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Supporting Information Text9

A. The truncated KdV model with statistical phase transition10

Here we provide more details about the derivation and properties of the truncated Korteweg-de Vries (tKdV) equations for11

surface water wave turbulence, and the statistical phase transition in the Gibbs invariant measures used as the test model in12

the main text.13

A.1. Mathematical formulation of the truncated KdV equation as a Hamiltonian system. The classic KdV equation (1) can be14

written in the standard form as15

ut + uux + uxxx = 0, x ∈ [−πL0, πL0] . [S1]16

The state variable u (x, t) for the leading-order surface wave disturbance is defined on a periodic geometry of length 2πL0. The17

KdV equation [S1] can be also recognized as a Hamiltonian system by the form18

u̇ = {u,H} = J δH
δu

, J = −∂x, H =
∫ πL0

−πL0

(1
6u

3 − 1
2u

2
x

)
dx. [S2]19

The Poisson bracket is defined by the symplectic operator J20

{F ,G} =
∫ πL0

−πL0

δF
δu
J δG
δu
dx,21

which forms a skew-symmetric and bilinear form satisfying the Jacobi identity, {{F ,G} ,H}+ {{H,F} ,G}+ {{G,H} ,F} = 0,22

acting on functionals F (u) and G (u). The evolution of any functional F (u) obeys the dynamical equation23

Ft = {F ,H} .24

Immediately, we have the conservation of the Hamiltonian in [S2], Ht = {H,H} = 0. Besides the Hamiltonian H, the25

momentumM and energy E are another two important conserved quantities in the KdV equation defined as26

M (u) =
∫ πL0

−πL0

udx, E (u) = 1
2

∫ πL0

−πL0

u2dx.27

In modeling shallow water waves using the KdV equation, it is convenient to adopt a normalized version of the equation28

[S1]. The state variable u is normalized with zero mean and unit energy with the change of variables29

t = t̃, x = L0x̃+M0t̃, u = E
1/2
0 L

−1/2
0 ũ+M0,30

where M0 =
∫ πL0
−πL0

udx is the conserved total momentum and E0 = 1
2

∫ πL0
−πL0

u2dx− πL0M
2
0 is the conserved total energy from31

the original system [S1], and L0 defines the characteristic length scale of the traveling water waves. The additional shift in time32

M0t in the new coordinate creates the Doppler shift from the non-zero mean momentum M0. In this way, the total momentum33

is normalized to zeroM (ũ) = 0 without loss of generality due to the Galilean invariance. The total energy in the normalized34

state ũ is rescaled to unity, E (ũ) = 1, conserved during the evolution, while E0 characterizes the total energy injected in the35

system. For simplicity in representation, we use the normalized state variables and neglect the ‘tildes’ in the notations.36

To investigate the turbulent dynamics in different scales generated from the KdV equation, usually a Galerkin projection37

PΛ is applied to the state variable u with a high wavenumber truncation up to Λ38

uΛ (x, t) ≡ PΛu =
∑
|k|≤Λ

ûk (t) eikx, [S3]39

with in total J = 2Λ + 1 grid points. The Galerkin truncated state variable uΛ is normalized with zero meanMΛ = û0 = 0 and40

unit energy EΛ = 2π
∑Λ

k=1 |ûk|
2 = 1. Therefore, the water wave motion is described by the truncated KdV equation (tKdV) by41

projecting the continuous equation [S1] to the truncated subspace with water depth D0 dependence (1, 2)42

∂uΛ

∂t
+ D

−3/2
0
2 E

1/2
0 L

−3/2
0

∂

∂x
PΛ (uΛ)2 +D

1/2
0 L−3

0
∂3uΛ

∂x3 = 0, x ∈ [−π, π] . [S4]43

The tKdV model [S4] is non-dimensionalized in the periodic domain [−π, π] with the three model parameters (E0, L0, D0). The44

additional projection in front of the quadratic term u2
Λ is used to remove the aliasing modes that go beyond the range |k| > Λ.45

