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Extreme events and the related anomalous statistics are ubiquitously
observed in many natural systems, and it remains a grand challenge
for the development of efficient methods to understand and accu-
rately predict such representative features. Here, we investigate the
skill of deep learning strategies in the prediction of extreme events
in complex turbulent dynamical systems. Deep neural networks have
been successfully applied to many imaging processing problems in-
volving big data, and have recently shown potential for the study of
dynamical systems. We propose to use a densely connected mixed-
scale network model to capture the extreme events appearing in a
truncated KdV (tKdV) statistical framework which creates anomalous
skewed distributions consistent with recent laboratory experiments
for shallow water waves across an abrupt depth change, where a
remarkable statistical phase transition is generated by varying the
inverse temperature parameter in the corresponding Gibbs invariant
measures. The neural network is trained using data without knowing
the explicit model dynamics, and the training data is only drawn from
the near-Gaussian regime of the tKdV model solutions without the
occurrence of large extreme values. A relative entropy loss function
together with empirical partition functions is proposed for measuring
the accuracy of the network output where the dominant structures in
the turbulent field are emphasized. The optimized network is shown
to gain uniformly high skill in accurately predicting the solutions in
a wide variety of statistical regimes including highly skewed extreme
events. The new technique is promising to be further applied to other
complicated high-dimensional systems.
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Extreme events and their anomalous statistics are ubiqui-1

tous in various complex turbulent systems such as the2

climate, material and neuroscience, as well as engineering de-3

sign (1–4). Understanding and accurate prediction of such4

phenomena remain a grand challenge, and have become an5

active contemporary topic in applied mathematics (5–8). Ex-6

treme events can be isolated rare events (2, 9, 10), or they7

can often be intermittent and even frequent in space and time8

(6, 8, 11, 12). The curse of dimension forms one important9

obstacle for the accurate prediction of extreme events in large10

complex systems (3, 4, 6, 13), where both novel models and11

efficient numerical algorithms are required. A typical example12

can be found in recent laboratory experiments for turbulent13

surface water waves going through an abrupt depth change14

revealing a remarkable transition to anomalous extreme events15

from near-Gaussian incoming flows (1).16

A statistical dynamical model is then proposed in (14, 15)17

that successfully predicts the anomalous extreme behaviors18

observed in the shallow water wave experiments. The trun-19

cated Korteweg-de Vries (tKdV) equation is proposed as the20

governing equation modeling the flow surface displacement.21

Gibbs invariant measures are induced based on the Hamilto-22

nian form of the tKdV equation to describe the probability 23

distributions at equilibrium. A statistical transition from sym- 24

metric near-Gaussian statistics to a highly skewed probability 25

density function (PDF) is achieved by simply controlling the 26

‘inverse temperature’ parameter in the Gibbs measure (15). 27

In recent years, machine learning strategies, particularly 28

the deep neural networks, have been extensively applied to 29

a wide variety of problems involving big data, such as image 30

classification and identification (16–19). On the other hand, 31

it still remains an actively growing topic to construct proper 32

deep learning strategies for the study of complex turbulent 33

flows. The deep neural network tools developed for imaging 34

processing have been suggested to be applied for data-driven 35

predictions of chaotic dynamical systems (20, 21), climate and 36

weather forecasts (22, 23), and parameterization of unresolved 37

processes (24–26). In the statistical prediction of extreme 38

events, the available data for training is often restricted in 39

limited regimes. A successful neural network is required to 40

maintain adaptive skill in wider statistical regimes with vastly 41

distinct statistics away from the training dataset. Besides, a 42

working prediction model for turbulent systems would also 43

require the prediction time scale longer than the decorrelation 44

time that characterizes the mixing rate of the state variables. 45

In this paper, we investigate the extent of skill of the deep 46

neural networks in predicting statistical solutions of complex 47

turbulent systems, especially involving highly skewed proba- 48

bility density functions. The statistical tKdV equations serve 49

as a difficult first test model for extreme event prediction with 50
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simple trackable dynamics but a rich variety of statistical51

