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Abstract

A nonlinear optimal smoother and an associated optimal strategy of sampling

hidden model trajectories are developed for a rich class of complex nonlinear

turbulent dynamical systems with partial and noisy observations. Despite the

strong nonlinearity and the significant non-Gaussian characteristics in the un-

derlying systems, both the optimal smoother estimates and the sampled tra-

jectories can be solved via closed analytic formulae. Thus, they are computa-

tionally efficient and the methods are applicable to high-dimensional systems.

The nonlinear optimal smoother is able to estimate the hidden model states

associated with various non-Gaussian phenomena and is particularly skillful in

capturing the onset, demise and amplitude of the observed and hidden extreme

events. On the other hand, the sampled hidden trajectories succeed in recov-

ering both the dynamical and statistical features of the underlying nonlinear

systems, including the fat-tailed non-Gaussian probability density function and

the temporal autocorrelation function. In the situations with only a short period
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of partially observed training time series, the optimal sampling strategy can be

used to efficiently create a sufficient number of samples in an unbiased fashion

that facilitates an accurate prediction of important non-Gaussian features in

both the observed and hidden variables. In addition, the information provided

by the sampled trajectories based on imperfect models allows an effective way

of quantifying the model error. It also offers a systematic approach to improve

approximate models and stochastic parameterizations in highly non-Gaussian

systems and thus advances the real-time forecasts.

Keywords: Nonlinear optimal smoothing, Optimal backward sampling,

Complex Nonlinear Turbulent Systems, Hidden variables, Extreme events,

Model error
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1. Introduction

Complex nonlinear turbulent dynamical systems [1, 2, 3, 4] are characterized

by multiscale spatiotemporal structures, strong nonlinear interactions between

different variables and across different scales, and significant non-Gaussian be-

havior such as the fat-tailed probability density function (PDF), intermittency5

and extreme events [5, 6, 7]. High dimensionality and model error are also the

common issues in the study of these nonlinear dynamical systems. Due to the

complexity in the turbulent systems, observations are often combined with dy-

namical models in reducing the model bias and model uncertainty. However,

only partial and noisy observations are available in many practical applications.10

Despite the lack of the observational data, the unresolved variables nevertheless

play a crucial role in transferring energy with the observed or resolved vari-

ables in a highly nonlinear way. These unobserved variables are also able to

trigger various non-Gaussian phenomena including extreme events in both the

resolved and unresolved scales. Therefore, estimating the states and recovering15

the nonlinear and non-Gaussian dynamical and statistical features of the hidden

variables are central topics in studying complex nonlinear dynamical systems.
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Filtering is one of the widely used methods for state estimation [8, 9, 10,

11, 12]. It utilizes the information up to the current time instant and thus has

the advantage of providing an improved initial value for real-time prediction.20

However, the state estimation based on the information only in the past can be

biased, especially for detecting the triggering phases and the nonlinear response

of various non-Gaussian phenomena such as intermittency and extreme events.

In addition, many important path-wise properties of intermittent trajectories,

which involve crucial nonlinear dynamical features of the underlying system,25

are usually not well represented by the biased statistical description via the

filter estimates. Therefore, for the purpose of an off-line optimal estimation of

the hidden states, using the information of the entire observational period is a

more appropriate choice. This is known as the smoothing technique [13, 14, 12].

In addition to improving the statistical state estimation, the optimal smoother30

estimates can be further applied to the development of effective methods for

sampling the missing trajectories of the hidden variables, which involve both the

path-wise and statistical characteristics of the underlying model. The smoother

technique typically contains a forward pass using a certain filtering method

followed by a backward pass to obtain the optimal smoothed state estimates.35

For linear models with Gaussian noise, Kalman filter [15] is often used as the

forward pass and different smoothers have been developed, such as the Rauch-

Tung-Striebel (RTS) and the Bryson-Frazier smoothers [13, 16]. Unfortunately,

there is no general closed analytic form for optimal smoothers associated with

complex nonlinear systems. Particle methods have to be used in order to obtain40

the nonlinear smoother estimates. However, these particle methods typically

suffer from the curse of dimensionality [17] and are thus difficult to apply to

high-dimensional complex turbulent dynamical systems. On the other hand,

applying linear optimal smoothers as approximations to nonlinear turbulent

systems often fails to capture crucial nonlinear and non-Gaussian features. Such45

linearizations may also lead to severe model divergence and bring about unstable

dynamical behavior.

This article aims at developing a nonlinear optimal smoother and an associ-
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ated optimal strategy of sampling the hidden model trajectories for a rich class

of complex nonlinear turbulent dynamical models. In light of the model struc-50

ture, the nonlinear optimal smoother and the optimal sampling strategy can be

solved via closed analytic formulae and therefore they are computationally ef-

ficient and the methods are applicable to high-dimensional nonlinear turbulent

dynamical systems. It is shown that the estimated states from the nonlinear

optimal smoother provide a more accurate description of the non-Gaussian fea-55

tures than the nonlinear optimal filter estimates, including the timing, duration

and amplitudes of the hidden extreme events. On the other hand, the opti-

mal sampling technique is extremely useful in obtaining both the statistical and

path-wise properties of the unobserved or unresolved variables. It is also able

to provide extra dynamical information of the hidden processes which cannot60

be fully described by the filter and smoother estimates, such as the temporal

correlation of the underlying systems. Note that although this optimal sampling

strategy is not directly applicable in an online fashion, the dynamical and statis-

tical information provided by the resulting sampled trajectories can be adopted

to systematically improve the approximate models and the stochastic parame-65

terizations of unresolved variables, which advance the reduction of the error and

uncertainty in real-time forecasts. In addition, in many practical applications

only a limited size of observations is available, which is not enough to accurate-

ly recover the fat-tailed PDFs and other non-Gaussian statistical quantities in

complex nonlinear dynamical systems. This optimal sampling strategy can then70

be used to create a sufficient number of data in an unbiased fashion for both

the observed and hidden variables, which facilitates the statistical description

of various significant non-Gaussian features. Note that the sampled trajecto-

ries from this optimal sampling strategy is particularly useful in the presence of

model error. In fact, due to the extra information provided by observations, the75

resulting statistics from the sampled trajectories are often much more accurate

than those from a free run of the imperfect model.

The class of the complex nonlinear turbulent models used here is the so-called

conditional Gaussian nonlinear models [18, 19]. These systems are highly nonlin-
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ear and non-Gaussian, where both the joint and marginal PDFs can be skewed80

with fat tails. Extreme events, intermittency and highly nontrivial nonlinear

interactions between different variables all appear in the conditional Gaussian

systems. The name conditional Gaussian comes from the fact that once the

trajectories of a subset of the variables are known, the statistics of the remain-

ing variables conditioned on the trajectories of these known ones are Gaussian.85

The conditional Gaussian modeling framework includes a large class the physics-

constrained nonlinear low-order stochastic models [20, 21], many stochastically

coupled reaction-diffusion models in neuroscience and ecology [22, 23], and quite

a few important large-scale dynamical models in turbulence, fluids and geophys-

ical flows [24, 25]. A gallery of examples of conditional Gaussian systems can90

be found in [18].

The remaining of this article is organized as follows. Section 2 presents

the general form of the conditional Gaussian nonlinear models and the corre-

sponding nonlinear filter estimates. Section 3 focuses on the development of

the nonlinear optimal smoother and the nonlinear optimal strategy of sampling95

hidden model trajectories, where the theories are built for both the continuous

and discrete time dynamics. Section 4 illustrates several important applications

of the nonlinear optimal filter, smoother and sampling strategy, including recov-

ering the nonlinear dynamics and non-Gaussian statistics of complex nonlinear

systems, state estimation of extreme events, effective sampling and predicting100

the fat-tailed PDFs with very short observational training data and improving

the stochastic parameterizations using models with multiplicative noise. Both

the perfect model setup and the tests in the presence of model error are stud-

ied here. The article is concluded in Section 5. All the proofs are shown in

Appendix.105
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2. Conditional Gaussian Nonlinear Systems

The general form of the conditional Gaussian nonlinear systems is as follows

[26, 19, 18],

dX(t) =
[
A0(X, t) + A1(X, t)Y(t)

]
dt+ B1(X, t) dW1(t) + B2(X, t) dW2(t),

(1a)

dY(t) =
[
a0(X, t) + a1(X, t)Y(t)

]
dt+ b1(X, t) dW1(t) + b2(X, t) dW2(t),

(1b)

where the vector X stands for the observed variables while Y is the collection

of the unobserved variables. In (1), A0,A1,a0,a1,B1,B2,b1 and b2 and are

vectors and matrices that depend nonlinearly on the state variables X and time

t while W1 and W2 are independent white noise. With these two independent110

noise sources, the system in (1) is a generalized version of those in [19, 18]. For

the notation simplicity, we remove the explicit dependence of X and t in the

matrices and vectors in (1). That is, we denote A0 := A0(X, t) and the same

for other matrices and vectors.

Despite the conditional Gaussianity, the coupled system (1) remains high-115

ly nonlinear and is able to capture the non-Gaussian features as in nature.

This conditional Gaussian nonlinear modeling framework includes many physics-

constrained nonlinear stochastic models [20, 21], large-scale dynamical models

in turbulence, fluids and geophysical flows [24, 25], as well as stochastically cou-

pled reaction-diffusion models in neuroscience and ecology [22, 23]. See a recent120

work [18] for a gallery of examples of the conditional Gaussian systems. Applica-

tions of the conditional Gaussian systems to strongly nonlinear systems include

developing low-order nonlinear stochastic models for predicting the intermittent

time series of the Madden-Julian oscillation (MJO) and the monsoon intrasea-

sonal variabilities [27, 28, 29, 30], filtering the stochastic skeleton model for125

the MJO [31], and recovering the turbulent ocean flows with noisy observations

from Lagrangian tracers [32, 33, 34]. Other studies that also fit into the condi-

tional Gaussian framework includes the cheap exactly solvable forecast models
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in dynamic stochastic superresolution of sparsely observed turbulent systems

[35, 36], stochastic superparameterization for geophysical turbulence [37] and130

blended particle filters for large-dimensional chaotic systems [38].

One important feature of the conditional Gaussian nonlinear system (1) is

the following.

Theorem 2.1. Given one realization of the time series X(t) for t ∈ [0, t], the

conditional distribution

p(Y(t)|X(s), s ≤ t) ∼ N (µ(t),R(t)) (2)

is Gaussian, where the conditional mean µ and the conditional covariance R

are given by the following explicit formulae

dµ = (a0 + a1µ) dt+ (b ◦B + RA∗1)(B ◦B∗)−1( dX− (A0 + A1µ) dt),

(3a)

dR =
(
a1R + Ra∗1 + b ◦ b− (b ◦B + RA∗1)(B ◦B)−1(b ◦B + A1R)

)
dt,

(3b)

with

b ◦ b = b1b
∗
1 + b2b

∗
2,

b ◦B = b1B
∗
1 + b2B

∗
2,

B ◦B = B1B
∗
1 + B2B

∗
2.

See [26] for the proof of Theorem 2.1. The formulae in (3) are the non-

linear optimal filter estimates for the conditional Gaussian nonlinear systems,135

where the conditional covariance is driven by a random Riccati equation. The

conditional mean µ and the conditional covariance R in (3) are also named as

posterior mean and posterior covariance or filter mean and filter covariance.

