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ABSTRACT

Rain gauge data are routinely recorded and used around the world. How-

ever, their sparsity and inhomogeneity make them inadequate for climate

model calibration and many other climate change studies. Various algorithms

and interpolation techniques have been developed over the years to obtain an

adequately distributed dataset. Objective interpolation methods such as the

inverse-distance weighting (IDW) are the most widely used and have been

employed to produce some of the most used gridded rainfall datasets (e.g. the

India Meteorological Department gridded rainfall). Unfortunately, the skill

of these techniques becomes very limited to non existent in areas located far

away from existing recording stations. This is problematic as many areas of

the world are lacking an adequate rain gauge coverage throughout the record-

ing history. Here, we introduce a new probabilistic interpolation method in an

attempt to address this issue. The new algorithm employs a multitype parti-

cle interacting stochastic lattice model which assigns a binned rainfall value,

from an arbitrary number of bins, to each lattice site or grid cell, with a cer-

tain probability according to the rainfall amounts assigned to neighbouring

sites and a background climatological rainfall distribution, drawn from the

available data. Grid points containing recording stations are not affected and

are being used as “boundary” input conditions by the stochastic model. The

new stochastic model is successfully tested and validated against two standard

gridded rainfall datasets, over the Indian land mass.
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1. Introduction40

Rainfall is one of the most important meteorological parameters on which the lives and the well41

beings of many living organisms and especially humans depend. The spatial and temporal vari-42

ability of rainfall is directly linked to the socio-economic development of people in the tropical43

continents. Real time monitoring of the precipitation on a daily basis is required for planning of44

various activities like agriculture, construction, travel, and consequently many of the local indus-45

tries.46

To study the dynamics of precipitation variability and to make an assessment of its future vari-47

ability, a gridded data product from the widely distributed observation stations is essential. Be-48

sides, the availability of such a product, on various time scales (hourly to monthly) is imperative49

to assessing water resources in mountains, arid regions, and river basins. Gridded rainfall data50

is also required for hydrological and high resolution climate models. Many modelling groups try51

to understand the characteristics of precipitation using general circulation models. The under-52

lying models need to be verified using the observed gridded datasets in order to improve their53

performance and prediction skills. The daily observed precipitation is also required to monitor54

and forecast the subseasonal variability such as monsoon intraseasonal oscillations (MISO) and55

Madden Julian Oscillations (Sabeerali et al. 2017).56

Despite the progress in estimating the precipitation from satellite, the rain gauge observations57

has a critical role in generating gridded precipitation data over the land areas (Xie and Arkin58

1996) and thereby studying spatial and temporal variability of precipitation and its long term59

trend. Rain gauge data are routinely recorded over the Indian subcontinent and it has the longest60

recording period than the satellite observations, which make them an ideal source to estimate61

the precipitation quantitatively and to assess changes in precipitation variability on different time62
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scales. The rain gauge observations are the direct point measurement of precipitation, whereas63

the satellite estimates and model predictions of precipitation is indirect in nature. Moreover, over64

the land it is still difficult to estimate accurate precipitation using satellite and hence the satellite65

estimated precipitation need to be verified or calibrated using the gauge based gridded rainfall data66

(Xie and Arkin 1995).67

Giving the importance of gauge based precipitation data, significant progress has been made to68

develop various algorithms and techniques to construct gridded datasets from unevenly distributed69

observational station networks. There are several global or regional gridded precipitation datasets70

that are available to use for modelling, forecasting, or analysis purposes (Rajeevan et al. 2006;71

Rajeevan and Bhate 2009; Pai et al. 2014; Xie and Arkin 1997; Huffman et al. 1997; Chen et al.72

2002; Gruber et al. 2000; Yatagai et al. 2012; Adler et al. 2003; Xie et al. 1996). These datasets73

however differ substanitally in terms of their spatial resolution, temporal resolution or the type of74

techniques used to interpolate the rain gauge data to the regular grid. The most popular gridded75

rainfall data sets like the Climate Prediction Center Merged Analysis of Precipitation (CMAP; Xie76

and Arkin (1997)) and the Global Precipitation Climatology Project (GPCP; Adler et al. (2003);77

Huffman et al. (1997)) are prepared by merging satellite and rain gauge data. The daily gridded78

precipitation product under the Asian Precipitation Highly Resolved Observational Data Integra-79

tion Towards Evaluation of Water Resources (APHRODITE) project (Yatagai et al. 2012), cov-80

ering the whole Asia, and India Meteorological Department (IMD) gridded data (Rajeevan et al.81

2006; Pai et al. 2014), covering the Indian subcontinent, are purely rain gauge based products. All82

these products, irrespective of whether they are merged or gauge based, employ somewhat similar83

techniques (Shepard 1968; Willmott et al. 1985) for interpolating station rainfall data into regular84

grid. Despite the abundance of gridded products, the pertaining analyses do not provide estimates85

of the precipitation variability and the impact of man-made climate change with reasonable ac-86

5



curacy everywhere, and there exists a large difference in the estimated precipitation distributions87

among different datasets (Yatagai et al. 2005). In a previous study, Xie et al. (1996) have reported88

that precipitation analysis is not really sensitive to the algorithms used in regions of dense network89

of rain gauge stations whereas the bias is likely to exist over the regions of sparse networks of90

gauge observations when spatial inhomogeneities in precipitation exist. Hence, the performance91

of all these algorithms primarily depends on the density of the rain gauge network and the spatial92

variability of precipitation.93

The algorithms used to interpolate unevenly distributed rainfall gauge data into a regular (usually94

rectangular) grid are commonly known as objective analysis (OA) methods. OA techniques are95

often classified into empirical or functional and statistical methods. The empirical or functional96

techniques provide a functional distribution of rainfall on the regular spatial grid, at a given point97

in time, using a weighted interpolation of the available station data with weights that are typically98

inversely proportional to the distance of the stations to the grid point under consideration. The99

most common statistical technique is due to Gandin (1965). Gandin’s method assumes that the100

rainfall rate at a given grid point is the wighted sum of all station data within a prescribed radius101

of influence region. The weights attributed to each station are optimized by minimizing the ex-102

pected interpolation error at the stations, which requires the knowledge of the station variances103

and covariances Bussieres and Hogg (1989). This method, thus called the optimal interpolation104

(OI) technique, uses the extra-global information, namely the rainfall variability, instead of simply105

using the localized station values only.106

It is important to note at this point that in each one of these OA techniques, a radius of influence107

beyond which the algorithm is not applicable is preset to maximize accuracy, and any grid point108

whose closest data station is beyond this distance is assigned a missing data code (Bussieres and109

Hogg 1989). Bussieres and Hogg (1989) found an optimal radius of influence, for the four tech-110
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niques they assessed, of about 40 km, for their particular network of pseudo-gauge data, but they111

choose to set it to about 110 km for all methods to avoid missing data points on their prescribed112

grid of 0.05×0.05 degree resolution.113

To construct the best possible gridded rainfall products, comparative studies of many different114

OA techniques are routinely conducted. For instance, (Bussieres and Hogg 1989) compared the115

empirical or functional OA algorithms of Barnes (1973), Shepard (1968), and Cressman (1959),116

and the OI method of Gandin (1965) using an unevenly distributed network of pseudo-rainfall117

station data based on radar observations while Chen et al. (2008) compared the last three algo-118

rithms based on real-quality controlled 16,000 rain-gauge station data. Both studies found that119

Gandin’s OI statistical technique is superior to the others but it is often closely followed by Shep-120

ard’s method. However, Shepard’s method is much easier to implement and perhaps it is for this121

reason only that the aforementioned APHRODITE and IMD datasets, that will be used in this122

study, are based mainly on Shepard’s OA algorithm.123

The accuracy of rainfall data depends critically on the interpolation technique and hence the124

choice of the algorithm is important. Unfortunately the skill of the existing gauge based gridded125

products are very limited in the data sparse regions. Large errors in the analysis are likely to occur126

over areas with large spatial variability in precipitation and poor station coverage gauge network127

(Xie et al. 1996). For example, extremely large rainfall rates are reported occasionally over some128

individual stations. However, they are unlikely representative of their surrounding areas.129