The conserved Hamiltonian is discretized accordingly in the finite dimensional subspace decomposed into the difference of two46

components containing cubic and quadratic terms47

HΛ = D
−3/2
0 E

1/2
0 L

−3/2
0 H3 (uΛ)−D1/2

0 L−3
0 H2 (uΛ) , H3 (u) = 1

6

∫ π

−π
u3dx, H2 (u) = 1

2

∫ π

−π
u2
xdx. [S5]48

Above, the cubic term H3 describes the skewness of the state, while the quadratic term H2 characterizes the slopes of the49

surface waves, ux. The advantage of adopting the normalized formulation [S4] with Hamiltonian [S5] is that it enables us to50
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easily control the different cases with changing statistics from a unified model setup. The amplitudes of the characterizing51

model parameters (E0, L0, D0) can be discovered from a scale analysis from the experimental data. For the direct numerical52

simulations in the main text, we pick model parameter values as E0 = 100, L0 = 6, D0 = 0.24 and J = 32 following the53

derivation in (2) from a detailed scale analysis.54

It can be shown that the conserved quantities above are still conserved in this truncated system. Especially, the Hamiltonian55

structure of the previous continuous equation is maintained in this semi-discrete tKdV equation. The truncated equation56

[S4] stays as a Hamiltonian system with the corresponding discrete Hamiltonian HΛ. Furthermore, the truncated system57

[S4] satisfies the Liouville property (3, 4), thus equilibrium statistical mechanics can be constructed based on the conserved58

quantities.59

A.2. Equilibrium statistical mechanics for the Gibbs invariant measures. For a better characterization of the turbulent solutions60

of the tKdV model, we introduce a statistical description of state u captured by ensemble simulations. First, the equilibrium61

probability distribution can be quantified by an invariant statistical measure. The equilibrium invariant measure is dictated by62

the conservation laws in the tKdV equation. There exist two important conserved functionals, the total energy EΛ and the63

Hamiltonian HΛ, in the tKdV equation [S4]. The choice is to pick a mixed Gibbs measure with microcanonical ensemble in the64

quadratic energy EΛ and canonical ensemble in the Hamiltonian HΛ (3, 4). The invariant Gibbs measure is then defined based65

on canonical Hamiltonian fixed on the isosurface with constant energy (normalized to unit)66

Gθ (uΛ;E) = Cθ exp (−θHΛ) δ (EΛ − 1) ,67

with θ the inverse temperature. Summarizing the expressions for the truncated variables, the invariant Gibbs measure for the68

tKdV model [S4] about the normalized state variable uΛ with unit energy can be rewritten in the following explicit form69

Gθ (uΛ) = Cθ exp
(
−θ
{
h3

∫ π

−π
u3

Λdx− h2

∫ π

−π
(∂xuΛ)2 dx

})
δ

(
1
2

∫ π

−π
u2

Λdx− 1
)
, [S6]70

with the coefficients h3 = 1
6E

1/2
0 L

−3/2
0 D

−3/2
0 and h2 = 1

2L
−3
0 D

1/2
0 depending on the model parameters. A constant mean state71

will not alter the final invariant measure with a Doppler shift in the solution. The expectation of any functional F (u) can be72

computed based on the above invariant measures [S6] using proper sampling strategies73

〈F 〉Gθ ≡
∫
F (u)Gθ (u) du.74

The invariant measures Gθ predict the equilibrium PDFs of the system and can be sampled to serve as the initial ensemble for75

direct numerical simulations of the tKdV equation to generate different final model statistics. The Gibbs invariant measure can76

be sampled effectively using a proper Markov chain Monte Carlo scheme (2).77

The distinct statistics generated from the tKdV model can be controlled by the the inverse temperature parameter θ. It78

is found (2, 5) that the negative temperature regime, θ < 0, gives the correct energy spectra and PDFs consistent with the79

experiments. The Gibbs invariant measure [S6] transfers from near-Gaussian to highly skewed distribution as the amplitude of80

the inverse temperature θ increases. Three typical statistical regimes with near-Gaussian statistics (θ = −0.1), mildly skewed81

PDF (θ = −0.25), and strongly skewed PDF (θ = −0.5) are used as test regimes in the main text.82

Besides, the autocorrelation functions characterizes the mixing properties of the turbulent system. It is usually useful to83

consider both the autocorrelations at the physical grid points as well as in the spectral modes. The autocorrelation functions84

for the physical grids Rij or between two spectral modes R̂kl can be computed correspondingly as85