In addition to the applications in effective data assimilation and real-time

forecast, these filter estimates in (3) play an important role in deriving the140

explicit formulae for the nonlinear optimal smoothing and the optimal strategy

of sampling the unobserved model trajectories.
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3. Conditional Gaussian Nonlinear Optimal Smoother and Backward

Sampling

3.1. Continuous time dynamics145

Consider the conditional Gaussian nonlinear systems in (1). Assume one

realization of X(t) for t ∈ [0, T ] is available.

For the convenience of discussion, the statement below starts with a discrete

approximation of the original nonlinear continuous system in time by adopting

an Euler-Maruyama scheme [39]. Thus, the values of X and Y are taken at150

discrete points in time {X̃0, . . . , X̃j , . . . , X̃J} and {Ỹ0, . . . , Ỹj , . . . , ỸJ}, where

X̃j := X(tj) and Ỹj = Y(tj). So do the resulting statistical estimates. Here,

the variable with tilde and superscript j, namely ·̃j , denotes the discrete approx-

imation of its continuous form at time tj , where the entire time interval [0, T ] is

divided into J equipartition subintervals with 0 = t0, t1, t2, . . . , tJ = T . Denote155

∆t = tj+1 − tj and therefore J∆t = T . In the analysis of the system with the

discrete approximation, J is assumed to be a large finite number (or equivalent-

ly ∆t is a small but finite quantity). Eventually, the limit ∆t → 0 is taken for

the discrete approximation to retrieve the original continuous dynamics.

We start with the following Lemma, which is the basis for the development160

of both the nonlinear optimal smoother and the optimal backward sampling

strategy.

Lemma 3.1. The conditional distribution

p(Ỹj |Ỹj+1, X̃s, s ≤ j) ∼ N (m̃j , P̃j) (4)

is Gaussian, where the conditional mean m̃j and conditional covariance P̃j

satisfy the following equations

m̃j = µ̃j + C̃j
(
Ỹj+1 − ãj0∆t− (I + ãj1∆t)µ̃j

)
, (5a)

P̃j = R̃j − C̃j
(
b̃j ◦ b̃j∆t+ (I + ãj1∆t)R̃j(I + ãj1∆t)∗

)
(Cj)∗, (5b)

and the auxiliary matrix C is given by

C̃j = R̃j(I + ãj1∆t)∗
(
b̃j ◦ b̃j∆t+ (I + ãj1∆t)R̃j(I + ãj1)∗

)−1
. (6)
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With Lemma 3.1 in hand, the nonlinear optimal smoother estimate of the

conditional Gaussian nonlinear system (1) is given as follows.

Theorem 3.2 (Optimal Nonlinear Smoother). Given one realization of the ob-

served variable X(t) for t ∈ [0, T ], the optimal smoother estimate p(Y(t)|X(s), s ∈

[0, T ]) is conditional Gaussian,

p(Y(t)|X(s), s ∈ [0, T ]) ∼ N (µs(t),Rs(t)), (7)

where the conditional mean µs(t) and conditional covariance Rs(t) of the s-

moother at time tj satisfy the following equations

µs(tj) = lim
∆t→0

µ̃js = µ̃j + C̃j
(
µ̃j+1

s − ãj0∆t− (I + ãj1∆t)µ̃j
)

(8a)

Rs(tj) = lim
∆t→0

R̃j
s = R̃j + C̃j

(
R̃j

s+1 − (I + ãj1∆t)R̃j(I + ãj1∆t)∗ − b̃j ◦ b̃j∆t
)
(C̃j)∗,

(8b)

and C̃j is the same as that in (6). Note that the optimal smoother estimate165

and the optimal filter estimate at the end point t = T are the same, namely

µs(T ) = µ(T ) and Rs(T ) = R(T ).

Theorem 3.2 provides an optimal way of estimating both the state and the

associated uncertainty at each time instant tj based on one realization of the

entire observational time series X(t) with t ∈ [0, T ]. Another important topic170

in studying the nonlinear turbulent dynamical system is to recover the dynam-

ical features of the unobserved process, which, in addition to the estimation of

these statistical quantities, also requires an efficient and accurate recovery of

the path-wise information of the unobserved variable Y that contains the tem-

poral dependence of Y at different time instants. The closed analytic formula175

in the following theorem provides an effective way of sampling the unobserved

trajectories of Y conditioned on the given time series X(t) with t ∈ [0, T ], which

facilitates the study of various hidden nonlinear dynamical features including

the intermittency and extreme events in complex nonlinear dynamical systems.

Theorem 3.3 (Optimal Backward Sampling Formula). Conditioned on one

realization of the observed variable X(t) for t ∈ [0, T ], the optimal strategy of
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sampling the trajectories associated with the unobserved variable Y satisfies the

following explicit formula,

d(−Y) =
(
−a0−a1Y

)
dt+(b◦b)R−1

(
µ−Y

)
dt+b1 dWY,1+b2 dWY,2, (9)

where µ(t) and R(t) are the conditional mean and conditional covariance from

the filter estimates in (3), and WY,1 and WY,2 are independent white noise

sources. In (9), the left hand side is understood as

d(−Y) = lim
∆t→0

Y(t)−Y(t+ ∆t)

while Y on the right hand side takes values at t+ ∆t and the other coefficients180

are given at time t.

The formula (9) starts from t = T and it is run backwards towards t = 0.

Therefore, it is named as a backward sampling formula. The initial value of Y

in (9) is drawn from the conditional Gaussian distribution N (µ(T ),R(T )).

Remark. Comparing with the true underlying dynamics of Y in (1b), the back-185

ward sampling equation (9) involves an extra term (b ◦b)R−1
(
µ−Y

)
dt. This

correction term plays an important role as a forcing and it drives the sampled

trajectory to meander around the filter mean state µ. Yet, due to the memory

of the process, the system response of the forcing has a delayed effect. The

sampled trajectory Y actually fluctuates around the smoother mean state µs,190

which is a desirable feature since the optimal smoother estimate makes use of the

entire observational information and is thus unbiased. The rigorous justification

can be found in the first a few steps of the proof of Theorem 3.3. On the other

hand, this correction term has a weight (b ◦b)R−1. If the noise strength in the

Y process is fixed, namely b◦b is a constant matrix, then the amplitude of R is195

positively correlated with the noise level of the observational process X. A low

noise level in X implies a small uncertainty in the filter covariance estimate R,

which leads to a large weight towards the correction term. In addition, the filter

mean estimate µ in such a situation is largely determined by the observations.

As a consequence, the observations play a primary role in creating the sampled200

trajectories. Another important feature of the backward sampling equation (9)
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is that it retains the dynamical structures of the true underlying dynamics of

Y in (1b). Therefore the temporal autocorrelation function (ACF) and higher

order temporal correlations associated with the underlying nonlinear systems

can be accurately recovered using the sampled trajectories. Concrete examples205

are included in Section 4.

Next, in light of the backward sampling equation (9), there is an alternative

way of calculating the nonlinear optimal smoother.

Theorem 3.4 (An Alternative Way of Calculating the Optimal Nonlinear S-

moother). An alternative way of calculating the optimal smoother is via the

following equations,

d(−µs) =
(
− a0 − a1µs + (b ◦ b)R−1(µ− µs)

)
dt, (10a)

d(−Rs) = −
(
(a1 + (b ◦ b)R−1)Rs + Rs(a

∗
1 + (b ◦ b)R−1)− b ◦ b

)
dt. (10b)

In (10), the terms of the left hand side are understood as

d(−µs) = lim
∆t→0

µs(t)− µs(t+ ∆t)

d(−Rs) = lim
∆t→0

Rs(t)−Rs(t+ ∆t)

while Y on the right hand side of (10) takes values at t + ∆t and the oth-

er coefficients are given at t. The starting value of the nonlinear smoother210

(µs(T ),Rs(T )) is the same as the filter estimate at the endpoint (µ(T ),R(T )).

The nonlinear optimal smoother formulae in Theorem 3.4 are more concise.

It can be derived directly from the backward sampling equation (9) by using

a mean-fluctuation decomposition [40] (see the proofs in Appendix for details).

On the other hand, the optimal smoother formulae in Theorem 3.2 can be215

understood from a recursive point of view, where the procedure of the derivation

is quite useful for finding the nonlinear optimal smoother of the discrete version

of conditional Gaussian systems. The formulae in Theorem 3.2 can also be used

to derive the Rauch-Tung-Striebel smoother [13] when the underlying system is

linear with Gaussian noise, which will be discussed in Section 3.5.220
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3.2. Discrete time systems

As an analog to the continuous time conditional Gaussian systems, the gen-

eral form of the discrete conditional Gaussian nonlinear models is as follows,

X(tj+1) = A0(X(tj), tj) + A1(X(tj), tj)Y(tj)

+ B1(X(tj), tj)ε1(tj+1) + B2(X(tj), tj)ε2(tj+1), (11a)

Y(tj+1) = a0(X(tj), tj) + a1(X(tj), tj)Y(tj)

+ b1(X(tj), tj)ε1(tj+1) + b2(X(tj), tj)ε2(tj+1), (11b)

where ε1 and ε2 are independent white noise sources.

Theorem 3.5 (Optimal Nonlinear Filter Estimate). For the discrete system

(11), assume a sequence of the observed variable X, namely {X(t0),X(t1), . . . ,X(tj+1)},

is available. Then the distribution of Y(tj+1) conditioned on this given observed

sequence is conditional Gaussian,

p(Y(tj+1)|X(s), s ≤ tj+1) ∼ N (µ(tj+1),R(tj+1)). (12)

The time evolutions of the conditional mean µ(tj+1) and conditional covariance

R(tj+1) are given by the following explicit formulae,

µ(tj+1) = a0 + a1µ(tj) + (b ◦B + a1R(ti)A
∗
1)×

(B ◦B + A1R(ti)A
∗
1)−1(X(ti+1)−A0 −A1µ(ti)), (13a)

R(tj+1) = a1R(ti)a
∗
1 + b ◦ b− (b ◦B + a1R(ti)A

∗
1)×

(B ◦B + A1R(ti)A
∗
1)−1(b ◦B + a1R(ti)A

∗
1)∗, (13b)

where

b ◦ b = b1b
∗
1 + b2b

∗
2,

b ◦B = b1B
∗
1 + b2B

∗
2,

B ◦B = B1B
∗
1 + B2B

∗
2,

and all the matrices and vectors a0,a1,A0,A1,b1,b2,B1 and B2 are taking

values at time tj.
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Below, for the notation simplicity, we denote Yj := Y(tj) and the same225

applies for other variables, matrices and vectors. Assume the total length of the

observed sequence {Xs} is n+ 1.

Theorem 3.6 (Optimal Nonlinear Smoother Estimate). Given one sequence

of the observed variable {X0, . . . ,Xn}, the nonlinear optimal smoother estimate

p(Yj |Xs, 0 ≤ s ≤ n) is conditional Gaussian,

p(Yj |Xs, 0 ≤ s ≤ n) ∼ N (µjs,R
j
s),

where the conditional mean µjs and conditional covariance Rj
s of the smoother

are given by

µjs = µj + Cj(µj+1
s − aj0 − aj1µ

j), (14a)

Rj
s = Rj + Cj(Rj+1

s − aj1R
j(aj1)∗ − b ◦ b)(Cj)∗, (14b)

with

Cj = Rj(aj1)∗(b ◦ b + aj1R
j(aj1)∗)−1 (15)

The optimal smoother is calculated backwards from s = n to s = 0. The starting

value of the smoother estimate (µns ,R
n
s ) is the same as the filter estimate at the

endpoint (µn,Rn).230

Theorem 3.7 (Optimal Backward Sampling Formula). Given one sequence

of the observed variable {X0, . . . ,Xn}, the optimal sample of a sequence of the

unobserved variable Y can be drawn using the following explicit formula running

backwards in time,

p(Yj |Yj+1,Xs, 0 ≤ s ≤ n) ∼ N (mj ,Pj), (16)

where

mj = µj + Cj(Yj+1 − aj0 − aj1µ
j),

Pj = Rj −Cj(bj ◦ bj + aj1R
j(aj1)∗)(Cj)∗,

(17)

and the auxiliary matrix C is given by

Cj = Rj(aj1)∗(bj ◦ bj + aj1R
j(aj1)∗)−1. (18)
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3.3. Recovery of the transient and equilibrium PDFs of the unobserved variables

One important application of the nonlinear optimal smoother and the back-

ward sampling technique is to efficiently recover the PDFs of state variable

Y at both the transient phases and the statistical equilibrium state. The fo-

cus here is on the continuous nonlinear conditional Gaussian system (1). It is235

straightforward to generalize the conclusions here to the discrete time systems.