regimes from near Gaussian to highly skewed PDFs showing52

extreme events. The important questions to ask are whether53

the deep networks can be trained to learn the complex hidden54

structures in the highly nonlinear dynamics purely from re-55

stricted data, and what are the essential structures required56

in the network to gain the ability to capture extreme events.57

Our major goal here is to get accurate statistical prediction58

for the extreme events in time intervals significantly longer59

than the decorrelation time of the complex turbulent system.60

To achieve this, a convolutional neural network (MS-D Net)61

which exploits multi-scale connections and densely connected62

structures (27) is adopted to provide the basic network archi-63

tecture to be trained using the model data from the tKdV64

equation solutions. This network enjoys the benefits of sim-65

pler model implementation and a smaller number of tunable66

training hyperparameters. Thus it becomes much easier to67

train requiring less computational cost and technical tuning68

of the hyperparameters.69

The key structures for the neural network to successfully70

capture extreme events include: i) the use of a relative en-71

tropy (Kullback-Leibler divergence) loss function to calibrate72

the closeness between the target and the network output as73

distribution functions, so that the crucial shape of the model74

solutions are captured instead of a pointwise fitting in the75

turbulent output field values; and ii) calibrating the output76

data under a combination of empirical partition functions em-77

phasizing the large positive and negative values in the model78

prediction so that the main features in the solutions are further79

emphasized. This convolutional neural network model enjoys80

the following major advantages for the prediction of extreme81

events:82

• The simple basic network architecture makes the model83

easier to train and efficient to predict the solutions among84

different statistical scenarios, as well as reduces the danger85

of overfitting from data;86

• The network structure approximates the original model87

dynamics with the designed model loss function and treat-88

ment of output data. So the complex system dynamics is89

easier to be learned from data;90

• The temporal and spatial correlations in different scales91

are modeled automatically from the design of the network92

with convolution kernels representing different scales in93

different layers;94

• The method shows robust performance with different95

model hyperparameters, and can be generalized for the96

prediction of more complicated turbulent systems.97

Direct numerical tests show high skill of the neural network in98

successfully capturing the extreme values in the solutions with99

the model parameters only learned from the near-Gaussian100

regime of vastly different statistics. The model also displays101

accurate prediction in much longer time beyond the decorre-102

lation time scale of the state, proving the robustness of the103

methods. The successful prediction in the tKdV equation104

implies the potential of future applications of the network to105

more complicated high dimensional systems.106

Background for extreme events and neural network 107

structures 108

The truncated KdV equations with extreme events. The tKdV 109

model provides a desirable set of equations capable of capturing 110

many complex features in surface water wave turbulence with 111

simple trackable dynamics. Through a high wavenumber cutoff 112

at Λ (with J = 2Λ+1 grid points), the Galerkin projected state 113

u =
∑

1≤|k|≤Λ ûk (t) eikx induces stronger turbulent dynamics 114

than the original continuous one (15). The tKdV equation 115

has been adapted to describe the sudden phase transition 116

in statistics (14) where highly skewed extreme events are 117

generated from near-Gaussian statistics for waves propagating 118

across an abrupt depth change. The tKdV model is formulated 119

on a periodic domain x ∈ [−π, π] as 120

ut + E
1/2
0 L

−3/2
0 D

−3/2
0 uux + L−3

0 D
1/2
0 uxxx = 0, [1] 121

where the state variable u (x, t) represents the surface wave 122

displacement to be learned directly using the deep neural 123

network. The model is nondimensionalized using the charac- 124

teristic scales E0 as the total energy, L0 as the length scale, 125

and D0 as the water depth. The steady state distribution of 126

the tKdV solution can be described by the invariant Gibbs 127

measure derived from the equilibrium statistical mechanics 128

(28) 129

Gθ (u) =C−1
θ exp

{
−θ
[
E

1/2
0 L

−3/2
0 D

−3/2
0 H3 (u)

−L−3
0 D

1/2
0 H2 (u)

]}
δ (E (u)− 1) ,

[2] 130

with a competition between the cubic term H3 = 1
6

∫
u3 and 131

the quadratic term H2 = 1
2

∫
u2
x from the Hamiltonian. The 132

last term in [2] is the delta function constraining the total 133

energy conservation, E (u) = 1
2

∫
u2 = 1. The only parameter 134

θ < 0 as the ‘inverse temperature’ determines the skewness 135

of the PDF of u (14). The Gibbs measures [2] with different 136

values of θ can be used to provide initial samples for the 137

direct simulations of the model [1]. Different final equilibrium 138

statistics (with various skewness) can be obtained based on the 139

initial configuration of the ensemble set (that is, from picking 140

different inverse temperature values θ). A detailed description 141

about the statistical tKdV model together with the simulation 142

setup is provided in SI Appendix, A. 143

Training and prediction data from the same model with distinct statis- 144

tics. The basic idea in training the deep neural network is to 145

use a training dataset with solutions sampled from [2] using 146

near-Gaussian statistics. The tKdV model dynamics can be 147

learned from the training set without explicitly knowing the 148

model dynamics. Then the question is what is the range of 149

skill in the trained neural network to predict the highly skewed 150

non-Gaussian distributions among different sets of data. The 151

training and prediction datasets are proposed from the ensem- 152

ble solutions of the tKdV model [1] based on the following 153

strategy: 154

• In the training dataset, we generate solutions from an 155

ensemble simulation starting from a near-Gaussian PDF 156

using a small absolute value of the inverse temperature 157

θ0 (as shown in the first row and the near-Gaussian PDF 158

in Figure 1). On one hand, the model dynamics is rep- 159

resented by the group of solutions {uθ0} to be learned 160

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Qi et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT
-2 -1 0 1 2