This is problematic as many of the regions in the world still lack an adequate number of rain130

gauge networks throughout the recording history. Here, we propose a new probabilistic interpo-131

lation technique, using a stochastic lattice model (SLM) to grid a network of station rainfall data132

over India and validate it against the aforementioned APHRODITE and IMD datasets that are133

based on Shepard’s OA technique. The SLM is somewhat a variant of the stochastic multicloud134
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model will local interactions of Khouider (2014) (see also Khouider et al. (2010)) for organized135

tropical convection. It is based on the concept of particle interacting systems on a lattice, where136

particles occupying lattice sites or cells randomly switch states according to prescribed probability137

rules depending on the way the lattice sites interact which each other and on an external potential138

representing the environmental state. In the present context, the SLM technique uses the global139

climatological information, namely, the rainfall rate distribution, to stochastically propagate the140

station gauge values to neighbouring points on the given regular grid. In this sense, the proposed141

method is closer to the statistical method of Gandin (1965) but instead of minimizing the expected142

errors it actually samples an estimated probability density at each grid point conditional on the143

station data and the climatological rain rate distribution. The main motivational question is to144

assess whether such a stochastically based OA is capable of performing better in regions of sparse145

observations. In this sense, this study introduces a new concept in station rainfall data analysis146

that can be extended to global rainfall station data interpolation and especially back in time when147

the coverage was limited.148

While the existing IMD gridded rainfall data is based on a dense network of 6955 stations, here149

the new SLM algorithm employs only 1830 stations on purpose. To have a fair comparison, we150

also use Shepard’s OA algorithm on the same 1830 stations both with and without a radius of151

influence.152

The paper is organized as follows. Section 2 describes the station data used, the regular grid153

used to interpolate it, the new SLM algorithm and its parameter calibration, and an overview of154

Shepard’s method. The five rainfall data products, including the high resolution IMD data set,155

the APHRODITE data set, and the newly produced low station density interpolation data, based156

on the SLM and Shepard’s method with and without radius of influence restriction, are analysis157

and compared to each other in Section 3. In particular, we first provide a localized assessment of158
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the SML versus Shepard’s method by comparing the associated rain event distributions at various159

locations against those of actual observations. Then we follow up with direct comparisons of the160

seasonal rain fall climatologies and daily rain fall estimates, statistical metrics such root mean161

square error, absolute relative error, and cross correlation maps of high resolution IMD dataset162

versus each one of the four remaining products. The section is concluded with the analysis of the163

interannual and daily rainfall variabilities corresponding to the five products. Finally, a summary164

of the results and a few concluding remarks are given in Section 4.165

2. Data and Algorithm166

a. The Indian rain gauge station data167

The Indian subcontinent posses one of the oldest networks of rain-gauge-data in the word. A168

brief history of the Indian rain gauge data collection and its archival can be found in Walker (1910)169

and Parthasarathy and Mooley (1978). The first gridded precipitation product for the Indian region170

is constructed by Hartmann and Michelsen (1989) for the period 1901-1970. The variability of171

Indian summer monsoon has been routinely studied using this dataset (Hartmann and Michelsen172

1989; Krishnamurthy and Shukla 2000, 2007, 2008). A series of studies were conducted, more173

recently, by the India Meteorological Department (IMD) scientists to quality control the wide174

network of rain gauge station data in India and to generate a gridded data set that represents175

the rainfall characteristics in a realistic manner (Rajeevan et al. 2005; Rajeevan and Bhate 2008;176

Rajeevan et al. 2006; Rajeevan and Bhate 2009; Pai et al. 2014). Although the number of stations177

and the spatial resolution of the gridded product varied, the algorithm used in these studies was178

based on the aforementioned Shepard scheme.179
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We collected a long term record (more than 100 years) of quality controlled daily station rainfall180

data over the Indian subcontinent from the National Data Centre, IMD, Pune, India. These station181

data are daily 24 hour accumulated rainfall ending 0300 UTC. For pedagogical reasons, rainfall182

data of only 1380 stations, spanning across the Indian subcontinent were used to test the new183

algorithm developed here. We specifically, choose the data used to generate the gridded rainfall184

data in the Rajeevan et al. (2008) study, which we refer to, here, as the IMD1380 data product.185

However, the new method developed here is assessed against the IMD high resolution gridded data186

in Rajeevan and Bhate (2009), which is based on a much denser network of 6955 stations and used187

here as a high standard reference. This data product will be referred to as IMD6955.188

As already stated, the specific question asked here is whether such a scheme can improve the189

precipitation estimate over grids with poor rain gauge coverage. As indicated in Figure 1a., the190

1830 stations are distributed unevenly over the Indian subcontinent with fewer stations over the191

northeast region and eastern coast of India while the network is relatively dense over the central192

India and southern peninsular region. Besides, not every rain gauge station has an acceptable193

precipitation record every day.194

We note in particular that because the radius of influence constraint associated with Shepard’s195

method, the IMD1380 leaves large areas of the Indian continent grid with missing data, especially196

in the readily mentioned low station density regions. We thus decided to expand the application197

of Shepard’s interpolation scheme to data points beyond the predefined radius of influence.The198

resulting data product is referred to, here, as the IMD1380-relaxedR. We note however, the issue199

could have been addressed by simply increasing the values of the radius of influence until the200

whole grid is fully covered as Bussieres and Hogg (1989) did but our results indicate that within201

the radius of influence, the IMD1380 and IMD1380-relaxedR products are hardly different from202

one another.203
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The probability of occurrence of rainfall events used all existing stations, in India from 1910 to204

1970, is shown in Figure 2b together with a power law fit. The rainfall distribution over the Indian205

subcontinent seems to follow the fitted power law. The maximum probability of rainfall occur206

in the range of 0-100 mm day−1 and then the probability decreases rapidly with the intensity of207

rainfall (Figure 2b).208

As already stated not all stations have recorded good quality rainfall data every data. The 130209

stations used in this study have a minimum of 70% data availability during the analysis period210

1951-1970. However, the data density is not uniform over the Indian subcontinent. While the211

gauge network over southern India and northwest and central India is dense, it is scattered over212

northeast and eastern coastal region (Figure 1a). Note that in this data source, there are no stations213

reported with precipitation over Jammu and Kashmir.214

b. The stochastic model on a triangular lattice for rainfall data interpolation215

1) TRIANGULATION, MASK, BINNING, AND BACKGROUND DISTRIBUTION216

To better accommodate the complexity of the continental boundaries of the Indian peninsula,217

we adopt a triangular configuration for the stochastic lattice model. The Indian subcontinent is218

divided in to M triangular mesh elements as shown in Figure 1b. In our analysis, we consider219

M = 11921 which is approximately equivalent to 0.25◦ spatial resolution.220

At any given time, t, spanning the period of interest, a given triangle I, I = 1,2, · · · ,M, on the221

triangulation lattice may or may not contain station data. Station data will be present at site or222

cell I if there are stations inside the triangle and if some of these stations have recorded quality-223

control-acceptable measurements. In such case, the average of all these station values is computed224

an assigned, as an observation value, and the corresponding triangle or cell j, which is considered225

as an observation cell. All other cells are meant to be filled in by the OA procedure.226
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To illustrate, Figure 2a shows day to day variation of the number cells containing stations with227

recorded rainfall data, from 1910 to 2003. The data density is satisfactory and more or less uniform228

till 1995. Out of total 11921 triangular cells over the Indian subcontinent, on an average around229

1200 cells with rainfall is available. However, during the recent times there is a drop in the number230

of cells recorded with rainfall data (Fig 2a). In this study, we restricted our analysis to the period231

from 1951 to 1970, for homogeneity.232

For convenience, we introduce the binary function, defined on the lattice as233

Mt(I) =


1, if there is station data in cell I at time t

0, otherwise,
(1)

for I = 1,2, · · · ,M, which serves as a mask defining the lattice points with station data and those234

without any station data, at any given time t. Comparing the number of triangles M = 11921 to the235

number of cells with recored data in Figure 2a, which is limited from above by the total number236

of stations used, 1380, there is at least 88% of lattice cells that are attributed the values Mt = 0,237

at any given time. It is the job of the interpolation method to fill up those gaps.238

