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Abstract

Statistical response theory provides an effective tool for the analysis and statistical prediction of high-dimensional
complex turbulent systems involving a large number of unresolved unstable modes, for example, in climate change
science. Recently, the linear and nonlinear response theories have shown promising developments in overcoming the
curse-of-dimensionality in uncertain quantification and statistical control of turbulent systems by identifying the most
sensitive response directions. We offer an extensive illustration of using the statistical response theory for a wide variety
of challenging problems under a hierarchy of prototype models ranging from simple solvable equations to anisotropic
geophysical turbulence. Directly applying the linear response operator for statistical responses is shown to only have
limited skill for small perturbation ranges. For stronger nonlinearity and perturbations, a nonlinear reduced-order
statistical model reduction strategy guaranteeing model fidelity and sensitivity provides a systematic framework to
recover the multiscale variability in leading order statistics. The linear response operator is applied in the training phase
for the optimal nonlinear model responses requiring only the unperturbed equilibrium statistics. The statistical response
theory is further applied to the statistical control of inherently high dimensional systems. The statistical response in
the mean offers an efficient way to recover the control forcing from the statistical energy equation without the need to
run the expensive model. Among all the testing examples, the statistical response strategy displays uniform robust skill
in various dynamical regimes with distinct statistical features. Further applications of the statistical response theory
include the prediction of extreme events and intermittency in turbulent passive transport and a rigorous saturation
bound governing the total statistical growth from initial and external uncertainties.

1 Introduction
Complex turbulent dynamical systems appear in a wide variety of areas in science and technology. Typical examples can be
found in interacting physical, biological, and social processes across a huge range of time and spatial scales of overwhelming
complexity [45, 65, 72, 63, 71]. Such turbulent systems are usually characterized by an irreducible high-dimensional phase
space and a large number of instabilities that move energy across the scales. Instabilities due to the positive Lyapunov
exponents as well as the external forcing excitations lead to rapid growth of small perturbations in the high dimensional
space [20, 45, 39]. A statistical description with model reduction strategies for the state variables becomes necessary. One
example of practical significance [77, 23, 42, 64] is the prediction of climate change from external forcing perturbations
such as the impact from increased carbon dioxide. Mitigation of such effects from the climate change also requires effective
control strategies [38, 8] which form another set of challenging problems.

Linear response theory together with the fluctuation dissipation theorem (FDT) offers a promising tool for the statistical
quantification and prediction of turbulent systems [40, 35]. It predicts statistical averages of the functionals of interest (the
response) requiring only the unperturbed equilibrium statistical information (the climate). The potential validity of the
linear response theory has been widely investigated in both theories [29, 43, 6, 25] and numerical algorithms [1, 26, 27, 11]
through a variety of test models and techniques. In the study of coarse-grained large-scale variability in climate change,
the FDT using linear response operators provides a direct leading-order approximation of the statistical responses in a
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unified fashion valid for multiple climate change scenarios with different forcing, dissipation, and other parameters without
the need to repeatedly run the complex climate model with various perturbations [35, 46].

Despite the many successes in the linear response theory, this method is significantly hampered by the fundamental
constraint within small perturbation amplitudes. It is shown that the linear statistical predictions are usually accurate
for the mean responses with near-Gaussian statistics, while the performance for predicting the variance responses can
quickly deteriorate in some systems as the forcing perturbation as well as the non-Gaussianity grows large [22, 53, 25].
To overcome the limited range of skill in the linear response prediction, new statistical nonlinear response theories and
methods have been proposed and become one main theme in the contemporary research [45, 74, 26, 73, 24]. A systematic
methodology has been proposed [39, 53] for capturing the principal statistical nonlinear responses to changes in forcing
using statistical reduced-order models. A precise strategy to calibrate the imperfect model error and improve the prediction
skill in response to anisotropic perturbations (such as the climate change) is developed relying on the information-theoretic
framework [40, 51, 33], so that the overwhelming computational demands in Monte-Carlo simulations in a high dimensional
space are avoided.

In this paper, we review the linear and nonlinear statistical response theories with a focus on the variety of important
and effective applications in uncertainty quantification (UQ) and control of turbulent complex systems. A hierarchy of
dynamical models with increasing complexity (see in Section 2.2) is proposed to illustrate the representative features of
the statistical response theory and the related information-theoretic framework. The key problems to be discussed include
the following interrelated topics which have crucial applications to many realistic systems from nature.

Approximating linear response operators with Gaussian and non-Gaussian equilibrium statistics

The practical computation of the linear response operator for FDT requires proper characterization for the usually inacces-
sible equilibrium statistical distribution of the unperturbed system. A first approximation is through the quasi-Gaussian
closure (qG-FDT) proposed first by Leith [35], and has been generalized and improved for both mean and variance
responses with many successful applications [46, 51, 21]. To compute the linear response operators from a strongly non-
Gaussian equilibrium state, a kicked response of the unperturbed system is proposed [40, 53] where the higher moment
feedbacks are better incorporated in an efficient way. The extent of skills in the linear response theory is illustrated under
the explicit solvable model [46] and the two-layer Lorenz ’96 system [34] (in Section 3.2).

Improving the prediction skill of nonlinear responses through the information-theoretic framework

The nonlinear response theory aims to obtain the statistical estimates of changes in mean and variance for key quantities in
the nonlinear responses to external forcing or uncertain initial state. Reduced-order statistical models are constructed for
the most sensitive subspace. The linear response operator offers a precise systematic framework to improve imperfect model
sensitivity through measuring the information error in the training phase using only unperturbed statistics. Empirical
information theory [33, 40] offers an unbiased invariant metric for calibrating the model error in the response operators,
and systematically improves model sensitivity in a unified way with model fidelity [17, 50]. Besides, a statistical energy
principle [44] is adopted to improve the imperfect model prediction skill by offering the total energy profile without
increasing the computational cost too much.

The basic ideas in the construction of the reduced-order statistical model are first illustrated using the triad system
with quadratic energy transfer (in Section 3.3). The improved skill in the nonlinear prediction is discussed in detail using
the prototype topographic barotropic model describing the interactive motion of large-scale mean flow and small-scale
vortical modes [68] (in Section 4). The model displays a rapid change of directions in the large scale jets sensitive to
external perturbations. It is shown that the principal statistics in first and second moments including the shifting jet
directions can be captured with desirable accuracy and efficiency using a reduced-order model with only three resolved
modes. Besides, a rigorous saturation bound [70] is derived for quantifying the total changes in the mean fluctuation and
variance due to initial and external perturbations.

Controlling inhomogeneous responses using statistical functional responses in high dimension

The control of turbulent systems concerns the optimal course of actions to drive the states of interest to a desired final
condition with a minimum cost. Solving the control problem in highly turbulent systems directly is always challenging
due to the large instabilities and strong nonlinear exchange of energy among different scales [8, 16]. Statistical response
theory provides an alternative approach for controlling the a statistical scalar identity [54, 55] where the instability due
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to the symmetric nonlinear interactions can be circumvented. Simple autocorrelation functions can be approximated in
an explicit form to represent the linear mean response, so that the specific control forcing is determined offline without
the need to run the complex high-dimensional system to get the responses. The topographic barotropic flow is used again
to demonstrate the control skill in geophysical turbulence with non-Gaussian statistics and instabilities (in Section 5).

Predicting extreme events and tracer intermittency in passive scalar turbulence

Extreme events represented by non-Gaussian fat-tails in passive tracer distributions are a universal feature in observation,
experiments, and numerical simulations [19, 62, 52]. As another effective application of the response theory, the capability
of using stochastic reduced-order models to capture crucial tracer statistical features is achieved using more tractable
linear Gaussian stochastic models with optimization for its linear response functionals [66, 69]. The same systematic
model reduction procedure for the statistical response is adopted. The passive scalar simulation is tested using a two-layer
baroclinic turbulent flow which can generate various representative atmosphere and ocean regimes with jets and vortices
(in Section 6).

In the structure of this paper, a general overview of the linear and nonlinear statistical theories is given in Section 2 in
company with the general model formulation. Using simple prototype models, the accuracy of various statistical response
functionals under the several proposed approximation methods is compared in Section 3. The linear and nonlinear response
theories are applied to more practical geophysical turbulence model in Section 4 to show their practical skills. Further
important applications of the statistical response theory for effective statistical control of turbulent system and prediction
of extreme events in passive tracer turbulence are discussed in Section 5 and Section 6 separately. A summary is given in
Section 7 discussing the accuracy and extent of applications of the linear and nonlinear response theories.

2 Statistical Response Theory and Algorithms for Computing the Linear
Response Operators

In this section, we review the statistical formulation for the general complex turbulent systems, and display the main
conclusions from the linear response theory. Efficient algorithms to compute the response operators are also described.