100

PDF of the state u in near Gaussian regime

-1 0 1 2

100

PDF of the state u in mildly skewed regime

-1 0 1 2

100

PDF of the state u in highly skewed regime

0 0.5 1 1.5 2
time

0

0.2

0.4

0.6

0.8

1

R
u

autocorrelation function at physical grids

near Gaussian
mildly skewed
highly skewed

2 4 6 8 10 12 14
wavenumber

0

0.02

0.04

0.06

0.08

0.1
decorrelation time for spectral modes

Figure 1: Solutions and statistics of the tKdV equation in three typical parameter regimes with different statistics.
The first three rows plot solution trajectories in the three regimes with near-Gaussian (first row), mildly skewed
(second row), and highly skewed (third row) statistics. The corresponding equilibrium PDFs of the three cases are
shown next. The autocorrelation functions and decorrelation time of each Fourier mode of the model state u are
compared in the last row.

4

Fig. 1. Solutions and statistics of the tKdV equation in three typical parameter regimes with different statistics. The first three rows plot solution trajectories in the three regimes
with near-Gaussian (first row), mildly skewed (second row), and highly skewed (third row) statistics. The corresponding equilibrium PDFs of the three cases are shown next.
The autocorrelation functions and decorrelation time of each Fourier mode of the model state u are compared in the last row.

through the deep neural network. On the other hand,161

only near-Gaussian statistics is obtained in this training162

dataset so the neural network cannot know about the163

skewed rare events appearing in other statistical regimes164

directly from the training process.165

• For the prediction dataset, we test the model skill using166

the data {uθ} generated from various different initial167

inverse temperatures θ (as shown in the second and third168

rows as well as the skewed PDFs in Figure 1). It provides169

an interesting testbed to check the scope of skill in the170

optimized neural network for capturing the distinctive171

statistics and extreme events.172

The choices of the training and prediction datasets are illus-173

trated in Figure 1, which first shows in the first three rows174

realizations of the tKdV model solutions from different inverse175

temperatures θ. A smaller amplitude of θ gives near-Gaussian176

statistics in the model state u, while larger amplitudes of177

θ give trajectories with skewed PDFs. The corresponding178

equilibrium PDFs of the state u from direct ensemble dynam-179

ical solutions are compared next to illustrate explicitly the180

transition in statistics. Turbulent dynamics with multiscale181

structures are observed in all the tKdV solutions. The autocor-182

relation function Ru (t) = 〈u (t)u (0)〉 and the decorrelation183

time Tdecorr =
∫
Ru (t) are plotted in the bottom row of Figure184

1, confirming the rapid mixing in the solutions.185

Data structures for the deep neural networks. The deep convolu-186

tional networks can be viewed as a function y = fM (x), map-187

ping the input signal x ∈ Rm×n×c withm rows, n columns, and188

c channels to the output data y ∈ Rm′×n′×c′
with m′ rows, n′189

columns, and c′ channels. We consider an ensemble simulation190

ofM trajectories of the tKdV equation evaluated at the J grid191

points and measured in a time interval [t0, tN−1]. Thus the in- 192

put data for the network comes from the ensemble solutions at 193

the first N time measurements at tj = j∆t, j = 0, · · · , N − 1, 194

x(l) =
[
u

(l)
0 , u

(l)
1 , · · · , u(l)

J−1

]T
(t0, · · · , tN−1) ∈ RJ×N , 195

as a tensor with m = J rows for the spatial grid points, n = N 196

columns for the discretized time evaluations, and only one 197

channel c = 1 for each of the input samples l = 1, · · · ,M . An 198

ensemble of total M independent solutions from the Monte- 199

Carlo simulation is divided into mini-batches to feed in the 200

network in the training process. For simplicity, the output 201

data is designed in the same shape as the predicted states 202

evaluated at a later time t = T + t0 starting from the previous 203

initial data 204

y(l) =
[
u

(l)
0 , u

(l)
1 , · · · , u(l)

J−1

]T
(T + t0, · · · , T + tN−1) ∈ RJ×N . 205

The forwarding time T controls how long we would like the 206

network to push forward the states u in one time update. 207

For one effective neural network for the complex system, the 208

time scale T is expected to be longer than the decorrelation 209

time T > Tdecor. The above construction is supposed to 210

feed both the time and spatial correlations of the original 211

dynamical model into the neural network to be learned in the 212

approximation map y = fM (x). 213

Deep convolutional neural network architecture. The basic 214

structures of the convolutional neural network include the 215

operators in each single convolution layer; and the connections 216

between multiple layers. We would like to first keep the neural 217

network in its simplest standard setup, so that we are able 218

to concentrate on the improvement in key structures without 219

risking at getting lost in manipulating the various complicated 220
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ad hoc hyperparameters. More detailed convolutional network221

