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We investigate the drift wave – zonal flow interaction formulated on a more realistic channel domain ge-7

ometry approximating the plasma turbulence near the tokamak edge regime. The recent two-field flux-8

balanced Hasegawa-Wakatani (BHW) model with improved treatment for parallel electron responses is9

adapted to the channel geometry with generalized zonal state structures. New conserved quantities are10

constructed based on the channel geometry to help the analysis for the competition between zonal states11

and non-zonal fluctuations. Effective bounds can be found constraining the maximum growth of total12

fluctuations and the amplitude of the dominant zonal state based on the conserved quantities. Total sta-13

tistical variance among all the modes can be also estimated depending on the zonal state strength. The14

theoretical discoveries are confirmed by detailed numerical experiments from simulations in the chan-15

nel domain. In addition, the channel geometry provides further support for the important advantage of16

adopting the balanced flux correction in the BHW model by showing a physically consistent growth17

rate from a stability analysis for the small-amplitude fluctuation interaction with a zonal mean state, in18

comparison with the modified Hasegawa-Wakatani model. This is again verified by direct numerical19

simulation results of the two models. The channel domain BHW model framework with the attractive20

features implies many potential applications in the study of the complex phenomena in plasma edge21

turbulence.22
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I. INTRODUCTION23

Near the edge regime of tokamak-type plasmas, the magnetic field exhibits a large level of variability in the24

zonal flows as well as ion density fluctuations from a number of experiments and simulations1–5. Understanding25

the formation of the zonal flow and its interaction with the non-zonal fluctuations from unstable drift waves is an26

active topic for the study of magnetically confined plasmas in tokamak edge regime3,6–8. The zonal flow – drift27

wave interaction is known to have strong effect in the heat and particle transport perpendicular to the magnetic28

surfaces and thus is crucial for the design of more reliable fusions devices. The adoption of simplified reduced29

fluid models enjoys the advantage in improving our understanding of the key interacting dynamics where the30

most relevant physical mechanism is identified.31

One useful simplified formulation for the complex toroidal plasmas in the edge regime is provided by the32

Hasegawa-Wakatani (HW) models9,10 by describing resistive drift waves in an intermediate regime between33

adiabatic and hydrodynamic electrons. The drift wave – zonal flow coupling is described by an interacting34

two-field evolution with self-induced drift instability on an embedded two-dimensional slab geometry11–13. In35

the models, the original toroidal magnetic geometry is flattened on a Cartesian coordinate x-y plane with x36

representing the radial direction and y as the poloidal direction. A flux-balanced Hasegawa-Wakatani (BHW)37

model is proposed in Refs. 14 and 15. This model guarantees a balanced treatment for the electron responses38

parallel to the magnetic field lines that provides many striking new features such as enhanced persistent zonal39

jets and stronger variability in fluctuations among a variety of dynamical regimes in the plasma field14–17.40

In comparison, the modified Hasegawa-Wakatani (MHW) model proposed in Ref. 18 lacks such skills in41

maintaining the strong zonal structures and shows transition to fully homogeneous drift turbulence. However,42

all the models are always defined on a doubly periodic domain for both the radial and poloidal directions only43

for the sake of computational convenience.44

In this paper, we investigate the zonal flow – drift wave interaction in plasma edge turbulence using the45

BHW model on a new channel domain geometry. Periodic boundary is assumed only along the poloidal y46

direction in agreement with the circular symmetry, while a solid wall boundary is applied along the radial x47

direction representing the boundary walls in the tokamak edge regime. The channel geometry is obviously48

more realistic and provides a more physically feasible treatment for the computational geometry in the plasma49

edge regime of interest. Adopting the channel domain geometry also provides us the convenience to introduce50

large-scale zonal mean profiles in the density field Nx and the flow velocity V x on top of the disturbance fields51

of particle density and electrostatic potential. These linear profiles are consistent with the observed structures52
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from direction channel domain simulation solutions. The imposed large-scale zonal states enable us to carry53

out a more detailed analysis for induced growth in flow interactions with the non-zonal fluctuations.54

More importantly, new conserved quantities emphasizing the zonal mean state are discovered based on the55

channel domain geometry. Dynamical equations for the impulse functions as the first moments of the zonal56

states are derived depending on the zero particle transport across the radial boundaries. This new set of equa-57

tions offers a direct link to the total particle flux appearing in both the total enstrophy and energy dynamics.58

With a proper combination of the dynamical equations, useful new conserved quantities can be constructed for59

the analysis of typical flow properties in zonal and fluctuation states. Especially, effective bounds can be found60

to give an accurate quantification of the saturated growth in the total fluctuations excited by drift instability61

from small initial states, as well as the amplitude in dominant zonal states generated by secondary transfer of62

energy from the excited fluctuation modes16. Statistical estimations in the total variance of flow ensemble solu-63

tions are also developed from the combination of the statistical impulse and enstrophy/energy equations. This64

balance between mean zonal states and total variance in fluctuations provides one potential way to interpret65

the role of zonal flows in quenching the impulsive particle transport, such as in the Dimits shift19,20. Detailed66

numerical simulations using the channel geometry are carried out to provide a direct confirmation of the the-67

oretical estimations derived from the new conserved quantities. Efficient pseudo-spectral scheme developed68

for the doubly periodic domain15 can be adapted for simulations in the channel domain case. Interesting new69

features are displayed in comparison with the original doubly periodic results. The numerical results confirm70

the accurate prediction of the growth trend from the theoretical formulas especially in the turbulent regime. The71

channel flow solutions with different aspect ratios for longer channel lengths are also compared, showing more72

regularized zonal jets with weaker time variability also consistent with the previous theoretical implications.73

In addition, the channel geometry also provides better characterization for the improved treatment of elec-74

tron response dynamics in the BHW model, compared with the limitations in the MHW model. The important75

advantage in the BHW model formulation in contrast to the MHW model without the balanced flux on the76

magnetic surfaces becomes more obvious in the channel flows. First, the non-trivial impulse relations are dif-77

ficult to recover from the MHW model framework, so that the effective results for characterizing zonal state78

and fluctuation bounds discussed in the BHW model case are no longer valid. Second and more importantly,79

instability analysis for the zonal density state gives distinct results from the BHW and MHW models. Direct80

numerical simulations reveal a linear zonal profile in the density field. The BHW model leads to physically81

reasonable performance with strong instability in decaying density structure towards the boundary and stabil-82

ity for increasing density structure to withhold further radial transport. In contrast, the MHW model keeps83
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generating strong instability to increase the zonal particle transport no matter increasing or decreasing zonal84

density profiles. The crucial difference from instability analysis based on small-amplitude perturbations is85

further confirmed by direct numerical results of the BHW and MHW models.86

In the structure of this paper, the generalized formulation of the BHW model on the channel domain is first87

described in Section II. The equations for the enstrophy and energy as well as the zonal mean dynamics are88

rederived based on the new channel geometry. New conserved quantities based on the impulse functions are89

introduced in Section III followed by the useful saturations bounds for zonal states and fluctuations as well as90

the statistics in equilibrium. The channel flow structures are illustrated by direct numerical simulations next in91

Section IV. The crucial difference in the BHW and MHW models in the channel domain with a background92

zonal profile is discussed in Section V. We summarize our results in Section VI and suggest directions for93

future work.94

II. FORMULATION OF THE GENERALIZED HASEGAWA-WAKATANI MODEL IN A95

CHANNEL DOMAIN96

Here, we provide a generalized formulation for the HW models based on the set of equations for the full

field variables of the normalized potential vorticity q and particle density field n

∂q
∂ t

+vE ·∇q = µ∆q,

∂ρ

∂ t
+vE ·∇ρ = α

(
φ̃ − ρ̃

)
+µ∆ρ.

(1)

In the above model formulation, we define the total electrostatic potential function φ and the total particle

density ρ for the full fields composed of a large-scale base state (V,N) and a disturbance component (ϕ,n)

such that
φ =V x+ϕ,

ρ =Nx+n.
(2)

N is the additional zonal density gradient characterizing the base zonal profile in density field. The full E×B

velocity field vE is defined by the potential function with a background zonal flow V along the poloidal direction

and fluctuation component (u,v) on the two-dimensional domain

vE = ∇
⊥

φ = (u,V + v) ,

where ∇⊥ = (−∂y,∂x) denotes the orthogonal gradient operator. For the other model parameters, κ determines

the scale length of the background density gradient in an unchanging exponential profile; the adiabaticity
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parameter α is proportional to the inverse of parallel resistivity describing the parallel current that destabilizes

the system; and µ acts on the vorticity and density equations with a Laplace operator to approximate collisional

ion viscosity perpendicular to the magnetic field10,11. The resistivity term on the right hand side of (1) acts on

the fluctuation component f̃ by removing the zonally-averaged mean f from the original state variable denoted

by f

f (x) =
1
Ly

∫
f (x,y)dy, f̃ = f − f ,

by averaging along the poloidal y-direction. This modification is shown to induce stronger zonal mean97

structure16,18 from direct simulations.98

In the BHW model14, flux correction on the magnetic surfaces is introduced on the flux-balanced vorticity99

qBHW = ∇2ϕ − ñ by removing the zonal mean component n in the density field. In comparison, the MHW100

model11 uses the potential vorticity qMHW = ∇2ϕ − n including the zonal mean density state (see also Eqn.101

(31) in Section V A). Many physically feasible properties including stronger persistent zonal jets and clear102

transition in turbulent flux transport are gained through this simple model modification in the BHW model with103

a detailed study15–17 on the doubly periodic geometry.104

A. The BHW model with channel boundary conditions105

The generalized formulation (1) together with the states (2) enables us to apply a more physically feasible106

channel domain geometry, rather than the common doubly periodic boundary condition simply for convenience.107

By separating the large and small scale components and focus on the dynamics on small scales, the BHW model108

can be expressed in a similar form as in Refs. 14 and 15109

∂q
∂ t

+∇
⊥

ϕ ·∇q+V
∂q
∂y

−κ
∂ϕ

∂y
= µ∆q, (3a)110

∂n
∂ t

+∇
⊥

ϕ ·∇n+V
∂n
∂y

+(κ−N)
∂ϕ

∂y
= α (ϕ̃− ñ)+µ∆n. (3b)111

The two-dimensional flow is defined on a rectangular channel domain for x = (x,y) ∈D = [0,Lx]× [−Ly,Ly].112