The new stochastic lattice model (SLM), introduced here, is based on the concept of multi-type239

particle interacting systems (Khouider 2014), which define an order parameter, denoted by σ , that240

takes one of the discrete values from 0 to N−1, at each one of the lattice sites and makes random241

jumps from one discrete state to another depending on prescribed probabilistic rules, based on the242

states of the nearest neighbours. In the present study, the station rainfall data are binned into N243

rain rates, corresponding to the N states of the SLM. To better accommodate the distribution of the244

recorded rainfall, we adopt a piecewise-uniform binning strategy. Various bin configurations have245

been tested, with a total size ranging from N = 51 to N = 137. Our results indicate that the finer the246

bin sizes are the more accurate the interpolated rain fall is. However, the finer bins are associated247
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with larger bin sizes and as such the computational time increases with the increased accuracy. As248

a compromise between accuracy and computational efficiency, we adopt the configuration with249

N = 137 illustrated in Table 1, as our standard case. The results of our model calibration with250

respect to the bin size are reported below for completeness.251

The choice of the bin configuration, is partly motivated by the background or climatological252

rainfall rate distribution reported in Figure 2b. To accommodate the SLM implementation, this253

distribution was binned accordingly. The resulting coarsened distribution, denoted by ρ j, j =254

0,1,2, · · · ,N−1, is obtained by further assigning the probability of occurrence of rain rates, based255

on the full IMD dataset spanning from 1951 to 2004, corresponding to each SLM bin,256

ρ j =
number of rainfall events with a rain rate within bin j

total number of rainfall records
. (2)

The bin resolution is thus set to be higher in regions where the rainfall rate distribution varies the257

most, resulting in the configuration in Table 1.258

2) THE JUMP PROCESS AND MARKOV SAMPLING259

One can think of the previously defined lattice as containing particles. Different numbers of260

particles are contained at different sites. At any given time t, each lattice site is either occupied by261

a certain number of particles, corresponding to a rainfall bin number or none, if there is no rainfall.262

More precisely, we consider the order parameter263

σ
t
I = j, j = 0,1, .....,N−1 (3)

on a given lattice site I, I = 1,2, · · · ,M, and at any given time t, according to whether there is264

a rain event within the bin j, j = 0,1,2, · · · ,N− 1, in that cell at that time t. Let R j be the rain265

rate associated with bin j, j = 0,1,2, .....N − 1. In the jargon of particle interacting systems,266

a realization of the order parameter σ t on the lattice is called a configuration. The size of the267
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configuration space, formed by all possible such configurations, increases exponentially with the268

number of lattice cells M. It is given by NM where N is the number of discrete states.269

Particles interacting systems in a heat bath, with infinite external energy supply, assume the270

Gibbs canonical distribution,271

G(σ) =
1
Z

exp[−βH(σ)], (4)

as their equilibrium measure (Liggett 1999; Thompson 1972), where H is the Hamiltonian energy272

which includes the energy associated with the way the lattice sites interact with each other and273

and external energy source, and Z is a normalization constant known as the partition function.274

Here, we view rainfall rates as particles of such a system that respond to weather conditions as275

random deviations from the climatology represented by the distribution ρ j in (2). The interpolation276

problem becomes then one of finding the best possible Hamiltonian H or distribution G given the277

station data. We assume that H takes the form278

H(σ) =−1
2 ∑

I
∑
I′

J(σI,σI′)+∑
I

h(σI),

where J is the internal interaction potential between neighbouring sites and h is the external energy279

potential. The specific form of J, which is not necessary at this stage, will be given through the280

definition of the energy differences, between nearest configurations, when designing our sampling281

methodology, which takes into account the knowledge of the rainfall climatology and instanta-282

neous station data at lattice sites with Mt(I) = 1. The sampling strategy is given next.283

For practical reasons, we use the Markov Chain Monte Carlo sampling method based on Ar-284

rhenius Dynamics (Thompson 1972), where for any fixed physical time, the order parameter σ t
285

is viewed as a Markov process that makes random transitions at random lattice sites, over a long286

enough period of pseudo-time, t, until it reaches a statistical equilibrium, whose distribution is the287

Gibbs measure conditional on the climatology and the instantaneous station data.288
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Next, we introduce the Hamiltonian energy differences at each lattice site, including where289

station data is available, based on the nearest neighbour interaction potential J (Khouider 2014).290

We define291

4I
+H̃(σ) = J0[max

I′
(|R(σ I +1)−R(σ I′)|)−max

I′
(|R(σ I)−R(σ I′)|)]+h(σI +1)−h(σI)

4I
−H̃(σ) = J0[max

I′
(|R(σ I−1)−R(σ I′)|)−max

I′
(|R(σ I)−R(σ I′)|)]−h(σI +1)+h(σI) (5)

as the Hamiltonian energy differences between a state with a given configuration σ and the two292

closest possible states where the rainfall at site I jumps either to the next bin up or to the next bin293

down. Here J0 > 0 represents the strength of local interactions and is considered as an interpolation294

parameter and R(x) is the rainfall rate, Rx, associated with bin x, 0 ≤ x ≤ N. Our tests indicate295

that the optimal J0 value depends on the number of bins, N, and J0 = 1.05 seems to be the ideal296

choice when N = 137. Increasing J0 diminishes the weight of the prior climatological equilibrium297

distribution, which is set so as to replicate the influence of the external potential h (Khouider 2014)298

as specified below.299

To guarantee convergence to the proper equilibrium distribution, the jump rates of the Markov300

process, σ t , from a given configuration σ to its two closest “neighbours” in the configuration301

space, are given by302

CI, j
+ (σ) = [1−M (I)]C̃I

+e−4+
IH(σ)/2 +

M (I)
τ

[max(e−α(σ I−σ?
I ),1.0)−1.0]

CI, j
− (σ) = [1−M (I)]C̃I

−e(−1/2)4−IH(σ)+
M (I)

τ
[max(eα(σ I−σ?

I ),1.0)−1.0] (6)

Here α and τ are positive parameters that are specified in Table 2 together with the other model303

parameters while M is the binary mask function in (1) and 0 ≤ σ∗I ≤ N− 1 is a fixed bin index304

corresponding to the observed rainfall data at the given cell I, if available.305
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The background rates C̃ j
+ and C̃ j

− on the other hand are defined based on the climatological306

rainfall distribution in (2). We set307

C̃ j
+ =

1
τ

ρ j+1

ρ j
, j = 0,1,2, ...,N−1

C̃ j
− = (1/τ), j = 1,2, ...,N, (7)

which is equivalent to defining the external potential h so that ρ j = eh( j).308

This completes the formal definition of a Markov jump process according to which, the order309

parameter σ t
I can jump up by one unit or jump down by one unit with transition probabilities310

depending on whether its neighbours have more or less particles and the prescribed background311

climatology. We have312

Prob{σ t+4t
I = σ

t
I +1}=CI

+(σ
t)4t +o(4t)

Prob{σ t+4t
I = σ

t
I−1}=CI

−(σ
t)4t +o(4t),

Prob{σ t+4t
I = σ

t
I}= 1− [CI

+(σ
t)+CI

−(σ
t)]4t +o(4t),

for small time increment 4t, 4 t/τ � 1, of the pseudo-time t, used to iterate the process to313

equilibrium.314

The definition of the transition rates in (6) and (7) ensures that the underlying Markov process315

is in “partial detailed balance” with respect to the Gibbs measure in (4) and as such the probabil-316

ity distribution of the stochastic process σt converges to G(σ) in the long run (Khouider 2014).317

Therefore, according to the MCMC theory, the time series of the process σt can be used to sample318

G(σ), conditional to the station data, and thus to provide probabilistic estimates or interpolates for319

the rainfall rates at lattice sites where observations are not available.320

The dependence of the transition rates in (6) on the mask function M is such that the conver-321

gence of the process to the observed values σ∗I occurs on an exponentially faster time scale, at all322
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lattice sites with station data, independently on the background climatology distribution and on323

the state of the neighbouring sites; σt becomes quickly (almost) deterministic at those locations.324

The rate of this convergence is set by the parameter α which bears the large value α = 4. The325

station values are then used to update the values of its neighbouring cells, which then transmit the326

information to their own neighbours are so on. The process goes back and forth until statistical327

convergence. Our tests indicate that fixing the values to σ t
I = σ∗I at the cells with observation data328

lead to the same results by also results in a less smooth convergence of the process.329