2.1 A review of the general complex turbulent systems
One representative feature in complex turbulent dynamical systems from nature is the nonlinear energy conserving inter-
action that transports energy from the unstable subspace to stable one where the energy is strongly dissipated, resulting
in a final statistical steady state in equilibrium. The general abstract formulation of the turbulent dynamical systems is
proposed [45, 39] for the state variable of interest u ∈ RN in a high-dimensional phase space

du

dt
= (L+D)u +B (u,u) + F (t) + σ (t)Ẇ (t;ω) . (2.1)

On the right hand side of the above equation (2.1), the first two components, (L+D)u, represent linear dispersion and
dissipation effects, where L∗ = −L is an energy-conserving skew-symmetric operator; and D < 0 is a negative definite
operator. The nonlinear effect in the dynamical system is introduced through a quadratic form, B (u,u), that satisfies
the conservation law and the Liouville property, so that

Energy Conservation : u ·B (u,u) =

N∑
j=1

ujBj (u,u) ≡ 0, (2.2a)

Liouville Property : divuB (u,u) = 0. (2.2b)

Besides, the system is subject to external forcing effects that are decomposed into a deterministic component, F (t), and
a stochastic component represented by a Gaussian random process, σ (t)Ẇ (t;ω). It needs to be emphasized that in
many situations F might be inhomogeneous and introduce anisotropic structures into the system, and σ (t)Ẇ (t;ω) might
further alter the energy structure in the fluctuation modes.
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The internal instability and the stochastic random forcing in the turbulent system (2.1) require a statistical description
for the state variable u. Assuming that the stochastic white noise is written in the Ito sense, the probability density function
p (u, t) can be found directly from the solution of the associated Fokker-Planck equation (FPE)

∂p

∂t
≡ LFPp = −divu [B (u,u) p+ (Lu +Du) p] +

1

2
divu∇

(
σσT p

)
. (2.3)

The unperturbed climate is associated with the equilibrium density function peq (u) that satisfies the invariant equation
LFPp = 0. Usually, we are interested in the statistics in some functional A (u) defined by the expectation according to
the density function

〈A〉p =

ˆ
A (u) p (u) du, 〈A〉eq =

ˆ
A (u) peq (u) du,

where 〈A〉p is the general expectation while 〈A〉eq gives the unperturbed equilibrium statistics. There are important
turbulent dynamical systems where the FPE can be solved even with large dimension and highly non-Gaussian statistics
[15, 14]. However, it is still generally a challenging task for directly solving the FPE system (2.3) especially when the
dimensionality of the system becomes large.

2.1.1 A statistical formulation of general turbulent systems

Due to the turbulent features of the general systems (2.1) and the high computational cost to solve the Fokker-Planck
equation (2.3), it is often useful to derive a dynamical formulation for the evolution of key statistical moments. To achieve
this, we rewrite the stochastic field u in a finite-dimensional representation consisting of a fixed-in-time, N -dimensional,
orthonormal basis {ei}Ni=1

u (t) = ū (t) +

N∑
i=1

Zi (t;ω) ei, Rij =
〈
ZiZ

∗
j

〉
, (2.4)

where ū (t) = 〈u (t)〉 represents the statistical expectation of the model state mean response (we use the angled bracket
〈·〉 to represent the ensemble average), i.e. the mean field; and {Zi (t;ω)} are stochastic coefficients (with ω to denote
a random process) measuring the fluctuation processes along each model direction ei. In most of the situations, we are
interested in the time evolution of the mean state ū and the covariance R charactering the variability among different
modes.

By taking the statistical (ensemble) average over the original equation (2.1) and using the mean-fluctuation decompo-
sition (2.4), the evolution equations of the mean state ū and the covariance matrix R are given by the following dynamical
equations

dū

dt
= (L+D) ū +B (ū, ū) +

∑
i,j

RijB (ei, ej) + F, (2.5a)

dR

dt
= Lu (ū)R+RL∗u (ū) +QF +Qσ. (2.5b)

with R = 〈ZZ∗〉 the second-order covariance matrix of the stochastic coefficients Z = [Z1, · · · , ZN ]
T . The detailed

derivation of the above equations follows that standard procedure and can be found in [39, 74]. The explicit forms of the
operators in the covariance equation are summarized as follows organized from different order statistics:

i) the quasi-linear operator Lu (ū) expresses the linear coupling of non-normal dynamics (effect due to L) and energy
dissipation (effect due to D), as well as the energy transfers between the mean field and the stochastic modes (effect
due to B)

{Lu}ij = [(L+D) ej +B (ū, ej) +B (ej , ū)] · ei; (2.6a)

ii) the positive definite operator Qσ expresses energy injection from the external stochastic forcing

{Qσ}ij =
∑
k

(ei · σk) (σk · ej) ; (2.6b)
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iii) the nonlinear energy flux QF expresses nonlinear energy exchanges between different fluctuation modes due to non-
Gaussian statistics (or nonlinear terms) modeled through third-order moments

{QF }ij =
∑
m,n

〈ZmZnZj〉B (em, en) · ei + 〈ZmZnZi〉B (em, en) · ej . (2.6c)

We stress that the energy conservation property of the quadratic operator B from (2.2a) is inherited in the statistical
equations by the matrix QF since the energy conservation property for the fluctuation state u′ yields

tr (QF ) = 2
∑
i

∑
m,n

〈ZmZnZi〉B (em, en) · ei = 2B (u′,u′) · u′ ≡ 0.

The above exact statistical equations for the state of the mean (2.5a) and covariance matrix (2.5b) will be the starting
point for the developments in the reduced-order models on UQ methods.

Note that the above procedure by adding higher and higher order moment equations can never construct a closed
system. The statistical dynamics for the mean (2.5a) and covariance (2.5b) are not closed due to the inclusion of third-
order moments through the nonlinear interactions in QF in (2.6c). The basic idea in developing reduced-order schemes
concerns proper approximation of this energy flux term QF in a simple and efficient manner so that the energy mechanism
can be properly modeled for both the transient state and the final equilibrium [39, 45].

2.1.2 A statistical energy identity for turbulent systems

Despite the fact that the exact equations for the statistical mean (2.5a) and the covariance fluctuations (2.5b) are not a
closed system, there exists a suitable statistical symmetry so that the total energy in the mean plus the total variance
satisfies an energy conservation principle even with the general deterministic and random forcing. Here, we briefly describe
the result in the statistical theory developed in [44, 45] about a statistical energy functional for the abstract system (2.1).
As we will show in the later sections, this total statistical energy offers a general description about the total responses in
the perturbed system and will be play a crucial role in the construction of various nonlinear response and control theories.

For characterizing the total statistical variability in the turbulent system, we consider the statistical mean energy,
Ē = 1

2 |ū|
2

= 1
2 ū · ū, for the total energy in the mean; and the statistical fluctuation energy, E′ = 1

2 〈u
′ · u′〉 = 1

2 trR, for
the total variability in the system. Further, the following symmetries are assumed [44] involving the nonlinear interaction
operator B under the orthonormal basis {ei}:

A) The self interactions vanish in the quadratic interaction,

B (ei, ei) ≡ 0, 1 ≤ i ≤ N ; (2.7a)

B) The dyad interaction coefficients vanish through the symmetry,

ei · [B (ej , ei) +B (ei, ej)] = 0, for any i, j. (2.7b)

The above detailed triad symmetry guarantees that the nonlinear interaction B (u,u) will not alter the total statistical
energy structure in the system (though the state of the mean and covariance may both changed due to the nonlinear
terms in equations (2.5a) and (2.5b)). It can be found satisfied among many systems including the examples shown next.
Therefore, we have the following theorem for general turbulent systems [44, 45]:

Theorem 1. (Statistical Energy Conservation Principle) Under the structural assumptions (2.7a), (2.7b) on the basis ei,
for any turbulent dynamical systems (2.1), the total statistical energy, 〈E〉 = Ē + E′ = 1

2 ū · ū + 1
2 trR, satisfies the scalar

dynamical equation
d 〈E〉
dt

= ū ·Dū + ū · F + tr (DR) +
1

2
trQσ, (2.8)

where ū and R are the exact solutions from the statistical equations (2.5).

Especially under homogeneous structures, D = −dI and F = fI, the right hand side of the statistical energy equation
(2.8) becomes a linear damping on the total energy, −d 〈E〉, plus the deterministic forcing applying on the homogeneous
mean state, ūf , and the stochastic forcing contribution. This implies that the total energy structure (and thus the second-
order variance in all the modes) can be determined purely from the first-order mean state by solving a simple scalar
equation.
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2.2 Prototype models for complex turbulent dynamical systems
Many complex turbulent dynamical systems can be categorized into the previous abstract mathematical structure (2.1)
satisfying the structural properties (2.2a) and (2.2b). A series of typical prototype models can be found for the investi-
gation of complex turbulent dynamical systems. These qualitative and quantitative models with increasing complexity
form a desirable hierarchical set of testing models for various applications in prediction with model error, uncertainty
quantification, and state estimation [45, 39, 30].

(A) The triad system with explicit solution. The triad model [45, 41] offers an elementary building block of complex
turbulent systems with exact solvable solutions. It is a 3-dimensional ODE system with inhomogeneous damping
and both deterministic and stochastic forcing terms

du1

dt
=− d1u1 − L3u2 + L2u3 +B1u2u3 + F1 + σ1Ẇ1,

du2

dt
=L3u1 − d2u2 −

L1

ε
u3 +B2u3u1 + F2 + σ2Ẇ2,

du3

dt
=− L2u1 +

L1

ε
u2 − d3u3 +B3u1u2 + F3 + σ3Ẇ3.