Without loss of generality, we will mostly use the simplified case with Lx = Ly = L, while a longer channel113

case with Ly > Lx will be discussed in Section IV B.114

In such a channel domain, the solution is assumed to be periodic along the y poloidal direction agreeing

with the poloidal symmetry in the tokamak, while the solid wall boundary condition requires vanishing radial
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velocity and fluctuation density field at the channel walls so that x = 0,Lx

q(x,−Ly) = q(x,Ly) , u |x=0,Lx= 0,

n(x,−Ly) = n(x,Ly) , n |x=0,Lx= 0.
(4)

The large-scale density structure is already described by a base profile Nx. Thus the disturbance n is set zero115

along the two boundary walls. The velocity condition for u = −∂yϕ requires constant values for the potential116

function along the boundaries ϕ (0,y) =V0 and ϕ (Lx,y) =VL. This is equivalent to the introduction of a large-117

scale profile V x on top of the disturbance ϕ |x=0,Lx= 0 by setting V0 = 0 and VL =V Lx within a shifting constant.118

The additional large-scale zonal velocity V won’t change the solution structure since the model (3) is Galilean119

invariant to the poloidal boosts14. Therefore, we only need to clarify the additional contribution from the base120

state density N for the generalized model (Section V will give a more detailed explanation for the contributions121

from N and V ). Besides, in the physical models (3), standard viscous boundary layers do not play a significant122

role since we are mostly interested in the model solutions away from the boundary layer regime.123

B. Enstrophy and energy conservation and zonal state equations for the channel flows124

For the generalized BHW model (3) in the channel domain, we need to confirm that the general argument

for the conservation laws in the doubly periodic domain case14,18 are still valid with additional caution for the

treatment of the radial boundaries at x = 0,Lx. The potential enstrophy W and total energy E in the channel

domain BHW model can be defined according to the full states φ and ρ from equations (1) as

W =
1
2

∫
q2 =

1
2

∫ (
∇

2
φ − ñ

)2
, E =

1
2

∫ (
|∇φ |2 +ρ

2
)
, (5)

with the integration over the two-dimensional channel domain D . Notice that the enstrophy W in the BHW125

model is defined based on the balanced potential vorticity q = ∇2φ − ñ excluding the zonal mean density n126

contribution, while the total energy E includes both the contributions from the kinetic energy 1
2
∫ |v|2 and the127

total density energy 1
2
∫

ρ2 = 1
2
∫
(Nx+n)2 with the base state zonal density. Through the construction of the128

balanced model (3), the nonlinear terms from the velocity advection conserve both the total energy and the129

balanced enstrophy in the same way as in the doubly periodic case. The conservation laws can be also seen130

from the link with doubly periodic domain case through the odd expansion of the state variables illustrated in131

the numerical strategy in Section IV.132

First, the dynamical equation for the total enstrophy W is determined by the potential vorticity equation

(3a). Thus the dynamics is not altered by both the zonal velocity and density profiles V and N. The equation
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for the enstrophy can be reached as
dW
dt

= κ

∫
ũñ −µ

∫
|∇q|2 . (6)

On the right hand side of the above equation, the total zonal particle flux Γ = κ
∫

ũñ acts as a forcing effect to

the system. Second, the dynamical equation for the total energy E can be derived in a similar way as

dE
dt

=
∫

(κ + v) ũñ−α

∫
(ñ− ϕ̃)2

−µ

∫ (
|∆ϕ|2 + |∇n|2

)
.

(7)

The additional term due to the mean velocity v = ∂xϕ advection in the energy equation represents the zonal133

flow transport of the particle flux, ũñ. One negative-definite term due to the resistivity α appears in the equation134

as an energy sink, while α has no effect on the change of the enstrophy W . In the case without an additional135

background density gradient N, the energy equation for E gets reduced back to the same form in the doubly136

periodic domain.137

Next, we can also introduce the dynamical equations for the zonal states. The equations for zonal mean

states of the potential vorticity q(x) = ∂ 2
x ϕ (x) and the density n(x) in the BHW model after averaging along

the periodic y-direction are also not changed on the channel geometry

∂tq+∂x
(
ũq̃
)
= µ∂

2
x q,

∂tn+∂x
(
ũñ
)
= µ∂

2
x n.

(8)

It needs to be reminded that the first equation above for q is not valid in the MHW model case, which leads to

the non-conservation of total impulse according to discussions in Section V A. The right hand sides of (8) are

due to the collisional viscosity defined by µ . The relation between the eddy vorticity flux ũq̃ and the particle

density flux ũñ can be found using the definitions of ũ =−∂yϕ and ṽ = ∂xϕ̃

ũq̃ =
1
Ly

∫
ũ(∂xṽ− ñ)dy =−ũñ−∂x

(
ũṽ
)
, (9)

where the second identity is applied from integration by parts. Especially, the eddy diffusivity as the second

term on the right hand side of (9) will vanish after another integration along x. The total fluxes in vorticity and

density are related by the same flux strength with opposite signs

∫ (
ũq̃
)

dx =−
∫ (

ũñ
)

dx. (10)
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C. Large scale density profile from energy conservation138

The additional mean density gradient N introduces richer dynamics to the solutions by altering the back-

ground density decaying profile. Thus here we discuss more on the contributions from the zonal density state

from N. If we just consider the energy in the small-scale density field ES =
1
2
∫ (|∇ϕ|2 +n2

)
without the large-

scale density according to the dynamical equation in (3a) and (3b), the equation for the energy ES only in small

scales implies the following dynamics

dES

dt
= (κ−N)

∫
ũñ+

∫
v
(
ũñ
)

−α

∫
(ñ− ϕ̃)2−µ

∫ (
|∆ϕ|2 + |∇n|2

)
.

(11)

Comparing the above equation with the full energy dynamics (7), one additional term related with the large-

scale density N appears in the small-scale energy ES dynamics, which is due to the coupling effect between the

two states N and n. By taking the difference of the two energy equations (7) and (11), the dynamical equation

reveals the large scale density with an extra coupling term

d
dt

(E−ES) =
d
dt

(
N2

2

∫
x2 +N

∫
nx
)
= N

∫
ũñ.

The cross term between N and n gives a new quantity as the impulse of the density fluctuation, In =
∫

nx. In

fact, in the formulation of equation (3b), we already assume a constant large-scale density N (t) ≡ N0, that is,
dN
dt = 0. Therefore, the identity above gives the dynamical equation for the impulse in density

dIn

dt
=

d
dt

∫
nx =

∫
ũñ.

It will be shown next in Section III that the above equation provides a new set of important quantities for the139

analysis of the channel geometry dynamics.140

In addition, the interaction with the linear zonal density profile Nx receives a more reasonable physical inter-141

pretation from the BHW model (this structure can be indeed observed in direct channel domain simulations as142

in Figure 4 from drift instability), while the MHW model cannot generate consistent response from interaction143

with N. We will give more detailed discussions about the effects from the zonal structure N in Section V.144

III. NEW CONSERVED QUANTITIES FOR THE BHW MODEL WITH CHANNEL GEOMETRY145

Adopting the channel geometry for the BHW model (3) not only offers a more physically feasible formu-146

lation of the plasma edge turbulence1,2, it also provides a set of additional useful conserved quantities that147
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helps us to seek a better understanding for the generation of zonal flows and the interaction mechanism with148

fluctuations. For simplicity in exposition, we adopt the flow fields without the large scale background profiles149

V = N = 0 without loss of generality.150

Spectral representation of channel zonal and fluctuation states151

The general flow solutions in a channel domain with solid wall boundaries can be linked to the doubly152

periodic geometry by extending the solution in x ∈ [0,Lx] to the domain [−Lx,Lx] as an odd function. In this153

way, the boundary condition, ϕ |x=0,Lx= 0, n |x=0,Lx= 0, is automatically satisfied from the odd extension.154

This trick of odd extension21 is adopted for computational convenience using the spectral scheme and will be155

described in Section IV with more details.156

For the spectral representation, it is convenient to decompose the states into the zonal mean component

(ϕ,n) and the non-zonal fluctuations (ϕ̃, ñ). First, we can project the non-zonal states on the extended doubly

periodic domain under the Fourier modes

ϕ̃ = ∑
ky 6=0

ϕ̂keik·x, ñ = ∑
ky 6=0

n̂keik·x, (12)

where we set the corresponding spectral wavenumber k = (kx,ky) =
(

π

Lx
lx, π

Ly
ly
)

and k2 = |k|2 with increments

∆kx = π/Lx,∆ky = π/Ly and the integer wavenumber indexes lx =−Nx
2 +1, · · · , Nx

2 , and ly =−Ny
2 +1, · · · , Ny

2 .

Second, we can propose the expansions of the zonal states ϕ and n as odd functions

ϕ = i ∑
k=kx

(−1)l
ϕkeikx, n = i ∑

k=kx

(−1)l nkeikx. (13)

The zonal potential vorticity modes can be introduced accordingly as qk = k2 (−1)l−1
ϕk. Above the summation157

is taken among the zonal modes with k = kx =
π

Lx
lx and ky = 0. The decomposition is due to the odd extension158

of the zonal states to periodic functions so that the coefficients ϕ−k =−ϕk, n−k =−nk are in real values. The159

reason for adding the additional coefficients (−1)l in the zonal modes will become clear when we introduce160

the spectral forms of the zonal impulses next.161

A. Impulse equations for the channel geometry162

From the energy equations derived in (11), we already see the emergence of a new quantity induced from the

cross interaction between large and small scale zonal density states. In general, the impulses for the vorticity Iq
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and density In can be defined as the first moments of the zonal potential vorticity q = ∂ 2
x ϕ and the zonal density

n profiles as

Iq =
∫ L

0
xqdx, In =

∫ L

0
xndx. (14)

For convenience in the later analysis of showing energy structures in different scales, we express the impulses

(14) in terms of the spectral modes (13). In addition, the linear function x in the extended domain [−L,L] as an

odd function can be also expanded in Fourier series as

x = i ∑
k= π

L l

(−1)l

k
eikx.