Rij (τ ; t) = 〈ui (t+ τ)uj (t)〉 , R̂kl (τ ; t) = 〈ûk (t+ τ) û∗l (t)〉 , [S7]86

where 〈·〉 can be viewed as the statistical average in ensemble members. With the homogeneous statistics for translation87

invariance, the formulas [S7] for the autocorrelation functions can be simplified as Rij (τ ; t) ≡ R (τ) and R̂kl (τ ; t) ≡ R̂k (τ) δkl88

independent of the starting time t for stationary processes. Accordingly, the decorrelation time is defined as the time integration89

of the autocorrelation functions90

Tdecorr =
∫ ∞

0
R (τ) dτ, T̂decorr,k =

∫ ∞
0
R̂k (τ) dτ. [S8]91

They are used to characterize the mixing time scale in the physical grids as well as the mixing rates of the Fourier modes for92

different scales. The larger scales often get correlated for longer time than the smaller scale modes.93

B. Details on the convolutional neural network architecture for extreme event prediction94

In the following we summarize the detailed implementation of the deep convolutional neural network used in the main text for95

learning turbulent dynamics and predicting extreme events.96
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B.1. A densely connected mixed-scale neural network for imaging processing. On the update in each single layer, the input97

data is arranged as the tensor x ∈ RJ×N×C , where J ×N is the input 2-dimensional model data with J spatial grid points and98

N time steps. C is the number of channels starting with a single channel C = 1 in the first layer from the input data, and in99

later layers in the densely connected network case it contains a combination all the previous layer data in history. The output100

data y ∈ RJ×N×1 is set to have the same tensor dimension size with a single channel output (C′ = 1) for the prediction.101

Specifically, each layer updates the input data use the general operator as102

y = σ (gh (x) + b) , gh =
C∑
i=1

hi ∗ xi,103

where h ∗ x is the convolution operator with the filter kernel h, b is a constant parameter for the model bias, and σ is the104

nonlinear operator. Usually in a training data set from an ensemble of solutions with size M , the neural network updates each105

ensemble member separately and uses the final output to update the cost function. The parameters in the convolution operator106

gh and the bias b change for different layers and for different output channels. The rectified linear unit (ReLU) function is107

taken as the nonlinear operator108

σ (x) = max {x, 0} .109

With the i-th channel xi ∈ RJ×N from the input data, the model parameters in one network layer includes:110

• The convolutional filter kernel hi for the i-th channel data covering the dimensions in space and time. It usually covers a111

small window with size w1 × w2, where w1 is determined by the correlation in the spatial direction and w2 is determined112

by the temporal correction;113

• The bias bi for each output layer as a scalar parameter to be trained in the network. The bias is added before the114

nonlinear operation σ;115

In a feedforward deep neutral network, the input data in the l-th layer xl is only feed to the next (l + 1)-th layer through the116

convolution operator for the output in the m-th channel117

xml+1 = σ (glm (xl) + blm) , glm (xl) =
Cl∑
i=0

hilm ∗ xil . [S9]118

Above σ is the nonlinear operator such as the ReLU. The convolution operator glm sends the input data xl in the l-th layer to119

the next layer on the m-th channel. blm adds the bias to each channel, and hilm is the convolution kernel in a small size. The120

feedforward deep network may require a larger number of layers to work and more model parameters to train. It may also121

require proper downscaling and upscaling going through the layers (then the size of the data changes through the network122

layers), while these downscaling and upscaling may not be an feasible approach for simulating the dynamical model time123

integration steps.124

A densely connected and mix-scale structure. A mixed-scale dense neural network (MS-D Net) (6) mixes different scales within125

each layer using a dilated convolution, and densely connects all the feature maps. First, the dilated filter hilm (slm) convolves126

the grids with a distance as multiples of length s. The first layer starts with a non-dilated filter with size w1 × w2 (usually a127

3× 3 filter in practice). Then the dilation is increased by 1 (that is, fill zeros in the convolution kernel h) at each following128

layer until it reaches the maximum dilation S (set as S = 5 in the present test). The dilated convolutions are desgined to129

capture additional features within different distances in the images. It is used to assimilate the multiscale schemes in the PDE130

discretization. Large scale information is first extracted in the early layers, while the deeper layers improve the smaller scales.131