(2.9a)

The strategies for constructing reduced-order models are built on this triad model without scale separation ε = 1 in
[39]. Another interesting set of problems is described in [45] for testing the multiscale dynamics with ε� 1 and no
nonlinearity B1 = B2 = B3 = 0. The triad nonlinear stochastic model also offers an unambiguous testbed for the
statistical responses in a time-periodic setting [21].

(B) The one and two-layer Lorenz ’96 model. The original Lorenz ’96 (L-96) model is a 40-dimensional ODE system
introduced first by Lorenz [36]

duj
dt

= (uj+1 − uj−2)uj−1 − duj + Fj , j = 1, · · · , J = 40. (2.9b)

It is defined with periodic boundary condition mimicking geophysical waves in the mid-latitude atmosphere. Various
representative statistical features can be generated by changing the external forcing values in F [40, 45, 46]. In
addition, a two-layer generalization [46, 34] is introduced by coupling the original L-96 model (2.9b) with a second
level dynamics

duj
dt

= (uj+1 − uj−2)uj−1 − duj + Fj − λ
∑
k

Yj,k, (2.9c)

dvj,k
dt

=
1

ε
vj,k+1 (vj,k−1 − vj,k+2)− dj,kvj,k + λuj ,

where ε > 0 is the time scale separation parameter and λ > 0 is the nonlinear coupling parameter. The subindexes
j = 1, · · · , J and k = 1, · · · ,K are for the first and second level slow and fast processes. The two-layer L-96 model
is used as a simple model for testing multiscale flow turbulence simulating the typical features of geophysical flows
[41, 34].

(C) The one-layer barotropic model with topography. The one-layer barotropic system [42, 45, 68] is a basic geophysical
model for the atmosphere or ocean with the essential geophysical effects of rotation, topography, and both determin-
istic and random forcing. It is defined based on the potential vorticity q = ∆ψ + h + βy with ω = ∆ψ the relative
vorticity, h the bottom topography, and β the rotational effect

∂q

∂t
+∇⊥ψ · ∇q + U

∂q

∂x
= −D (∆)ψ + F (x, t) +Σ (x) Ẇ (t) ,

dU

dt
+

ˆ
∂h

∂x
ψ (t) = −D0U + F0 (t) +Σ0Ẇ0 (t) ,

(2.9d)

This is one of the simplest model for geophysical turbulent while still maintains the skill to generate many interesting
realistic features, for example, the change of strength and direction in the large-scale zonal jets [68, 70].
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(D) The two-layer quasi-geostrophic model with baroclinic instability. The two-layer quasi-geostrophic model with baro-
clinic instability [72, 77, 67] is one fully nonlinear fluid model defined in a two-dimensional periodic domain

∂qψ
∂t

+ J (ψ, qψ) + J (τ, qτ ) + β
∂ψ

∂x
+ U

∂

∂x
∆τ = −κ

2
∆ (ψ − τ) + Fψ (x, t) ,

∂qτ
∂t

+ J (ψ, qτ ) + J (τ, qψ) + β
∂τ

∂x
+ U

∂

∂x

(
∆ψ + k2

dψ
)

=
κ

2
∆ (ψ − τ) + Fτ (x, t) .

(2.9e)

It is capable in capturing the essential physics of the relevant internal variability including internal baroclinic
instability. This model is useful for the investigation of climate change problems, such as the change of jet direction,
the responses in the zonal mean jet strength, and the poleward heat transport in the atmosphere and ocean regimes
[67].

We will use the above models next to illustrate the various features of linear and nonlinear statistical response theory and
its applications to various problems.
Remark. The conditional Gaussian framework [41, 14] provides a rich group of models in understanding and predicting
complex multiscale turbulent dynamics. The conditional Gaussian models take the general form

du1 = [A0 (t,u1) +A1 (t,u1)u2] dt+ Σ1 (t,u1) dW1,

du2 = [B0 (t,u1) +B1 (t,u1)u2] dt+ Σ2 (t,u1) dW2.
(2.10)

Given the realization of the first state u1 (t) , t < T , the second state u2 becomes conditional Gaussian on the history
of the state u1. Further, analytic formulas can be derived for the statistical mean and covariance matrix based on this
conditional Gaussian structure [14]. Modified versions of the previous examples can be embedded into this conditional
Gaussian structure (2.10) with suitably added noises.

2.3 Statistical linear response theory for turbulent systems
One important problem in the complex turbulence system (2.1) concerns about the accurate calibration of the model
sensitivity to perturbations. Detecting the optimal response in the high dimensional phase space is crucial for the climate
change science [27, 26, 23]. Direct solving the statistical equations (2.5) according to various climate change perturbations
becomes expensive and mostly impractical. Statistical linear response theory [40, 46, 39, 81] provides an attractive
alternative by expressing the statistical quantities subjected to small perturbations in term of statistics of an unperturbed
state. Here we give a brief description for the theories and strategies in predicting model statistical responses.

2.3.1 Linear response theory for general perturbations

The statistical response theory and fluctuation-dissipation theorem (FDT) offer a convenient way to compute leading-
order statistical approximation about model responses to various external perturbations [11, 40, 59, 50]. The general
unperturbed system (2.1), δF = 0, gives an invariant equilibrium measure peq (u). The external forcing perturbation is
written in separation with temporal and spatial variables,

δF (u, t) = w (u) δf (t) ,

where w (u) defines the spatial dependence and f (t) defines the temporal variability of the forcing perturbations. The
resulting perturbed probability density function pδ due to the general forcing perturbation δF then can be asymptotically
expanded according to the equilibrium and the correction to perturbation as

pδ (u, t) = peq (u) + δp′ (u, t) ,

ˆ
peq (u) du = 1,

ˆ
δp′ (u) du = 0. (2.11)

The statistical expectation of any functional A (u) to the perturbation is formulated accordingly under the equilibrium mea-
sure and leading-order correction, 〈A (u)〉 = 〈A〉eq +δ 〈A〉 (t)+O

(
δ2
)
, using the measure asymptotic decomposition (2.11)

with 〈A〉eq =
´
A (u) peq (u) the expectation of A according to equilibrium distribution peq, and δ 〈A〉 =

´
A (u) δp′ (u)

according to the perturbation correction δp′. FDT gives the leading order prediction for the statistical response functional
computed from the convolution with the linear response operator

〈A〉eq =

ˆ
A (u) peq (u) du, δ 〈A〉 (t) = RA ∗ δf (t) =

ˆ t

0

RA (t− s) δf (s) ds. (2.12)
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The derivation of the above formula is concluded from separating the leading order dynamics of the Fokker-Planck equation
for the perturbed probability function [40]. The pointed-bracket above denotes the statistical average under the solution
p from the Fokker-Planck equation. RA (t) is called the linear response operator corresponding to the functional A, which
is calculated through correlation functions in the unperturbed statistical equilibrium only

RA (t) = 〈A [u (t)]G [u (0)]〉eq , G (u) = −p−1
eq divu (wpeq) . (2.13)

The noise term σẆ is used to generate smooth equilibrium measure peq for computing the derivatives in the linear response
operator RA. The FDT formula for statistical responses (2.12) is shown to have high skill for the mean response and some
skill for the variance response for a wide variety of turbulent dynamical systems even with nonlinearity [46, 1, 51, 2, 37, 27].
In addition, rigorous theories [29, 43] have been provided for the validity of the linear response theory.

Still, the linear response operator RA is difficult to calculate by directly using (2.13) for general systems considering
the complicated and unaccessible equilibrium distribution peq. A variety of Gaussian approximations for peq and improved
algorithms have been developed for computing the linear response operators [35, 40, 51, 43]. In many situations, it is found
that a Gaussian PDF from the Gibbs invariant measure can offer a quite accurate characterization of the unperturbed
distribution of the system (see explicit examples from Section 3 and 4). In this way, the quasi-Gaussian (qG) closure,
peq ∼ pGeq, provides a desirable approximation of the equilibrium measure. Then the linear response operator (2.13) can be
computed directly from the autocorrection functions. The qG FDT has shown effective skill in predicting the statistical
responses especially in the mean state, but less feasible for the higher-order moment predictions (see examples in [51, 46]
and in Section 3).