Combining the spectral representations of the zonal modes (13), the impulses in (14) can be expanded as a

summation of spectral modes in the form

Iq =−∑kϕk, In = ∑k−1nk. (15)

With the alternating signs given in (13), we can write the impulses as the summation of the real spectral163

coefficients with the same sign in a cleaner representation.164

One physical interpretation of the impulse for the vorticity q can be found as the zonal exit velocity on the

right boundary of the channel, that is, from the direct computation of the zonal integration

Iq =
∫ L

0
x∂xvdx =−

∫ L

0
vdx+ xv |Lx=0= LvR, (16)

with vR (t)≡ v(L, t) the velocity along the right boundary. Above the zonal velocity v = ∂xϕ only contains the165

small scales without the large-scale mean V , thus it gives zero after averaging along x direction. The impulses166

Iq, In are not conserved in time in general. Still, due to the new features from the channel geometry, we are able167

to discover useful new properties based on the dynamical equations for the impulses that are not available in168

the doubly periodic domain case.169

Next, we derive the dynamical equations for the impulses. The dynamical equations for the impulses of q

and n can be derived directly by multiplying x on both sides of the zonal mean equations (8) and then taking

integration along x. The final dynamical equations for the impulses can be found as

dIq

dt
=
∫ L

0

(
ũq̃
)

dx +µ∂xqR,

dIn

dt
=
∫ L

0

(
ũñ
)

dx +µ∂xnR.

(17)

The last terms on the right hand sides add the collisional effects from the viscosity µ , and they are only related

with the zonal values qR ≡ q(L, t) ,nR ≡ n(L, t) evaluated at x = L. For the impulse of the vorticity, we have
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µ∂xqR = µ∂ 2
x Iq. In the derivation of the above equations, we again apply the non-penetrating channel wall

boundary condition (4) for vanishing velocity ũ |x=0,L= 0 at the channel boundaries x = 0,L such that

−
∫ L

0
x∂x

(
ũ f̃
)
=
∫ L

0
ũ f̃ − x

(
ũ f̃
)
|Lx=0=

∫ L

0

(
ũ f̃
)

dx.

The dynamical equations for the impulses (14) offer an additional link between the zonal states and the total

particle flux seen in the energy/enstrophy equations (6) and (7). In particular from the relation in (10),
∫

ũq̃ =

−∫ ũñ, the right hand sides for Iq and In dynamics get cancelled due to the same flux with opposite signs. Using

the spectral representation (13), we can write the dynamical equation for the combined impulses as

d
dt ∑k−1 (nk− k2

ϕk
)
=−µ ∑k

(
nk− k2

ϕk
)
. (18)

The right hand side of the above equation is purely from the dissipation effect, and the total impulse I = Iq+ In170

becomes conserved in time in the inviscid flow µ = 0.171

Remark. The above arguments are still valid with the inclusion of a background density and velocity profiles172

N and V . We just need to replace the density field n by the original full density ρ = Nx+n, then all the above173

results remain true for the impulses defined by the full density Iρ =
∫

xρ . Therefore, the same conclusion can174

be reached with no further modification on the equations.175

B. New conserved quantities and bounds in the zonal mean and fluctuation states176

In this section for the discussion of the new conserved quantities, we neglect the dissipative effect from the

collisional terms µ ≡ 0 to focus on the mechanisms in the linear and nonlinear interactions. The driving term

on the right hand sides of the impulse equations (17) represents the total fluxes (in vorticity and density) along

the radial direction, with zero transport across the channel walls. Using the relation for the total fluxes for the

vorticity and density (10), the impulse equations for the channel domain can be linked as

dIq

dt
=
∫

ũq̃ =−
∫

ũñ =−dIn

dt
. (19)

Therefore, we have the first conserved constant depending on the zonal states as the total impulse combining

the first moments of potential vorticity and particle density

dI
dt

= 0, I = Iq + In =
∫ L

0
x(q+n)dx, (20)

in the inviscid dynamics. Especially, if we assume that the flow starts from zero zonal states q = n = 0 at initial177

time t = 0, the conservation of total impulse I guarantees the identity in the two impulses Iq =−In during the178
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entire evolution time. From the equation for the impulses (17), usually a strong total particle flux
∫

ũñ > 0 will179

be induced at the starting transient state due to drift instability (see the numerical simulations in Section IV for180

a direct confirmation). This leads to a negative vorticity impulse Iq < 0 and a positive density impulse In > 0181

in the final steady state.182

As a further comment according to the expression for the vorticity impulse (16), introducing the zonal exit

velocity vR (t) on the right boundary of the channel, we have the link between the zonal velocity and the total

particle flux from
d
dt

vR =−1
L

∫
ũñ.

The above equation implies that a strong positive particle flux will generate a negative zonal exit velocity vR < 0183

along the y direction in the final steady state (this is also confirmed in the numerical results in Figure 4 for the184

zonal profiles). The dynamics for the impulses provide an important link between the fluctuating particle185

flux from non-zonal modes and the zonal state profile. This enables us to construct conserved quantities in186

combination with the energy and enstrophy equations.187

1. Effective bounds from the enstrophy and impulse equations188

The impulse dynamics (19) links the zonal states with the total particle flux transport. This equation can be

first combined with the total enstrophy equation (6) for W , which is only driven by the total particle flux with

the parameter κ in the inviscid case. Adding the dynamical equations for the impulses and the total enstrophy,

we find a conserved quantity for the inviscid channel BHW model where the total particle flux in the two

equations cancels with each other

d
dt

(
W +κIq

)
= 0, W +κIq =W −κIn, (21)

using the identity between the impulses In = −Iq. The above conservation law offers a useful relation for189

the balance between the fluctuation modes (represented by the enstrophy fluctuation W̃ ) and the zonal state190

(represented by the impulse I and zonal part W ).191

The conservation relation in (21) enables us to discover the maximum growth in the zonal states and the192

total increase in the non-zonal fluctuation modes from the initial state. A common setup for simulations of the193

model (3) is to start with a small non-zero fluctuation state q̃0 with zero zonal state at the initial time. The194

non-zonal drift waves first rise up due to the linear instability in the fluctuation modes in the starting transition195

stage; then the zonal modes are excited through nonlinear interactions from secondary instability. The energy196
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transfer mechanism is discussed in detail in Refs. 16 and 17. Here with the new conserved quantity, we aim to197

explore the saturated growth in the zonal state and fluctuation modes as the model parameter varies.198

The conservation relates the states at the initial time t = 0 and a later stage at time t

W (t)−κIn (t) = W̃0,

assuming the initial total enstrophy W̃0 = W (0)− κIn (0)� 1 in a small value containing only non-zonal

fluctuation modes. We decompose the total enstrophy W defined in (5) into the zonal and non-zonal components

to clarify the contribution from each part

W =
1
2 ∑

k=kx

k4
ϕ

2
k , W̃ =

1
2 ∑

ky 6=0

∣∣k2
ϕ̃k + ñk

∣∣2 ,

where we adopt the spectral representation of the non-zonal modes k = (kx,ky), ky 6= 0 in (12) and the zonal

k = (kx,0) in (13). Separating the total zonal state and the fluctuation enstrophy growth due to instability, we

have the relation between the zonal states and the increase in the total fluctuations in enstrophy

κIn−W = W̃ (t)−W̃0 =
1
2

∫ (
q̃2− q̃2

0
)
.

with q̃=∇2ϕ̃− ñ the non-zero potential vorticity in fluctuation. Equivalently, we can express the above relation

as a summation of the spectral modes for different scales

∑
k=kx

(
κkϕk−

1
2

k4
ϕ

2
k

)
= ∑

k=kx

(
κk−1nk−

1
2

k4
ϕ

2
k

)

=
1
2 ∑

ky 6=0

(
|q̃k|2−

∣∣q̃0,k
∣∣2
)
> 0

(22)

Above the explicit expressions for the impulses (15) are used. The lower row of the above identity should be199

positive for drift instability to excite turbulent waves from the small initial state W̃0. The above equality shows200

that the total variability among all the fluctuation modes can be determined by the zonal mean modes only201

along the x direction.202

First, we consider the maximum growth in the non-zonal fluctuations. From the left side of equation (22) for

the summation among all zonal modes ϕk, it forms a quadratic form for each wavenumber kx. Each quadratic

function has an upper bound, κku− k4

2 u2 ≤ κ2

2k2 among all values of u. Thus we find the maximum growth for

the enstrophy in non-zonal fluctuations averaged over the computational domain area A = LxLy

1
A

∫ (
q̃2− q̃2

0
)
≤ κ2

LxLy
∑

k=kx

k−2 ≤ Lx

3Ly
κ

2. (23)
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The last inequality above uses the formula for the summation of reciprocals of the squares of the natural203

numbers l with kx =
π

Lx
l. The bound (23) estimates the saturated growth in total enstrophy fluctuation after the204

first linear instability and then the secondary transfer of energy to zonal modes. The bound can be even tighter205

considering that there is usually limited number of dominant zonal modes in the largest scales. It is important206

to observe that a long channel width Lx will generate stronger fluctuations as well as a stronger background207

density gradient κ , while a longer channel length Ly will reduce the averaged total fluctuations in the system.208

Next, from the other direction, the positiveness of the second row of the above equality (22) for increasing

fluctuations provides a necessary condition for at least one positive contribution from the zonal modes in the

first row. If the zonal solution converges to a dominant critical zonal state with a single wavenumber kc, the

single mode solution in the zonal state must obey the following constraints to maintain the positiveness

0 < ϕkc
<

κ

k3
c
, v2

kc
<

2κ

k3
c

nkc , (24)

with the energy in the zonal velocity v2
k = k2ϕ

2
k . The above bounds offer constraints for the dominant steady209

state zonal amplitudes. The bounds for enstrophy achieved here are independent of the adiabaticity parameter210

α .211

2. Slaving relation between small and large scales from energy and impulse equations212

We can also seek the corresponding relation from the combination with the total energy equation (7). It

shows from the total energy dynamics that the adiabaticity parameter α keeps reducing the total energy through

the interacting fluctuation modes. Applying the same strategy as before, the total particle flux on the energy

dynamics can be again canceled by the impulse equation so that

d
dt

(
E +κIq

)
=

d
dt

(E−W ) =
∫

v
(
ũñ
)
−α

∫
(ñ− ϕ̃)2 , (25)

for the inviscid system. The first equality above uses the conservation of W +κIq. A conservation law cannot213

be reached from the energy equation due to both the resistive term from α and the contribution from the zonal214

flow advection v appearing on the right hand side of (25). To find estimation using the energy constraint, we215

need to adopt additional arguments based on observations in the solutions. In the starting transient state, the216

nonlinear coupling term,
∫

v
(
ũñ
)
, is often dominant and injects energy into the entire spectrum. On the other217

hand, if we look at the long time performance as t→∞, the negative definite resistive term at the right hand side218

of (25) will take the dominant role while the zonal flow and particle flux will converge to the steady state with219
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a much smaller value in the first coupling term (This argument can be verified from the direction numerical220

simulations shown in Figure 2).221

In this case after long enough time t� 1, we can assume that the right hand side of (21) becomes negative.