To implement the MCMC procedure, we adopt Gillespie’s exact algorithm as done in Khouider330

(2014). Accordingly, we introduce the total transition rate, contributed from all grid cells331

SR = ∑
I
(CI

+(σ)+CI
−(σ)). (8)

Also, to avoid the occurrence of unphysical values of σ , we enforce the “boundary conditions”,332

RI
−(σI) = 0, if σ I = 0 and RI

+(σI) = 0, if σ I = N,

at each lattice cell I = 1,2, · · · ,M.333

In a few words, Gillespie’s exact sampling algorithm can be summarized as follows. Let T0 > 0334

be a fixed peuso-time measured in the units of the algorithm’s time scale τ , chosen to be large335

enough. Given an initial guess distribution σ0
I ,336

1. Read the station day at the given physical time (day of the year between 1951 and 1970 for337

us) and set T = T0 .338

2. Compute the up and down transition rates CI
+ and CI

− using (6) at every cell I, I = 1,2, · · · ,M339

and compute the total rate SR using (8)340

3. Draw a uniform random number U between 0 and 1 and set s =−(1/(SR)) log(U)341

4. If s≤ T , make a single transition at a random site I in the following way.342
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(a) Renumber the rates CI
+(σ) and CI

−(σ) from 1 to 2M, say, C1 =C1
+, C2 =C2

+, · · · , CM =343

CM
+ , CM+1 = C1

−, CM+2 = C2
−, · · · , C2M = CM

− . Compute the probabilities Pk = Ck/SR344

and their cumulative sums Sk = ∑
k
l=1 Pl , k = 1,2, ...,2M.345

(b) Draw a second random number U1, uniformly between 0 and 1 and independent of U ,346

and find the first k0 such that Sk0 ≥U1 and perform the transition associated with Ck0:347

σI =


σI +1 if Ck0 = RI

+

σI−1 if Ck0 = RI
−

σI, otherwise.

(c) Set T = T − s and go back to Step 2.348

5. If s > T stop.349

We note that one and only one site is affected at each iteration of the Markov process. Thus,350

only the transition rates, CI
±, corresponding to that site and its immediate neighbours need to be351

recalculated, every time Step 1 is called again.352

When dealing with an observation time series of rainfall like it is the case here, the converged353

values at the previous time can be used as the initial guess for the present physical time.354

To facilitate comparison with existing data products, namely the IMD6955 and APHRODITE355

datasets, the unstructured triangular cell output is converted to point values at grid points with356

regular lat-lon grid (0.25◦×0.25◦) using the bilinear interpolation. This newly gridded dataset is357

named as the CPCM1380 data product, in reference to the Center for Prototype Climate Model at358

NYU Abu Dhabi where this research was conducted and the 1380 rain gauge stations used. Given359

that the triangular and rectangular grids have the same resolutions of 0.25◦, it is expected that the360

error inducted by this grid conversion is minimal compared to the errors induced by the original361

objective analysis of inferring the lattice rainfall data from the rain gauge data.362
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c. Convergence of the MCMC time-series and sensitivity to parameters of the SLM scheme363

As already mentioned, the MCMC algorithm consists in running an ergodic Markov process to364

equilibrium, whose equilibrium distribution is the one one wishes to sample, and use the converged365

pseudo-time series to draw samples for that distribution. To ensure that the MCMC runs in our366

SLM scheme have been satisfactorily run to convergence, we monitored the Markov chains at367

several grid points and time instances, and set the iteration pseudo-time accordingly. The results368

from this exercise led us to choose a conservative iteration time T0 = 24 hours. For the sake of369

illustration, we plot in Figure 3 the MCMC pseudo-time series corresponding to the lattice point370

with lat-lon coordinates 28N, 80.75E and the day 19-Jul-1951, for 6 different bin sizes. As we can371

see from Figure 3, after a transient period of up to 3̃ hours (10,000 pseudo-time steps), the chains372

enter a statistical steady state where they fluctuate up and down within their stochastic variability373

range. As can be surmised from Figure 3 both the length of the transient period and the width of374

the variability range depend strongly on the bin number. As expected the transient period is longer375

for the larger number of bins (137) while the variability range is shorter for the larger bin number.376

Notice, however, despite these discrepancies, the converged values seem to oscillate around fairly377

the same rainfall limit. In our preliminary tests presented here, we took the average over the last378

20% of each chain as the interpolated rainfall value at the corresponding lattice cell. To take full379

advantage of the stochastic nature of the scheme, the associated variances can be also recorded to380

provide some measure of uncertainty in the interpolated data. This will be done in the future.381

Preliminary tests indicated that the scheme is most sensible to the values of J0 and the number382

of bins N. In Table 3, we report the root mean square errors (RMSE) between the interpolated and383

regridded rainfall data based on the SLM scheme, CPCM1380, and the high resolution IMD6955384

dataset for various values of J0 and bin size N, integrated over the totality of the structured grid for385
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the monsoon season JJAS 1951 . As we can see from this table, for a fixed J0 the RMSE typically386

increases with decreasing bin size while its variation with respect to J0 is more subtle. For a fixed387

bin size, the RMSE seems to increase both when J0 is increased and when J0 is decreased and388

suggests the prevalence of a sweet spot somewhere in between. According to Table 3, J0 = 1.05389

and N = 137 seem to be an optimal choice in terms of minimizing the RMSE in comparison to the390

high resolution IMD6955 dataset. It is worth noting that in the process, we have also calculated391

the correlation coefficient between the CPCM1380 and the IMD6955 data products of JJAS 1951,392

for the parameters in Table 3. Our results indicate that the correlation coefficient hardly changes,393

regardless of the value of J0 or the bin number N. It varies between 0.94 and 0.95 for all the394

parameter pairs recorded in Table 3, which suggest that the scheme is robust and can eventually be395

trusted even at coarse bin configurations. It is in particular at the higher 0.95 value when J0 = 1.05396

and N = 137. This is the main reason why this value of J0 is chosen to be our default value instead397

of simply J0 = 1.1, which appears to have the same smallest RMSE value of 1.09 mm day−1.398

d. Shepard weighted interpolation method and its relaxation399

As already mentioned, the SLM interpolation technique is assessed in comparison to the high400

resolution (0.25x0.25) rainfall product IMD6955 which is obtained using the inverse distance401

weighted interpolation method of Shepard (1968) based on data collected by 6955 rain gauge402

stations (Pai et al. 2014). Since we choose to use much less stations to test the SLM technique,403

namely, because we wanted to test its performance on a coarse station network, we also apply404

Shepard’s technique to these 1380 stations to reproduce in situ the IMD1380 product for a fair405

validation of the SLM method.406

In Shepard’s method, the interpolated values at a grid node are computed from a weighted sum407

of the neighbourhood observations. Following the previous studies (Rajeevan et al. 2006; Pai408
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et al. 2014), we considered a limited number of neighbouring points (minimum 1 and maximum409

4) within a search distance (radius of influence) of 1.5◦ around the grid node where we want to410

compute the interpolated values.411

Consider the grid point Pi, the inverse distance based weighting interpolation method is defined412

as follows. Let di denote the distance from Pi to the nearest rain gauge station. If di = 0, then413

the station data is used directly and no interpolation is required, otherwise, the rainfall rate at Pi is414

given by415

Ri := f (Pi) =
∑sW s

i Zs

∑sW s
i

,

where the summation is taken over all stations with available data at the given time, Zs is the416

observed rainfall rate at station s, and W s
i is the associated weight which depends on the inverse of417

the distance, ds
i , of Pi from the location of Station s modulo a shadowing factor to mitigate over-418

representation due to many stations from the same direction. In particular, a radius of influence Dx419

is prescribed and the weights are set by mathematical formulas depending on wether ds
i ≤Dx/3 or420

Dx/3 < ds
i ≤Dx and W s

i = 0 is ds
i > Dx. The interested reader is referred to Rajeevan et al. (2006)421

and Pai et al. (2014) for details.422

3. Results423

Following the aforementioned previous studies, here also we used a radius of influence of Dx =424