2.3.2 Computing response operators with non-Gaussian statistics through kicked initial states

The difficulty in calculating the linear response operator using (2.13) is the expensive computational cost for general
systems with non-Gaussian features in the equilibrium distribution peq in a high dimensional phase space. One strategy
with higher accuracy (than using the quasi-Gaussian closure) to approximate the linear response operator avoiding direct
evaluation of peq but still include important non-Gaussian statistics is through the kicked response by converting an
unperturbed system to a perturbation δu of the initial state from the equilibrium measure. The idea is to set the initial
distribution with the same equilibrium variance but a kick in the mean state so that

p |t=0= peq (u + δu) = peq + δu · ∇peq +O
(
δ2
)
. (2.14)

One important advantage of adopting this kicked response strategy is that higher-order statistics due to nonlinear dynamics
will not be ignored (compared with the other linearized strategy using only Gaussian statistics [46]). The validity of the
kicked response strategy is guaranteed by the following proposition [40, 49] for calculating the linear response operator:

Proposition 2. For δ small enough, the linear response operator RA (t) can be calculated by solving the unperturbed
system (2.1) with a perturbed initial state in (2.14). Then, the linear response operator can be achieved through the
following formula by tracking the perturbed response in the unperturbed dynamics

δRA (t) ≡ δu · RA =

ˆ
A (u) δp′ +O

(
δ2
)
. (2.15)

Above δp′ is the resulting leading order expansion of the transient probability density function from unperturbed dynamics
using initial value perturbation.

From the formula (2.15), the response operator for the mean and variance can be achieved from the perturbation
part of the probability density δp′. The proof of the above Proposition is a direct application of Duhamel’s principle to
the corresponding Fokker-Planck equation with the forcing perturbation [40]. The variability in the external forcing is
transferred to the perturbation in initial values. More importantly, the kicked response formulation (2.15) with initial
mean state perturbation (2.14) is independent of the specific perturbation forms. Thus the operator RA describes the
inherent dynamical mechanisms of the system.

Practical numerical strategies to compute the kicked response operators

The statistical kicked response strategy offers a practical method to compute the linear response operators especially for
the unaccessible non-Gaussian equilibrium distributions. From the formula in (2.15), the response operators for the mean
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and variance can be achieved from the perturbation part of the probability density δp′. In practice, δp′ can be either
estimated from a direct Monte-Carlo simulation, or from a statistical model solution. Below we describe the numerical
procedure to get this distribution function δp′ for general turbulent systems. See [40, 39] for a similar version of this
algorithm.

• Kicked response from direct model simulations: A direct way to get the kicked PDF response δp′ is through a
Monte-Carlo simulation of (2.1) using a large enough ensemble size to capture the leading statistical responses. The
initial ensemble for the model simulation is sampled from the equilibrium distribution. For the kicked response to
the mean, a constant small perturbation of the equilibrium mean state (for example, δu = 0.1ūeq) is added to each
initial ensemble members, while the initial variance of the ensemble is kept unchanged. The response distribution
δp′ then is achieved by monitoring the decay of the ensemble mean back to equilibrium under unperturbed dynamics
and uniformly perturbed initial value.

• Kicked response from statistical models: Another way to get the kicked response statistics is through the statistical
model equations (2.5) to get the responses for the mean and variance. The initial mean state is taken from the
equilibrium distribution with a perturbation (for example, δu = 0.1ūeq). The initial value for the variance is taken
the same as the equilibrium state value and kept unperturbed. Then starting from this initial mean and variance,
the statistical model offers the kicked response solution to monitor the decay of the mean and variance back to
equilibrium.

Compared with the qG closure using Gaussian statistics in the equilibrium measure, the kicked response gives a better
quantification of the higher order statistics of the system since the nonlinear dynamics is better characterized. Therefore,
the kicked response has more feasible prediction for systems with stronger nonlinearity and generates better results for
higher order moments.

3 Statistically Accurate and Inaccurate Response Functionals and Reduced-
Order Models for Nonlinear Responses

In this section, we display the skills in the statistical linear and nonlinear response theories under the framework of
prototype models. With these simplified models, the basic properties of the statistical response functionals with accurate
and inaccurate prediction skills can be characterized in a precise way. More realistic applications for the two-dimensional
barotropic turbulence is then carried out next in Section 4.

Low-frequency stochastic models offer an attractive first testing framework for understanding the basic properties in
the statistical response theory. A one-dimensional exactly solvable model with additive and multiplicative noises

du =
(
f + au+ bu2 − cu3

)
dt+ (A−Bu) dW1 + σdW2, (3.1)

has been first used to show the typical features in FDT [46, 48]. This model provides the simplest tool in the investigation
of low-frequency variability in the long time atmospheric or climate sensitivity studies. Especially, explicit unperturbed
distribution solution can be found for the model (3.1) by directly solving the associated Fokker-Planck equation. The
explicit formulation of the stochastic model enables us to calculate the response operators based on different response
functionals A (u) using Gaussian (and conditional Gaussian) statistics. Another desirable property of the stochastic low-
frequency model (3.1) is that it generates a wide range of different statistical regimes from uni-modal near-Gaussian PDFs
to skewed non-Gaussian distributions by changing the parameter values. This is also similar to the features in the general
atmospheric circulation models.

Next, we compare the accuracy in the Gaussian and quasi-Gaussian response theory with kicked initial state using
nonlinear prototype models without explicit solvable expressions.

3.1 Empirical information theory for measuring imperfect model errors
In most practical cases, the exact equilibrium distribution peq is unavailable due to the complex nonlinear coupling
between scales. Therefore, imperfect approximation and calibration of the model invariant distributions with error is
the first problem to consider. The information-theoretic framework [31, 40] provides an unbiased metric to quantify the
imperfect model sensitivity by building the least biased probability measure consistent with the true system. Information
theory is often used in statistical science for imperfect model selection [9]. A natural way to measure the lack of information
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in one probability density with approximation, pM , compared with the true probability density, p, is through the relative
entropy (or information distance) [33, 40], given by

P
(
p, pM

)
=

ˆ
p log

p

pM
. (3.2)

The relative entropy guarantees the following two crucial features to serve as a metric: (i) P
(
p, pM

)
≥ 0, and the equality

holds if and only if p = pM ; (ii) it is invariant under any invertible change of variables. Despite the lack of symmetry in
its arguments (that is, P (p1, p2) 6= P (p2, p1) in general), the relative entropy, P

(
p, pM

)
provides an attractive framework

for assessing model error and sensitivity like a probabilistic metric.
Usually, the first entry p is used to denote the probability distribution of the perfect model, which is unknown.

Nevertheless, we can construct an estimate distribution pL of the perfect model using first L measurements of the true
system. Consider the imperfect model prediction with its associated probability density pML , the definition of relative
entropy (3.2) facilitates the practical calculation [32, 49, 50, 45, 47]

P
(
p, pM

)
= P (p, pL) + P

(
pL, p

M
L

)
.

The entropy difference P (p, pL) precisely measures an intrinsic error from L measurements of the perfect system, and this
offers a simple example of an information barrier for any imperfect model based on L measurements for calibration. The
most practical setup for utilizing the framework of empirical information theory arises when only the Gaussian statistics
(that is, the first two moments) of the distributions are computed. With the measurements L = 2 representing the first two
moments, a Gaussian approximation can be used to estimate the information error P

(
pL, p

M
L

)
considering only the first

L = 2 statistical measurements. By only comparing the first two moments of the density functions, we get the following
fact [40]:

Proposition 3. If the probability density functions pL, pML contain only the first two moments, that is, p ∼ N (ū, R) and
pM ∼ N (ūM , RM ), the relative entropy in (3.2) has the explicit formula

P
(
pL, p

M
L

)
=

1

2
(ū− ūM )

T
R−1
M (ū− ūM ) +

1

2

(
tr
(
RR−1

M

)
−N − log det

(
RR−1

M

))
. (3.3)

The first term on the right hand side of (3.3) is called the signal, reflecting the model error in the mean and weighted by
the inverse of the model variance RM ; whereas the second term is the dispersion, including only the model error covariance
ratio RR−1

M , measuring the differences in the covariance matrices.
For measuring the model sensitivity in the linear response statistics (2.11), we have pδ = peq + δp for the true model,

and pMδ = pMeq + δpM for the imperfect model approximation. In the case with equilibrium consistency, that is, the
imperfect model gives the exact unperturbed invariant measure P

(
peq, p

M
eq

)
= 0, the relative entropy in (3.3) between

perturbed model density pMδ and the true perturbed density pδ with small perturbation δ can be expanded in the leading
order terms as

P
(
pδ, p

M
δ

)
= P (pL,δ, pδ) +

1

2

ˆ
p−1
L,eq

(
δp− δpM

)2
+O

(
δ3
)
. (3.4)

Above, the first part P (pL,δ, pδ) is the intrinsic error from only first L measurements of the system. The second quadratic
term is called the Fisher information metric [80, 43, 41]. Under Gaussian statistical closure in the two distributions p = pG
and pM = pMG , the Fisher information can be expanded componentwisely in the perturbation of the mean and variance as

1

2

∑
k

(δūk − δūM,k) r−1
k (δūk − δūM,k)︸ ︷︷ ︸

signal

+
1

4

∑
k

r−2
k (δrk − δrM,k)

2

︸ ︷︷ ︸
dispersion

. (3.5)

Above, rk is the equilibrium variance in k-th component, and δūk and δrk are the linear response operators for the
mean and variance in k-th component. The information theory plays an important role in quantifying model error, model
sensitivity and information barrier. Next, we illustrate the calibration of model error in the response theories using explicit
examples with multiscale structures.
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3.2 Linear response functionals using the two-layer Lorenz ’96 Model
We first use the inviscid two-layer L-96 model introduced in (2.9c) to display the validity of linear response theory for
systems with multiscale structures

duj
dt

= (uj+1 − uj−2)uj−1 − λ
∑
k

vj,k + Fj ,

dvj,k
dt

=
1

ε
vj,k+1 (vj,k−1 − vj,k+2) + λuj .