Then the difference E (t)−W (t) ≥ E∞−W∞ is decreasing to the final limiting value. Further, if we assume

that the final limiting state always stays positive, E∞−W∞ > 0 (this can again be confirmed from numerical

simulations shown next in Figure 2). The difference between the energy and enstrophy can be rearranged into

the spectral modes as

E−W =∑k2 |ϕ̂k|2 + |n̂k|2−
∣∣k2

ϕ̂k + n̂k
∣∣2

=∑k2 (1− k2) |ϕ̂k|2−2k2
ϕ̂k · n̂k > 0,

where both the zonal state and fluctuation modes are included. The coefficients above can be divided into two

groups according to the sign of the wavenumber k2. Therefore a slaving relation is found between the energy

Ek = k2 |ϕ̂k|2 + |n̂k|2 and enstrophy Wk =
∣∣k2ϕ̂k + n̂k

∣∣2 in large and small scales

∑
k2<1

Ek ≥ ∑
k2<1

k2 (1− k2) |ϕ̂k|2−2k2
ϕ̂k · n̂k

> ∑
k2>1

(Wk−Ek) .
(26)

The first inequality above is applied for modes in larger scales k2 < 1, thus we use the additional estimation222

with the help of the triangular inequality, 2k2 |ϕ̂k · n̂k| ≤ k4 |ϕ̂k|2+ |n̂k|2. For the modes in smaller scales k2 > 1,223

it is safe to assume that the non-zonal fluctuation modes dominate and the contribution from the zonal modes224

are negligible. Notice that the energy Ek is usually smaller than the enstrophy Wk in small scale modes so the225

difference stays positive. The bound in (26) offers us one slaving relation between the modes in small and large226

scales. The left hand side contains only a small number of large scale modes. It controls the total variability of227

all the small scale modes over a wide spectrum from the summation on the right hand side. The relation in (26)228

provides a useful reference for the maximum total fluctuations in the large number of small-scale modes.229

We summarize the conclusions in the following proposition:230

Proposition 1. The impulse functions combined with the enstrophy and energy provide the bounds for the total231

variability in the BHW model solutions:232

• The maximum saturated growth in total fluctuations and the dominant zonal mode from small initial state233

can be estimated by (23) and (24) using the enstrophy and impulse equations;234

• The long time performance for the competition between the energy in largest scales in k < 1 and small235
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scale fluctuations in wavenumbers k > 1 can be estimated by the slaving relation (26) using the energy236

and impulse equations.237

C. Balance in statistical steady state with non-zero collisional viscosity238

The previous discussions concern the competition between zonal states and fluctuations from instability239

with the help of the new conserved quantities, while no viscosity effect is included. In this final part, we seek240

the statistical variability in the final equilibrium steady state, which requires the balance between the turbulent241

fluxes and the collisional viscosity as a dissipation effect in the statistical steady state. More detailed constraints242

for the variances in the zonal mean and fluctuation states can be found.243

Instead of the performance of one single solution, the statistics characterize the ensemble mean and variance

in the group performance of solutions22. So we introduce the statistical average operator 〈·〉 for the long

time/ensemble average of the solutions. The idea here is to consider the statistical equations for the enstrophy

or energy together with the impulses. First, exploiting the impulse equations in statistical steady state, the

ensemble averaged 〈In〉 and
〈
Iq
〉

become constants. The right hand sides of the dynamical equations (17)

together with the spectral representation of the zonal mean modes (13) give the equality in statistical steady

state

〈Γ〉= µ ∑k 〈nk〉= µ ∑k3 〈ϕk〉 , (27)

where the equilibrium statistical particle flux can be found as 〈Γ〉= ∫ L
0
〈
ũñ
〉

dx. The above equality also offers

a direct relation in the statistical mean states of the zonal density and potential modes

∑k
(
〈nk〉− k2 〈ϕk〉

)
= 0.

In particular, if we assume that the statistical mean spectra of the zonal density and velocity field follow the244

power laws, |〈nk〉|2 ∼ k−a and |〈vk〉|2 ∼ k−b, the above identity implies the relation, b− a = 2, between the245

exponents in density and kinetic energy spectra.246

Next, we consider the statistical steady state in the enstrophy equation (6). The balance between the particle

fluxes and the dissipations at statistical equilibrium gives

κ 〈Γ〉= µ

2 ∑
k 6=ky

k2
〈∣∣k2

ϕ̃k + ñk
∣∣2
〉
+

µ

2 ∑
k=kx

k6 〈
ϕ

2
k
〉
.

Above on the right hand side, we separate the contributions from the zonal state and the fluctuation modes with

ky 6= 0. Combining the above relation with the previous equality from the statistical impulses (27), we find the
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balance between the statistics in mean states and the total variance about the mean

∑

(
κk3 〈ϕk〉−

k6

2
〈ϕk〉2

)
=

1
2 ∑k2var(q̃k)+ k2var(qk) .

Above we separate the statistical average of the quadratic variables into the statistical mean and variance as
〈

f 2〉 = 〈 f 〉2 + var( f ). The right hand side of the above equality gives the variances in the zonal vorticity,

var(qk) =
〈
(qk−〈qk〉)2

〉
, and in the fluctuations, var(q̃k) =

〈∣∣k2ϕ̃k + ñk
∣∣2
〉

. The left hand side only includes

the statistical mean of the zonal steady state 〈ϕk〉. Thus we can compute the upper bound for the total variance

in statistical equilibrium enstrophy

1
2 ∑k2W var

k ≤∑k3
(

κ 〈ϕk〉−
k3

2
〈ϕk〉2

)
≤∑

κ2

2
=

C
2

κ
2. (28)

The last inequality above uses the upper bound for the quadratic form for each wavenumber, and C is a constant247

from the effective number of the non-zero zonal modes. The above inequality offers an estimate for the max-248

imum total variance among all the enstrophy modes W var
k = var(q̃k)+ var(qk) depending only on the model249

parameter κ .250

Finally, we consider the statistical equilibrium state from the energy equation (7) together with the impulse

κ 〈Γ〉 ≥ α ∑

〈
|ñk− ϕ̃k|2

〉
+

µ

2 ∑

(
k4
〈
|ϕ̃k|2

〉
+ k2

〈
|ñk|2

〉)
+

µ

2 ∑
(
k4 〈

ϕ
2
k
〉
+ k2 〈n2

k
〉)

.

The important approximation used above is to assume that the advected flux is non-positive at statistical equi-

librium,
∫ 〈

v
(
ũñ
)〉
≤ 0 (this is from observations in the computational results shown next in Figure 2). Again

using the statistical balances in the impulses (27) to replace the total particle flux 〈Γ〉 on the left, we find the

relation between the mean and variance in statistical steady state

1
2 ∑k

(
κ 〈nk〉− k 〈nk〉2

)

1
2 ∑k3

(
κ 〈ϕk〉− k 〈ϕk〉2

) ≥ α

µ
∑var(ñk− ϕ̃k)+

1
2 ∑k2var(nk)

1
2 ∑k2var(vk)

,

with|vk| = k |ϕk|. We summarize the statistics among mean on the left hand side, while the variances on the

right. Applying the same trick as before using the positiveness of the right hand side above, the above inequality

can be further organized into the balance between the mean and variance according to the statistical energy

∑k2Evar
k +

α

µ
∑var(ñk− ϕ̃k)

≤1
2 ∑k

(
κ 〈nk〉− k 〈nk〉2

)
+

1
2 ∑k3

(
κ 〈ϕk〉− k 〈ϕk〉2

)

≤∑
(
1+ k2) κ2

8
=

C′

8
κ

2.

(29)
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where Evar
k = var(vk)+ var(nk) measures the variance in the total energy, and var(ñk− ϕ̃k) is the variance in251

the deviation from the one-field Hasegawa-Mima state at α = ∞23,24. The above bound is useful to show the252

role of a dominant zonal state to quench the energy in fluctuations. A weak zonal mean profile, 〈nk〉 ,〈ϕk〉< κ

2k ,253

reduces the upper bound amplitude on the right hand side. Thus the total variance in the fluctuation modes is254

constrained in small values.255

The above conclusions for the total variance in the statistical steady state solutions can be summarized in256

the following proposition:257

Proposition 2. By comparing the balance between the total particle flux and the dissipation effect, the total258

variance in statistical solutions of the BHW model can be estimated as:259

• The statistical impulse equations predict the steady state mean spectra in the relation (27) with slopes in260

the inertia range |〈nk〉|2 ∼ k−a and |〈vk〉|2 ∼ k−b and b−a = 2;261

• The statistical enstrophy and impulse equations give the bound for total variance in enstrophy controlled262

by the zonal statistical mean state as in (28);263

• The statistical energy and impulse equations estimate the total variance in energy from the zonal statis-264

tical mean states as in (29).265

IV. NUMERICAL ILLUSTRATION FOR THE BHW FLOWS IN THE CHANNEL DOMAIN266

In this section, we carry out direction numerical simulations to illustrate the typical flow structures in the

channel domain and to confirm the theoretical bounds derived using the new conserved quantities. For efficient

numerical computation, an additional trick should be adopted to generalize the pseudo spectral scheme for the

doubly periodic domain case used in Ref. 15. To ensure the geometry for the channel domain, we set the

boundary values for both ϕ and n as in (4)

ϕ (0,y, t) =ϕ (Lx,y, t) = 0,

n(0,y, t) =n(Lx,y, t) = 0.
(30)

With the above vanishing boundary values for the states, the channel domain solution can be extended to the

doubly periodic domain on [−Lx,Lx]× [−Ly,Ly] with an odd extension along the x direction so that

f̃ (x,y) =





f (x,y) , 0≤ x≤ Lx,

− f (−x,y) , −Lx ≤ x < 0.
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This new function f̃ becomes doubly periodic and naturally satisfies the channel boundary condition (30) on267

the constrained regime [0,Lx]× [−Ly,Ly]. In practice, f̃ can be computed by applying Fourier expansion in268

y direction and sine expansion in x direction. In this way, the new solution can be exactly summarized into269

the original double periodic framework with the corresponding constraints on spectral modes as shown in (12)270

and (13) for fluctuation and zonal modes. In the computational setup for the simulations, the initial state is271

taken from a random field with small fluctuations. The computation domain is set with equal size in the two272

directions Lx = Ly = 20 except the last case with a long channel Ly = 100. Besides, a hyperviscosity, −ν∆sq273

and −ν∆sn, is added to the smallest scales of the potential vorticity and density fields with a tiny coefficient274