Theorem 3.8 (Transient PDF). Assume there are L independent trajectories

of the observed variable X(t) from t = 0 to t = T , denoted by Xl(t) with

l = 1, . . . , L. The PDF of Y at time instant t is given by

p(Y(t)) = lim
L→∞

1

L

L∑
l=1

p
(
Y(t)|Xl(0 ≤ s ≤ T )

)
, (19)

where for each l,

p
(
Y(t)|Xl(0 ≤ s ≤ T )

)
∼ N (µl,s,Rl,s),

with µl,s and Rl,s being the mean and covariance computed from the nonlinear

smoother in (7).

Note that the PDF of Y(t) can also be calculated using a combination of L

conditional Gaussian distributions from the filter estimates, which allows a real-240

time forecast of the PDF of Y [41]. In [42], it has been shown that only a small

number of L is needed for recovering p(Y(t)) based on the filtered solutions

regardless of the dimension of Y. In addition, a hybrid strategy facilitates

the recovery of the joint PDF p(X(t),Y(t)) in high-dimensional systems and

overcomes the curse of dimensionality [43, 41]. Parallel theories can be built245

here using the smoother estimates.

If the coupled system (1) is ergodic, then an efficient way of computing the

equilibrium PDF of Y is given as follows.

Corollary 3.9 (Equilibrium PDF). Assume a long trajectory of X from t = 0

to t = T is available. The equilibrium PDF of Y, denoted by p(Y∞) is given by

p(Y∞) = lim
I→∞

1

I

I∑
i=1

p
(
Y(ti)|X(0 ≤ s ≤ T )

)
, (20)
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where all ti with 0 ≤ t1 ≤ . . . ≤ tI ≤ T are distributed between t = 0 and t = T

with equal distance.250

The sampled trajectory from the backward sampling technique in (3.3) can

be regarded as a path that fluctuates around the mean state of the smoother.

The amplitude of the fluctuation is determined by the associated covariance

at different time instants. Despite the temporal correlation between different

points in the sampled trajectory, each point at time ti can be regarded as a sam-255

ple from p
(
Y(ti)|X(0 ≤ s ≤ T )

)
. Therefore, an even simpler way of recovering

the equilibrium PDF of Y is given as follows.

Corollary 3.10 (Equilibrium PDF; An Alternative Method). Under the same

condition as Corollary (3.9), an alternative way of solving the equilibrium PDF

of Y is by collecting all the points in the trajectory calculated from the backward260

sampling equation (9).

3.4. The temporal autocorrelation function (ACF).

Autocorrelation is the correlation of a signal with a delayed copy of itself,

as a function of delay [44]. For a zero mean and stationary random process u,

the autocorrelation function (ACF) can be calculated as

ACF(t) = lim
T→∞

1

T

∫ T

0

u(t+ τ)u∗(τ)

Var(u)
dτ, (21)

where ·∗ denotes the complex conjugate. The ACF has been widely used to

measure the system memory. It also plays an important role in improving the

linear response via the fluctuation-dissipation theorem [45, 46]. If the perfect265

model and the approximate model share the similar ACFs, then the two sys-

tems usually have a similar dynamical behavior at least up to the second order

statistics. However, for nonlinear and chaotic systems, high order statistics may

play an important roles for extreme events. Therefore, the ACF can only be

regarded as a crude indicator of the overall predictability of the underlying sys-270

tem. As a remark, the information theory is able to provide a rigorous and

practical way to quantify the error in the two ACFs associated with the perfect
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and approximate models by making use of their spectral representations. See

[47, 48] for details.

In the study below, the ACFs associated with the sampled trajectories from275

the backward sampling strategy are compared with that of the truth. Such a

comparison allows us to understand the skill of recovering the system memory

and capturing important dynamical behavior using the sampled trajectories,

which are not indicated by the equilibrium PDFs.

3.5. Special cases280

Recall that the general nonlinear conditional Gaussian models (1) allow the

matrices and vectors A0,A1,a0,a1,B1,B2,b1 and b2 on the right hand side

depend on the state variable X and such dependence can be highly nonlinear. In

addition, the state variables X and Y have a mutual influence with each other

in the coupled system, and the random noise are also coupled in the processes285

of X and Y. In this subsection, several special and simplified cases of the

general nonlinear conditional Gaussian models for filtering and smoothing are

illustrated.

3.5.1. The Kalman-Bucy model

A special case of the conditional Gaussian nonlinear models is the Kalman-

Bucy model [49, 50], which was originally proposed for continuous time filtering.

It involves three simplifications of the general nonlinear conditional Gaussian

framework. First, the variable X in the Kalman-Bucy model is regarded as the

observation, which is a function of the variable Y that describes the underlying

model. However, the observation does not influence the model itself. In other

words, there is only an one-way interaction between the two variables, and such

interaction is from Y to X. Second, the Kalman-Bucy model is designed for

linear system with linear observations. This means all the matrices and vectors

have no dependence on X, which is a significant simplification from the general

nonlinear conditional Gaussian framework. Third, the noises in the X and Y

processes of the Kalman-Bucy model are no longer coupled with each other.
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In fact, the noise in the X process is the observational noise while that in Y

represents the intrinsic small-scale variability of the underlying model. They are

naturally independent and the noise coefficients are state-independent as well.

Thus, the Kalman-Bucy model is given by

dX(t) =
[
A0(t) + A1(t)Y(t)

]
dt+ B2(t) dW2(t), (22a)

dY(t) =
[
a0(t) + a1(t)Y(t)

]
dt+ b1(t) dW1(t), (22b)

Since the Kalman-Bucy model is a simple and special case of the general con-290

ditional Gaussian nonlinear framework (1), The filtering, smoothing and back-

ward sampling formulae have the same forms as those appearing in Theorems

2.1, 3.3 and 3.4. The only difference in the formality is that b ◦ b = b1b
∗
1,

B ◦ B = B2B
∗
2 and b ◦ B = 0. However, in the general conditional Gaussian

nonlinear framework, the filter estimate (3) involves solving a random Riccati295

equation for the covariance, which is not the case in the Kalman-Bucy model

since all the coefficients of the filter estimate are state independent.

3.5.2. The Kalman filter

The classical Kalman filter [15] is similar to the Kalman-Bucy model, which

was designed for linear system with linear observations and it applies for discrete

time sequence. The Kalman filter has the following general form,

X(tj+1) = G(tj)Y(tj+1) + B2(tj)ε2(tj+1), (23a)

Y(tj+1) = a0(tj) + a1(tj)Y(tj) + b1(tj)ε1(tj+1), (23b)

where Y is the state variable for the underlying dynamics and X is the obser-

vation. The linear function G(tj) is the observational operator. The Kalman

filter written in the classical form (23) does not belong to the general condi-

tional Gaussian nonlinear framework, since the right hand side of (23a) involves

the state variable Y at time tj+1. Nevertheless, a slight modification can easily

facilitate the Kalman filter to become a special case of the general conditional

Gaussian nonlinear model. In fact, Y(tj+1) on the right hand side of (23a) can
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be replaced by the equation (23b) and the resulting coupled system reads,

X(tj+1) = A0(tj) + A1(tj)Y(tj) + B1(tj)ε1(tj+1) + B2(tj)ε2(tj+1), (24a)

Y(tj+1) = a0(tj) + a1(tj)Y(tj) + b1(tj)ε1(tj+1), (24b)

where in (24a)

A0(tj) = G(tj)a0(tj), A1(tj) = G(tj)a1(tj) and B1(tj) = G(tj)b1(tj).

(25)

It is important to note that both the noise sources ε1 and ε2 enter into the

observational process X, which is different from the Kalman-Bucy model in (22).300

Comparing the Kalman filter (24) with the general framework of the conditional

Gaussian nonlinear systems (1), it is easy to conclude that the Kalman filter

is a special case of the latter with state-independent coefficients, linear model

structure and additive noise.

3.5.3. The Rauch-Tung-Striebel (RTS) smoother305

The Rauch-Tung-Striebel (RTS) smoother [13] is an efficient two-pass algo-

rithm for fixed interval smoothing of linear model with Gaussian noise. It is one

of the most widely used smoothers in engineering, geophysics and turbulence.

The starting model for applying the RTS smoother is the same as that in

(23) and the forward pass is simply the classical Kalman filter. These filtered

prior and posterior state estimates µj+1
− , µj+1 and covariance Rj+1

− , Rj+1 are

saved for use in the backwards pass. In the backwards pass, the smoothed state

estimates µjs and covariances Rj
s are computed using the following recursive

equations from j = n back to j = 0,

µj+1
− = aj0 + aj1µ

j , (26a)

Rj+1
− = aj1R

j(aj1)∗ + bj1(bj1)∗, (26b)

Cj = Rjaj1(Rj+1
− )−1, (26c)

µjs = µj + Cj(µj+1
s − µj+1

− ), (26d)

Rj
s = Rj + Cj(Rj+1

s −Rj+1
− )(Cj)∗. (26e)
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To build a connection between the RTS smoother in (26) and the general ex-

pression of the optimal smoother estimation associated with the conditional

Gaussian systems in Theorem 3.6, plug (26a)–(26b) into (26c)–(26e) to elimi-

nate the explicit dependence on the prior distribution,

Cj = Rjaj1
(
aj1R

j(aj1)∗ + bj1(bj1)∗
)−1

, (27a)

µjs = µj + Cj(µj+1
s − aj0 − aj1µ

j), (27b)

Rj
s = Rj + Cj(Rj+1

s − aj1R
j(aj1)∗ − bj1(bj1)∗)(Cj)∗. (27c)

This is consistent with the general conclusions in Theorem 3.6 when the linear

model (23) with b2 = 0 is utilized. However, the filter estimate (µj ,Rj) in310

the RTS smoother (27) is through the linear and Gaussian system while those

in the general conditional Gaussian nonlinear systems involves nonlinearity and

requires solving random Riccati equation for the filter covariance.

4. Applications

4.1. Recovering the path-wise and statistical information of hidden variables315

4.1.1. A perfect model test

We start with a perfect model test. The model here is a physics-constrained

nonlinear dyad model [20, 21] with one observed variable u and one unobserved

variable v. The model reads,

du =
(
(−du + cv)u+ Fu

)
dt+ σu dWu,

dv = (−dvv − cu2) dt+ σv dWv,
(28)

In this dyad model, the energy in the nonlinear terms is conserved. It therefore

satisfies the physics constraint. Note that the observed variable v here serves

as a stochastic damping in the dynamics of u. Once the variable v goes beyond

the threshold value v∗ = du/c, the intermittency and extreme events appear in

u. Such an intermittent behavior provides rich non-Gaussian features of u. The

following parameters are used for the intermittent regime here.