The two-layer L-96 model is characterized by two sets of slow-fast processes (uj,vj,k). The variable uj with 1 ≤ j ≤ J
represents the slow varying climate, while vj,k with 1 ≤ k ≤ K according to each slow process uj gives the set of fast
varying weather with the total size JK. The parameter λ defines the coupling coefficient between the two scales uj and
vj,k; ε > 0 defines the time scale separation between the two processes. In this test case, we assume zero external forcing
Fj ≡ 0 in the unperturbed equilibrium. More discussion about detailed properties and physical interpretations of the
two-layer L96 can be found in [34, 14].

3.2.1 Explicit linear response operators from the Gibbs invariant measure

The total energy E (u, v) combining both slow and fast variables of the two-layer L-96 model is conserved for the inviscid
flow without any damping and forcing effects. This implies the classical Gibbs invariant measure with zero mean and
equipartition of energy at each grid defined as the climate

peq (u, v) = C−1 exp

(
− 1

2σ2
eq

E (u, v)

)
, E (u, v) =

J∑
j=1

(
u2
j +

K∑
k=1

v2
j,k

)
, (3.6)

where σ2
eq gives the homogeneous variance at each grid [40, 42]. Therefore, the linear response operator RA in (2.13) can

be computed directly using the explicit formulation of peq from the Gibbs invariant measure. To test the accuracy in
the linear responses with perturbations in large and small scale variables, we consider homogeneous perturbations added
to the large-scale state Fj = δF . This forcing perturbation can be viewed at the climate change effect introduced to
the slow-varying climate. Still both large and small scale variables will be affected by this large scale climate changing
forcing. As a direct conclusion using the statistical energy principle in (2.8), the total statistical energy in the system
〈E〉 =

´
E (u, v) p (u, v) dudv about the perturbed probability distribution p can be found only dependent on the forced

response mean state
d 〈E〉
dt

=
∑
j

δFj · ūj , 〈E〉 =

J∑
j=1

(〈
u2
j

〉
+

K∑
k=1

〈
v2
j,k

〉)
. (3.7)

This implies that the total statistical energy of the system is determined only by the large-scale homogeneous mean state
ūj ≡ ū. Notice that the statistical energy

〈
u2
j

〉
,
〈
v2
j,k

〉
contain the variabilities in both energy in the mean, ū2, and the

variance, u′2. The total variance in the inviscid system will keep increasing due to the constant forcing effect δF · ū with
a final saturated mean state ū.

Next, we compute the detailed statistical responses for the mean and variance according to the homogeneous large scale
perturbation Fj = δF . By directly applying the formula (2.13), the corresponding operators Gu using the quasi-Gaussian
(qG) Gibbs measure (3.6) can be computed explicitly as

Gu = −
∑
j ∂ujpeq

peq
=

J∑
j=1

uj
σ2

eq

.

Again, due to the homogeneous statistics in the unperturbed equilibrium measure of the model, the cross-covariances
between different grids vanish in the final state, 〈usi (t)uj (0)〉eq = 0 for i 6= j. The explicit formulas for the qG response
operators for the mean and variance of the large and small scale homogeneous variables can be computed as

large scale response : Ru =
σ−1

eq

J

∑
j

〈uj (t)uj (0)〉eq , Ru2 =
σ−1

eq

J

∑
j

〈
u2
j (t)uj (0)

〉
eq

;

small scale response : Rv =
σ−1

eq

JK

∑
j,k

〈vj,k (t)uj (0)〉eq , Rv2 =
σ−1

eq

JK

∑
j,k

〈
v2
j,k (t)uj,k (0)

〉
eq
.

(3.8)
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Figure 3.1: Illustration of the multiscale two-layer L-96 model solution and equilibrium homogeneous statistics with
J = K = 8 and λ = 1, ε = 0.1, F = 0. Upper row: space-time diagram of the slow and fast state solutions (u, v) (the fast
variable vi,j is evaluated at one fixed value j = 1); second row: marginal PDFs of the equilibrium slow and fast variables
compared with the invariant Gibbs measure.

Above, Ru is the response operator for the homogeneous large-scale mean 〈uj〉 ≡ u; and Ru2 is the response operator
for the homogeneous large-scale variance

〈
(uj − ū)

2
〉
≡ r. Similar case applies for the small scale variables vj,k. The

linear response operators are computed under the statistical average about the equilibrium measure. From (3.8) using
the Gaussian equilibrium distribution (3.6), the response function from the large scale perturbation is the autocorrelation
functions, while the response function for the small scales comes from the lagged cross-correlation between the small-large
scale states at the some grid, uj , vj,k.

Finally, using the response operators (3.8), the statistical responses in mean and variance subject to the constant in
time large scale perturbation δF can be computed directly from the convolution formula (2.12) as an integration of the
linear response operators

δū (t) = δF

ˆ t

0

Ru (τ) dτ, δru (t) = δF

ˆ t

0

Ru2 (τ) dτ.

Above, Rū (t) and Rr (t) are the response operators corresponding to the forcing perturbation. This gives the FDT
prediction of the mean and variance responses in both large and small scales. Due to the homogeneous statistics in the
equilibrium measure as well as the forcing perturbation forms, the statistical response stays uniform at each grid point.
Finally the accuracy of the statistical predictions can be measured under the information metric constraint on the first
two moments using the formula (3.5).

3.2.2 Numerical tests for the accurate and inaccurate linear response predictions

In the numerical tests, we take the model dimensions J = 8 and K = 8 (that is, with 8 variables in the slow state u and in
total 64 variable in the fast state v). The value of the coupling parameter is taken as λ = 1 and the time-scale separation
is set as ε = 0.1. Zero external forcing F ≡ 0 is assumed for the unperturbed equilibrium state of the system. Similar
reference parameters are adopted in [46]. Figure 3.1 offers the direct simulation result for the unperturbed two-layer L-96
model PDFs. Both the slow and fast variables (u, v) agree with the Gaussian distribution predicted in the Gibbs invariant
measure with unit equilibrium variance σeq = 1. The time-series show a more rapid time scale in the fast variable v than
the slow variable u.

Then we compare the accuracy using the quasi-Gaussian (qG) FDT and kicked response FDT in this two-layer L-96
system and the errors are measured in the information metrics. Particularly, we test the skills in the prediction of large
and small scale responses in their mean and variance with only homogeneous large scale perturbation Fj = δF . First,
Figure 3.2 displays the linear response operators for the mean and variance responses in large scale u and small scale
v. Results from the two strategies using the kicked response and the qG closure are compared. For the response in the
mean state, the two methods offers similar approximation for the linear response operator. This implies comparable skill
in predicting mean responses using both approximations. For the response in the variance, however, the kicked response
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Figure 3.2: Linear response operators for the large and small scale mean (left) and variance (right) responses. The operators
computed from the kicked response strategy is compared with the qG closure using the Gaussian Gibbs invariant measure.

generates non-zero response in the long time limit, while the qG closure just captures the transient changes in variance
and decays to zero at the long time limit from the autocorrelation functions. This difference shows the less accuracy in
the qG approximation for predicting second order moments. Clearly from the total statistical energy equation (3.7), the
variance should keep increasing in the inviscid model with a non-zero mean generated.

At last, we show the FDT prediction skills using the linear response operators for the statistical response in mean
and variance. Figure 3.3 plots the statistical response predictions in mean and variance using both kicked FDT and qG
FDT approximations. Two different homogeneous constant forcing perturbation amplitudes δF = 1 and δF = 0.5 are
also compared for testing the accuracy with different nonlinearity. The accuracy of the predictions is calibrated using
the relative entropy metric (3.5) as a balanced combination of the error in the mean (signal error) and the error in the
variance (dispersion error). First in the prediction for the mean responses, both kicked response and qG closure do a good
job especially in capturing the starting transient state responses. The prediction for the large scale u is also easier with
higher accuracy than that of the small scale v. With a large perturbation amplitude δF = 1, stronger nonlinear effect
gradually takes over. The statistical response theory fails to capture the long time drop in the mean, especially for the
small scale variables v. In signal error shows the high skills in both methods.

Second in the variance response, the inviscid model with constant forcing leads to a persistent growth in the variance.
The qG FDT fails in this case to predict the long time variance response and cannot capture the persistent growth. The
kicked FDT offers a better prediction for the increasing trend in the variance in both large and small scales. Still, the
response theory lacks the skill to get the exact rate of increasing with accuracy in the second moments. The dispersion
error offers a more precise calibration of the errors in the two methods. It can be seen that the qG closure gives a better
estimation in the short time transient state for the variance response in both small and large scales. At the long time
limit, the kicked response becomes more skilled at getting the growing trend in the variance, while the qG closure simply
goes to zero leading to larger errors. In general, the large scale variability is easier to capture than the rapidly changing
small scale responses.