1.5◦ as already mentioned. We termed this product as the IMD1380 station product. Since we425

used less number of stations (1380 stations) as opposed to 6955 stations used in Pai et al. (2014),426

a lot of missing values are noted in the final gridded product as opposed to Pai et al. (2014). To427

provide a fair test for the SLM technique, we decided to push Shepard’s method beyond its limits428

and have uplifted/relaxed the radius of influence restriction and reproduced a full coverage gridded429

rainfall data for the Indian continent based on the same 1380 stations. We termed this data as the430
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IMD1380-relaxedR product. The area within the search radius Dx is termed as inside radius of431

influence (inside Rinf) domain and the area outside the search radius Dx is termed as the outside432

radius of influence (outside Rinf) domain while the entire area which includes both inside and433

outside the radius of influence areas is termed as the global domain.434

In the following analysis, we compared various statistical metrics of CPCM, IMD and435

APRODITE gridded datasets. In addition to the traditional root mean square error, and correlation436

estimates, deviations between the various data products are estimated according to the following437

equation, which is namely, the accumulated relative error. If R1 and R2 represent the rainfall rates438

corresponding to the data products 1 and 2, respectively, then their difference is estimated by the439

quantity440

N12 = ∑
x

∑
t

2|R1(x, t)−R2(x, t)|
R1(x, t)+R2(x, t)

. (9)

Here x is the generic spatial location of all rectangular grid points and t spans over all days of the441

analysis period from 1951 and 1970. However we will begin in Section 3a. by looking at how442

well the SLM and Shepard’s schemes represent the local rainfall event distributions in comparison443

to the observed gauge data.444

The SLM and the relaxed Shepard’s algorithms are run and the interpolated datasets or products,445

CPCM1380 and IMD1380-relaxedR, respectively, on the 0.25◦×0.25◦ are constructed for the 20446

years period, 1951-1970, using the procedures outlined above. Here, we report the results of the447

comparative tests of these products, against each other and against the high resolution IMD6955,448

IMD1380, and the APHRODITE products. Notice that because rainfall is very rare to non-existent449

during the dry winter months, all the analysis-comparative tests presented below are restricted to450

the summer months of June-September (JJAS), coinciding with the Indian summer monsoon.451
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a. Validation tests: Local rainfall distribution skill452

First, we assess how well the new SLM and the Shepard technique reproduce the observed453

local rainfall intensity probability density functions (PDFs). Following Chen et al. (2008), we454

have selected 8 validation points over the Indian landmass and the daily precipitation from all455

the stations in a 2◦ square around each validation point are withdrawn from the dataset. These456

square correspond to boxed regions shown in Figure 1a. With two boxes (A and B) along the457

west coast and two along the east coast (G and H) of the southern tip, and four boxes (C, D, E,458

and F) distributed along the east-west extend of Northern India, the network of validation points459

spans a variety of physical conditions both in terms of the meteorology and in terms of the rain460

gauge station density in the corresponding neighbourhoods. The validation point locations are461

representative of the complexity of the Indian rain gauge dataset in both respects.462

The SLM and the Shepard algorithms are performed using the gauge data from the remaining463

stations to define the precipitation values at the locations of the withdrawn stations. The PDF464

of precipitation intensity is computed by aggregating the values of precipitation of all withdrawn465

station locations in each box around each validation point, leading to one localized PDF for each466

validation point and for each algorithm. The estimated PDFs are compared to the corresponding467

PDF of the withdrawn station observed precipitation (i.e, instead of using inferred data we now use468

the actual station data) to assess the accuracy of the two algorithms in reproducing the precipitation469

intensity distribution at the given locations. The results are summarized in Figure 4 where the bar470

diagrams corresponding to the two methods and to the station data are compared against each471

other.472
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As can be surmised from Figure 4, the PDF estimates are given in terms of rainfall events falling473

into the 6 bins474

R < 1, 1≤ R < 6, 6≤ R < 11, 11≤ R < 16, 16≤ R < 21, 21≤ R,

where R is the rainfall rate, expressed in mm day−1, averaged over all station locations in each of475

the boxes in Figure 1a. In general, the PDF of precipitation intensity at each validation point is476

dominated by weak to no rain events (R < 1 mm day−1). However, as can be seen in Figure 4,477

the frequency of occurrence of such low to no rain events varies strongly between the validation478

points. In terms of the station data (red bars), it goes from as high as 80% at the North East479

validation point C to less than 40% at the South East point B located at the northern tip of the480

Western Ghats mountain range (Figure 1a).481

According to Figure 4, except for the two validation points A and B, the no rain events are482

better represented in the LMS algorithm (yellow bars) compared to Shepard’s method (blue bars).483

These two validation points are located over the windward side of Western Ghats, where we get484

torrential rain during the monsoon season (Seasonal mean rainfall over these locations is larger485

than 25 mm day −1). Over these two validation points the rainfall intensity is mainly controlled by486

the orography. The number of stations reporting the precipitation are also large on these locations487

(Number stations: 26 at validation point A and 25 at validation point B).488

At every validation point, the light precipitation events (within the range 1 < R < 16 ) are better489

represented by the SLM method compared to Shepard’s method. The moderate and heavy precip-490

itation events (R > 16 mm day −1) are also well represented by the SLM method except for two491

validation points (Figure 4e and g). At the validation point E, the SLM method overestimates the492

moderate and heavy precipitation events compared to the observed station precipitation whereas493

at validation point G (Figure 4g), the moderate and heavy precipitation events are underestimated494
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by the SML. The validation point E is located within the monsoon trough region where we get495

heavy rainfall during the passage of monsoon depression/low pressure systems. The number of496

stations is also very large at this validation point (31 stations). Whereas the point G is located on497

the eastern coast of India where normally the monsoon depression/low pressure systems first hit498

on land. However, around this validation point the number of stations reporting precipitation data499

is comparatively less (17 stations).500

As seen in Figure 4, except for aforementioned four occurrences, the SLM method provides a501

much better representation of the rainfall PDF at these validation points . Shepard’s method has502

the tendency to overestimate the frequency of the light rain events (1<R< 16) and underestimates503

the moderate to strong rain events (R > 16).504

To better see this, the agreggated PDF of precipitation intensity at all station locations over the505

eight 2 ◦square boxes are given in Figure 4i. As expected, the PDF of station precipitation is largely506

dominated by the no rain events which has frequency of occurrence 58%, while the probability507

of heavy rainfall (R≥ 21) is 12.5%. The Shepard method underestimate the frequency of no-rain508

events and heavy rain events (blue bars) whereas it overestimates the frequency of occurrence of509

light precipitation events (1 ≤ R < 16). The frequency of no-rain events in Shepard’s method is510

44%; it is 25% less than that of the station precipitation. In all the categories of rain events the511

SLM method outperforms the Shepard method (yellow bars). The frequency of no-rain event in512

the SLM method is 57% which is comparable to the station precipitation. Similarly the frequency513

of occurrence of light rainfall events (1≤ R < 16) and moderate or heavy rainfall (R≥ 16) in the514

SLM method is also comparable to the station precipitation. Figure 4i, may seem to indicate that515

Shepard’s is as good as the SLM in estimating moderate rain events within the range 16≤ R < 21516

but looking back at the local panels this is clearly due to cancelations of errors some of which is517

also inevitably true for the SLM results, though to a much lesser extent.518
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b. Seasonal mean and daily rainfall direct comparisons519

Figure 5 compares the JJAS mean 20-year climatology obtained from the CPCM1380 (c) and520

the IMD1380 (d) gridded rainfall datasets against those corresponding to the two existing rainfall521

products, namely, the high resolution IMD6955 (b) and APHRODITE (a). The JJAS climatology522

corresponding to IMD1380-relaxed is shown on panel (e). We note that data from all the 1380523

stations is used to produces the CPCM1380, IMD1380, and IMD1380-relaxedR datasets.524

Compared to the high resolution product IMD6955, the heavy precipitation over the wind-525

ward side of Western Ghats and the copious rainfall over Central India are well captured in all526

the datasets including the new CPCM1830 dataset (Figure 5c). Even with the significantly re-527

duced number of stations, CPCM1380 (Figure 5d) is in good agreement with the high resolu-528

tion IMD6955 and APHRODITE gridded rainfall products all over the Indian continent while529

