMM indices and multiscale model, i ∈ I = [1, … , 1001]; for the
GPCP data, i ∈ I = [1, 6, 11, … , 1001]. The pattern correlation and root-mean-square error (RMSE) are
then calculated as a function of days before or after Ni; see the supporting information for details.

4. Results
We next show results for three tests.

4.1. RMM Index
How well does the method perform on low-dimensional data that is nearly Gaussian?

Figures 1a and 1d show the results of using the SSA-CP or traditional reconstruction methods on the RMM
indices with an embedding window M = 51 days. For times away from the endpoints of the data, that is,
t < Ni − M + 1, both methods are in agreement with the truth. For past times near the endpoints, that
is, Ni − M + 1 < t < Ni (light orange-shaded region), SSA-CP captures both the phase and amplitude of
the RMM1 index better than the traditional reconstruction. For future times t > Ni, SSA-CP is able to make
predictions, with good agreement in phase and an underestimate of the amplitude of the true reconstruction.
This underestimate of amplitude is due to using conditional mean predictions, which tend to 0 as t → ∞.

The example in Figure 1 is a particularly challenging test as it is a case of Madden-Julian oscillation (MJO)
onset. More specifically, the period being predicted in Figures 1a and 1d, namely, 1 February 2012 through
21 March 2012, exhibits a growing amplitude of the RMM1 index (black line), corresponding to the onset
of the MJO event sometimes referred to as MJO4 during the 2011–2012 CINDY/DYNAMO field campaign
(Yoneyama et al., 2013). This MJO has been considered a “primary” event, in that there are no clear signals
connecting this MJO to the previous MJOs that occurred in October through December 2012. In contrast to
the traditional reconstruction, SSA-CP more naturally captures oscillations and changes in frequency and
amplitude, near the endpoint.
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Figure 1. (a) Reconstructed RMM1 using components 1 and 2 with t = N601 = 4, 779 (31 January 2012) using (blue)
traditional reconstruction, (red/magenta) SSA-CP, and (black) reconstruction using future information. (b, c) Bivariate
pattern correlation and RMSE of the (blue) traditional reconstruction and truth as a function of days prior to/after Ni,
and (red/magenta) SSA-CP reconstruction, and truth using modes 1 and 2. (d–f) Same as (a)–(c) but using components
1–4. RC = reconstructed component; RMM = Real-time Multivariate Madden-Julian oscillation;
RMSE = root-mean-square error; SSA-CP = singular spectrum analysis with conditional predictions.

Figures 1b, 1c, 1e, and 1f show that when these tests are repeated, SSA-CP has significantly improved pattern
correlation and reduced error compared to the traditional reconstruction. As a current state estimation, at
t = Ni, SSA-CP improves the pattern correlation from 0.74 to 0.90 (0.83 to 0.94) for the two (four) leading
modes. Likewise, SSA-CP reduces the error at t = Ni from 0.58 to 0.38 (0.62 to 0.37). For future times t > Ni,
SSA-CP is able to make meaningful predictions for an extended period of time, with pattern correlations
exceeding 0.5 out to approximately 29 (20) days when two (four) leading modes are used.

4.2. Precipitation Data
How well does the method perform on large-dimensional, possibly non-Gaussian data?

Figure 2. (a) Reconstructed precipitation during 2013 using SSA-CP modes 1 and 2 with tN = 6, 109, corresponding to
22 September 2013. (b) Same as (a) but using traditional reconstruction. (c) Reconstructed modes 1 and 2 using future
information. RC = reconstructed component; SSA-CP = singular spectrum analysis with conditional predictions.

OGROSKY ET AL. 6
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Figure 3. (a) Pattern correlation, using 200 runs of SSA, of reconstructed precipitation components (1 and 2) using
SSA-CP. (b) Same as (a) but for traditional reconstruction. (c) Pattern correlation at Day t = Ni for each method.
(d–f) Same as (a)–(c) but showing RMSE. RC = reconstructed component; RMSE = root-mean-square error;
SSA-CP = singular spectrum analysis with conditional predictions.

Figure 2 shows reconstructed precipitation anomalies using the two leading modes with an embedding
window of 51 days. Both methods produce identical reconstructions prior to 2 August 2013. For 3 August
2013 through 22 September 2013, SSA-CP produces a reconstruction with amplitude in much better agree-
ment with the non-real-time reconstruction (truth) than the traditional reconstruction. It also provides a
prediction with decaying amplitude throughout October, qualitatively similar to the truth but with slower
decay.