3.3 Strategies in predicting nonlinear responses using reduced-order statistical models
The previous example with the multi-scale L-96 system displays explicitly the extent of skills of the linear response theory
to predict the statistical responses. Using FDT with the linear response operators, the short-time transient changes
with small amplitude perturbations can be captured with desirable accuracy in the first-order moment. On the other
hand, when it comes to regimes with strong nonlinearity and higher order moments (including the variance), the linear
response theory considering only the leading order expansion becomes less sufficient in getting the statistical variability
with accuracy.

Therefore, more detailed calibration for the turbulent system becomes a necessary when we want to capture the
nonlinear responses in a wider range of perturbations. Here we present the basic ideas in the statistically accurate
reduced-order models as a more effective strategy in predicting the nonlinear responses [39, 45]. Before preceding to the
applications in a more realistic high-dimensional turbulent system in Section 4, the basic ideas in developing the reduced-
order statistical model framework are offered using the triad model (2.9a) as a special case of the general formulation (2.1)
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(a) responses with forcing perturbation δF = 1
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(b) responses with forcing perturbation δF = 0.5

Figure 3.3: Responses in mean and variance in large and small scale variables using two constant forcing perturbations
δF = 1 and δF = 0.5. The predictions using kicked FDT and qG FDT are compared with the truth from direct Monte-
Carlo simulations. The accuracy of the prediction is calibrated under the information metrics for the signal (mean),
dispersion (variance), and total information distance.
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by letting

L =

 0 −L3 L2

L3 0 −L1

−L2 L1 0

 , D =

−d1

−d2

−d3

 , F =

F1

F2

F3

 , σ =

σ1

σ2

σ3

 .
3.3.1 Ideas in calibrating and predicting the nonlinear statistical responses

In general, the reduced-order statistical modeling strategy is carried out in three stages: i) imperfect model selection
according to the complexity of the problem; ii) model calibration in a training phase using equilibrium data; and iii)
model prediction with the optimized model parameters for various responses to external perturbation. Compared with
the linear response theory, the nonlinear dynamics are modeled explicitly in the reduced-order models. Specifically in the
reduced-order models to be developed here, we will consider additional damping and random noise corrections for the
unresolved higher-order statistics. The equilibrium invariant measure and ergodic theory [56, 74] can help determine the
existence of a smooth invariant measure for the reduced-order model. The linear response operators from the unperturbed
equilibrium measure in turn help improve the nonlinear response prediction through the model calibration.

Generally the statistical model for the leading two moments can be derived from the full statistical model (2.5) with
a large scale projection

dūM
dt

= (L+D) ūM +B (ūM , ūM ) +RM,ijB (ei, ej) + F,

dRM
dt

= Lv (ūM )RM +RML
∗
v (ūM ) +QMF +Qσ,

(3.9)

where ūM = PM ū is the model approximated mean, and RM is the reduced order covariance matrix about the fluctuation
state variable u′. The most expensive but crucial part comes from the nonlinear flux term QF where important third-order
moments are included representing the nonlinear interactions between different modes. A hierarchical statistical model
reductions are constructed with a judicious estimation about this nonlinear interaction term

QMF = Q−F +Q+
F = −DM (R)RM −RMD∗M (R) + ΣM (R) , (3.10)

through a series of constructions with increasing complexity [53, 68, 67, 39]. The negative-definite Q−F = −DM,k (R)RM −
RMD

∗
M,k (R) represents the additional damping effect to stabilize the unstable modes with positive Lyapunov coefficients,

while Q+
F = ΣM,k (R) is the positive-definite additional noise to compensate for the overdamped modes. In the model

parameters, (DM ,ΣM ) replaces the original nonlinear unstable and stable effects from the original dynamics. The ap-
proximation error in the imperfect model is calibrated through the linear response theory. Two crucial components in the
construction of (3.10) are: first, equilibrium statistical fidelity using the unperturbed equilibrium statistics

(
Q+
F,eq, Q

−
F,eq

)
,

which can be computed easily from the steady state equations (2.5) using lower order statistics; and second, the improve-
ment of model sensitivity using the total statistical energy E by solving the additional scalar equation (2.8). The detailed
discussion for the step-by-step construction of the reduced model parameters can be found in [45, 39].

Reduced model calibration using statistical response theory

It is important to realize that equilibrium fidelity is a necessary but not sufficient condition for model predictions [45, 50, 39].
Accurate forecast of the nonlinear forced responses requires the correct representation of model’s ‘memory’ to its previous
history. In the linear response theory (2.12), the linear response operator RA provides a unified way to quantify the
model sensitivity in the imperfect models. The imperfect models can maintain high performance for various kinds of
external perturbations if they are able to recover the response operator with desirable accuracy. Thus the optimal model
parameter can be selected through minimizing the information distance in the linear response operators in (3.5) between
the imperfect closure models and the truth.

The model calibration procedure is usually carried out in a training phase before the prediction, so that the optimal
imperfect model parameters can be achieved through a careful calibration about the true higher-order statistics. The ideal
way is to find a unified systematic strategy where various external perturbations can be predicted from the same set of
optimal parameters through this training phase. To achieve this, various statistical theories and numerical strategies need
to be blended together in a judicious fashion. Most importantly, we need to consider the linear statistical response theory
to calibrate the model responses in mean and variances [40, 43, 29]; and use empirical information theory [49, 50, 42]
to get a balanced measure for the error in the leading order moments. In the final model prediction stage, the optimal
imperfect model parameters are applied for the forecast of various model responses to perturbations.
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Figure 3.4: Linear response operators for the mean and variance in the triad model. The truth from the kicked response
(dashed black) is compared with approximation from the nonlinear statistical model (red) using optimal parameters and
the quasi-Gaussian closure approximation (blue).

Next, we illustrate the skills of the reduced statistical model in capturing nonlinear statistical sensitivity using the
simple triad model.

3.3.2 Predicting statistical responses in the triad system

The triad system (2.9a) where three modes interact through the energy-conserving coupling term form the building block
for more complex turbulent flows. It provides a simple first test case to show the model reduction strategy in the first
stage. This model mimics the nonlinear interaction of two Rossby waves forced by baroclinic processes with a zonal jet
forced by a polar temperature gradient. By changing the model parameters, a wide range of statistics are generated from
near-Gaussian to highly non-Gaussian PDFs. The typical performance using the statistical response operators for effective
model reduction is discussed in depth in [39, 45].

Model calibration in the training stage

In the tests using the triad model, we pick the dual energy cascade regime where d1 = 1, d2 = 2, d3 = 2, σ2
1 = 10, σ2

2 =
0.01, σ2

3 = 0.01, and the energy-conserving nonlinear coupling coefficients B1 = 2, B2 = B3 = −1 and the skew-symmetric
interactions as L1 = 0.09, L2 = 0.06, L3 = −0.03. In this parameter regime, energy cascades in both direction between
the ‘large scale’ u1 and ‘small scales’ u2 and u3, leading to a highly non-Gaussian equilibrium distribution (see [39] for
the PDFs). The linear response operators for the mean and variance are used to tune the parameters in the nonlinear
statistical model. Through the discussions about linear response theory in Section 2.3, the true response operator is
approximated from the kicked response strategy. The optimal parameter values in the reduced statistical model (3.9) are
achieved through minimizing the distance in the model linear response operators under the information metric. Figure
3.4 shows the linear response operators in mean and variance due to deterministic and stochastic perturbations. Using
the optimal parameters, the nonlinear reduced model gives good recovery of the true linear response effect in both mean
and variance. Similar with the previous tests, the qG closure lacks the skill in capturing the sensitivity in the variance
response when the non-Gaussian statistics of the system become important.

Model prediction to perturbations

In showing the reduced model skill in capturing the nonlinear responses to forcing perturbations, periodic perturbation
is added to both the deterministic and random components of the external forcing in the triad system. The numerical
results are summarized in Figure 3.5. The nonlinear reduced order model prediction is compared with the linear response
theory results using the qG closure. Consistent with the previous discussions in Section 3.2, the qG FDT maintains the
skill in capturing the responses in the mean with agreeable accuracy. From the signal errors for the mean, the qG FDT is
just a little worse than the reduced model results with agreeable accuracy. On the other hand, the linear response theory
fails to capture the responses in the higher order variance accurately especially for the two fast processes. In contrast,
the reduced statistical model gives accurate predictions in the statistical responses in both mean and variance in slow and
fast variables. The improvement is obvious from comparison of the information errors.
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Figure 3.5: Prediction of nonlinear statistical response in mean and variance in the triad model subject to periodic
perturbation. The prediction using the nonlinear reduced model is compared with the qG linear response prediction. The
truth is achieved from direct Monte-Carlo simulations.

4 Linear and Nonlinear Statistical Responses for Barotropic Flows with
Topography

To extend the validity of the statistical response theory to problems in a more realistic geophysical setting, the topographic
barotropic system [42, 68] serves as a stringent model with higher complexity. This model offers a detailed interacting
mechanism between small-scale eddies and a dynamically evolving large-scale flow. Here we show that a reduced-order
model in only 3-dimensional resolved subspace is capable of capturing the principal statistics in first and second moments
with desirable accuracy and efficiency. Despite the unavoidable model errors, the low-order approximation model displays
uniform ability in predicting strong nonlinear responses to various external perturbations through the statistical response
framework. In addition, a rigorous statistical saturation bound can be found for constraining the statistical range which
the model responses can change inside.