IMD1380 in Figure 5d misses large areas, namely the northern and northeastern tips of India,530

because of the lack of station coverage. The IMD1380-relaxedR climatology on the other hand531

shows significant biases especially over those mentioned areas.532

The seasonal rainfall averaged over the Indian subcontinent of all the five products are contrasted533

in Table 4. The seasonal precipitation of APHRODITE is the smallest among all the precipitation534

products consistent with the maps in Figure 5. Seasonal rainfall of CPCM1380 and IMD6955 are535

almost identical, whereas that of IMD1830 underestimates the mean rainfall by 10 mm day−1 and536

IMD 1380 RelaxedR overestimates it by about almost 60 mm day−1, compared to IMD6955. This537

suggest again that gridded rainfall data is method dependent and that the stations density is less538

important is one is interested only in the climatological regional mean values.539

The 20 year averaged JJAS seasonal mean rainfall differences between the IMD6955 dataset540

and the other rainfall products are presented in Figure 6. Consistent with Table 4, the difference541
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between APHRODITE and IMD6955 datasets shows negative values in most areas of the Indian542

subcontinent, especially over Central India and the northeast region and a narrow band of positive543

values along the Western coast (Figure 6a). This implies that APHRODITE estimates less precipi-544

tation over most areas of the Indian subcontinent including Central India, the northeast region and545

the high orographic precipitation along the Western Coast than the IMD6955 dataset. On the other546

hand, the difference between CPCM1380 and IMD6955 data is positive along Central India and547

the Western Coast (Figure 6b). However, over the data sparse regions of the northeast and the east-548

ern coast of India, CPCM1380 estimates less precipitation than the IMD6955 dataset (Figure 6b).549

This may have contributed to error cancelation when we computed the seasonal mean climatology550

in Table 4.551

The difference between the IMD1380 and IMD6955 datasets, on the other hand, does not show552

a significant difference along the central plains of India and southern peninsula (differences are553

mostly between 1 mm/day over the country) except Western coast where IMD1380 slightly overes-554

timates the orographic precipitation with respect to the IMD6955 dataset (Figure 6c and d). Thus,555

once again, not only the number of stations used but also the methodology is important when it556

comes to OA of rain gauge data. Nonetheless, the errors are within 1 to 2 mm day−1 in most places557

which is within 3 to 6% on average.558

When taking into account the fact that the SLM method used to produce the CPCM1830 dataset559

is based on rainfall binning with bin sizes of 2 mm day−1 and larger, according to Table 1, errors560

in the range of 1 to even 3 mm days−1 are expected and are deemed acceptable. As shown in561

Table 3, decreasing the number of bins decreases, though slowly, the RMSE relative to the high562

resolution IMD6955 product but unfortunately increasing further the bin number is computation-563

ally prohibitive and we refrain from pursuing this at this stage of this research. The goal here564

is to demonstrate that the SLM OA may offer a reliable method that can be applied in regions565
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of sparse station data, especially when one is interested only in the gross features of the rainfall566

statistics. Besides of not discriminating grid points that are far away from available data stations,567

the other attractive feature of this method resides in the fact that it is a stochastic method that in568

effect incorporates some uncertainly into the interpolated data.569

To assess how good the new SLM scheme captures the inter-annual variability of precipitation at570

each grid point, compared to existing data products, we plot in Figure 7 the standard deviation of571

seasonal mean rainfall as it varies from year to year, for the five data products. All datasets exhibit572

large standard deviation over the regions that receive large amounts of precipitation, during each573

monsoon season. For example, the western coast of the Indian peninsula, the central Indian plains,574

and Northeast India reveal large standard deviations during the boreal summer monsoon season.575

In comparison to the IMD6955 high resolution dataset, the overall pattern of standard deviation576

is fairly well captured in all rainfall products (Figure 7), except for the IMD1380-relaxedR (Fig-577

ure 7e) which has clear issues in the low station density area in the Northern and Northeastern578

tips of India. However, in APHRODITE the standard deviation over the central India and north-579

east India is weak compared to both IMD and CPCM1380 products. While the APHRODITE and580

IMD1380 datasets (Figure 7a,d) underestimate the highly scattered and high values of standard581

deviation displayed by the high resolution IMD6955 product over central India, the CPCM1380582

product shows a fairly similar pattern as IMD6955 though without some exageration (Figure 7b,c).583

Finally, the daily averaged precipitation for a single day (01-July-1960) of the five products are584

compared against each other in Figure 8. The precipitation for this day is mainly concentrated over585

the Western Ghats and the eastern coastal regions of India. The precipitation is well organized in586

these two regions whereas it is more or less scattered over the central Indian plains. All the587

gridded rainfall products reasonably capture this pattern of precipitation with a maximum of 30-588

40 mm day−1 over the eastern coast and Western Ghats. However, APHRODITE precipitation589
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variability is relatively smooth (Figure 8a) especially over the Eastern coast when compared to590

IMD and CPCM1380 gridded rainfall products. The high resolution IMD6955 dataset shows591

higher spatial details than the other gridded datasets. The IMD rainfall produced using the 1380592

stations underestimates the 01-July-1960 rainfall over the eastern coast of India (Figure 8d,e).593

Note that the east coast rain gauge network is relatively sparse in the source (Figure ??). In spite594

of this sparse network, the rainfall as by CPCM1380 (Figure 8c) is comparable to that of IMD6955595

dataset (Figure 8b), on this particular day.596

These direct comparisons show that the SLM method is a reliable interpolation method that can597

be confidently used, especially when the station data is sparse, both for capturing the global mean598

rainfall as well as its local distribution and variability, in time and in space.599

c. Statistical metrics600

We show in Figure 9 the maps of the root mean square error (RMSE) of seasonal mean precipi-601

tation at each grid point to measure the differences between the different data products, relative to602

the reference- high resolution IMD6955 dataset. The RMSE is always large over the data sparse603

and complex topography regions. In all the cases the maximum uncertainty is over the northeast-604

ern region and Western Ghats. Generally, the RMSE is minimum over the low elevation plains605

such as central India. However, compared to APHRODITE and IMD1380 datasets, the CPCM606

1380 dataset shows slightly large RMSE of seasonal mean precipitation with respect to IMD6955607

high resolution datasets especially over the northeast region, Western Ghats and low plains of cen-608

tral India Figure 9b. This is expected from the CPCM1830 product because of the combination609

of the stochasticity of the SLM method and the coarseness of the bin size used to implement it.610

Nonetheless, the RMSE displayed by the CPCM1380 dataset remains comparable to those dis-611

played by the APHRODITE and the IMD1830 datasets. As expected large errors are associated612

29



with the IMD1830-relaxed dataset over the regions of low station data coverage, in the Northern613

and Northeastern tips of India.614

In Table 5, we reported the absolute relative error (N12) between the IMD6955 data and the615

other precipitation products using the equation in (9), and the RMSE. From Table 5, it is clear616

that outside the radius of influence the error is larger for the IMD1380-relaxedR dataset than it617

is for the CPCM1380 product, implying once again that our lattice model method outperforms618

Shepard method in data sparse regions. Over the entire Indian subcontinent (global) the daily619

error estimated from Equation 9 is slightly less in CPCM1830 than it is APHRODITE, however,620

the RMSE of seasonal mean ISMR is larger in CPCM than it is in APHRODITE. It is also true621

that the absolute relative error between APHRODITE and CPCM1830 is larger than it is between622

APHRODITE and IMD6955. Note however that the caveat, here, is of course in the fact that we623

assumed IMD6955 as the truth for convenience while as already stated the OA products are going624

to always be method dependent.625

Figure 10 represents the seasonal correlation between IMD high resolution analysis (IMD 6955)626

against the rest of the precipitation datasets. All the precipitation products exhibit close agreement627

with IMD high resolution analysis especially over Central India and Northwest India. In general,628

correlations higher than 0.9 are observed over the central and northwestern parts of India. Mean-629

while all the precipitation products show poor correlations with IMD6955 over areas with a sparse630

station network (for example, the Northeast, Jammu and Kashmir regions).631

d. Interannual daily rainfall variability632

The inter-annual variation of all India summer monsoon (JJAS) rainfall (ISMR; precipitation633

averaged over the Indian subcontinent) is plotted in Figure 11 for the five data products. The634