construction is described in SI Appendix, B.1 following the222

general neural network architecture as in (19, 27).223

Basic convolutional neural network unit. In each single convolution224

layer, the input data from the previous layer output is updated225

in the general form226

y = σ (gh (x) + b) .227

A convolutional operator gh is first applied on the input data228

x in a small symmetric window with size w × w, where the229

first dimension controls the correlation in the spatial direction230

and the second one for the temporal correlation. A bias b is231

added to the convolved data before applying a final nonlinear232

operator σ using the common choice of rectified linear unit233

(ReLU) function. The convolution kernel starts with a small234

size 3× 3 (that is, using only the two nearest neighbor points235

in space and time) which enables fast computation and easy236

control. Naturally, periodic boundary condition is applied237

on the spatial dimension and replicate boundary is added in238

time before t0 and after tN−1 for the boundary padding. No239

additional structures are implemented in the convolution layer240

unit to keep the basic standard architecture used in imaging241

processing (19).242

A densely connected and mix-scale structure. Next, we need to243

propose the connection between different layers. The common244

feedforward deep neutral network feeds the input data in the245

i-th layer only to the next (i+ 1)-th layer. The feedforward246

network often requires a larger number of layers to work,247

thus it is expansive to train and difficult to handle. Proper248

downscaling and upscaling steps going through the layers249

may also be required, while these downscaling and upscaling250

operations may not be a feasible approach for simulating the251

dynamical model time integration steps.252

As an alternative approach, a mixed-scale dense neural253

network (MS-D Net) is introduced in (27) by mixing differ-254

ent scales within each layer using a dilated convolution, and255

densely connecting all the feature maps among all the layers.256

First, to learn the multiscale structures, the convolution ker-257

nels in different layers are dilated differently by adding s zeros258

between the values in the original kernel w × w. The dilated259

convolutions become especially appealing for capturing the260

multiscale structures in the turbulent dynamics. Different spa-261

tial and temporal scales are included adaptively with different262

convolution length scales. Second, the dense network connec-263

tion includes all the previous layer information to update the264

output data in the next layer. In the implementation, all the265

previous layer outputs are piled together as input channels266

for the next layer. Together with the multiscale convolution267

kernels used in different layers, the output in the next layer268

combines the information in different scales and produces a269

balanced update in the next step.270

The mixed-scale dense neural network requires fewer fea-271

ture maps and trainable parameters, so it is easier to handle272

compared with the direct feedforward network. It provides273

a desirable setup for the prediction in dynamical systems by274

feeding in all the data in previous layers decomposed into275

different scale structures. Then information at different scales276

communicates with each other through the dense network277

connection. Intuitively, this is a reasonable structure for the278

turbulent solutions since all the history information is useful279

for the prediction in the next steps. The densely connected 280

network structure is also comparable to the time integration 281

scheme, where all the history information is used to update 282

the state at the next time step without using any downscaling 283

and upscaling steps. 284

A new learning strategy for extreme event prediction 285

In this section, we construct the specific network structures 286

designed for learning turbulent system dynamics then the 287

prediction of extreme events. In this case with data from 288

the turbulent models, small fluctuations in the solutions may 289

introduce large errors in optimizing the loss function. We aim 290

at capturing the dominant emerging features such as extreme 291

events and are more interested in the statistical prediction 292

rather than the exact locations of the extreme values. 293

Loss function calibrating the main dynamical features. In the 294

training process, the model parameters are achieved through 295

the optimization for the proper loss function (or cost) proposed 296

depending on the target to be captured using the network. 297

The two popular standard choices for the loss functions are 298

using the L1 error and the mean square L2 error: 299

• L1 error loss: this criterion measures the mean absolute 300

error between each element in the output data x and 301

target y through the L1 distance 302

l1 (x,y) = 1
M

M∑
m=1

∥∥x(m) − y(m)∥∥ , [3] 303

where M is the training data size in one cycle, and 304(
x(m),y(m)) is one member of output data and target 305

data from the training mini-batch. 306

• L2 error loss: this criterion measures the mean squared 307

error between each element in the output x and target y 308

through the mean square L2 norm 309

l2 (x,y) = 1
M

M∑
m=1

∥∥x(m) − y(m)∥∥2
, [4] 310

among all the numbers of training samples M . 311

The above two loss functions offer pointwise measurements of 312

the errors in space-time for each predicted sample from the 313

network. This may cause problems especially when the system 314

for prediction is highly turbulent with internal instability and 315

is fast mixing. Small error perturbation in the input data 316

may lead to vastly different solutions shortly after the mixing 317

decorrelation time. The pointwise measurements focus on 318

the accuracy at each value of the solutions, thus the small 319

fluctuation errors might be accumulated and amplified under 320

such metrics and unnecessary large weights are added to correct 321

errors in the moderate-amplitude fluctuation parts. 322

On the other hand, we are most interested in the prediction 323

of statistical features in the extreme events rather than the 324

exact trajectory solutions of the system. The small shifts in the 325

extreme value locations should be tolerated in the loss function. 326

Therefore, a more useful choice could be the relative entropy 327

loss function that measures the Kullback-Leibler divergence in 328

the predicted density functions: 329
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• Relative entropy loss: the relative entropy loss function330