4.1 Topographic barotropic system with interacting zonal mean flows
A basic group of simple models that incorporate the essential structures in geostrophic turbulence is the ideal barotropic
quasi-geostrophic equations with a large-scale zonal mean flow and topographic effect [10, 42, 65]. The governing equations
for the topographic barotropic turbulence are formulated on a rotational β-plane with doubly periodic boundary condition
on [−π, π]× [−π, π] as

∂ω

∂t
+∇⊥ψ · ∇q + β

∂ψ

∂x
+ U

∂q

∂x
= −D (∆)ψ + F (x, t) +Σ (x) Ẇ (t) ,

dU

dt
+

ˆ
∂h

∂x
ψ (t) = −D0U + F0 (t) +Σ0Ẇ0 (t) ,

(4.1)

where q = ω + h, ω = ∆ψ are the potential vorticity and relative vorticity respectively; and ψ is the stream function;
h is the topographic structure while q is advected by the velocity field, v = ∇⊥ψ ≡ (−∂yψ, ∂xψ). The interacting
topographic Rossby waves from small-scale vortices ω are coupled with a large scale zonal jet U through the topography
h. General dissipation and deterministic and random forcing are added on both small and large scale states. The system
(4.1) creates anisotropic flows with a strong meandering zonal jets qualitative resembling to those observed in midlatitude
ocean/atmosphere and laboratory experiments on topographic blocking [79, 28].

The dynamical equations without forcing and dissipation conserve both the kinetic energy E and the large-scale
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enstrophy W [42] defined as

E =
1

2
U2 +

1

2

ˆ
|∇ψ|2 , W = βU +

1

2

ˆ
q2. (4.2)

It shows that these quadratic invariants have a crucial role in prediction of nonlinear responses and the analysis of
nonlinear stability theory [45, 10]. In the application to the statistical response theory, next we introduce the statistical
characterization of the system in unperturbed equilibrium and perturbed states.

4.1.1 Equilibrium invariant measure for the unperturbed barotropic flow

In geophysical turbulence, it is reasonable to assume that the unperturbed long-time averaged state (that is, the climate)
is known with accuracy [10, 42]. The central quantity of interest becomes the fluctuations about the climate state. A
special form of the exact steady state solution with linear dependence between the stream function and potential vorticity
is often assumed [42] as

Qeq = ∆Ψeq + h = µΨeq, Ueq = −β/µ. (4.3)

The steady state is defined by the parameter µ. The linearly dependent solution is also predicted as the most probable
state from the maximum entropy principle where the entropy is maximized with constant energy with µ as the Lagrangian
multiplier [42, 10]. We focus on the responses in statistics in the fluctuation components ψ̃µ = ψ − Ψeq (µ) and Ũµ =
U −Ueq (µ) about the climate state. For simplification in representations, the ‘tildes’ for the fluctuations are neglected in
the rest part of this section.

The general statistical theories (2.8) can be applied to the fluctuation states of the barotropic flow. The system is
projected on a finite dimensional subspace through a Galerkin truncation of high wavenumber N under standard Fourier
basis ek = exp (ik · x)

ωN =
∑

1≤k≤N

ω̂ke
ik·x, ψN =

∑
1≤k≤N

ψ̂ke
ik·x = −

∑
1≤k≤N

k−2ω̂ke
ik·x,

where ψN is the truncated stream function, ωN = ∇2ψN is the truncated small-scale relative vorticity, and k = |k| is the
wavenumber amplitude. A Gibbs invariant measure thus can be constructed [68] as a Gaussian distribution based on the
conserved quantities (4.2)

peq (U, ω) = C−1
eq exp

[
−µ

2
σ−2

eq U
2 − 1

2
σ−2

eq

∑
k

(
1 + µk−2

)
|ωk|2

]
, σ2

eq =
σ2

2d
. (4.4)

Notice that above (U, ω) are the fluctuation components centered at the climate state
(
Ūeq, ω̄eq

)
. This Gibbs measure is

given by the conserved energy and enstrophy constraints [42]. One obvious drawback in the above invariant measure (4.4)
is that it becomes unrealizable when µ < 0. We will address this issue later in Section 4.4.

In fact, It can be confirmed that peq (U, ω) with the realizable parameter µ > 0 is indeed the invariant measure in
equilibrium through direct substitution into Fokker-Planck equation [45]. Proper damping and forcing operators are
required on the right hands of (4.1). The admissible damping and forcing consistent with the Gaussian invariant measure
(4.4) can be constructed [68] as

−Dkψ +ΣkẆk = −dλkωk + σkλ
1/2
k Ẇk, Fk = δFk ≡ 0, (4.5)

with k = 0 for the large scale forcing for U and k ≥ 1 the vortical modes. Specific amount of noise σ0 = σ |µ|−1/2
, σk =

σ
∣∣1 + µk−2

∣∣−1/2 is required with the parameter σ; λk is an additional scaling parameter. For simplicity with λk ≡ 1, the
dissipation effect acts as the linear Ekman damping, −dω. Together the two model parameters (d, σ) define the equilibrium
variance σ2

eq. The deterministic forcing is required to be zero, Fk ≡ 0 to reach the invariant measure.

4.1.2 Statistical energy principle for the barotropic flow system

With non-zero external forcing perturbation δF 6= 0, the perturbed fluctuations (U, ω) begin to deviate from the Gaussian
invariant measure peq. Still, the statistical energy principle (2.8) can be first used to describe the dynamics of total
statistical energy through solving a simple scalar equation. To achieve this, we further introduce the statistical ensemble
mean and disturbance about the mean state of the fluctuation variables

U = Ū + U ′, ωk = ω̄k + ω′k.
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The statistical energy considers the combined energy in the mean and the variance in the disturbance state. Note that
above the ensemble mean states

(
Ū , ω̄k

)
characterize the statistical responses in the mean due to the deterministic forcing

different from the unperturbed time-averaged climate in equilibrium. The required triad symmetry (2.7) is guaranteed
since the barotropic triads will only include components, ψk, ψm, ψn, with the selection rule, k + m + n = 0 [72]. Thus
the nonlinear terms make no contributions in the changes of total statistical energy.

Unfortunately, neither the energy Ẽ nor the enstrophy W̃ in fluctuation
(
Ũ , ω̃

)
stays conserved due to the exchange

of energy between the steady mean (Ueq, Qeq). Still one important conserved quantity can be constructed as the pseudo-
energy Eµ through a linear combination of the fluctuation energy and enstrophy Eµ ≡ W̃ + µẼ. The pseudo-energy Eµ
is often more useful since it combines the two important conserved quantities. It is useful to investigate the ensemble
statistics in the first two moments rather than a single trajectory realization since they not only characterize the deviations
from the steady state mean, but also illustrate the evolution of uncertainty (variance) for this mean estimation. Finally
we can define the total statistical energy in fluctuations through the original pseudo-energy as a combination of mean and
variance

〈Eµ〉 ≡
µ

2
〈EU 〉+

1

2

∑
1≤|k|≤N

(
1 + µk−2

)
〈Ek〉 , (4.6)

with 〈EU 〉 = Ū2 + U ′2 the large-scale statistical energy and 〈Ek〉 ≡ |ω̄k|2 + |ω′k|
2 the energy in fluctuation modes.

Using the conservation law for the pseudo-energy Eµ, we are able to derive the statistical energy dynamics for the
total energy 〈Eµ〉. Accordingly the statistical energy equation with the prescribed Ekman damping and stochastic forcing
in (4.5) and the non-zero deterministic forcing perturbation δF becomes

d 〈Eµ〉
dt

= −2d 〈Eµ〉+ µδF0 · Ū +
∑
k

〈δFk, ω̄k〉µ +Qσ,µ. (4.7)

In the above scalar equation, the inner product is defined through the metric in the pseudo-energy (4.6) according to each
perturbed mean, and the entire contribution from the stochastic white noises forcing is applied

〈fk, gk〉µ =
(
1 + µk−2

)
f∗k · gk, Qσ,µ =

1

2
µσ2

0 +
1

2

∑
k

(
1 + µk−2

)
σ2
k.

As a find comment, only the statistical mean is included in the contribution to the total statistical energy change due
to the exerted external forcing. Thus the dynamics of the total statistical energy combining mean and variance in (4.7)
is determined through only the change in first order mean state together with the specific forcing and dissipation effects.
One advantage of the statistical energy equations is that we can predict the total responses of second-order moments from
〈Eµ〉 requiring only knowledge of first-order moments.