ISMR time series of IMD6955, CPCM1380 and IMD1380 datasets nearly match each other in635
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terms of magnitude and phase. However, consistent with the analysis in Figure 6a the magnitude636

of the ISMR time series derived from the APHRODITE is underestimated in all years compared637

to both IMD 6955 and CPCM gridded rainfall, which is consistent with the results in Figure 5638

and Table 4. However, in most years the ISMR time series derived from APHRODITE are in639

phase with the time series derived from other rainfall products. On the other hand, the ISMR640

time series derived from the IMD1380-relaxedR have relatively higher magnitudes compared to641

the other ISMR time series.642

The daily variation of rainfall anomaly averaged over Central India for three monsoon season643

(1951,1960,1970) are given in Figure 12. In CPCM analysis, the daily variation of Central India644

rainfall anomalies are in line with other rainfall product. It is clear that the CPCM1830 rainfall645

product is quite good in capturing the signs of rainfall anomaly over Central India in agreement646

with the other precipitation products, such as IMD 6955 and APHRODITE. In all the three mon-647

soon seasons, shown here, the easily identifiable active and break phases of the monsoon, asso-648

ciated with the five data products are in good agreement. The correlation between the IMD6955649

rainfall time series and other datasets exceed 0.95 in all these three monsoon season.650

The corresponding daily variation of rainfall anomalies averaged over the entire Indian subcon-651

tinent, shown in Figure 13, display some large differences in the magnitude of rainfall anomalies652

among different rainfall products. However, all the rainfall products follow a nearly identical daily653

variation; In most of the days the magnitude of daily rainfall anomalies are slightly larger in the654

CPCM1380 product compared to the IMD6955 product however the APHRODITE time series655

shows a much smoother variability and underestimates the magnitudes at times.656
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4. Conclusion657

Rain gauge datasets are often used to compensate and validate satellite precipitation data which658

in turn is used for climatological and hydrological studies and to validate earth system models.659

However, they are also important in their own right as they constitute accurate and reliable data660

sources for local studies and long term weather and climate projections, especially, over land areas661

where they are routinely recorded by climate and weather centers around the world (Xie and Arkin662

1996). Satellite observations appeared only during the last decades while rain gauge data collec-663

tion dates back to the late century. However, the measurement stations are unevenly distributed664

across the continents and in time and many areas are only sparsely covered if at all. Several OA665

techniques have been devised and used to convert (interpolate) these unevenly distributed rainfall666

data into a regular grid to ease their usage for theoretical, forecasting, and modelling purposes667

alike. Unfortunately, all the existing OA techniques have limitations in areas with sparse gauge668

station coverage and the gridded data is method dependent over such areas (Xie and Arkin 1996).669

We proposed a new stochastic OA method for rain gauge data based on the theory of stochastic670

particle interacting systems on a lattice (Liggett 1999; Khouider 2014), here abbreviated SLM for671

stochastic lattice model. The SLM thechnique is applied to the Indian Meteorological Department672

rain gauge dataset which started since 1901. While the Indian station network totals 6955 stations,673

we advertently used a selection of 1830 stations dispersed unevenly over the Indian subcontinent674

to implement and test the SLM technique.675

Existing studies (Bussieres and Hogg 1989; Chen et al. 2008) found that the statistical optimal676

interpolation (SOI) method of Gandin (1965) is superior to the so-called empirical or function677

methods that aim to approximate the rainfall at a given grid point using a weighted average of the678

neighbouring stations. Arguably, it is because the SOI method minimizes at once the expected679
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error at the existing stations and as such its uses global information as well as local information.680

However, this method is also restricted to a radius of influence region from the station network681

and according to the results shown in both Bussieres and Hogg (1989) and Chen et al. (2008), the682

SOI results are very closely flowed by those obtained by the inverse distance weighted method of683

Shepard (1968).684

The existing IMD 6955 station data has been recently quality controlled and gridded using Shep-685

ard’s technique (Rajeevan et al. 2006; Pai et al. 2014). We thus also run Shepard’s algorithm on686

the same 1830 stations and assessed the new SLM scheme (CPCM1380 product) against Shep-687

ard’s scheme (IMD1380) in the light of two existing high resolution data products over the Indian688

subcontinent, namely the IMD6955 and APHRODITE (Yatagai et al. 2012). To have a fair com-689

parison, we decided to lift the radius of influence restriction on Shepard’s method to produce a690

data product that equally covers all of India (IMD1380-relaxedR).691

In a nutshell, the SLM method attempts to sample the Gibbs grand canonical measure of a large692

lattice particle interacting system, as in statistical mechanics (Thompson 1972), when the particles693

are actually rainfall bins at the corresponding grid points forming the lattice, conditional to the694

existing station data at the local station sites and the associated global climatology. In this sense695

the SLM method has this “globality” feature in common with the SOI method of Gandin (1965).696

After selecting a default set of parameters that minimizes the RMSE of the 1380 station interpo-697

lated rainfall data, with respect to the high resolution IMD6955 data product, as Chen et al. (2008)698

did, we first compared in Figure 4 the rainfall event PDFs obtained by the SLM and Shepard’s699

methods at select, widely separated, areas of the Indian land mass, consisting of 2◦×2◦square700

boxes within each all existing station data has been removed and corresponding rainfall values are701

inferred from the remaining stations. The associated PDFs are compared to the pre-existing station702

data within each one of the boxes and in terms of the aggregated data from all the boxes. This test703

33



revealed that the SLM method is superior to Shepard’s method in terms of the rainfall event PDF704

accuracy. Shepard’s method tends to underestimate the no and very light rain events of less than 1705

mm day−1, underestimate the high rain events, greater or equal to 21 mm day−1, and overestimate706

light to moderate rain events between 2 and 21 mm day−1.707

The mean seasonal climatologies of the five datasets are compared in Figures 5 and Table 4708

while the associated mean biases, with respect to the IMD6955 dataset of the other four products,709

are reported in Figure 6. Except for the IMD1380-relatedR, which appears to be at odds with710

the rest in the low station density areas, these results indicated that the five products are more or711

less consistent with each other in many respects. However, APHRODITE seems to underestimate712

everywhere the seasonal rainfall associated with the IMD6955 whereas CPCM1380 appears to713

overestimate it in Central India and on the shadows of the Western Ghats and underestimate it in714

Northern India and the east coastal regions. Remarkably, the bias errors are within the controlled715

bin size and the globally accumulated mean monsoon rainfall of CPCM1380 and IMD6955 nearly716

match (Table 4) while the other products showed significant discrepancies though it is very small717

(10 mm) for IMD1380.718

In terms of interannual variability, CPCM1380 seems to be the only product to capture the high719

standard deviation of IMD6955 over Central India, though it seems to exaggerate it in the low720

station density regions (Figure 7). CPCM1380 also appears to be the one to better capture the high721

rainfall events over the Western Ghats and near the east coast of Central India happening on the722

typical monsoon day on 1-Jul-1960.723

The RMSE and ARE of IMD6955 with respect to the other four products were also considered724

(Figure 9 and Table 5). Again all the products seem to agree with each other in the bulk part725

except for IMD1380 that misses large areas and IMD1380-relaxedR which is faulty in those ar-726

eas. It is interesting to note that the smallest errors are associated with IMD6955 v.s IMD1380727
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inside the radius of influence while both globally and outside the radius of influence IMD1380 and728

CPCM1380 exhibit comparable errors. The same is true for the global errors of APHRODITE both729

with respect to IMD6955 and CPCM1380. Moreover, all the product showed strong correlation730

with respect to the IMD6955 product but the places of low station coverage (Figure 10).731

The Interannual and daily spatial means in Figures 11-13 are also consistent between all products732

both in terms of phasing and amplitudes although APHRODITE shows a systematic underestima-733

tion of the interannual rainfall while IMD1380-relaxedR overestimates it. Also, APHRODITE734

appears to be the smoothest in terms of daily precipitation consistent with the observed low stan-735

dard deviation in Figure 7.736

As demonstrated by the sensitivity tests in Table 3, besides the demonstrated acceptable accuracy737

of the CPCM1380 dataset, generated globally all over India, including low station density regions,738

there is promise that the accuracy can be improved specifically by increasing the number of bins739

N. However, the sweet spot in the underlying parameters specifically J0 may not be the same as740

for the bin size N = 137, thus some retuning maybe required if the bin size has to be increased.741

Importantly, given the stochastic nature of the SLM algorithm one can easily infer and assign some742

degree of uncertainly to each interpolated value by simply estimating the standard deviation for743

each Markov chain of the MCMC runs. Consistently this uncertainty appears to decrease with the744

bin size. However, this remains to be thoroughly tested in order to understand the true meaning745

of the this uncertainty in comparison to available station data. This will be the subject of a future746

study.747

Given the success of the SLM method on a such reduced number of stations, it is natural to748

expect that a dataset produced by this method using all of the existing 6955 stations will be a749

better product than the existing IMD6955 product. The same method can be applied to other750

regions of the world with a contiguous climate.751
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TABLE 1. Example of a bin configuration corresponding to the case N = 137 bins adapted as the default in

this study. The configurations associated with all the binning cases considered can be surmised from the broken

blue curves on each panel in Figure 3.