Fu = 1, dv = 0.8, du = 0.8, σv = 2, c = 1.2, σu = 0.5.

(29)
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The blue curves in Panels (a)–(b) of Figure 1 show one realization of u and v

respectively, and those in Panels (d)–(e) illustrate the corresponding equilibrium

PDFs. It is clear that once v exceeds the threshold value du/c = 0.67 , the

associated u becomes intermittently unstable with a fat-tailed distribution and320

the appearance of extreme events.

In many applications, the filter mean state (i.e., the posterior mean state

from filtering) is simply treated as the estimated state. However, as is indicated

by the red curves in Panels (e)–(f), both the PDF and the ACF of the time series

of the filter mean are significantly biased from the truth. According to Panels325

(b)–(c), it is clear that despite the success in capturing the positive phases of v

to a large extent, most of the events with negative phases are missed. In fact,

the positive phases of v correspond to the intermittent events of u, at which the

signal-to-noise ratio is large and therefore the state estimation is accurate. On

the other hand, the negative phases of v are associated with the quiescent events330

of u and the resulting estate estimation has a large uncertainty, which implies

a significant gap between the filter mean and the truth. As a comparison,

the brown curves in Panel (b) shows the mean estimate from the nonlinear

smoother. Since the smoother makes use of the entire observational period, its

estimation is more accurate than the filter estimate and the uncertainty (Panel335

(c)) is smaller as well. As a consequence, the PDF and ACF associated with the

smoother mean time series are overall closer to the truth. However, there is still

an obvious disparity between the PDFs from these conditional mean estimates

and the truth due to the non-negligible uncertainty in the smoother estimate.

The green curves of the PDF and ACF in Panels (e)–(f) are based on the340

time series resulting from the backward sampling strategy. The reason that

the sampled trajectories are able to capture both the statistical and temporal

information is that they make use of the mean state of the estimation and the

uncertainty as well as the temporal dependence at different time instants. Panel

(g) involves four different sampled trajectories. One of the major difference345

between these sampled trajectories and the filter mean estimates is that the

former are able to capture the negative phases of v and therefore they are more
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skillful in recovering the associated PDF and ACF.

4.1.2. A nonlinear model test in the presence of model error

In most real applications, perfect model is never known. Approximate (or

imperfect) models are used for state estimation and prediction. In particular,

the unobserved processes often represent unresolved or small scale variables,

the complete dynamics of which are hard to obtain. Simplified models are

typically used to describe the unobserved variables. Therefore, it is important

to understand the skill of recovering the dynamical and statistical features in

the presence of model error. In this subsection, the following two-dimensional

highly nonlinear model is adopted as the perfect model that generates the true

signal,

du =
(
− γu+ Fu

)
dt+ σu dWu, (30a)

dγ = (aγγ + bγγ
2 + cγγ

3 + fγ) dt+ (Aγ +Bγγ) dWγ,1 + σγ dWγ,2. (30b)

In this model, u and γ are the observed and unobserved variables, respectively.350

The variable γ acts as a stochastic damping in the equation of u and the averaged

value of γ over time needs to be positive to guarantee the mean stability of u

[51]. Once the sign of γ switches from positive values to negative values, γ

becomes anti-damping and it leads to the intermittent events in u. On the

other hand, γ is driven by a cubic nonlinear equation with correlated additive355

and multiplicative noise. This cubic model is a canonical model for low frequency

atmospheric variability [52, 53]. This one-dimensional, normal form has been

applied in a regression strategy for data from a prototype atmosphere and ocean

model to build one-dimensional stochastic models for low-frequency patterns

such as the North Atlantic Oscillation and the leading principal component360

that has features of the Arctic Oscillation. Given the non-Gaussian features

and the potential physical explanations, the low-order model (30) becomes a

useful testbed for developing suitable stochastic parameterization strategies of

the hidden process that allows skillful prediction of the extreme events in the

observed variable.365
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The following parameters are adopted in the coupled system (30),

Fu = 0.3, σu = 0.1, aγ = −3

8
, bγ = 1, cγ = −1

2
,

Aγ = 0, Bγ =
1

2
√

2
, fγ = 0.1, σγ =

1

2
√

2
.

(31)

One realization of the true signal of u and γ is shown in blue curves in Panels

(a) and (b) of Figure 2, respectively. The associated PDFs are illustrated in

Panels (d) and (e). It is clear that u is highly intermittent with a strong one-

sided fat tail in the PDF while γ has a bimodal distribution with roughly two

distinguished states. The dynamical switching between the two states of γ370

corresponds to the interchange between the quiescent and active phases of u.

The approximate model here is developed using the stochastic parameterized

equation technique [54, 55], the idea of which has been applied to the extended

Kalman filters (known as the SPEKF-type model) and other prediction and

data assimilation forecast models. The approximate model has the following

form,

du = (−γu+ Fu) dt+ σu dWu, (32a)

dγ = −dγ(γ − γ̂) dt+ σγ dWγ . (32b)

In (32), the nonlinear process γ with correlated additive and multiplicative noise

in (30b) has been simplified to a linear process with only Gaussian additive

noise. Nevertheless, the variable γ remains switching between positive and

negative phases, representing damping and anti-damping effects as a feedback375

to u. Therefore, the variable γ is still able to trigger intermittent extreme events

in u. Note that the approximate model (32) belongs to the conditional Gaussian

framework while the perfect model (30) does not. The three parameters σγ ,

dγ and γ̂ in (32) can be calibrated using a general model calibration method

developed in [56]. But for the simplicity here, these parameters are calibrated by380

matching the mean, variance and decorrelation time of γ in the perfect system,

which provides the optimal Gaussian fit of γ in the nonlinear model in (30).

The filter and smoother mean estimates are shown in Panel (b) of Figure

2 and the associated uncertainties are illustrated in Panel (c). The negative
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phases of γ, corresponding to the intermittent phases of u, are recovered with385

high accuracy and small uncertainty. However, both the filter and smoother

mean estimates fail to capture the positive phases of γ due to a relatively small

signal-to-noise ratio of the signal in the corresponding phases of the observed

variable u. As a result, the PDFs formed by the time series from the filter

and the smoother mean estimates contain a large error in capturing the right390

side of the true PDF, although they are able to recover the left peak of the

truth. On the other hand, the γ process in the imperfect approximate model

(32) is Gaussian. Therefore, a free run of the approximate model leads to a

Gaussian PDF of the unobserved variable. Despite capturing the Gaussian tail

on the right side of the true PDF, such a Gaussian PDF completely misses395

the non-Gaussian features embodied by the second peak on the left side of the

truth, which comes from the negative events of γ that are associated with the

intermittency in u.

The PDF associated with the trajectory from the backward sampling strat-

egy combines the advantages of both the smoother mean estimate and the free400

run of the approximate model. The green curve in Panel (e) shows the PDF

associated with the sampled trajectory. It is important to note that the PDF

perfectly captures the peak of the left side of the truth and the Gaussian tail on

the right is recovered more accurately than that from the filter and smoother

mean estimates. In Panel (g), it is shown that the sampled trajectories succeed405

in capturing the negative phases of γ, which is obviously not the case for a free

run of the model. The sampled trajectories also has a larger chance in capturing

the positive phase of γ compared with the conditional mean estimates from both

the filter and the smoother. Finally, the ACF of γ from the sampled trajectories

also perfectly match that of the truth.410

4.2. Nonlinear filtering and smoothing of physics-constrained nonlinear systems

for detecting non-Gaussian features and predicting hidden extreme events

Since both filtering and smoothing are designed for state estimation, it is

important to study their difference in the resulting estimated states and explore
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suitable situations for the applications.415

4.2.1. The nonlinear dyad model

Here, the test model is the physics-constrained dyad model (28) with pa-

rameters given by (29). The reasons to apply this test model are the following.

First, this model has energy-conserving nonlinear interactions between the ob-

served and unobserved variables, satisfying the physics constraint, which mimics420

the dynamical behavior of many more realistic systems. Second, the unobserved

variable v serves as the triggering effect of the intermittent events of the ob-

served variable u while the decaying phase of the intermittent events in u leads

the relaxation of the unobserved variable v back to its mean state. The energy

is transferred nonlinearly through these non-Gaussian events. Third, if the ob-425

served variable u and the unobserved variable v are regarded as the large and

small scale variables in turbulence, then the highly non-Gaussian PDF of u and

the nearly Gaussian statistics in v are the typical feature as in many realistic

systems.

Figure 3 shows a comparison between the state estimation using the non-430

linear filtering and the nonlinear smoothing techniques. The true signals are

given by the blue curves. The smoother and filter mean states are shown in

the black dashed curves in Panels (b) and (c), respectively, and the associat-

ed uncertainties (represented by one standard deviation) are given by the red

and green shading areas. One major difference in the recovered states is that435

the smoother estimate is able to capture both the timing and the duration of

v when it goes above the intermittent threshold v∗ = du/c = 0.67 while the

filter estimate always fails to detect the onset of such triggering phases of the

intermittent events, e.g., at t = 6 and t = 16.5.

The fundamental reason of the failure of the filter in capturing the onset440

phases of the extreme events is that the filter estimate is calculated based on

the observational data only in the past. In this dyad model, the intermittent

events in u are the response of the anti-damping of v. This response is always

lagged behind the occurrence of the positive values of v. Therefore, before a
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significant increase of the amplitude of u that allows the filter to perceive such445

a triggering phase, the true signal of v has already stayed in the positive phases

for a certain period. This leads to the failure of the filter for timely predicting

the triggering phases of the extreme events. In contrast, this is not the case

for the nonlinear optimal smoother, since it is calculated based on the entire

observational period, which is able to foresee the upcoming intermittent events450

and facilities an unbiased estimation of the timing of the onset phases. On

the other hand, both the filter and smoother estimates are able to capture the

period of v that goes from anti-damping to damping phases, corresponding to

the demise phases of u. This is because at the demise phases of the extreme

events the signal of v is mainly driven by u though the feedback term −cu2 and455

such a feedback is immediate.

4.2.2. A four-dimensional stochastic climate model with multiscale features

Now we consider a four-dimensional stochastic climate model with multiscale

features. The model reads,

dx1 =
(
− x2(L12 + a1x1 + a2x2) + d1x1 + F1

+ L13y1 + b123x2y1

)
dt+ σx1

dWx1
, (33a)

dx2 =
(

+ x1(L12 + a1x1 + a2x2) + d2x2 + F2

+ L24y2 + b213x1y1

)
dt+ σx2 dWx2 , (33b)

dy1 =
(
− L13x1 + b312x1x2 + F3 −

γ1

ε
y1

)
dt+

σy1√
ε

dWy1 . (33c)

dy2 =
(
− L24x2 + F4 −

γ2

ε
y2

)
dt+

σy2√
ε

dWy2 , (33d)

where b123 + b213 + b312 = 0. This simple stochastic climate model [57, 58]

features many of the important dynamical properties of comprehensive global

circulation models (GCMs) but with many fewer degree of freedom. It contains460

a quadratic nonlinear part that conserves energy as well as a linear operator.

The linear operator includes a skew-symmetric part that mimics the Coriolis

effect and topographic Rossby wave propagation, and a negative definite sym-

metric part that is formally similar to the dissipation such as the surface drag
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and radiative damping. The two variables x1 and x2 can be regarded as climate465

variables while the other two variables y1 and y2 become weather variables that

occur in a much faster time scale when ε is small. The coupling in different vari-

ables is through both linear and nonlinear terms, where the nonlinear coupling

through bijk produces multiplicative noise. Note that when ε→ 0, applying an

explicit stochastic mode reduction results in a two-dimensional system for the470

climate variables [59, 60, 61].