computes the distance between two distribution functions331

lKL (x̃, ỹ) = 1
M

M∑
m=1

∑
i

ỹ
(m)
i log ỹ

(m)
i

x̃
(m)
i

, [5]332

where the superscript m represents the mini-batch mem-333

bers to be measured in the relative entropy metric, and334

the subscript i goes through all the dimensions of the335

normalized variables (x̃, ỹ) to be described next.336

Under the relative entropy loss function in [5], the input data337

x and y are treated as distribution functions. The ‘shapes’338

between the output data and the target are compared rather339

than the pointwise details, so that it guides the network to340

focus on the main model dynamical features instead of the341

turbulent fluctuations that are impossible to be fitted accu-342

rately. The additional difficulty to train the network using the343

relative entropy loss function is the constraint on the form of344

the output data to measure. The input of the relative entropy345

requires to be in the form of a density distribution function.346

Scaling the output data with empirical partition functions. In347

this case of using the relative entropy loss function, we need348

to propose proper preprocessing of the output and target data349

to fit the required structure as a probability distribution. One350

direct way to do so is by taking the softmax function for the351

the output data from the neural network normalized by a352

partition function353

x̃i = exp (xi)∑
i
exp (xi)

, [6]354

before measuring the error in the loss function. In this way, the355

data to put into the relative entropy loss function is normalized356

inside the range [0, 1] with summation 1. This agrees with the357

definition in the relative entropy inputs. More importantly,358

this normalization emphasizes the large positive values of the359

data. Thus it offers a better calibration for the occurrence of360

positive major flow structures to be captured in the solutions.361

Furthermore, a better choice for balancing both the posi-362

tive and negative dominant values in the training data is to363

introduce scales with ‘temperatures’. We use the following two364

empirical partition functions with both positive and negative365

coefficients to rescale the output data as366

x̃+
i = exp (xi/T+)∑

i
exp (xi/T+)

, x̃−i = exp (−xi/T−)∑
i
exp (−xi/T−)