ν = 7×10−21 and a high dissipation order s = 8 in both the inviscid and dissipative cases in general to dissipate275

the additional energy in the underresolved smallest scales (but with little impact on the theoretical bounds).276

A. Confirmation of the theoretical bounds from direct simulations277

1. Bounds for inviscid channel flows with different values of κ278

In the first test case, we consider the inviscid channel flows with zero dissipation µ = 0. This enables us to279

focus on the nonlinear interactions in the dynamics and confirm the bounds for the zonal state and fluctuation280

growth derived in Section III B from the new conserved quantities. In Figure 1, we compute the saturated281

values of the dominant zonal mode and the total increase in the enstrophy fluctuation from the small initial282

state with different values of κ . The zonally averaged profiles of the electrostatic potential ϕk and the ratio283

nk/ϕ
2
k are dominated by a single wavenumber mode kc, in agreement with the assumption in the theoretical284

analysis. The saturation bounds with enstrophy and impulse in (24) predict the upper limit proportional to κ for285

potential function ϕk, and lower limit inversely proportional to κ for the ratio nk/ϕ
2
k . The same relations are286

recovered from the direct numerical results in the left and middle panel of Figure 1. Accordingly, the saturated287

growth in the total enstrophy fluctuation is also verified in the direct numerical results agreeing with the trend288

proportional to κ2 from the theoretical estimation (23). Especially, the bounds for both the zonal mean state289

and fluctuations become very tight as the system approaches the turbulent regime with large values of κ .290

The typical flow solution from direct numerical simulations of the BHW model is then displayed. Figure291

2 plots the energetics from a representative flow solution in the turbulent regime with α = 0.5 and κ = 1.292

In the time-series for the total enstrophy, frequent impulses can be observed as the intermittent injection of293

energy to the system. The enstrophy in zonal state (in dashed lines) arises at a later time from the secondary294

transition of the excited turbulent drift waves. Starting from tiny initial condition, the energy and enstrophy295
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Figure 1: Changes in the final zonal state 'k (left) and the ratio nk/'2
k (middle) at the largest dominant single

wavenumber kc, and the increase in the total enstrophy fluctuation W̃ � W̃0 (right) with different values of  and
fixed ↵ = 0.5 in the BHW model simulations. The bounds for the total fluctuations and the zonal mean profiles
with dependence on  computed by (3.12) and (3.13) are compared in dashed lines.
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Figure 2: Time-series of flow energetics from direct numerical simulation with the model parameters  = 1, ↵ = 0.5.
The first two rows plot the time evolution of the total enstrophy W and the difference of energy and enstrophy
E � W in total and in zonal modes. The last row compares the evolution of total particle flux 

R
ũñ and the

advected flux
R

vũñ appearing in the full energy equation (2.7).
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FIG. 1. Changes in the final zonal state ϕk (left) and the ratio nk/ϕ
2
k (middle) at the largest dominant single wavenumber

kc, and the increase in the total enstrophy fluctuation W̃ − W̃0 (right) with different values of κ and fixed α = 0.5 in

the BHW model simulations. The bounds for the total fluctuations and the zonal mean profiles with dependence on κ

computed by (23) and (24) are compared in dashed lines.
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FIG. 2. Time-series of flow energetics from direct numerical simulation with the model parameters κ = 1,α = 0.5. The

first two rows plot the time evolutions of the total enstrophy W and the difference of energy and enstrophy E −W in

total and in zonal modes. The last row compares the evolution of total particle flux κ
∫

ũñ and the advected flux
∫

v
(
ũñ
)

appearing in the full energy equation (7).

difference E −W develops to positive values in the final steady state consistent with our assumption in the296

analysis for the energy equation (25). Further, we compare the time evolution of the total particle flux κ
∫

ũñ297

and the advected flux
∫

v
(
ũñ
)
, which have a combined effect in the dynamical equation for the total energy (7).298

Again in agreement with our previous assumption for the analysis, the particle flux κ
∫

ũñ gives intermittent299

positive excitations, while the advected flux
∫

v
(
ũñ
)

generates negative values in the long time performance300

after a large positive burst in the starting transient stage.301
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Figure 3: Time-series of the zonal mean flow v and the energy in small and large scale modes (left), and a snapshot
of the flow vorticity field (right) with model parameters  = 1, ↵ = 0.5.

P
k Ek in modes k < 1. This confirms the slaving relation we found in (3.15) based on the energy and impulse

equations. Finally, the right panel of Figure 3 plots a typical snapshot of the flow ion vorticity field. In the channel
domain case, the flow is organized into a dominant large scale structure with the many interacting small scale
vortices coexisting in the field for all the time.

4.1.2 Channel flows with dissipation effect

Next, we check the statistical balance in the final flow solutions with dissipation. In this case, a small dissipation
µ = 1 ⇥ 10�4 is added in both the potential vorticity and density equations (2.3). The statistical mean and
variance for the interested variables are computed by long time averaging along the final state solutions, that is,
hfi = 1

T

R t+T

t
f (s) ds. We also separate the statistics in the mean hfi and the variance var (f) =

D
|f � hfi|2

E
for

a clear comparison.
In Figure 4, we show the statistical mean profile in the zonal state, and the energy spectra for the variance with

different values of . it is observed that the non-zero statistical mean concentrates on one single zonal wavenumber
while all the non-zonal fluctuation modes have the mean near zero. A dominant single jet emerges as the flow
becomes more turbulent with larger values of . In the mean zonal density state, a nearly linear decay profile is
created. This from direct numerical results validates the zonal structure we proposed in the model (2.2) for a linear
large-scale zonal density profile Nx. In the variance, energy spectra for variance in each scale are also compared
with various values of . Again we observe the rapid transition to turbulent flows with large variance as the value of
 increases. Especially, the largest variance usually occurs among the largest scales representing the varying zonal
jet shown in Figure 3.

Then, we can also check the statistical variance bound derived in Section 3.3. First according to the statistical
balance in impulses (3.16), the energy spectra in statistical mean states should satisfy the inertia slopes |hnki|2 ⇠ k�a

and |hvki|2 ⇠ k�b with b�a = 2. Figure 5 compares the spectra of the statistical mean in two regimes with turbulent
flow  = 1 and with dominate zonal flow  = 0.1. In both cases, the kinetic energy and density energy in mean
states follow the different in slope decay rate with a factor of 2 in the inertia range. On the other hand, the mean
state in the weak turbulence case  = 0.1 decays much faster in smaller amplitudes than the turbulent case  = 1.
The total variance in enstrophy according to the bound (3.17) with changing values of  is also confirmed. The
total variances from direct numerical simulations are also consistent with the predicted growth in the trend 2 as
 grows to the turbulent regime in large values.

Heuristic results from statistical mean state spectra

In the growth in total variance in Figure 5, one additional observation is a transition as the value of  increases.
For  < 1, the total variance stays in a small value and grows slowly where nearly no turbulence is generated; then
after  > 1, the total variance jumps to a much higher value and grows in a faster rate. This should be related with
the ‘Dimits shift’ that has been investigated among many other models [5, 26].
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FIG. 3. Time-series of the zonal mean flow v and the energy in small and large scale modes (left), and a snapshot of the

flow vorticity field (right) with model parameters κ = 1,α = 0.5.

To illustrate the flow field structure, we also plot the time evolutions of the zonal velocity v and the energy302

contained in small and large scale modes in Figure 3. The evolution of the zonal flow v displays strong and303

rapid variations and shifts in time showing the highly unsteady feature in the zonal states. The energy in both304

small and large scales shoots up in the starting state from the drift instability and nonlinear energy exchanges.305

The small scale fluctuations ∑k (Wk−Ek) in modes k > 1 is bounded from above by the limited number of306

large-scale energy ∑k Ek in modes k < 1. This confirms the slaving relation we found in (26) based on the307

energy and impulse equations. Finally, the right panel of Figure 3 shows a typical snapshot of the flow ion308

vorticity field. In the channel domain case, the flow is organized into a dominant large-scale zonal structure309

with the many interacting small-scale fluctuating vortices coexisting in the field for all the time.310

2. Channel flows with dissipation effect311

Next, we check the statistical balance in the final flow solutions with non-zero dissipation. In this case, a312

small viscosity µ = 1×10−4 is added in both the potential vorticity and density equations (3). The statistical313

mean and variance for the interested variables are computed by long time averaging along the steady state314

trajectory, that is, 〈 f 〉 = 1
T
∫ t+T

t f (s)ds. We also separate the statistics in the mean 〈 f 〉 and the variance315 〈
| f −〈 f 〉|2

〉
to give a clear comparison.316

In Figure 4, we show the statistical mean profile in the zonal state, and the energy spectra for the variance317

with different values of κ . It is observed that the non-zero statistical mean concentrates on one single zonal318

wavenumber while all the non-zonal fluctuation modes have the mean near zero. A dominant single jet emerges319

as the flow becomes more turbulent with larger values of κ . The mean zonal density state shows a nearly linear320

decay profile. This validates from direct numerical results the proposed zonal structure in the model (2) for a321
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1 2 3 4 5
10-4

10-2

100

102

e
n
st

ro
p
h
y 

va
ri
a
n
ce

total variance in enstrophy

numerics

 2

 A -B

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-4

10-3

10-2

10-1

100

101 102

kx

10-6

10-4

10-2

100

102 energy spectrum in zonal mean state  =1

k-4

k-2

101 102

kx

10-15

10-10

10-5

100 energy spectrum in zonal mean state  =0.1

k-8

k-6

Figure 5: Total variance in enstrophy according to the bound in (3.17) with different values of ; and energy spectra
of the statistical mean in zonal modes in two parameter regimes  = 1 and  = 0.1.
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FIG. 4. Zonal state profiles (upper) of the velocity v and density n and energy spectra in variance (lower) of the kinetic

energy var(vk) and the density energy var(nk) with different values of κ and α = 0.5.