Repeating these tests for various Ni produces the pattern correlation and RMSE shown in Figure 3. For the
recent past in time interval Ni − M + 1 < t < Ni, SSA-CP produces higher pattern correlation and lower
RMSE than the standard reconstruction method. For state estimation at t = Ni, the pattern correlation is
0.1–0.2 higher at almost all longitudes when using SSA-CP than when using the standard method. Likewise,
the RMSE is lower using SSA-CP than the traditional reconstruction at all longitudes. Note that low pattern
correlation values for each method at longitudes like 150◦W are due to small anomalies in the leading modes.

4.3. Partially Observed Multiscale Model
How well does the method perform on partially observed data?

Figure S3 in the supporting information shows the pattern correlation and RMSE for both methods applied
to the multiscale model 11. For Ni − M + 1 < t < Ni, SSA-CP has significantly higher pattern correlation
and lower error than the traditional reconstruction. At t = Ni, using SSA-CP improves the pattern correla-
tion from 0.54 to 0.75 for two leading modes and lowers the error from 0.12 to 0.06. For t > Ni, predictions
using SSA-CP have a pattern correlation of 0.5 or higher out to approximately 23 days when two leading
modes are used.

5. Discussion
SSA-CP has been proposed as a method that supplements the mode identification ability of SSA with
improved estimates of mode reconstructions near the ends of time series. We note that it is not at all neces-
sarily the best possible data-driven, model-free prediction method that could be designed. Its effectiveness
at identifying modes of variability in real time is of course also limited to cases where SSA is effective at
identifying modes of interest.

How sensitive are the results to changes in the embedding window? As a first step toward addressing this
question, the RMM tests from the previous section were rerun with an embedding window of M = 75 days.

OGROSKY ET AL. 7
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Figure 4. (a, c) Bivariate pattern correlation and RMSE of reconstructed Real-time Multivariate Madden-Julian oscillation indices using the (blue) traditional
reconstruction, (red) SSA-CP reconstruction, (green) weighted reconstruction of Schoellhamer (2001), and (black) 𝛱 projector/simultaneous filling in method
of Golyandina and Osipov (2007) as a function of days prior to Ni, using modes 1 and 2; here M = 75, Ni = 4, 779. (b, d) Same as (a) and (c) but for modes 1–4.
(e, f) Leading two principal components of SSA-CP. Dashed red lines indicate ±1, 2 standard deviations. RC = reconstructed component;
RMSE = root-mean-square error; SSA-CP = singular spectrum analysis with conditional predictions.

Figures 4a–4d show that while both SSA-CP and the traditional reconstruction produce slightly lower pat-
tern correlation at t = Ni than in the previous test with M = 51, SSA-CP again results in significantly higher
PC and lower RMSE than the traditional reconstruction. For t > Ni, the pattern correlation stays higher
than 0.5 for 35 (24) days when the leading two (four) modes are used (not shown). Results of additional tests
using M = 61, 71, 81, and 101 are shown in Figure S4 in the supporting information; increasing the embed-
ding window provides some small improvement in the pattern correlation and RMSE of predictions, which
is likely due to the increased time scales present in the modes identified with a larger embedding window.
Further tests indicate that, in addition, the method performs equally well when the leading modes are found
using a period of training data that is not near the endpoint; see Figure S5 in the supporting information for
further details.

How does SSA-CP compare with other methods in the literature that have been proposed for either (i)
improving state estimation of RCs near the endpoints of time series or (ii) using SSA on data sets with gaps?
We briefly examine this through a comparison of the results of SSA-CP with methods from Schoellhamer
(2001) and Golyandina and Osipov (2007) for the first test from section 4. Figures 4a–4d show the pattern
correlation and RMSE of these two methods along with the traditional reconstruction and SSA-CP. All of
the modified versions of SSA produce higher pattern correlation than the traditional reconstruction, with
SSA-CP having the highest. For the leading two modes, all methods produce lower RMSE than the tradi-
tional reconstruction, but when the leading four modes are used, only SSA-CP outperforms the traditional
reconstruction over each of the final M − 1 days. Other methods for using SSA (or other mode identification
methods) in real-time have been proposed, and it would be interesting to investigate further comparisons in
a future study. For example, other methods include a predicted spatial basis method (Chen et al., 2018), ker-
nel analog forecasting (e.g., Comeau et al., 2018), methods based on linear recurrent formulas (Golyandina
et al., 2001), methods that project smoothed data onto leading SSA modes computed with Fourier-filtered
data (Roundy & Schreck III, 2009), and energy-minimizing reconstructions of PCs (Shen et al., 2015).