, [7]367

where T+ > 0, T− > 0 are the positive and negative tempera-368

tures weighing the importance of dominant large amplitude369

features in the scaled measure. Accordingly, the loss func-370

tion to minimize under the relative entropy metric becomes a371

combination with the two empirical partition functions372

lEPF (x,y) = lKL
(
x̃+, ỹ+)+ αlKL

(
x̃−, ỹ−

)
, [8]373

where we use α > 0 as a further balance between the posi-374

tive and negative temperature components. In this combined375

empirical partition function metric using [7] and [8], the ma-376

jor flow structures in the turbulent field represented by the377

dominant extreme values are better characterized from both378

the positive and negative sides in the statistics of the model.379

In the following computational experiments, we always pick380

T+ = T− = 1 and α = 1 for simplicity. More discussion for381

role of the balance weight α is shown in SI Appendix, B.2 .382

Model performance in training and prediction stages 383

Using the previous model construction, we show the training 384

and prediction performance using the MS-D Net combined 385

with the relative entropy loss function and rescaled output 386

data using empirical partition functions applied on the tKdV 387

equations. In the numerical tests, we first consider the optimal 388

prediction skill using the deep neural network within one 389

updating cycle. Especially, we are more interested in capturing 390

the non-Gaussian statistics from the network rather than the 391

exact recovery of the single time-series which should give large 392

difference with small perturbations due to its turbulent nature. 393

The basic strategy is to train the model using data from the 394

near-Gaussian solutions with a small inverse temperature θ0 395

in the Gibbs measure [2]; then the optimized neural network 396

is used to predict the more skewed model statistics for regimes 397

with larger absolute values of θ. 398

For simplicity, we set the input and output data of the 399

network in the same shape. Then the model output from one 400

single iteration of the network is compared with the target 401

data from the true model solution. In the structure of the 402

neural network, the standard setup is adopted for the tKdV 403

solutions. In each layer of the network, a kernel with minimum 404

size w = 3 is taken for the convolution update. The dilation 405

size for mixed scales changes from s = 0 to s = 5 repeatedly 406

as the network grows in depth. Different network depths of 407

layers L are tested for the model performance, while it is found 408

that a moderate choice L = 80 is enough to produce desirable 409

training and prediction results. 410

In calibrating the errors from model predictions, we propose 411

the normalized square error between the true target yt and 412

the network output yo
413

E
(
yt,yo) =

∑JN

i=1

∣∣f (yt
i

)
− f (yo

i )
∣∣2∑JN

i=1 |f (yt
i)|

2 , [9] 414

where the subscript i represents the i-th component in the 415

training/prediction set y ∈ RJ×N . The function f (y) acting 416

on each component of y can be used to extract the useful 417

features to be calibrated. In the following tests, we use f (y) = 418

y to compare the original output of the data, and use the 419

exponential scaling f (y) = exp (y) to check the prediction in 420

positive extreme values. 421

Training the neural network using near-Gaussian data. In the 422

training process for turbulent system statistics, we include 423

the temporal and spatial correlations together in the input 424

data by considering a short time-series of the solution. The 425

training data is drawn from the model solutions of [1] only 426

among the near-Gaussian regime statistics. In summary, we 427

use the training data set in the following structure: 428

• The input data is from the ensemble solutions u(m)
j (tn) 429

of the tKdV equation. It is organized in a tensor of the 430

shape (M,J,N), where M = 10000 is the total ensemble 431

size, J = 32 is the spatial discretization size, and N = 50 432

is the sampled time instants with the time step ∆t = 0.01. 433

Thus the initial data for training is given as the tKdV 434

solutions in the time window [0, 0.5]. 435

• The target data for the training result is the solutions 436

u
(m)
j (T + tn) of the tKdV solution. The data is organized 437

into the tensor with the same size (M,J,N) as the input 438
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(a) L1 and L2 error as the loss function (b) relative entropy loss with different layers

Figure 2: Training loss function and the mean relative square error in the data using L1 and L2 error loss functions
(left) and using the relative entropy loss function with rescaled output data (right) during the training iterations.
Both networks with L1 and L2 loss are set to have L = 80 densely connected layers; and the networks with the
relative entropy loss are compared using L = 40, 80, 120 layers.

relative square error (9) among the training samples during the SGD iterations. According to the loss functions
under the L1 and L2 distances, the training appears to be effective and the error quickly dropped to smaller values
in the first few steps. However, if we compare more carefully about the relative errors in the results, both cases get
saturated quickly at a high error level near 1. The errors then become difficult to improve by training with larger
number of iterations and applying deeper layers. This is because under both metrics, the model tries hard to fit
the turbulent fluctuations in small values while missing the most important extreme events in the solutions. It can
be seen more clearly in Figure 3 for one typical training output snapshot compared with the truth. No desirable
prediction can be reached.

In contrast, significant improvement is achieved by switching to the relative entropy loss function and adopting
empirical partition functions to normalize the output data. In this case as illustrated on the right panel of Figure
2, both the relative entropy loss function and the relative error drop to very small values in the final steps of the
training iterations, implying high skill in the network to produce accurate prediction for the prediction time range
(Though it appears that the accuracy could be further improved by applying more iteration steps in the training,
the results are already good enough after about 200 iterations). Note that we use logarithmic coordinates so the
small values are emphasized. According to the last row of Figure 2 for one typical training result snapshot, both
the extreme values and the small amplitude structures are captured in the model.

As a final comment, we check the proper depth needed for accurate predictions in the neural network. The right
panel of Figure 2 also compares the same network under the relative entropy loss but with different numbers of
layers. A deeper network clearly can further improve the prediction skill and push the final optimized error to an
even smaller value, with the cost of larger computational requirement. Still, from the comparison it shows that a
relative small number of layer (such as L = 80) is sufficient to produce desirable results with relatively low cost.
By pushing the network to a deeper layer with L = 120, the improvement in error just becomes small and may not
be necessary with the additional computational cost. The last row of Figure 3 shows already the quite accurate
recovery of the solution purely learned from data.

4.2 Predicting extreme events using deep neural network
In checking the prediction skill of the optimized network, we pick the neural network with L = 80 densely connected
layers to test its predictions among different statistical regimes. It has been shown in the training process with a
high skill in recovering the original flow structures. Next, we should confirm that the neural network really has
learned the dynamical structure of the original model, instead of merely overfitting the data.

Three statistical regimes ranging from near Gaussian, mildly skewed, and highly skewed PDFs as shown in
Figure 1 are taken for testing the range of prediction skills in the neural network model. An ensemble of 500 new
trajectories from the tKdV solution in different statistical regime is used to show the robustness of the method.
The relative errors (9) for the state u and the errors under the exponential function exp (u) are list in Table 1 for

9

Fig. 2. Training loss function and the mean relative square error in the data using L1 and L2 error loss functions (left) and using the relative entropy loss function with rescaled
output data (right) during the training iterations. Both networks with L1 and L2 loss are set to have L = 80 densely connected layers; and the networks with the relative
entropy loss are compared using L = 40, 80, 120 layers.