linear large-scale zonal density profile Nx. In the variance, energy spectra for variance in each scale are also322

compared with various values of κ . Again we observe the rapid transition to turbulent flows with large variance323

as the value of κ increases. Especially, the largest variance usually occurs among the largest scales representing324

the fluctuating zonal jet shown in Figure 3.325

Then, we can also check the statistical variance bound derived in Section III C. First according to the326

statistical balance in impulses (27), the energy spectra in statistical mean states should satisfy the inertia slopes327

|〈nk〉|2 ∼ k−a and |〈vk〉|2 ∼ k−b with difference b−a = 2. Figure 5 compares the spectra of the statistical mean328

in two regimes with strong turbulent flow κ = 1 and with weak turbulence κ = 0.1. In both cases, the kinetic329

energy and density energy in mean states follow the difference of powers with a factor of 2 in the inertia range.330

On the other hand, the mean state in the weak turbulence case κ = 0.1 decays much faster in smaller amplitudes331

than the turbulent case κ = 1. The total variance in enstrophy according to the bound (28) with changing values332

of κ is also confirmed. The total variances from direct numerical simulations are consistent with the predicted333

growth in the trend κ2 as κ grows to the turbulent regime in large values.334

Heuristic results from statistical mean state spectra335

In the growth in total variance in Figure 5, one additional observation is a phase transition as the value of336

κ increases. For κ < 1, the total variance stays in a small value and grows slowly where nearly no turbulence337

is generated; then after κ > 1, the total variance jumps to a much higher value and grows in a faster rate. This338

should be related with the ‘Dimits shift’ that has been investigated among many other models19,20.339

Here we can also provide one characterization for this transition using the statistical bound derived in (28)
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FIG. 5. Total variance in enstrophy according to the bound in (28) with changing values of κ; and energy spectra of the

statistical mean in zonal modes in two parameter regimes κ = 1 and κ = 0.1.

for the total variance and the zonal mean structure. Notice that the upper bound in (28) for the total variance

assumes a maximum contribution in the zonal mean state summation for all scales

1
2 ∑k2W var

k '∑k3
(

κ 〈ϕk〉−
k3

2
〈ϕk〉2

)
∼∑max

u
k3
(

κu− k3

2
u2
)
∼ κ

2.

For this upper bound to be reached, the dominant zonal mean state in the largest scales is required to stay

near the critical value to give the maximum value, that is, 〈ϕk〉 ∼ k−3κ . This relation is exactly guaranteed

in the turbulent regime with κ = 1 as shown in the middle panel of Figure 5, that is,
〈
v2

k

〉
= k2 〈ϕ2

k
〉
∼ k−4

from the largest scale all the way to small scales until the hyperviscosity takes over. Therefore the growth

trend ∼ κ2 is expected in the turbulent regime with large κ ≥ 1. On the other hand for smaller values of κ ,

the zonal mean state 〈ϕk〉 is in much weaker amplitude as shown in the κ = 0.1 case in the right panel of

Figure 5. In this case, the largest scale zonal modes in much smaller values can no longer provide a dominant

contribution to guarantee the κ2 growth. Instead, if we adopt the κ = 0.1 case, the inertia range gives the slope
〈
v2

k

〉
= k2 〈ϕ2

k
〉
∼ k−8, thus 〈ϕk〉 ∼ k−5. Thus the estimation gives the upper bound in smaller amplitude with

major contribution from smaller scale inertia modes

1
2 ∑k2W var

k ≤∑k3
(

κ 〈ϕk〉−
k3

2
〈ϕk〉2

)
∼∑

(
κk−2− k−4

2

)
= Aκ−B.

Therefore, the total variance in the less turbulent regime generates growth in a much slower rate proportional340

to κ and in a much smaller value. This can also be observed qualitatively in the simulations as in the expanded341

plot in left panel of Figure 5 for the small value regime of κ .342
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Figure 6: Time-series of zonal mean flow and steady state zonal mean profiles with the two different aspect ratios
1:5 and 1:1. The models are tested in the parameter regime  = 0.5, ↵ = 0.5.

structure of the two cases stay similar with a single dominant mode. Besides, we compare the statistical energy
spectra in variance of the two cases. Again with a longer channel, the variability is effectively suppressed with much
smaller variance for all the modes along the entire spectrum in all scales.

5 Comparing the BHW and MHW models on the Channel Domain
In this last section, we illustrate the importance of the balanced flux correction in the BHW model (2.3) by comparing
it with the MHW equations without the density correction. First, the MHW model no longer has the non-trivial
impulse functions in the channel domain, thus the crucial conserved quantities in the BHW model discussed in
Section 3 are no longer available in the MHW case. Next, the channel domain geometry enables us to discuss the
small-amplitude instability generated from an prescribed zonal mean structure. The important difference between
BHW and MHW models becomes more obvious from the stability analysis when there exists an linear profile in the
zonal density field, where physically consistent instability can be only achieved from the BHW formulation.

5.1 Lack of non-trivial impulse consesrvation for the MHW equations
The MHW model [10] is often formulated by the following dynamical equations for the ion relative vorticity ⇣ = �'
and the relative ion density n

@⇣

@t
+ r?' · r⇣ = ↵ ('̃� ñ) , (5.1a)

@n

@t
+ r?' · rn + 

@'

@y
= ↵ ('̃� ñ) . (5.1b)

Again, we consider the inviscid case in the above equations to focus on the nonlinear interactions. A detailed
comparison for the dynamical differences in the BHW and MHW models in doubly periodic domain can be found
in [9, 15] as well as in [13, 14] for the role of balanced flux. Here we focus on the role of impulse functions (3.3) in
the MHW formulation important for the analysis in the channel geometry. The corresponding dynamical equations
for the zonal states ⇣ = @2

x' and n can be found by zonally averaging the equations (5.1)

@t⇣ + @x

⇣
ũ⇣̃

⌘
= 0,

@tn + @x

�
ũñ

�
= 0,
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Figure 6: Time-series of zonal mean flow (upper left) and steady state zonal mean profiles (lower left), and zonal
statistical energy spectra in kinetic energy and density (right) with the two different aspect ratios 1:5 and 1:1. The
models are tested in the parameter regime  = 0.5, ↵ = 0.5.

5.1 Lack of non-trivial impulse consesrvation for the MHW equations
The MHW model [19] is often formulated by the following dynamical equations for the ion relative vorticity ⇣ = �'
and the relative ion density n

@⇣

@t
+ r?' · r⇣ = ↵ ('̃� ñ) , (5.1a)

@n

@t
+ r?' · rn + 

@'

@y
= ↵ ('̃� ñ) . (5.1b)

Again, we consider the inviscid case in the above equations to focus on the nonlinear interactions. A detailed
comparison for the dynamical differences in the BHW and MHW models in doubly periodic domain can be found
in [17, 24] as well as in [22, 23] for the role of balanced flux. Here we focus on the role of impulse functions (3.3) in
the MHW formulation important for the analysis in the channel geometry. The corresponding dynamical equations
for the zonal states ⇣ = @2

x' and n can be found by zonally averaging the equations (5.1)

@t⇣ + @x

⇣
ũ⇣̃

⌘
= 0,

@tn + @x

�
ũñ

�
= 0,

where ⇣̃ = r2'̃ and ñ are the non-zonal fluctuation components. Above the zonal vorticity ⇣ is the same as the
zonal potential vorticity q from the BHW model in (2.8). Therefore for the MHW model, we can also define the
impulses from the vorticity and the density field according to the definitions in (3.3) as

I⇣ =

Z
x⇣, In =

Z
xn.

However, the corresponding equation for the impulse of vorticity I⇣ can be derived from the zonal equation using
the identity in (2.9) as

dI⇣
dt

=

Z
ũ⇣̃ = �

Z
@x (ũṽ) = 0, (5.2)
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FIG. 6. Time-series of zonal mean flow (upper left) and steady state zonal mean profiles (lower left), and zonal statistical

energy spectra in kinetic energy and density (right) with the two different aspect ratios 1:5 and 1:1.

B. Results with extended y poloidal direction343

In the final case, we compare the difference in flow variability from an extended channel length Ly > Lx. In344

the previous simulations, we always use equal domain length Ly = Lx with aspect ratio 1. In this simulation,345

however, we pick a larger aspect ratio Ly/Lx = 5, so this represents an elongated channel in the poloidal346

direction compared with the width in the radial direction. According to the bound for total fluctuations in (23),347

the factor for the channel length Ly appears in the denominator implying that a longer channel will suppress the348

fluctuations in the flow field. From the direct numerical simulations, Figure 6 plots the zonal mean profiles in349

the steady state solutions in ϕ and v, and the time evolutions of the zonal flow v with the two aspect ratios 1:1350

and 5:1. In agreement with the theoretical prediction, a longer channel domain produces steady zonal flow with351

nearly no fluctuations compared with the original case with Lx = Ly where more turbulent zonal flow variation352

is observed. On the other hand, the zonal profile is not affected by the channel domain length. The zonal state353

structures of the two aspect ratio cases stay similar with each other in a single dominant mode. Besides, we354

compare the statistical energy spectra of the two cases. Again with a longer channel, the variability among all355

the scales is effectively suppressed with much smaller variance along the entire energy spectrum in all spectral356

modes.357
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V. COMPARING THE BHW AND MHW MODELS IN THE CHANNEL DOMAIN358

In this final section, we illustrate the importance of the balanced flux correction in the BHW model (3)359

by comparing it with the MHW equations without the density correction. First, the MHW model no longer360

has the non-trivial impulse functions in the channel domain, thus the crucial conserved quantities in the BHW361

model discussed in Section III are no longer available in the MHW case. Next, the channel domain geometry362

enables us to discuss the small-amplitude instability generated from an prescribed zonal mean structure. The363

important difference between BHW and MHW models becomes more obvious from the stability analysis when364

there exists an linear base state in the zonal density field, where physically consistent instability can be only365

achieved from the BHW formulation.366

A. Lack of non-trivial impulse consesrvation for the MHW equations367

The MHW model18 is formulated by the following dynamical equations for the ion relative vorticity ζ = ∆ϕ368

and the relative ion density n369

∂ζ

∂ t
+∇

⊥
ϕ ·∇ζ = α (ϕ̃− ñ) , (31a)370

∂n
∂ t

+∇
⊥

ϕ ·∇n+κ
∂ϕ

∂y
= α (ϕ̃− ñ) . (31b)371

Again, we consider the inviscid case in the above equations to focus on the nonlinear interactions. A detailed

comparison for the dynamical differences in the BHW and MHW models in doubly periodic domain can be

found in Ref. 14 and 15 as well as in Refs. 16 and 17 for the role of balanced flux. Here we focus on the role

of impulse functions (14) in the MHW formulation important for the analysis in the channel geometry. The

corresponding dynamical equations for the zonal states ζ = ∂ 2
x ϕ and n can be found by zonally averaging the

equations (31)

∂tζ +∂x

(
ũζ̃

)
= 0,

∂tn+∂x
(
ũñ
)
= 0,

where ζ̃ = ∇2ϕ̃ and ñ are the non-zonal fluctuation components. Above the zonal vorticity ζ is the same as the

zonal potential vorticity q from the BHW model in (8). Therefore for the MHW model, we can also define the

impulses from the vorticity and the density field according to the definitions in (14) as

Iζ =
∫

xζ , In =
∫

xn.
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However, the corresponding equation for the impulse of vorticity Iζ can be derived from the zonal equation

using the identity in (9) as
dIζ

dt
=
∫

ũζ̃ =−
∫

∂x (ũṽ) = 0, (32)

where the impulse for ion vorticity Iζ = LvR becomes conserved in time. The corresponding equation for the

impulse of the density In can be found the same as the BHW case

dIn

dt
=
∫

ũñ.