Many additional tests were conducted beyond the three examples described in detail above. Other tests were
conducted using data sets generated by stochastic processes (complex-valued Ornstein-Uhlenbeck process),
deterministic dynamical systems (Lorenz 63 model, multiple examples from Golyandina et al., 2001), other
observational data (Kelvin wave calculated using National Centers for Environmental Prediction/National
Center for Atmospheric Research reanalysis data [Kalnay et al., 1996] and the methods of Ogrosky and Stech-
mann (2015, 2016), and numerous synthetic test signals both with and without noise. SSA-CP significantly
outperformed traditional SSA in almost all of these tests. In cases of deterministic signals of Golyandina
et al. (2001), both methods produced excellent reconstructions of the leading modes near the endpoints. In
cases like this, the standard reconstruction may be just as desirable as SSA-CP or any other modification, as
the additional effort of implementing SSA-CP, though minimal, may not be necessary to provide reasonable
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initial conditions for a forecast. In addition, one benefit of the standard reconstruction is its invertibility; if
all modes are reconstructed and summed together, the original data set is recovered. This invertibility is not
shared by SSA-CP.

There are several compelling reasons for using SSA-CP rather than the traditional reconstruction, how-
ever. First, it is nearly as simple to use as traditional SSA. Second, it is optimal for Gaussian data and is
based on well-known theory. Third, it is straightforward to quantify the uncertainty in the extended PCs or
reconstruction. For example, the variance of �̃�N−l+1, where 1 ≤ l ≤ M − 1, is given by

Var(�̃�N−l+1) =
[
v⃗T

l+1, … , v⃗T
M
]

C21
[
v⃗T

l+1, … , v⃗T
M
]T
. (12)

Figures 4e and 4f show the two leading PCs of the RMM indices calculated using SSA-CP with Ni = 4, 779
and M = 75. One and two standard deviations from the extended PC entries are shown, with the standard
deviation calculated using (12).

Finally, since non-Gaussianity leads to a lack of independence between modes in linear methods like EOFs,
there is no guarantee that the method will work well on data with strong non-Gaussianity (Monehan
et al., 2009). However, the method works well on the non-Gaussian data used here, perhaps owing to the
somewhat mild deviations from Gaussianity. The method could potentially be extended to non-Gaussian
frameworks with conditional Gaussian or Gaussian mixture structures (see, e.g., Chen & Majda, 2018;
Majda, 2016).

We note that SSA is just one of many data analysis tools capable of identifying modes of variability in spa-
tiotemporal data sets (see Crommelin & Majda, 2004, for a discussion of other linear methods for mode
identification). SSA was chosen to be the focus of the current study due to its linearity, simplicity, and pop-
ularity, combined with the linearity of the proposed modifications. Other mode identification methods,
including nonlinear methods like nonlinear Laplacian spectral analysis, have been shown to be effective
at capturing modes of variability that SSA has difficulty capturing, like modes with pronounced intermit-
tent behavior (Giannakis & Majda, 2012a, 2012b) and theory supporting both such methods and forecasting
techniques of relevance has been developed in recent years (Comeau et al., 2018; Zhao & Giannakis, 2016).
Including conditional predictions into such methods is certainly possible; methods like nonlinear Laplacian
spectral analysis use a reconstruction approach similar to that of (4) and incorporating conditional predic-
tions into this method could potentially be done in a straightforward manner. It is not clear, however, that
such a method would be optimal in the same way that conditional predictions used here are optimal when
combined with Gaussian data and with a linear method like SSA.

6. Conclusions
In summary, a modified SSA algorithm, SSA-CP, has been presented and tested. This modification is
proposed to address endpoint issues that arise when using SSA. When compared with the traditional
reconstruction method, SSA-CP results in significantly improved real-time estimates of leading modes of
variability when applied to a variety of data sets.

This method was shown to be useful for providing improved initial conditions for forecasts. It is derived from
well-known theory using Gaussian statistics and provides optimal predictions for Gaussian data, but also
performs well in tests with non-Gaussian data. The uncertainty in the real-time estimates may be quantified
using the covariance matrix that is inherently part of the method.

While the current study has been primarily focused on applying the method to atmospheric science data,
this method may prove useful in application areas outside of atmospheric science. In addition, it is possible
that the ideas used here may be adapted for other methods of mode identification. These subjects are left for
future work.
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