Figure 3: One snapshot of the final training results with three different loss functions. The left panel shows the
input data, the middle panel is the true target to fit, and the right panel shows the output results from the trained
networks. All networks contains L = 80 layers in the tests.

error near Gaussian mildly skewed highly skewed

u
mean 0.2694 0.2556 0.2665

variance

exp (u)
mean 0.07332 0.07641 0.0999

variance

Table 1: Prediction error among a test with 500 samples. The mean square error for the state u and the rescaled
error for exp (u) are both compared.

different statistical regimes. Uniform high accuracy is achieved among the vastly different regimes with distinct
statistical features.

Especially, we are interested in the case with highly non-Gaussian statistics representing the frequent occurrence
of extreme events. In Figure 4, the network is used to predict the flow solutions in the regime with highly skewed
statistics. The extreme values are represented by high peaks of a dominant wave moving along the field. This
feature is not shown at all in the training data where only near Gaussian statistics is presented. As shown in the
results, the network display uniform skill among the tested samples in capturing the exact dynamical solutions in
the extreme event domain unknown from the training data. By looking at the error in the rescaled data using
exponential function, the error amplitude even becomes smaller, confirming the accurate characterization of large
extreme values through the network. In the typical snapshot of one, both the extreme values in the transporting
waves and non-extreme detailed turbulent fluctuating structures are captured by the model.

Furthermore, the prediction errors as the absolute value between the truth and the model prediction in the
three statistical regimes are displayed in Figure 5. The network predictions maintain accurate with small errors in
a much longer time scale than the decorrelation time of the states. This gives the final confirmation of the general
high skill in the deep neural network for capturing key representative features in complex dynamical systems once
the essential structures are guaranteed in the model.

10

Fig. 3. One snapshot of the final training results with three different loss functions. The left panel shows the input data, the middle panel is the true target to fit, and the right
panel shows the output results from the trained networks. All networks contain L = 80 layers in the tests.

data. We can consider different starting time for the target439

data by changing the time length T . The prediction time440

scale here is taken as T = 0.5, that is, to consider the441

prediction in time window [0.5, 1].442

• The input data (with total ensemble size 10000) is divided443

into 100 mini-batches with size 100 for each training group444

in one epoch. In total we use 1000 epochs in the entire445

training process. The mini-batches are randomly selected446

with the batch indices resampled from random numbers447

in each step.448

Notice that the above prediction time length T = 0.5 used449

in the experiments is much longer beyond the decorrelation450

time of the tKdV states. From the direct numerical results in451

Figure 1, the autocorrelation function decays to near zero at452

t = 0.5, and the longest decorrelation time among the spectral453

modes is below 0.1.454

First, we compare the training performance using the stan-455

dard L1 and L2 loss functions in [3] and [4] with the same456

MS-D Net structure. The left panel of Figure 2 shows the evo-457

lution of training loss functions and the mean relative square458

errors [9] among the training samples during the stochastic459

gradient descent iterations. According to the loss functions 460

under the L1 and L2 distances, the training appears to be 461

effective and the error quickly dropped to smaller values in the 462

first few steps. However, if we compare more carefully about 463

the relative errors in the results, both cases get saturated 464

quickly at a high error level near 1. The errors then become 465

difficult to improve by training with larger number of itera- 466

tions and applying deeper layers. This is because under both 467

metrics, the model tries hard to fit the small-scale turbulent 468

fluctuations in small values while missing the most important 469

large-scale events in the solutions. It can be seen more clearly 470

in Figure 3 for typical training output snapshots compared 471

with the truth. No desirable prediction can be reached. 472

In contrast, significant improvement is achieved by switch- 473

ing to the relative entropy loss function and adopting empirical 474

partition functions to normalize the output data. In this case 475

as illustrated on the right panel of Figure 2, both the relative 476

entropy loss function and the relative error drop to very small 477

values in the final steps of the training iterations, implying 478

high skill of the network to produce accurate predictions in the 479

prediction time range (Though it appears that the accuracy 480
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Table 1. Mean and variance of the relative square errors among a test
with 500 samples for the state u and the scaled state exp (u).