Assume one realization of the two climate variables x1 and x2 is given while

the two weather variables y1 and y2 have no direct observations. The following

parameters are used in the tests here,

L12 = 1, L13 = 0.5, L24 = 0.5, a1 = 2, a2 = 1,

d1 = −1, d2 = −0.4, σ1 = 0.5, σ2 = 2, σ3 = 0.5, σ4 = 1,

b123 = 1.5, b213 = 1.5, γ1 = 0.5, γ2 = 0.5,

F1 = F2 = F3 = F4 = 0.

(34)

Depending on the scale separation parameter ε, two dynamical regimes are

considered:

Regime I : ε = 1,

Regime II : ε = 0.1,
(35)

In the ε = 1 regime, the weather and climate variables lie roughly on the same

time scale. The blue curves in Figure 4 illustrate one realization of different

model variables as well as the associated PDFs and ACFs. Here, one observed

variable x1 and one unobserved variable y1 are significant non-Gaussian, where475

the associated PDFs are highly skewed and have an one-sided fat tail. Extreme

events appear in both the trajectories of x1 and y1. The other two variables x2

and y2 are nearly Gaussian. Note that the ACF of y2 releases more slowly than

the other variables since it has the least influence from the nonlinearity.

On the other hand, due to the stronger linear damping and the larger noise480

strength, the two unobserved variables y1 and y2 become nearly Gaussian in

the ε = 0.1 regime. See the blue curves in Figure 5. Nevertheless, one of the
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observed variables x1 is still highly non-Gaussian. The ACFs of all the four

variables release much faster than those in the ε = 1 regime (note the difference

in the a-axis for showing the ACFs in the two regimes).485

Next, we compare the filter estimates, the smoother estimates and the s-

tatistics from the trajectories via the backward sampling strategy. First, as in

many applications, the time series of the filter mean states can be regarded as

an approximate estimates of the unobserved variables. In fact, the associated

PDF of y1 from the filter mean estimates is quite similar to the truth in the490

ε = 1 regime and the filter mean succeeds in predicting the hidden extreme

events in the path-wise sense as well. However, such an approximation leads to

a large error for y2 in recovering both the trajectory and the PDF. The failure

of using the filter mean estimate to approximate y2 is that the uncertainty in

filtering y2 is quite large (see Panel (a) of Figure 6) while that in filtering y1 is495

tiny. Such a difference is due to the fact that y1 has a strong interaction with

the two observed variables via the energy-conserving nonlinear terms, which is

not the case of y2. Note that the time series of the filter mean estimate also fails

to capture the temporal information of y2 in the original dynamics in that the

associated ACF is biased from the truth. With the decrease of ε, the two unob-500

served variables y1 and y2 are more turbulent and therefore simply adopting the

filter mean estimates provides much less information for recovering the statistics

of the original model. In fact, in the ε = 0.1 regime, the PDF of y1 associated

with the filter mean estimates already contains a large error. In addition, the

filter mean estimation of y2 indicates almost no information beyond the mean505

value of the statistical equilibrium state (see the last row of Figure 5 and Panel

(c) of Figure 6).

Figure 6 illustrates the filter and smoother estimates. They are actually quite

similar to each other in both the dynamical regimes. This indicates that the

filter mean and the smoother mean estimates are both insufficient to recover the510

statistics of the original system when the system is strongly turbulent due to the

ignorance of the large uncertainty. On the other hand, the sampled trajectory

from the backward sampling strategy, which takes into account the information
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in both the smoother mean and smoother uncertainty as well as the temporal

dependence between different time instants, is able to perfectly capture both515

the statistical and dynamical information. In particular, the PDFs and ACFs

associated with the sampled trajectories as shown in Figure 4 and 5 are identical

to the truth. The sampled trajectories also succeed in predicting the timing and

duration of the hidden extreme events of y1 in the ε = 1 regime.

4.3. Recovering non-Gaussian statistics of the observed variables using only520

short training period

We have so far focused on the state estimation of the unobserved variables.

Another key issue in practice is to predict the non-Gaussian statistics of the

observed or resolved variables. It is important to note that in many applications

in climate, atmosphere and ocean science the training data of variables lying525

in interannual or longer time scale is very limited since the satellite has only

been used in the recent a few decades. Therefore, simply using the available

observations may not be sufficient to describe many key non-Gaussian features

in an accurate way, especially for recovering fat tails and extreme events which

typically require a large number of samples.530

The backward sampling strategy developed here can be used to generate a

sufficient number of trajectories of the unobserved variables that are associated

with the observations. Then plugging these sampled trajectories into the process

of the observed variables facilitates the recovery of the non-Gaussian statistics

of the observed variables.535

4.3.1. A perfect model test

Let us start with a perfect model test, where the model that generates the

true signal and the one for sampling the unobserved trajectories are both the

dyad model (28) with parameters listed in (29). As was shown in Figure 1, the

PDF of u is highly non-Gaussian with an one-sided fat tail.540

Assume a short observational period of u with only 50 units is available,

as shown in Panel (a) of Figure 7. This period contains three strong extreme
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events (t = 6,17 and 46) and several moderate strong events. It mimics the

observed El Niño-Southern Oscillation (ENSO) [62]. In fact, since late 1970s

when satellites became available for collecting the ENSO data three super El545

Niño events and a few moderate events were observed.

The blue curves in Panel (d) and Panel (e) show the PDF of this observed

time series in linear and logarithm scales, respectively. As a comparison, the

true PDF by running the model forward for 1000 units is shown in black color.

It is clear that the fat tail of the PDF based only on the observed period is550

estimated with large errors, which is due to the insufficient number of samples.

Since filtering is widely used for state estimation and the filtered mean es-

timate is often regarded as the best estimation of the unobserved state, one

natural and simple way of generating more samples is as follows. Plug the time

series of the filter mean estimate into the process of u to replace the v variable555

there and repeat running the model of u for L times, which provides L time

series of u with 50 units of each. These L time series are different from each

other because of the noise in the u process. Then the PDF of u is formed by

collecting all these time series, which effectively gives a length of in total 50L

units. However, such a method fails to recover the fat tail and extreme events.560

See the PDFs in red curves in Panels (d) and (e), where L = 20 is used here.

There are at least two fundamental reasons that lead to the failure of such an

approach. First, in addition to the filter mean state, the uncertainty in the

filter estimate also plays an important role in the nonlinear interaction between

the observed and unobserved variables, especially for the intermittent phases.565

Second, the time series of the filter mean state does not capture the exact dy-

namical information of the truth. For example, the onset of the intermittent

phases is always delayed in this dyad model (See Section 4.2), which means the

duration time of the intermittent phase is always underestimated and thus the

method is unskillful in recovering the fat tail.570

The backward sampling strategy developed here can actually resolve both

the fundamental difficulties discussed above and therefore provides an unbiased

way of recovering the non-Gaussian statistics of the observed variable. In fact,
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the backward sampling is based on the smoothing estimates, which are able to

capture both the timing and duration of the intermittent phases, as was shown575

in Section 4.2. In addition, the sampled trajectories of v take into account

the information in the smoother mean and smoother uncertainty as well as the

dynamical information of the truth. Run the backward sampling L = 20 times

and collect all the resulting data to form the PDF of u, which is shown by the

green curves in Panels (d) and (e). It is clear that the resulting PDF perfectly580

captures the non-Gaussian fat tail of the truth. In addition, as is shown in Panel

(f), the trajectories of u based on the sampled v from the backward sampling

(green) are intermittent while those based on the filter mean time series of v

(red) are more quiescent.

One final remark here is that if the perfect model is known, then a more585

straightforward way of forming the PDF of u can be done by running the perfect

model forward. There is in fact no need to run the backward sampling for

obtaining the sampled trajectories of v. Nevertheless, model error appears in

many applications. Then the proposed method here becomes more powerful

in recovering the non-Gaussian PDF than simply running the imperfect model590

forward. See the next subsection for a more realistic case with model error.

4.3.2. A nonlinear model test in the presence of model error

Consider a more realistic situation now. The perfect model that generates

the true signal is still given by (28). However, it is assumed to be unknown.

Therefore, an approximate model is used to recover the statistics and the ap-

proximate model contains model error. Here, the imperfect approximate model

is given as follows

du =
(
(−du + cv)u+ Fu

)
dt+ σu dWu,

dv = (−dvv − cu2 + Fv) dt+ σv dWv,
(36)

where an extra term Fv is added to the perfect model. Assume Fv = −2 while all

the other parameters are taken as the same values as those in (29). Due to this

negative forcing Fv, the trajectory of u from a free run of the imperfect model595
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(36) is less intermittent and the associated PDF is more towards Gaussian. See

the magenta curves in Panels (d)–(f) in Figure 8 for the PDF and the trajectories

from a free run of the imperfect model.

On the other hand, with the help of the observations, the smoother estimates

based on such an imperfect model actually do not differ too much from those600

using the perfect model. See Panels (b) and (c) in Figure 8. In fact, there is only

a slight shift towards the negative value of v in the smoother mean estimate.

This error is much smaller than the model bias introduced by the extra forcing

Fv. As a result, even in the presence of a significant model error in the imperfect

model, the recovered PDF by plugging the sampled trajectories of v into the u605

process (green curves in Panels (b) and (c)) remains similar to the truth (black

curves), especially the non-Gaussian fat tail.

4.4. Improving the stochastic parameterizations

Stochastic parameterizations are widely used in practice to model the un-

resolved or unobserved variables, which aim at capturing the nonlinear inter-610

actions across different scales and recovering the statistical feedback from the

unresolved to the resolved variables. However, due to the lack of observations,

it is often not an easy task to design a skillful stochastic parameterization.

The backward sampling technique developed here can be used as a systemat-

ical framework for quantifying the bias in the given stochastic parameterization615

and providing guidelines for improving it.

Consider the following model as the perfect model that generates the true

signal,

du = (−duu+ γv) dt+ σu dWu, (37a)

dv = −dv(v − v̂) dt+ σv(v) dWv, (37b)

where u is the observed variable while v is unobserved. The noise coefficient in

the process v here is not a constant. Instead, it is state dependent

σv(v) = exp

(
−|v| −mc

vc

)
. (38)
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The parameters in this model are given by

du = 0.5, dv = 0.5, v̂ = 0, γ = 1, σu = 0.2, mc = 1, vc = 1.

(39)

One realization of the true signals of u and v is shown in Panels (a)–(b) of

Figure 9. The blue curves in Panels (e)–(h) show the PDFs and the ACFs of

the model. In particular, the PDFs of u and v are both highly non-Gaussian

with bimodal distributions.620

Since the true dynamics of v in the perfect model (37) is unknown, a typical

way of parameterizing v is to adopt a linear and Gaussian process. This leads

to the following approximate model,

du = (−duu+ γv) dt+ σu dWu, (40a)

dv = −dMv (v − v̂M ) dt+ σMv dWv, (40b)

where σMv is a constant. Assume the mean and variance of v in the perfect

model are available. But we assume the decorrelation time of v is not accurately

measured, where the measured value is twice as large as the truth. The three

parameters in (40b) are then estimated by matching the mean, variance and the

decorrelation time from the measurement.625

Because of the additive noise coefficient σMv in the approximate model (40),

the model becomes linear and Gaussian. Therefore, the equilibrium PDFs of

both u and v, as shown in the magenta curves in Panels (e) and (f), are Gaus-

sian. In addition, due to the overestimation of the decorrelation time, the ACFs,

as shown in Panels (g) and (h), are also different from the truth. These results630

indicate that the stochastic parameterization in (40) is not a suitable one. Next,

the backward sampling technique is used to improve the stochastic parameteri-

zation.