854

855

856

Rainfall (mm/day) Bin Size (mm/day) Number of Bins

< 1 1 1

1-100 2 50

100-450 5 70

450-550 10 10

550-800 50 5

> 800 ∞ 1

Total 137
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TABLE 2. Parameters values of the SLM interpolation scheme.

Parameter Description Value

α Sets strength of transition
rate to station data cell

4.0

τ Transition time scale 5 hours

J0 Strength of local interac-
tion potential

1.05

N Number of bins 137

M Number of lattice cells 11921

T0 Pseudo iteration time 24 hours
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TABLE 3. RMSE between the CPCM1380 and IMD6955 products for different J0 values (left column) and

bin number, N, (top row) based on data from the 1951 JJAS season.

857

858

—-Bin-Number, N,
J0 (day mm−1)—-

137 112 107 74 62 51

0.8 1.27 - - - - -

0.9 1.16 1.19 1.21 1.23 1.32 -

0.95 - 1.16 1.17 1.19 1.30 -

1.0 1.10 1.14 1.15 1.16 1.29 1.47

1.05 1.09 1.11 1.12 1.15 1.28 -

1.1 1.09 1.12 1.13 1.13 1.27 -

1.2 1.11 - - - - -

1.4 1.23 - - - - -

1.5 1.28 1.26 1.22 1.13 1.24 1.44

2.0 1.60 1.55 1.39 1.13 1.24 1.44

2.2 - - - - - 1.43

2.4 - - - 1.14 1.24 1.44

2.5 - - - - 1.25 -

2.6 - - - - - 1.43
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TABLE 4. Seasonal Mean Rainfall in different rainfall products (Unit:mm).

Rainfall product Seasonal Mean (mm)

IMD 6955 stations 864

APHRODITE 756

CPCM 1380 stations 863

IMD 1380 stations 854

IMD 1380 (RelaxedR) 920
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TABLE 5. Absolute relative error (9) and RMSE of seasonal mean Indian summer monsoon rainfall between

various data products, as indicated.

859

860

Rainfall products Error estimated from eqn (1) RMSE of Seasonal Mean rainfall (Unit:mm/day)

IMD 6955 vs IMD 1380 stations relaxedR (Global) 0.76 2.25

IMD 6955 vs IMD 1380 stations relaxedR (inside Rinf) 0.69 1.60

IMD 6955 vs IMD 1380 stations relaxedR (Outside Rinf) 1.14 6.30

IMD 6955 vs CPCM 1380 stations (Global) 0.87 2.77

IMD 6955 vs CPCM 1380 stations (inside Rinf) 0.85 2.33

IMD 6955 vs CPCM 1380 stations (outside Rinf) 0.99 5.96

IMD 6955 stations vs APHRODITE (Global) 0.88 2.03

APHRODITE vs CPCM 1380 stations (Global) 1.02 2.58
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(A) (B)

FIG. 1. A: Location of the 1380 rain gauge stations used by the SLM interpolation scheme to produce

the CPCM1380 data set and by Shepard’s scheme to produce the IMD1380 and IMD1380-relaxedR datasets.

Colours indicate percentage of days with rainfall data. Eight validation points, labeled A-H, are marked by the

blue squares each representing a two degree square box surrounding the corresponding validation point and the

associated number of gauge stations within each box, that are withdrawn when performing the validation tests in

Section 3a, are listed at the bottom right part of the panel. B: triangular lattice on which the SLM takes discrete

values with M = 802 triangles, yielding roughly a 1◦ resolution. Notice that in the actual application, we used

M = 11921 triangles.
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FIG. 2. A: Number of triangular cells per day containing rain gauge rainfall data. B: Probability of occurrence

of rainfall in each range of rain intensity in the rain gauge dataset produced by the 1380 stations from 1951 to

1970.
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FIG. 3. Convergence at lat-lon point 28N 80.75E for the day 19-Jul-1951. y-axis represents rainfall in mm

day−1 and x-axis is the iteration count of the MCMC simulation over the pseudo-time, from 0 to T0 = 24 hours.

The broken blue curves in the middle of each panel represent the bin configurations for each corresponding

bin number case. Each horizontal segment of the broken curve represents an interval of rainfall rates that is

uniformly divided into n bins where n is the number indicated right on top of that segment. For the case of Bin

Number N = 51 in panel (f), for example, the rainfall rate segment between 0 and 450 mm day−1 is divided into

12 bins of the same size.
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FIG. 4. Probability density function (PDF; units %) of box averaged daily precipitation corresponding to

the SLM (yellow bars) and Shepard (blue bars) interpolation techniques over the eight validation point boxes

indicated on the corresponding panels (a-h) as well as the PDF of the aggregated rainfall from all stations

contained in all validation point boxes (i). See text for details. x axis indicates midpoint rainfall (mm day−1) in

each bin. The red bars represent the PDFs of the rain gauge data.
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FIG. 5. JJAS rainfall climatology of the Indian subcontinent for the period 1951-1970 obtained from the five

datasets. (a) APHRODITE, (b) IMD6955, (c) CPCM1380, (d) IMD1380, and (f) IMD1380-relaxedR. See text

for details. Units are in mm day−1.
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FIG. 6. JJAS mean rainfall difference between (a) APHRODITE minus IMD6955 (b) CPCM minus IMD6955

(c) IMD1380 minus IMD6955 (d) IMD1380-relaxedR minus IMD 6955. Units are in mm day−1. Differences

are between the JJAS mean rainfall averaged over all seasons from 1951 to 1970.
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FIG. 7. Standard deviation of JJAS mean rainfall (interannual variability) in (a) APHRODITE, (b) IMD6955,

(c) CPCM1380, (d) IMD1380, and (e) IMD1380-relaxedR data products. Units mm/day. Standard deviation is

for JJAS mean rainfall of all seasons from 1951 to 1970.
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FIG. 8. Daily rainfall in the five different gridded products for the typically monsoon day of 01-July-1960: (a)

APHRODITE, (b) IMD6955, (c) CPCM1380, (d) IMD1380, (e) IMD1380-relaxedR. Units are in mm day−1.
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FIG. 9. RMSE between (a) IMD6955 and APHRODITE, (b) IMD6955 and CPCM1380, (c) IMD6955 and

IMD1380, (d) IMD6955 and IMD1380-relaxedR. Units are mm day−1.
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FIG. 10. (a) Grid point correlation of JJAS mean rainfall between IMD6955 and (a) APHRODITE, (b)

CPCM1380 (c) IMD1380, and (d) IMD1380-relaxedR for the period 1951-1970.
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FIG. 11. (a) Interannual variation of all India summer monsoon rainfall (averaged over Indian landmass and

averaged over JJAS season): IMD 6955 (green), APHRODITE (blue), CPCM1380 (red), IMD1380 (black), and

IMD1380-relaxedR (orange). Units mm day−1.

949

950

951

59



FIG. 12. Daily variation of rainfall anomaly over Central India (coordinates of averaging region) for the (a)

1951, (b) 1960, and (c) 1970 JJAS seasons. Units: mm day−1
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FIG. 13. Same as Figure 12 but the spatial average is over all India.
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