error near Gaussian mildly skewed highly skewed

u
mean 0.2682 0.2556 0.2690

variance 0.0039 0.0048 0.0087

exp (u) mean 0.0733 0.0764 0.0985

variance 0.0005 0.0011 0.0060

could be further improved by applying more iteration steps in481

the training, the results are already good enough after about482

200 iterations). Note that we use logarithmic coordinates so483

the small values are emphasized. According to the last row of484

Figure 3 for one typical training result snapshot, both the ex-485

treme values and the small amplitude structures are captured486

in the model.487

As a final remark, we check the proper depth needed for488

accurate predictions in the neural network. The right panel of489

Figure 2 also compares the same network under the relative490

entropy loss but using different numbers of layers. A deeper491

network clearly can further improve the prediction skill and492

push the final optimized error to an even lower value, with493

the cost of a larger computational requirement. Still from494

the comparison, it shows that a moderate number of layers495

(such as L = 80) is sufficient to produce accurate results with496

relatively low cost. By pushing the network to deeper layers497

with L = 120, the improvement in error just becomes small498

and may not be necessary with the additional computational499

cost. The last row of Figure 3 shows already the quite accurate500

recovery of the solution field purely learned from data.501

Predicting extreme events using deep neural network. In502

checking the prediction skill of the optimized network, we503

pick the neural network with L = 80 densely connected layers504

as the standard model to test its predictions among different505

statistical regimes. It has been shown in the training process506

with a high skill in recovering the original flow structures.507

Next, we should confirm that the neural network has really508

learned the dynamical structure of the original model, instead509

of merely overfitting the data.510

Three statistical regimes ranging from near Gaussian,511

mildly skewed, and highly skewed PDFs as shown in Fig-512

ure 1 are taken for testing the range of prediction skill in the513

neural network model. An ensemble of 500 new trajectories514

from the tKdV solutions in different statistical regimes is used515

to show the robustness of the method. The mean and variance516

of the relative square errors [9] among the samples for the state517

u and the errors under the exponential function exp (u) are518

list in Table 1 for different statistical regimes. Uniform high519

accuracy in the mean with tiny variance is achieved among520

the vastly different regimes with distinct statistical features.521

Especially, we are interested in the case with highly non-522

Gaussian statistics representing the frequent occurrence of523

extreme events. In Figure 4, the network is used to predict524

the flow solutions in the regime with highly skewed statistics525

(results for the other two cases can be found in SI Appendix,526

B.2 ). The extreme values are represented by high peaks of527

a dominant wave moving along the field. This feature is not528

shown at all in the training data where only near Gaussian529

statistics is presented. As shown in the results, the trained 530

network displays uniform skill among all the tested samples in 531

capturing the exact dynamical solutions in the extreme event 532

domain unknown from the training data. By looking at the 533

errors in the scaled data using the exponential function, the 534

error amplitude even becomes smaller, confirming the accurate 535

characterization of large extreme values through the network. 536

In the typical snapshot of one sample, both the extreme values 537

in the transporting waves and non-extreme detailed turbulent 538

fluctuating structures are captured by the model. 539

Figure 4: Prediction in the regime with highly skewed statistics using the trained neural network with L = 80
layers. The upper row plots the mean relative square errors for the state u and the scaled error for exp (u) among
the 500 samples. The lower row shows one typical snapshot of the prediction.

Figure 5: The prediction error in the absolute difference between the truth and model output in the three tested
regimes with different statistics.

11

Fig. 4. Prediction in the regime with highly skewed statistics using the trained neural
network with L = 80 layers. The upper row plots the relative square errors for the
state u and the scaled state exp (u) among the 500 tested samples. The lower row
shows one typical snapshot of the prediction.

Furthermore, the prediction errors as the absolute differ- 540

ence between the truth and the model prediction in the three 541

statistical regimes are displayed in Figure 5. The network 542

predictions maintain accurate with small errors in a much 543

longer time scale than the decorrelation time Tdecorr < 0.1 of 544

the states. This gives the final confirmation of the general 545

high skill in the deep neural network for capturing key rep- 546

resentative features in complex dynamical systems once the 547

essential structures are learned from the training procedure. 548

Figure 4: Prediction in the regime with highly skewed statistics using the trained neural network with L = 80
layers. The upper row plots the mean relative square errors for the state u and the scaled error for exp (u) among
the 500 samples. The lower row shows one typical snapshot of the prediction.

Figure 5: The prediction error in the absolute difference between the truth and model output in the three tested
regimes with different statistics.

11

Fig. 5. The prediction error in the absolute difference between the truth and model
output in the three tested regimes with different statistics.
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Concluding remarks549

A new strategy using a densely connected multi-scale deep550

neural network with relative entropy loss function for cali-551

brating rescaled output data is proposed for the prediction of552

extreme events and anomalous features from data. It needs553

to be noticed that the extreme events are often represented554

by highly skewed PDFs and have frequent occurrence in the555

turbulent field (3, 8, 12) in contrast to the other situation556

of isolated rare events which can be studied with machine557

learning models (9). The prediction skill of the optimized deep558

neural network is tested on the truncated KdV equation, where559

different Gibbs states create a wide range of statistics from560

near Gaussian to highly skewed distributions. By adopting the561

densely connected and multi-scale structures, the deep neural562

network is easy to train with standard model setup and fewer563

model hyperparameters.564

Using training data only drawn from the near-Gaussian565

regime of the dynamical model, the deep neural network dis-566

plays high skill in learning the essential dynamical structures567

of the complex system and provides uniformly accurate pre-568

diction among a wide range of different regimes with distinct569

statistics. The network also shows robustness among tests in a570

large ensemble of samples. The robust performance in the test571

model implies the potential of more general applications using572

the neural network framework for the prediction of extreme573

events and important statistical features in a wider group of574

more realistic high-dimensional turbulent dynamical systems.575
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