Despite that the approximate model (40) with the simplest stochastic param-

eterization contains a large error, it is nevertheless a useful starting model for635

improving the stochastic parameterization. In fact, combining the observations

of u with this linear and Gaussian approximate model, the backward sampling
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strategy can be applied to obtain trajectories of the unobserved variable v. No-

tably, the sampled trajectories are no longer Gaussian since the observations

play an important role in such a sampling procedure. Then the decorrelation640

time computed from the ACF, the mean state and the non-Gaussian PDF as-

sociated with the the sampled trajectories can be used to build an improved

model of v based on the following result.

Theorem 4.1. Given the decorrelation time τ , the mean value m and non-

Gaussian PDF p(x), there is an unique stochastic differential equation that sat-

isfies these conditions,

dx(t) = −λ(x(t)−m) dt+ σ(x) dW (t), (41)

where λ = 1/τ and the multiplicative noise coefficient σ(x) is given by

σ2(x) =
2

p(x)
{−λΦ(x)}, with Φ(x) =

∫ x

b

(y −m)p(y)dy.

Following Theorem 4.1, the improved model is as follows,

du = (−duu+ γv) dt+ σu dWu, (42a)

dv = −λM (v −mM ) dt+ σMv (v) dWv, (42b)

which has essentially the same form as the perfect model but the parameters in

(42b) are determined by the results in Theorem 4.1 using the statistics from the645

trajectories sampled by applying the backward sampling strategy to the starting

linear Gaussian model (40).

In Panels (c) and (d), one realization of the trajectories from (42) is shown.

For an unbiased comparison with the perfect model simulation, we adopt the

same random number seeds in generating these trajectories. It is clear from these650

panels that the dynamics of the improved model is far from linear and Gaussian

as in the starting imperfect model (40). In fact, as shown in Panels (e) and (f),

the PDFs of both u and v from the improved model (42) are bimodal, and they

are quite similar to the truth. Another important finding is that despite the

overestimation of the decorrelation time in the starting imperfect model (40),655
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the observations play a significant role in the backward sampling procedure such

that the decorrelation time in the sampled trajectory is nearly the same as the

truth. As a consequence, the ACFs associated with the improved model almost

overlap with the truth. See Panels (g) and (h). Finally, the multiplicative noise

coefficient σMv (v) in (42b) is shown in the green curve in Panel (i). Calibrating660

the improved model (42) based on the sampled trajectories leads to an apparent

multiplicative noise in the process of v, which is completely different from the

additive noise in the starting imperfect model (40).

To summarize, despite the large model error in the starting imperfect model

(40), the sampled trajectories by combining observations with this model are665

nevertheless able to provide extra useful information. The resulting improved

model (42) based on the above sampled trajectories is therefore much more ac-

curate in reproducing the non-Gaussian statistics. The improved model (42) is

also a suitable approximate model for real-time forecast, which is expected to

be more skillful in predicting extreme events and other non-Gaussian features670

than the starting imperfect model (40). Note that the difference in the statistics

between the sampled hidden trajectory and that from a free run of the approx-

imate model provides an effective way of quantifying the model error without

knowing the perfect model. This is an extremely useful tool since the perfect

model is unknown in practice.675

5. Conclusion

In this article, a nonlinear optimal smoother and an associated nonlinear

optimal sampling technique of the hidden trajectories are developed for a rich

class of nonlinear complex turbulent dynamical systems with partial observa-

tions. The models considered here are the so-called conditional Gaussian non-680

linear systems, which are highly nonlinear and highly non-Gaussian despite the

conditional Gaussian structures. These models have wide applications in geo-

physics, engineer, neural science and other areas. Both the optimal smoother

and the optimal sampling strategy have closed analytic form and therefore they
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can be applied to high-dimensional nonlinear turbulent systems with high effi-685

ciency. Several important applications of the nonlinear optimal filter, smoother

and sampling strategy are addressed in this article. They include recovering

the nonlinear dynamics and non-Gaussian statistics of complex nonlinear sys-

tems, state estimation of extreme events, effective sampling and predicting the

fat-tailed PDFs with very short observational training data and improving the690

stochastic parameterizations using models with multiplicative noise. Both the

perfect model setup and the tests in the presence of model error are studied

here.

One important future work is to study the online forecast skill of the im-

proved approximate model developed by making use of the information in the695

sampled trajectories sampled by some starting imperfect models, especially for

predicting the rare and extreme events. Recovering the statistical and dynami-

cal information from the backward sampling can also be used for model selection

and model identification. In addition, the proposed nonlinear framework can be

applied to study the stochastic control for nonlinear turbulent systems.700
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Appendix A. Some useful properties of multivariate Gaussian distri-

butions710

Let us denote a Gaussian distribution with mean µ and covariance R by

N (x|µ,R), where x is the random variable.
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Lemma Appendix A.1. For two Gaussian distributions,∫
N (x2|Fx1 + b,R2)N (x1|µ1,R1) dx1 = N (x2|Fµ1 + b,FR1F

∗ + R2).

(A.1)

Lemma Appendix A.2. Let the Gaussian random variables be

x =

 x1

x2

 ,

with mean µ and covariance R,

µ =

 µ1

µ2

 , R =

 R11 R12

R21 R22

 .

The conditional distribution

p(x1|x2) ∼ N (µ,R),

where

µ = µ1 + R12R
−1
22 (x2 − µ2),

R = R11 −R12R
−1
22R21.

(A.2)

Appendix B. Proof of the theorems related to the continuous time

conditional Gaussian systems

The proofs will be based on applying a Euler-Maruyama temporal discretiza-

tion for the coupled system (1) with a small ∆t. Eventually the limit ∆t → 0

will be taken to recover the continuous time dynamics. The Euler-Maruyama

temporal discretization of (1) yields,

X̃j+1 = X̃j +
(
Ãj

0 + Ãj
1Ỹ

j
)

∆t+ B̃j
1∆W̃j

1 + B̃j
2∆W̃j

2,

Ỹj+1 = Ỹj +
(
ãj0 + ãj1Ỹ

j
)

∆t+ b̃j1∆W̃j
1 + b̃j2∆W̃j

2,
(B.1)

where X̃ = X(tj+1) and Ỹ = Y(tj+1). In the proofs below, the variables or715

functions with tilde ·̃ always represent the time discrete form of the continuous

equation.
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Appendix B.1. Proof of Lemma 3.1

Proof. Let us start with the joint distribution p(Ỹj , Ỹj+1|X̃s, s ≤ j). Making

use of the roles of the conditional distribution yields

p(Ỹj , Ỹj+1|X̃s, s ≤ j) = p(Ỹj+1|Ỹj , X̃s, s ≤ j) p(Ỹj |X̃s, s ≤ j) (B.2)

In light of the second equation in (B.1), the first term on the right hand side of

(B.2) is given by

p(Ỹj+1|Ỹj , X̃s, s ≤ j)

∼ N
(
ãj0∆t+ (I + ãj1∆t)µ̃, b̃j ◦ b̃j∆t+ (I + ãj1∆t)R̃j(I + ãj1∆t)∗

)
.

(B.3)

On the other hand, the second term on the right hand side of (B.2) is simply

given by the filtering formula,

p(Ỹj |X̃s, s ≤ j) ∼ N (µ̃j , R̃j). (B.4)

The cross covariance term is given by

〈Ỹ′,j+1(Ỹ′,j)∗〉 = (I + ãj1∆t)R̃j , (B.5)

where Ỹ′,j+1 and Ỹ′,j are Ỹj+1 and Ỹj by removing their mean values. There-

fore, collecting (B.2)–(B.5) leads to

p(Ỹj , Ỹj+1|X̃s, s ≤ j)

∼ N

 µ̃j

ãj0∆t+ (I + ãj1∆t)µ̃j

 ,

 R̃j R̃j(1 + ãj1∆t)∗

(I + ãj1∆t)R̃j b̃j ◦ b̃j∆t+ (I + ãj1∆t)R̃j(I + ãj1∆t)∗

 .

(B.6)

In light of Lemma Appendix A.2, the result in (B.6) yields the conditional

distribution,

p(Ỹj |Ỹj+1, X̃s, s ≤ J) = p(Ỹj |Ỹj+1, X̃s, s ≤ j) = N (m̃j , P̃j), (B.7)

where

m̃j = µ̃j + C̃j
(
Ỹj+1 − ãj0∆t− (I + ãj1∆t)µ̃j

)
, (B.8a)

P̃j = R̃j − C̃j
(
b̃j ◦ b̃j∆t+ (I + ãj1∆t)R̃j(I + aj1∆t)∗

)
(Cj)∗, (B.8b)
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and the auxiliary matrix C is given by

C̃j = R̃j(I + ãj1∆t)∗
(
b̃j ◦ b̃j∆t+ (I + ãj1∆t)R̃j(I + ãj1)∗

)−1
. (B.9)

Note that the first equality in (B.7) is due to the Markovian property of the

underlying system. In fact, if Ỹj+1 is known, then the conditional distribution720

of Ỹj has no dependence on X̃s, s ≥ j + 1. This finishes the proof of Lemma

3.1.

Appendix B.2. Proof of Theorem 3.2

Proof. Making use of the rules of the conditional distribution leads to

p(Ỹj+1, Ỹj |X̃s, s ≤ J) = p(Ỹj |Ỹj+1, X̃s, s ≤ J)p(Ỹj+1|X̃s, s ≤ J)

= p(Ỹj |Ỹj+1, X̃s, s ≤ j)p(Ỹj+1|X̃s, s ≤ J)

∼ N (Ỹj |m̃j , P̃j)N (Ỹj+1|µ̃j+1
s , R̃j+1

s ),

(B.10)

where the first conditional Gaussian distribution has been given by (B.7) in

Lemma 3.1 and µ̃j+1
s and R̃j+1

s stand for the smoother mean and the smoother

covariance at tj+1. Next, in light of Lemma Appendix A.1, we arrive at the

following result

p(Ỹj |X̃s, s ≤ J) ∼ N (µ̃js, R̃
j
s)

∼ N (µ̃j + C̃(µ̃j+1
s − ãj0∆t− (I + ãj1∆t)µ̃j), P̃j + C̃jR̃j+1

s (C̃j)∗).

(B.11)

Finally, with the help of (B.8b), the mean and covariance from the smoother in

(B.11) become

µ̃js = µ̃j + C̃
(
µ̃j+1

s − ãj0∆t− (I + ãj1∆t)µ̃j
)

R̃j
s = P̃j + C̃jR̃j+1

s (C̃j)∗

= R̃j + C̃j
(
R̃j

s+1 − (I + ãj1∆t)R̃j(I + ãj1∆t)∗ − b̃j ◦ b̃j∆t
)
(C̃j)∗.

(B.12)

This finishes the proof of Theorem 3.2.
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Appendix B.3. Proof of Theorem 3.3725

Proof. Recall from (B.7) that Ỹj+1 is calculated by generate a multivariate

Gaussian random variable with mean m̃j and covariance P̃j . The backward

equation of sampling Y can be derived by making use of (B.8) and (B.9).