In the MHW model case, the impulse for the vorticity Iζ becomes conserved in time (note that Iζ here is in372

the same form as Iq in the BHW model), while the impulse for the density In follows the same equation as373

in the BHW model. This leads to the important difference between the MHW model and the BHW model in374

the channel geometry. Mathematically, we no longer have the conservation of the total impulse I = Iζ + In.375

Thus the zonal profiles between the flow potential ϕ and the density field n cannot be linked together through376

the conservation law. The important bounds for the zonal relations in the density and flow fields are not377

guaranteed in the MHW model case. Physically, the conservation of Iζ in the MHW model requires a constant378

zonal velocity vR at the right boundary of the channel domain. Thus a time independent constant velocity is379

maintained along the right boundary.380

The lack of impulse conservation illustrated above implies different interaction mechanisms between the381

zonal states n and ϕ in the BHW and MHW models. Therefore, it is worthwhile to check in more detail about382

the effects from a non-zero zonal mean state in the two models. Next, we carry out the linear stability analysis383

in a similar fashion as in Ref. 24 but based on the existence of a prescribed linear zonal density profile.384

B. Linear instabilities due to the zonal density profile in BHW and MHW models385

In the analysis of the contribution from the zonal profiles, we consider a single-mode drift wave (ky 6= 0) on

top of a zonal mean state in both the velocity field and the density field for BHW (s = 1) and MHW (s = 0)

models
ϕ = ϕ̂ exp(i(k ·x−ωt))+V x,

n = n̂exp(i(k ·x−ωt))+Nx,

q =−
(
k2

ϕ̂ + n̂
)

exp(i(k ·x−ωt))−Nxδs0,

(33)

where we introduce a constant zonal mean flow V and an additional linear zonal density profile N. In fact,386

from the numerical observation in the channel simulations as shown in Figure 4, the assumed linear profile in387
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the zonal density field Nx is shown a good approximation to the direct numerical solutions. In the potential388

vorticity q = ∇2ϕ − (ñ+δs0Nx), BHW model with s = 1 receives no feedback from the mean density profile389

N, while the MHW model with s = 0 gets the additional term due to the zonal density.390

1. A physical interpretation for the zonal mean density391

First, we can interpret the additional instabilities by consulting the physical meanings in the zonal density

profile. In the construction of the Hasegawa-Wakatani models9,11, the background density profile is defined

with the characteristic length scale κ−1 so that

n≡ n′

n0 (x)
, n0 = exp(−κx) , x ∈ [0,L] . (34)

The relative density n in the HW equations is defined as the ratio of the absolute density deviation n′ over the392

background density profile n0. Above all the variables are normalized, and we assume the background density393

n0 starts from 1 in the internal regime of the device at x = 0 and reaches the right boundary at x = L.394

In the constant zonal mean structure used in (33), the additional absolute zonal density fluctuation state can

be found in the form according to the assumed background profile

Nx =
1

n0 (x)

∫
n′dy ⇒ n′ (x) = Nxexp(−κx) .

The absolute zonal density n′ (0) = 0 starts from zero in the inner side of the zonal domain, and approaches zero

n′→ 0 again as x→ ∞ at the right boundary. According to the above formula, the absolute density n′ (x) first

increases inside the regime (0,1/κ) and decreases in the regime (1/κ,L). The entire absolute zonal density

field then becomes

n0 +n′ = (1+Nx)exp(−κx) , x ∈ [0,L] . (35)

We can interpret the absolute zonal density profile depending on the sign of the constant zonal mean N accord-395

ing to (35):396

• Linearly decaying zonal mean profile N < 0: negative N in the zonal mean state steepens the total zonal397

mean state n0+n′. Due to the additional contribution from n′, the ion density near the boundary regime is398

even sparser compared with its inner density. Drift wave instability should be induced to create stronger399

zonal transport in this negative zonal mean case N < 0.400

• Linearly increasing zonal mean profile N > 0: positive N in the zonal mean state slows down the decay in401

the total density towards the boundary. We consider the change of total density within the characteristic402

length (0,1/κ), where the absolute density fluctuation n′ reaches its maximum at the value 1/κ .403
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– With N < κ , the density deviation is always below the background profile n0 > n′ in the range404

(0,1/κ). The total density n0 + n′ is still decreasing along the radial direction. Instability should405

still be expected but becomes much weaker due to the slower decay along the zonal direction.406

– With N > κ , the density deviation becomes larger than the background profile after x = 1
N and407

generates a flatter zonal density profile. This case with denser ion concentration near the outer408

regime should withhold the zonal transport, thus there is no drift instability.409

2. Growth rate in small amplitude instability by zonal mean density gradient410

Above we see from the physical interpretation that the internal instability can be altered a lot by the inclusion411

of a zonal mean density state N. In the linear stability analysis, we consider the model response to small-412

amplitude perturbations as the adiabaticity parameter goes to the zero-resistivity limit α → ∞. The BHW413

model approaches the modified Hasegawa-Mima model14 with the equilibrium density profile n0 ∼ exp(−κx)414

as α → ∞. Therefore, it is reasonable to check the asymptotic performance of the growth rate from the zonal415

density perturbation on top of the background profile n0.416

We introduce asymptotic expansion of the fluctuation states (33) in the process approaching the adiabatic

limit
ϕ̂ =ϕ0 +ϕ1ε +o(ε) ,

n̂ =n0 +n1ε +o(ε) .
(36)

assuming the adiabaticity parameter α ∼ ε−1→ ∞ as ε → 0. The leading order (ϕ0,n0) gives the Hasegawa-

Mima state24 without drift instability. By introducing the shifted frequency in the asymptotic expansion as

ω = ω0 + iσ1 +O(ε) , (37)

the leading order of the expanded solution can be expressed in the same form for BHW and MHW models as

ϕ̂ =ϕ0eσ1te−iω ′0tei(k·x−V kyt),

n̂ =n0eσ1te−iω ′0tei(k·x−V kyt).

The exponent σ1 characterizes the leading-order infinitesimal growth rate from the coupling with a zonal mean417

state. The total dispersion relation ω0 is mixed with the Doppler shift due to the background zonal flow state418

ω0 =ω ′0+kyV . This confirms again that both MHW and BHW models are Galilean invariant under the poloidal419

velocity boost V along y direction11,14. In this way, the effect from the zonal mean velocity V can be eliminated420
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in the dynamical equations. This enables us to focus on the effects from the zonal density profile introduced421

from the gradient N. Especially, we will consider the leading order growth σ1 and dispersion ω ′0.422

The linearized equations for q̃ = ∇2ϕ̃ − ñ and ñ by neglecting the nonlinear coupling between fluctuation

modes become
∂ q̃
∂ t
− (κ−Nδs0)

∂ ϕ̃

∂y
= 0,

∂ ñ
∂ t

+(κ−N)
∂ ϕ̃

∂y
= α (ϕ̃− ñ) .

(38)

Above the BHW model (s = 1) is free from the zonal mean effect in the vorticity equation; while the MHW

model (s = 0) contains this additional term from N. Direct asymptotic analysis using the expansions (36) and

(37) by comparing each order terms of ε gives the dispersion relations for the two models

BHW : ω
′
0 =

κky

1+ k2 ;

MHW : ω
′
0 =

(κ−N)ky

1+ k2 .

(39)

The dispersion relation for the BHW model is unaltered with the existence of N. In contrast, the dispersion423

relation in the MHW model is modified by the background density mean N. The difference can be observed424

from the different equations in (38) for the BHW and MHW models. It is reasonable for the additional density425

N to adapt the dynamics for density fluctuation ñ. However, the fluctuation part of the vorticity q̃ removing the426

zonal mean states should not receive further feedbacks from zonal N state.427

With the difference in the dispersion relation, we can then calculate the first order growth rate for the two

models as

BHW : σ1 =α
−1 κk2

y

(k2 +1)2

(
κk2

k2 +1
−N

)
,

MHW : σ1 =α
−1 (κ−N)2 k2

yk2

(k2 +1)3 .