The mixed-scale structure can avoid the use of downscaling and upscaling operations that are usually necessary in the direct132

feedforward networks. Thus different (spatial and temporal) scales are included with the convolution filter kernels in different133

lengths.134

Next, the dense connection includes information in all the previous layers n = 0, · · · , l to update the output data in the next135

layer n = l + 1136

xml+1 = σ (glm (x0, · · · ,xl) + blm) , glm (x0, · · · ,xl) =
l∑

n=0

Cn∑
i=0

hinm (snm) ∗ xin. [S10]137

Here glm goes from the l-th layer to the next (l + 1)-th layer on the m-th channel. All the previous layer information138

{x0, · · · ,xl} is used for the updating. In the last layer of the network, a fully connected layer is used to combine all the139

previous features together. It is equivalent to using a convolutional network with a filter kernel of size 1× 1140

y = σ

(∑
j,k

hjkxjk + b

)
,141

where xjk is the j-th row and k-th column of the input data x and including all the previous layers. This is a linear combination142

of all the previous layer outputs.The mixed-scale dense neural network requires fewer feature maps and trainable parameters,143
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Fig. S1. Prediction using the same optimized neural network with L = 80 layers in regimes with near-Gaussian statistics (left) and mildly skewed statistics (right). The first row
plots the relative square error for the state u and the scaled error for exp (u) among 500 test samples. The lower row shows one typical snapshot for each prediction case with
near-Gaussian or medium skewness.
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Fig. S2. Training neural networks with different convolution filter kernel sizes and maximum dilations.

so it is easier to handle compared with the direct feedforward network. For the mixed scale network structure, it is hopeful144

that it can first decompose the different scales (for large-scale information with a large dilation distance s). Then information145

at different scales communicates with each other through the dense network connection. As a result, more accurate prediction146

is expected since the dynamical model structure is better represented through the MS-D Net.147

Finally, a stochastic gradient descent (SGD) method inside the batch data is used for the optimization of the model148

parameters. An adaptive learning rate optimization, Adam, is applied for determining the optimal learning rate for each149

iteration in the SGD. The learning rate is decayed by a factor γ = 0.1 once the number of epochs reaches some milestone. The150

Adam method is generally regarded as being fairly robust to the choice of hyperparameters.151

The network is implemented using PyTorch and is performed on one or two NVIDIA P100 GPUs. The training of the152

neural network goes through 1000 epochs, while it is observed in most cases 200 epochs can already reduce the error in the loss153

function to a small value.154

B.2. More results for model dependence on hyperparameters. Here we provide more results in the performance of the deep155

neural network in complementary to the main results shown in the main text. The neural network follows the standard structure156

described before. We pick the number of layers as L = 80 and a symmetric convolution kernel with size 3× 3, and the same157

maximum dilation size in the two (spatial and temporal) directions is considered. In company with the prediction for the158

highly skewed regime in Fig. 4 of the main text, Figure S1 shows the additional predictions through the same optimized neural159

network among other statistical regimes with near-Gaussian and mildly skewed PDFs respectively. As expected, uniformly high160

accuracy is achieved again in the other two test regimes and the flow snapshots confirm the skill of the network to capture161

both the dominant traveling waves as well as the smaller scale turbulent structures in the flow field.162

Next, the model dependence on the hyperparameters is investigated. Figure S2 first compares the evolution of training163

errors using different convolution filter kernel sizes and different maximum inflation sizes in the MS-D Net. Larger kernel sizes164

and bigger maximum inflations extend the multiscale connections to a wider range, though the values in far away points might165

not be closely correlated. It shows in the training results that too large dilation hampers the improvement in reducing the166

model error. Too large a convolution kernel shape also damages the model prediction skill in the error even though it may give167

a smaller loss function in the training process.168

Finally, the different by using the combined relative entropy loss function with α = 1 is compared with the single relative169

loss function α = 0 only measuring the positive values in Figure S3. It shows that combining both the positive and negative170

extreme values through the two empirical partition functions helps to stabilize the convergence in the training process. Using a171

loss function only containing a positive value component, the training error becomes much less stable and slower to converge to172
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Fig. S3. Training neural networks with the combined loss function α = 1 and the loss function only comparing the positive extreme values α = 0 using the relation entropy.

the minimum error during the training process.173

174
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