Plugging (B.9) into (B.8b) yields,

P̃j = R̃j − R̃j(I + ãj1∆t)∗
(
b̃j ◦ b̃j∆t+ (I + ãj1∆t)R̃j(I + ãj1∆t)∗

)−1
(I + ãj1∆t)R̃j

= R̃j − R̃j(I + ãj1∆t)∗
(
R̃j + (ãj1R̃

j + R̃j ãj1 + b̃j ◦ b̃j)∆t
)−1

(I + ãj1∆t)R̃j +O(∆t2)

= R̃j − R̃j(I + ãj1∆t)∗
(
R̃j(I + (R̃j)−1(ãj1R̃

j + R̃j ãj1 + b̃j ◦ b̃j)∆t)
)−1

× (I + ãj1∆t)R̃j +O(∆t2)

= R̃j − R̃j(I + ãj1∆t)∗
(
I− (R̃j)−1(ãj1R̃

j + R̃j ãj1 + b̃j ◦ b̃j)∆t
)
(R̃j)−1

× (I + ãj1∆t)R̃j +O(∆t2)

(B.13)

For notation simplicity, we define

F = (R̃j)−1
(
ãj1R̃

j + R̃j ãj1 + b̃j ◦ b̃j
)
, (B.14)

and thus

R̃j(I + ãj1∆t)∗
(
I− (R̃j)−1(ãj1R̃

j + R̃j ãj1 + b̃j ◦ b̃j)∆t
)
(R̃j)−1(I + ãj1∆t)R̃j

=R̃j(I + ãj1∆t)∗
(
I− F∆t

)
(R̃j)−1(I + ãj1∆t)R̃j

=(R̃j + R̃j ãj1∆t)((R̃j)−1 − F(R̃j)−1∆t)(R̃j + ãjj R̃
j∆t)

=(I− R̃jF(R̃j)−1 + R̃j ãj1(R̃j)−1∆t)(R̃j + ãj1R̃
j∆t)

=R̃j − R̃jF∆t+ R̃j ãj1∆t+ ãj1R̃
j∆t+O(∆t2).

(B.15)

Plugging B.16 back to (B.13) yields

P̃j = R̃j −
(
R̃j − R̃jF∆t+ R̃j ãj1∆t+ ãj1R̃

j∆t
)

+O(∆t2)

= R̃jF∆t− R̃j ãj1∆t− ãj1R̃
j∆t+O(∆t2)

= b̃j ◦ b̃j∆t+O(∆t2)

(B.16)
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Applying a similar argument, plugging (B.9) into (B.8a) yields and subtract-

ing Ỹj+1 on both sides of (B.8a) yields,

m̃j − Ỹj+1 = µ̃j + R̃j(I + ãj1∆t)∗
(
b̃j ◦ b̃j∆t+ (I + ãj1∆t)R̃j(I + ãj1)∗

)−1

×
(
Ỹj+1 − ãj0∆t− (I + ãj1∆t)µ̃j

)
− Ỹj+1

= µ̃j + R̃j(I + ãj1∆t)∗
(
I− (R̃j)−1(ãj1R̃

j + R̃j ãj1 + b̃j ◦ b̃j)∆t
)
(R̃j)−1

×
(
Ỹj+1 − ãj0∆t− (I + ãj1∆t)µ̃j

)
− Ỹj+1 +O(∆t2)

= µ̃j + (R̃j + R̃j ãj1∆t)
(
(R̃j)−1 − (R̃j)−1(ãj1R̃

j + R̃j ãj1 + b̃j ◦ b̃j)(R̃j)−1∆t
)

×
(
Ỹj+1 − ãj0∆t− (I + ãj1∆t)µ̃j

)
− Ỹj+1 +O(∆t2)

= µ̃j +
(
I− (ãj1 + b̃j ◦ b̃j)∆t

)(
Ỹj+1 − µ̃j − (ãj0 + ãj1µ̃

j)∆t
)
− Ỹj+1 +O(∆t2)

= −(ãj0 + ãj1µ̃
j)∆t− (ãj1 + b̃j ◦ b̃j(R̃j)−1)(Ỹj+1 − µ̃j)∆t+O(∆t2)

= −(ãj0 + ãj1Ỹ
j+1)∆t− b̃j ◦ b̃j(R̃j)−1(Ỹj+1 − µ̃j)∆t+O(∆t2)

(B.17)

Combining (B.16) and (B.17) and taking the limit ∆t → 0 yields an explicit

formula of sampling the unobserved processes Z(t),

d(−Y) =
(
− a0 − a1Y

)
dt+ (b ◦ b)R−1

(
µ−Y

)
dt+ b1 dWY,1 + b2 dWY,2,

(B.18)

This finishes the proof.

730

Appendix B.4. Proof of Theorem 3.4

Proof. At each fixed time t, a mean-fluctuation decomposition of Y yields

Y = 〈Y〉+ Y′, (B.19)

where 〈·〉 denotes the ensemble mean and ·′ is the fluctuation with 〈·′〉 = 0.

Therefore,

µs = 〈Y〉, and Rs = 〈Y′(Y′)∗〉 (B.20)

Now taking the ensemble average of both the left and right hand sides of (9)

yields

d(−µs) =
(
− a0 − a1µs + (b ◦ b)R−1(µ− µs)

)
dt, (B.21)
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which is (10a).

Next, taking the difference between (9) and (B.21) yields,

d(−Y′) =
(
− a1 − (b ◦ b)R−1

)
Y′ dt+ b1 dWY,1 + b2 dWY,2. (B.22)

The covariance can be solved by making use of the Ito’s formula [44],

d(−Rs) := d(−Y′(Y′)∗) = (Y′)∗ d(−Y′)+Y′ d(−(Y′)∗)+ d(−Y′) d(−(Y′)∗),

(B.23)

which combining with (B.22) leads to

d(−Rs) = −
(
(a1 + (b ◦ b)R−1)Rs +Rs(a

∗
1 + (b ◦ b)R−1)− b ◦ b

)
dt, (B.24)

which is (10b).

Appendix B.5. Proof the equivalency of the results in Theorem 3.4 and Theorem

3.2735

Proof. Let us start with the result in Theorem 3.2

µ̃js = µ̃j + C̃j
(
µ̃j+1

s − ãj0∆t− (I + ãj1∆t)µ̃j
)

R̃j
s = R̃j + C̃j

(
R̃j

s+1 − (I + ãj1∆t)R̃j(I + ãj1∆t)∗ − b̃j ◦ b̃j∆t
)
(C̃j)∗,

(B.25)

with

C̃j = R̃j(I + ãj1∆t)∗
(
b̃j ◦ b̃j∆t+ (I + ãj1∆t)R̃j(I + ãj1∆t)∗

)−1
. (B.26)

41



Subtracting µ̃j+1
s on both sides of the first equation in (B.25) yields,

µ̃js − µ̃
j+1
s = µ̃j − µ̃j+1

s + C̃j
(
µ̃j+1

s − ãj0∆t− (I + ãj1∆t)µ̃j
)

= µ̃j − µ̃j+1
s + R̃j(I + ãj1∆t)∗

(
R̃j + (b̃j ◦ b̃j + ãj1R̃

j + R̃j(ãj1)∗)∆t
)−1

×
(
µ̃j+1

s − ã0∆t− (I + ã1∆t)µ̃j
)

+O(∆t2)

= µ̃j − µ̃j+1
s + R̃j(I + ãj1∆t)∗

(
I + (R̃j)−1(b̃j ◦ b̃j + ãj1R̃

j + R̃j(ãj1)∗)∆t
)−1

(R̃j)−1

×
(
µ̃j+1

s − ã0∆t− (I + ã1∆t)µ̃j
)

+O(∆t2)

= µ̃j − µ̃j+1
s + R̃j(I + ãj1∆t)∗

(
I− (R̃j)−1(b̃j ◦ b̃j + ãj1R̃

j + R̃j(ãj1)∗)∆t
)
(R̃j)−1

×
(
µ̃j+1

s − ãj0∆t− (I + ãj1∆t)µ̃j
)

+O(∆t2)

= µ̃j − µ̃j+1
s +

(
R̃j − (b̃j ◦ b̃j + ãj1R̃

j + R̃j(ãj1)∗)∆t+ R̃j(ãj1)∗∆t
)
(R̃j)−1

×
(
µ̃j+1

s − ãj0∆t− (I + ãj1∆t)µ̃j
)

+O(∆t2)

= µ̃j − µ̃j+1
s +

(
I− (ãj1 + b̃j ◦ b̃jR̃j)−1∆t

)
×
(
µ̃j+1

s − ãj0∆t− (I + ãj1∆t)µ̃j
)

+O(∆t2)

= µ̃j − µ̃j+1
s + (µ̃j+1

s − ãj0∆t− (I + ãj1∆t)µ̃j)− (ãj1 + b̃j ◦ b̃j(R̃j)−1)

× (µ̃j+1
s − µ̃j)∆t+O(∆t2)

= (ãj0 − ãj0µ̃
j+1
s − b̃j ◦ b̃j(R̃j)−1(µ̃j+1

s − µ̃j))∆t+O(∆t2)

(B.27)

Taking the limit ∆t→ 0, the above equation becomes

d(−µs) =
(
− a0 − a1µs + (b ◦ b)R−1(µ− µs)

)
dt (B.28)

which is exactly (10a) as in Theorem 3.4.

Similarly, subtracting R̃j+1
s on both sides of the second equation in (B.25)
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yields,

R̃j
s − R̃j+1

s = R̃j − R̃j+1
s + C̃j

(
R̃j

s+1 − (I + ãj1∆t)R̃j(1 + ãj1∆t)∗ − b̃j ◦ b̃j∆t
)
(C̃j)∗,

= R̃j − R̃j+1
s +

(
I− (ãj1 + b̃j ◦ b̃jR̃j)−1∆t

)
×
(
R̃j+1

s − R̃j − (ãj1R̃
j + R̃j ãj1 + b̃j ◦ b̃j)∆t

)(
I− (ãj1 + b̃j ◦ b̃jR̃j)−1∆t

)∗
= R̃j − R̃j+1

s + R̃j+1
s − R̃j − (ãj1R̃

j + R̃j ãj1 + b̃j ◦ b̃j)∆t

− (ãj1 + b̃j ◦ b̃j(R̃j)−1)(R̃j+1
s − R̃j)∆t− (R̃j+1

s − R̃j)(ãj1 + b̃j ◦ b̃j(R̃j)−1)∗∆t

=
(
− ãj1R̃

j − R̃j ãj1 − b̃j ◦ b̃j − (ãj1 + b̃j ◦ b̃j(R̃j)−1)R̃j+1
s

− R̃j+1
s (ãj1 + b̃j ◦ b̃j(R̃j)−1)∗ + ãj1R̃

j + b̃j ◦ b̃j + R̃j(ãj1)∗ + b̃j ◦ b̃j
)

∆t

= −
(

(ãj1 + b̃j ◦ b̃j(R̃j)−1)R̃j+1
s + R̃j+1

s ((ãj1)∗ + b̃j ◦ b̃j(R̃j)−1)− b̃j ◦ b̃j
)

∆t

(B.29)

Taking the limit ∆t→ 0, the above equation becomes

d(−Rs) = −
(
(a1 + (b ◦ b)R−1)Rs +Rs(a

∗
1 + (b ◦ b)R−1)− b ◦ b

)
dt, (B.30)

which is exactly (10b) as in Theorem 3.4.

Therefore, the equivalency of the results in Theorem 3.4 and Theorem 3.2

has been proved.

Appendix C. Proof of the theorems related to the discrete time con-740

ditional Gaussian systems

Appendix C.1. Proof of Theorem 3.5

Proof. Consider the joint distribution p(Xj+1,Yj+1|Xs, s ≤ j).