(40)

The above two formulas reduce to the same form for drift instability11,24 when there is no additional zonal428

profile N ≡ 0. With non-zero background mean state, there always exists positive linear instability in the429

MHW model for the non-zonal fluctuation modes ky 6= 0 due to the square term (κ−N)2. On the other hand430

in the BHW model, the additional background density profile can balance and reduce the instability from the431

balance between κk2

k2+1 and N.432

The above instability analysis for the BHW model can be used to explain the physical interpretation achieved433

from the observations from absolute zonal profiles. Consistent instability features can be derived directly from434

(40) in comparison with the physical intuitions in the density decay profiles:435
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• With a negative zonal density N < 0 or a small positive zonal density fluctuation 0 < N < κ , the zonal436

density decays from the inner regime toward the outer boundary. Accordingly, a positive growth rate437

(stronger with N < 0 and weaker with 0 < N < κ) is induced from the linear instability in drift waves438

(40) for the BHW model.439

• With strong positive density fluctuation N > κ , the zonal density profile increases toward the boundary.440

In this case, no instability should be expected in the drift waves as predicted in the stability analysis (40)441

with σ1 < 0 for the BHW model.442

In contrast, the MHW model always generates unstable drift waves with σ1 > 0 from the linear instability no443

matter what values of the zonal density N. Especially, the MHW model even generates stronger drift wave444

instability with a large N > κ increasing to higher density toward the boundary. This means that even in the445

case with reversed zonal density gradient, the MHW model still gives persistent strong unstable drift waves to446

drive zonal transport.447

C. Comparison of the flow simulations from BHW and MHW models448

Finally, we compare the flow solutions from direct numerical simulations using the BHW and MHW models.449

We first show the difference in flow solutions without adding a background density profile N = 0. In Figure 7,450

the snapshots of the flow vorticity ζ = ∇2ϕ from the BHW and MHW models are compared together with the451

equilibrium statistical spectra in variance. The BHW model generates stronger variability among the dominant452

large scale modes compared with the more steady flow with weaker large scale variability in the MHW model.453

This implies the more turbulent flow features (in both space and time) from the BHW model simulation. The454

BHW model also suppresses the enormous small scale fluctuations in the density field. The differences are also455

observed in the direct numerical simulations of the two models on doubly periodic domain case (see Figure 6456

and Table I in Ref. 15 for a direct comparison). Furthermore, in the channel domain case, we have the slaving457

bound estimation (26) confirming that indeed the large-scale modes should contain a much larger variability458

than all the other smaller scales in the BHW model case.459

Next, we compare the simulation results using two different additional zonal density profiles N = 0.5,1.5460

on top of the density fluctuation n. Figure 8 compares the time-series of total energy and enstrophy, as well461

as the statistical energy spectra from both BHW and MHW models. Consistent with the instability analysis in462

(40), for the BHW model a large positive value of N = 1.5 with increasing density toward the boundary should463

suppress the instability and particle transport, thus lead to flows with decaying total energy and enstrophy in464
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Figure 7: Snapshots of the flow ion vorticity field ⇣ = r2' (left) and the statistical variance spectra (right) from
the BHW and MHW model simulations with parameters  = 1, ↵ = 0.5.
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Figure 8: Time-series of energy/enstrophy from the BHW and MHW model simulations, and enstrophy spectra
with two different values of the zonal density gradients N = 0.5, 1.5 in the parameter regime  = 1 and ↵ = 0.5.

confirming that indeed the large-scale modes should contain a much larger variability than all the other smaller
scales in the BHW model case.

Next, we compare the simulation results using two different additional zonal density profiles N = 0.5, 1.5 on
top of the density fluctuation n. Figure 8 compares the time-series of total energy and enstrophy, as well as the
statistical energy spectra from both BHW and MHW models. Consistent with the instability analysis in (5.10), for
the BHW model a large positive value of N = 1.5 with increasing density toward the boundary should suppress the
instability and particle transport, thus lead to flows with decaying total energy and enstrophy from small initial
state fluctuation without turbulence. In contrast, the MHW model still gains instability and generate to fully
turbulent flow fluctuations on the increasing zonal density profile N > .

In particular in the numerical setup, we pick N = 0.5, 1.5 with  = 1, so that the growth rate �1 for the MHW
model becomes the same for the two cases according to the formula (5.10), and the density gradient N gives uniform
effect in the growth rate among all the scales. From the statistical enstrophy spectra on the right panel of Figure
8, the spectra with two distinct values of N display the same shape consistent with the same growth rate, but
in contrary to the intuition. In contrast in the BHW model, the density gradient generates different growth rate
among different scales. Strong variability especially among small scales will emerge with a small N = 0.5 where
the zonal density is still decaying towards the right boundary, while a large value of N = 1.5 with increasing zonal
density profile withholds the zonal transport and induces no fluctuations with much weaker enstrophy.
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FIG. 7. Snapshots of the flow ion vorticity field ζ = ∇2ϕ (left) and the statistical variance spectra (right) from the BHW

and MHW model simulations with parameters κ = 1,α = 0.5.

time from the initial state without turbulence. In contrast, the MHW model still gains instability and develops465

fully turbulent flow fluctuations on the increasing zonal density profile N > κ .466

In particular in the numerical setup, we pick N = 0.5,1.5 with κ = 1, so that the growth rate σ1 for the467

MHW model becomes the same for the two cases according to the formula (40), and the density gradient N468

gives uniform effect in the growth rate among all the scales. From the statistical enstrophy spectra on the right469

panel of Figure 8, the spectra with two distinct values of N display the same shape consistent with the same470

growth rate, but in contrary to the intuition. In contrast in the BHW model, the density gradient generates471

different growth rate among different scales. Strong variability especially among small scales will emerge with472

a small N = 0.5 where the zonal density is still decaying towards the right boundary, while a large value of473

N = 1.5 with increasing zonal density profile withholds the zonal transport and induces no fluctuations with474

much weaker enstrophy.475

VI. SUMMARY AND FUTURE WORK476

We studied the key characteristics in models for two-dimensional plasma drift wave turbulence on a new477

channel domain geometry, where a more realistic solid wall boundary condition is introduced along the two478

sides of the radial direction approximating the tokamak boundaries. The flux-balanced Hasegawa-Wakatani479

(BHW) model developed in Ref. 14 is reformulated for the channel geometry and is compared with the mod-480

ified Hasegawa-Wakatani (MHW) model according to the new representative channel flow structures. The481

efficient pseudo-spectral scheme used in Ref. 15 can be directly adapted to fit the channel domain case for482
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Figure 8: Time-series of energy/enstrophy from the BHW and MHW model simulations, and enstrophy spectra
with two different values of the zonal density gradients N = 0.5, 1.5 in the parameter regime  = 1 and ↵ = 0.5.

and density field Nx on top of the disturbance states ' and n. The small perturbations in response to the zonal
base state reveal an important advantage of the flux-balanced treatment in the BHW framework with consistent
physical intuition. In summary, the following major new features are discovered based on theoretical analysis and
numerical simulations of the BHW model:

• The channel domain geometry offers a more physically feasible configuration for the investigation of zonal flow
– drift wave interactions in plasma edge turbulence. A new set of conserved quantities can be constructed
based on the impulse equations together with the enstrophy and energy on the channel geometry.

• The new conserved quantities help to derive saturation bounds characterizing the maximum growth in total
fluctuation modes starting from small initial states. An estimation for the zonal mean state in a dominant
wavenumber can also be found based on different values of model parameter . The bounds in fluctuations
and zonal state are confirmed by directed numerical simulations, and are shown accurate especially in the
turbulent regime with large .

• The statistical variability in the statistical steady state solutions can be found in the channel domain from the
balance between the total particle flux and dissipation effect using the impulse functions. The total statistical
variance experiences an abrupt transition as the parameter value  increases. This is again linked to the
amplitude of the dominant zonal mean state and the empirical spectrum structure in zonal modes.

• In addition, flow solutions from different computational domain aspect ratios are compared. A longer channel
domain length with extended poloidal y direction is shown to regularize the zonal flow field with much weaker
time variability in the jets. This observation is also consistent with the previous theoretical bound estimation.

• The channel domain geometry creates a linear profile Nx in the zonal density field. This zonal density structure
in the model construction is confirmed by direct numerical simulations. Through linear instability analysis
based on the zonal profile, the BHW model shows consistent growth rates according to the background density
according to the signs of N , while the MHW model lacks such correct representation with uniform positive
growth rates with both positive and negative density profiles in N .
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FIG. 8. Time-series of energy/enstrophy from the BHW and MHW model simulations, and enstrophy spectra with two

different values of the zonal density gradients N = 0.5,1.5 in the parameter regime κ = 1 and α = 0.5.

direct numerical simulations of the turbulent channel flows.483

Using the channel geometry, we are able to discover richer dynamical features from direct model simula-484

tions, and construct a set of new quantities using the impulse functions together with the enstrophy and energy485

for the analysis of interactions between turbulent fluctuations and zonal flows. The impulse dynamical equa-486

tions give the total particle flux that can be directly linked to the corresponding enstrophy and energy equations.487

The combined dynamics provide useful conserved quantities and simplified equations to identify the contribu-488

tions in zonal and fluctuation states. Many new characterizing properties in the zonal state and fluctuation489

modes together with their statistical characterization in long time performance can be discovered through this490

set of new quantities. In addition, the channel geometry enables the introduction of large-scale zonal structures491

in both flow velocity V x and density field Nx on top of the disturbance states ϕ and n. The small perturbations492

in response to the zonal base state reveal an important advantage of the flux-balanced treatment in the BHW493

framework with consistent physical intuition. In summary, the following major new features are discovered494

based on theoretical analysis and numerical simulations of the BHW model:495

• The channel domain geometry offers a more physically feasible configuration for the investigation of496

zonal flow – drift wave interactions in plasma edge turbulence. A new set of conserved quantities can497

be constructed based on the impulse equations together with the enstrophy and energy on the channel498

geometry.499
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• The new conserved quantities help to derive saturation bounds characterizing the maximum growth in500

total fluctuation modes starting from small initial states. An estimation for the zonal mean state in a501

dominant wavenumber can also be found based on different values of model parameter κ . The bounds502

in fluctuations and zonal state are confirmed by directed numerical simulations, and are shown accurate503

especially in the turbulent regime with large κ .504

• The statistical variability in the statistical steady state solutions can be found in the channel domain from505

the balance between the total particle flux and dissipation effect using the impulse functions. The total506

statistical variance experiences an abrupt transition as the parameter value κ increases. This is again507

linked to the amplitude of the dominant zonal mean state and the empirical spectrum structure in zonal508

modes.509

• In addition, flow solutions from different computational domain aspect ratios are compared. A longer510

channel domain length with extended poloidal y direction is shown to regularize the zonal flow field with511

much weaker time variability in the jets. This observation is also consistent with the previous theoretical512

bound estimation.513

• The channel domain geometry creates a linear profile Nx in the zonal density field. This zonal density514

structure in the model construction is confirmed by direct numerical simulations. Through linear insta-515

bility analysis based on the zonal profile, the BHW model shows consistent growth rates according to the516

background density according to the signs of N, while the MHW model lacks such correct representation517

with uniform positive growth rates in both positive and negative density profiles N.518

In addition, direct numerical simulations in the channel geometry also display a strong transition in total particle519

flux as the model parameters change. This shows strong implication for the nonlinear Dimits upshift in the520

complete quenching of turbulence by zonal flows that have been discussed intensively by many researchers521

using different models8,19,20. Together with the results here and the strategies for analyzing general complex522

turbulent systems25–27, the channel domain geometry with the BHW model can serve as a promising framework523

for the investigation of the Dimits shift and many related interesting phenomena in plasma edge regimes.524
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