In light of (11a), it is easy to derive, by evolving the model forward, that

p(Xj+1|Xs, s ≤ j) ∼ N (Aj
0 + Aj

1µ
j ,Aj

1R
j(Aj

1)∗ + Bj ◦Bj). (C.1)

Using the same argument, running the model (11b) forward yields

p(Yj+1|Xs, s ≤ j) ∼ N (aj0 + aj1µ
j ,aj1R

j(aj1)∗ + bj ◦ bj). (C.2)
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The cross-covariance term can be derived by first removing the mean in (11a)

and then multiplying the resulting equation by (Y′,j+1)∗, where (Y′,j+1)∗ is

(Yj+1)∗ subtracting its mean. The result is

〈X′,j+1(Y′,j+1)∗〉 = Aj
1R

j(aj1)∗ + (bj ◦Bj)∗. (C.3)

Collecting (C.1), (C.2) and (C.3) leads to

p(Xj+1,Yj+1|Xs, s ≤ j)

∼ N

 Aj
0 + Aj

1µ
j

aj0 + aj1µ
j

 ,

 Aj
1R

j(Aj
1)∗ + Bj ◦Bj Aj

1R
j(aj1)∗ + (bj ◦Bj)∗

aj1R
j(Aj

1)∗ + bj ◦Bj aj1R
j(aj1)∗ + bj ◦ bj


(C.4)

Then making use of (A.2) in Lemma Appendix A.2 finishes the proof.

Appendix C.2. Proof of Theorem 3.6745

Proof. Let us start with the joint distribution p(Yj ,Yj+1|Xs, s ≤ j). Applying

the conditional distribution rules yields

p(Yj ,Yj+1|Xs, s ≤ j) = p(Yj+1|Yj ,Xs, s ≤ j) p(Yj |Xs, s ≤ j). (C.5)

The first distribution on the right hand side of (C.5) can be calculated in light

of (11b),

p(Yj+1|Yj ,Xs, s ≤ j) ∼ N
(
aj0 + aj1µ

j ,bj ◦ bj + aj1R
j(aj1)∗

)
. (C.6)

The second distribution on the right hand side of (C.5) is simply the filter

estimate,

p(Yj |Xs, s ≤ j) ∼ N (µj ,Rj). (C.7)

The cross-covariance between Yj+1 and Yj can be calculated by making use of

(11b), which gives

〈Y′,j+1(Y′,j)∗〉 = aj1R
j , (C.8)

where Y′,j+1 and Y′,j are Yj+1 and Yj subtracting their means. Therefore,

collecting (C.6), (C.7) and (C.8) leads to

p(Yj ,Yj+1|Xs, s ≤ j) ∼ N

 µj

aj0 + aj1µ
j

 ,

 Rj Rj(aj1)∗

aj1R
j bj ◦ bj + aj1R

j(aj1)∗

 .

(C.9)
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With the result (C.9) in hand, it is easy to see that

p(Yj |Yj+1,Xs, s ≤ n) = p(Yj |Yj+1,Xs, s ≤ j) = p(mj ,Pj), (C.10)

where

mj = µj + Cj(Yj+1 − aj0 − aj1µ
j),

Pj = Rj −Cj(bj ◦ bj + aj1R
j(aj1)∗)(Cj)∗,

(C.11)

and the auxiliary matrix C is given by

Cj = Rj(aj1)∗(bj ◦ bj + aj1R
j(aj1)∗)−1. (C.12)

Next, using a similar technique as (C.5) yields

p(Yj ,Yj+1|Xs, s ≤ n) = p(Yj |Yj+1,Xs, s ≤ n) p(Yj+1|Xs, s ≤ n)

∼ N (Yj |mj ,Pj)N (Yj+1|µj+1
s ,Rj+1

s ).
(C.13)

Finally, applying (A.1) in Lemma Appendix A.1 to (C.13) gives

p(Yj |Xs, s ≤ n) ∼ N (µjs,R
j
s)

∼ N (µj + Cj(µj+1
s − aj0 − aj1µ

j),P + CjRj+1
s (Cj)−1).

(C.14)

Plugging (C.11) into (C.14) gives the recursive backward smoothing formulae

in (14)

µjs = µj + Cj(µj+1
s − aj0 − aj1µ

j), (C.15a)

Rj
s = Rj + Cj(Rj+1

s − aj1R
j(aj1)∗ − bj ◦ bj)(Cj)∗. (C.15b)

This finishes the proof

Appendix C.3. Proof of Theorem 3.7

Proof. The proof of Theorem 3.7 is finished by making use of (C.10) and (C.11).
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Appendix D. Proof of Theorem 3.8750

Proof. The marginal distribution of X at any fixed time s is given by

p(X(s)) = lim
L→∞

L∑
l=1

δ(X(s)−Xl(s)), (D.1)

where δ(·) is the Dirac delta function with the point mass being at zero. Thus,

the same conclusion applies for the joint distribution

p(X(0 ≤ s ≤ T )) = lim
L→∞

L∑
l=1

δ(X(0 ≤ s ≤ T )−Xl(0 ≤ s ≤ T )), (D.2)

which is understood in the sense of applying a temporal discretization of the

continuous path X. According to the fundamental relationship between joint,

marginal and conditional distributions, the marginal distribution of Y at time

t is given by

p(Y(t)) =

∫
p(X(0 ≤ s ≤ T ),Y(t)) dX(0 ≤ s ≤ T )

=

∫
p(X(0 ≤ s ≤ T ))p(Y(t)|X(0 ≤ s ≤ T )) dX(0 ≤ s ≤ T )

(D.3)

Inserting (D.2) into (D.3) yields,

p(Y(t)) = lim
L→∞

L∑
l=1

p(Y(t)|Xl(0 ≤ s ≤ T )), (D.4)

where for each l,

p
(
Y(t)|Xl(0 ≤ s ≤ T )

)
∼ N (µl,s,Rl,s),

This finishes the proof.

Appendix E. Proof of Theorem 4.1

Proof. Let us start writing down the general from of a 1-D SDE with multi-

plicative noise,

dx(t) = −λ(x(t)−m) dt+ σ(x) dW (t), (E.1)
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where m is an arbitrary real constant, and λ is a real positive constant. As-

sume σ(x) is twice continuously differentiable. Then the Fokker-Planck equation

associated with (E.1) is given by

∂p(x, t)

∂t
=

∂

∂x
[λ(x−m)p(x, t)] +

1

2

∂2

∂x2
[σ2(x)p(x, t)]. (E.2)

Taking the integration of (E.2) with respect to x once, the PDF p(x) of the

stationary solution to (E.1) satisfies the equation

λ(x−m)p(x) +
1

2

∂

∂x
[σ2(x)p(x)] = const. (E.3)

If p(x) does not vanish on R and p(x) is twice continuously differentiable, then

we can set

m = 〈x(t)〉, σ2(x) =
2

p(x)
{−λΦ(x)} (E.4)

where

Φ(x) =

∫ x

b

(y −m)p(y)dy. (E.5)
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Figure 1: Perfect model test with the dyad model in (28). Panel (a): the true signal of u. Panel

(b): the true signal (blue), the filter mean (red) and the smoother mean (brown) estimates.

Panel (c): the filter covariance (red) and the smoother covariance (brown) estimates. Panel

(d): the equilibrium PDF of the true signal of u, based on a trajectory with 500 time units.

Panel (e): the equilibrium PDF of the true signal of v (blue), the PDF associated with the time

series of the filter mean (red) and smoother mean (brown) estimates, and the PDF associated

with the sampled trajectory of v using the backward sampling strategy (green). Panel (f):

the temporal autocorrelation functions (ACFs) formed from different time series. Panel (g):

comparison of the true signal (blue), the time series of the filter mean estimate (red) and four

different sampled trajectories from the backward sampling strategy (green).
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Figure 2: Similar illustration as Figure 1. Here the true signal is generated from the perfect

model but the filter and smoother estimates as well as the backward sampling are all based

on the approximate model.
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Figure 3: The physics-constrained dyad model (28) with parameters given by (29). Panel (a):

one realization of the true signal u. Panel (b): the corresponding true signal of v (blue) and

the estimate from the nonlinear optimal smoothing, where the smoother mean is given by

black dashed curve and one standard deviation (std) is shown in the green shading area. The

horizontal dotted line shows the intermittent threshold v∗ = du/c = 0.67. Panel (c): similar

to (b) but for the filter estimates.
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Figure 4: The four-dimensional stochastic climate model (33) with parameters (34). Blue

curves show the true trajectories, the associated PDFs and ACFs. The red curves show those

of the filtered mean state. The green curves show those of one sampled trajectories of the

unobserved variables y1 and y2 from the backward sampling strategy.
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Figure 5: Similar to Figure 5 but for ε = 0.1 regime.
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Figure 6: The four-dimensional stochastic climate model (33) with parameters (34). Com-

parison of the filter and smoother estimates. The true signals of y1 and y2 are shown in blue

curves. The filter and smoother mean estimates are given by the black dashed curves. The

uncertainty of the filter and smoother estimates, represented by the one standard deviation,

are shown by the red and green shading areas, respectively.
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Figure 7: Dyad model (28) with parameters (29). Panel (a): a short observational period of u

with only 50 units. Panel (b): the true signal of v (blue) and the smoother estimates, where

the smoother mean is given by black dashed curve and the one standard deviation from the

smoother mean is shown by the green shading area. Panel (c) is similar to Panel (b) but for

the filter mean and filter uncertainty. Panel (d): the PDF of u. The black curve is formed

by a long trajectory with 1000 time units from the perfect model free run. The blue one is

formed by the observed time series shown in Panel (a). The green curve is formed by first

applying the backward sampling to the variable v and then plugging the sampled trajectory

of v into the u process. This is repeated 20 times with each trajectory having length 50 units

and thus the effective length of u is 1000. The red curve is formed in a similar way but the

associated v trajectory is given by the filtered mean time series. Panel (e) shows the PDFs

in the logarithm scale, which is a good representation of the fat tails. Panel (f) shows a few

realizations of u, where the associated v trajectories are either from the filter mean time series

(red) or from the backward sampling strategy (green).
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Figure 8: Similar to Figure 7 except that the model for recovering the statistics (36) is different

from the perfect model (28). Panel (a) shows a short period of the observed variable u from

the perfect model run. Panels (b)–(c) show the smoother estimates using the imperfect and

perfect models, respectively. Panels (d)–(e) show the PDFs of u using different methods.

Panel (f) shows the trajectories from a free run of the imperfect model (36).

61



500 550 600 650 700 750 800
−5

0

5
(a) True signal of u

500 550 600 650 700 750 800
−5

0

5
(b) True signal of v

t

500 550 600 650 700 750 800
−5

0

5
(c) Signal of u (improved model; same random number seeds)

500 550 600 650 700 750 800
−5

0

5
(d) Signal of v (improved model; same random number seeds)

t

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4
(e) PDFs of u

−2 0 2
0

0.1

0.2

0.3

0.4
(f) PDFs of v

0 5 10 15
−0.5

0

0.5

1
(g) ACFs of u

t
0 5 10 15

−0.5

0

0.5

1
(h) ACFs of v

t
−2 0 2

0

1

2

3
(i) Noise coeff in v

 

 

v
Truth Approx model Improved model

Figure 9: Improving the stochastic parameterizations. Panels (a)–(b): One realization of the

true signals of u and v from (37). Panels (c)–(d): One realization of u and v from the improved

model (using the same random number seeds as generating the true signal). Panels (e)–(h):

comparison of the PDFs and ACFs. Panel (i): comparison of the noise coefficient in the v

process.
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