4.1.3 Numerical illustration of the flow structures

We first provide an illustration about the typical barotropic flow structures with the topographic stress. In the direct
numerical simulations, the wave number truncation is kept relatively small as N = 12 so that the major large-scale
variability is maintained. This also enables us to run direct ensemble simulations for comparison with the true statistics.
The topography is taken as a zonal structure on the largest scale mode with perturbations added in smaller scales such
that

h = H (sinx+ cosx) +H
∑

2≤k≤N

k−2ei(k·x−θk). (4.8)

In the simulations we take the topographic strength H = 3
√

2/4 and uniform phase shift θk = π
4 . Besides, the beta-effect

is fixed as β = 1 and the linear damping uses d = 0.1. In the unperturbed equation, no deterministic forcing is used for
all the scales δF0 = δFk = 0. A pseudo-spectral method is applied and the 4th order Runge-Kutta scheme is used for the
time integration. The random noise part is added through a standard Euler-Maruyama scheme.

Figure 4.1 plots the typical flow field snapshots with different forcing perturbations δF = 0, 0.5, 1. A dominant eastward
zonal flow with U > 0 is generated in the first case. As the forcing perturbation δF changes on the largest scale, the
eastward flow gets weakened and the jet direction gets switched to the west (left) direction with U < 0. The abrupt
change of direction in the zonal mean jet is an important observation related with more realistic geophysical flows. More
discussions about the stability analysis due to topographic stress can be found in [42, 70] and next in Section 4.4.
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Figure 4.1: Mean stream functions (dashed contours) and the entire flow field (vector field) with different forcing strength
δF = 0, 0.5, 1. The flow field shifts from eastward to blocked circulations to strong westward jet as the external forcing
changes.

4.2 Linear response operators according to Gaussian invariant measure
The question in the statistical response theory asks how the distribution function pδ differs from the unperturbed invariant
density peq when inhomogeneous perturbations in different scales, δF0, δFk, are exerted. Large non-Gaussian higher order
statistics could be induced even with a small perturbation forcing due to the nonlinear effects. Next, we test the extent
of skills in the linear and nonlinear response predictions using information only in the unperturbed climate peq.

The linear response theory in (2.12) offers a convenient leading order approximation of the responses with the explicit
formulation of the invariant measure (4.4). We focus on the first two moments of the state variables in calculating the
linear response operator RA. Following the standard steps described in Section 2.3 using the linear response formula
(2.13) and the Gaussian invariant measure (4.4) as the unperturbed equilibrium, the linear response operators for the
mean state can be computed from the autocorrelation functions

RA (t) = σ−2
eq

[
δf0µ 〈A′ (t)U ′ (0)〉eq +

∑
k

δfk
(
1 + µk−2

)
〈A′ (t)ω′k (0)〉eq

]
, (4.9a)

where RA is the mean response for the large-scale state with A = U and for the small-scale vortical mode with A = ωk,
subject to the general deterministic perturbation (δF0, δFk). The total response includes contributions from all cross-
correlations between different scales. In practice, we only need to focus on the perturbed directions that dominate the
statistical response functionals. The linear response operators for the covariances of A = U, ωk can be discovered in a
similar way as the lagged-in-time third order correlations between large and small scales

RA2 (t) = σ−2
eq

[
δf0µ

〈
A′2 (t)U ′ (0)

〉
eq

+
∑
k

δfk
(
1 + µk−2

) 〈
A′2 (t)ω′k (0)

〉
eq

]
, (4.9b)

Still, here for capturing the higher order responses in this more complex system, it is necessary to include the feedbacks
from cross-correlations between different scales. Even though the cross-correlations between U and ω get decoupled in
the statistical steady state, the non-zero transient response cannot be ignored due to the nonlinear dynamics.

Given hyper-ellipticity, the above system with stochastic forcing is provably geometric ergodic [56]. The statistical
average under equilibrium measure can be computed through temporal average along a single trajectory, that is,

〈f (t) g (0)〉eq = lim
T→∞

1

T

ˆ T

0

f (τ + t) g (τ) dτ.

Exploiting this ergodicity is an effective way to reduced the computational cost. With the linear response operator
RA available, the leading order statistical response prediction can be computed using the FDT formulation (2.12). For
simplicity, we focus on the responses to constant perturbation, δF = aδf with the scalar a defining the amplitude of the
perturbation. We only need to calculate the time-integrated value R of the linear response operator to get the linear
prediction

δ 〈A〉 =

ˆ t

0

RA (t− s) δFds = a

ˆ ∞
0

RA (t) dt. (4.10)
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Figure 4.2: Statistical response in mean and variance in the large scale flow U and first vortical mode ω1. The forcing
perturbation amplitude ranges from -1.5 to 1.5. The true response from direct model simulation is compared with the
FDT linear response predictions.

Using the above formula (4.10) for constant forcing perturbation, the leading order responses can be calculated easily
and the predictions can be exact if the system is linear. On the other hand, many important nonlinear information in
the integrated form of the linear response operator RA is neglected. This will become a serious problem as the nonlinear
interactions between modes grow large.

As a first test for the prediction skill of the linear response theory, deterministic forcing perturbations are added on the
first two largest scale modes δFU and δF1. The perturbation is tested on a wide range with a ∈ [−1.5, 1.5]. The results
for the responses in the mean and variance are shown in Figure 4.2. First for the true statistical responses, nonlinearity
becomes dominant in both mean and variance even with small perturbation amplitudes. The linear response prediction
to the constant perturbation gives a tangent line at the zero perturbation point δF = 0. It offers the infinitesimal rate of
change near the origin, but fails to capture the nonlinear responses as the perturbation grows large.

4.3 Nonlinear response functionals from reduced-order statistical methods
In the prediction of nonlinear responses, reduced-order statistical models are required in correctly representing the nonlinear
higher order energy transfer mechanism. Here for the topographic barotropic flow, we focus on the responses in the large
scale flow U and the largest scale vortical mode ω1 due to perturbations. Thus only the first three modes are resolved
compared with the original truncated system. Following the general modeling steps in Section 3.3, the optimal model
parameters are first calibrated in the training phase, then the nonlinear responses are predicted in the forecast stage.

4.3.1 Reduced-order model for the barotropic system with topography

The same model reduction strategy in (3.9) is applied here on this barotropic system. In the reduced-order statistical
dynamics, we focus on the prediction in the mean

(
Ū , ω̄

)
, variance (rU , rω) and the cross-covariance c. Explicitly, the

dynamical equations for the statistical mean and variance in the leading modes can be derived for the imperfect reduced-
order model:

• Mean equations:
dω̄1

dt
+ Lm = −dω̄1 + δF1 − (dM,1 + iωM,1) ω̄1 +GM ,

dŪ

dt
− iĥ∗1ψ̄1 = −dŪ + δF0 − dM,0Ū +HM .

(4.11a)

• Covariance equations:
drω,1
dt

+ 2Lr = −2drω,1 + k−2σ2
1 − 2dM,1rω,1 + σ2

M,1,

drU
dt

+ 2ĥ∗1c1 = −2drU + µ−1σ2 − 2dM,0rU + σ2
M,0,

dc1
dt

+ Lc = −2dc1 − (dM,0 + dM,1 + iωM,1) c1.

(4.11b)
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In the mean equations, Lm represents the quasi-linear part as well as the large-small scale interaction, GM and HM add
the correction from the unresolved subspace using equilibrium statistics. In the variance equations, Lr and Lc represent
the quasi-linear effects between the small and large scale variables. The last terms on the right hand sides of the equations
offer the imperfect model estimation of the unresolved higher order feedbacks. Detailed derivation and expressions of the
above statistical equations can be found in [68].

The same model reduction strategy in (3.9) is carried out for this barotropic system. Feedbacks from higher-order
statistics through nonlinear triad interactions are replaced by the corrections as in (3.10). Imperfect model parameters
(dM , ωM , σM ) are introduced for each scale to control the model performance. The information-theoretic framework (3.5)
is applied in the training stage for the optimal model parameters. In addition, the model sensitivity is improved by scaling
the parameters with the total statistical energy 〈E〉 by solving the statistical energy equation (4.7) requiring only the
statistical mean state with perturbation. The total energy scaling factor has been shown crucial for the accurate prediction
of model responses.

4.3.2 Reduced model performance in predicting nonlinear responses

In the training phase, the imperfect model parameters are determined based on first equilibrium consistency to recover
the exact equilibrium statistics in the unperturbed climate; and then model sensitivity in reproducing the linear response
operators using the reduced statistical model. First, the equilibrium consistency is guaranteed using the steady state mean
and variance to compute the equilibrium higher order moment feedbacks. This offers the first constraint on the model
parameters. Next, the model sensitivity is improved by tuning the rest model parameters according to the linear response
operators R for the mean and variance in (4.9a) and (4.9b). The relative entropy distance offers an unbiased metric to
calibrate the model error combining the mean and variance.

The optimal tuning results for the linear response operators RA (t) for the mean and variance in the largest scale
states are compared in the first part of Figure 4.3. The optimized reduced-order model shows high skill in recovering the
linear response operators for both the mean and variance. Next in the second part of Figure 4.3, the predictions for the
nontrivial nonlinear responses in mean and variance are shown. The same constant forcing perturbations with different
amplitudes as in Figure 4.2 are tested again for the efficient reduced order model. In this case, the strong nonlinear
responses appearing in both mean and variance are captured with desirable accuracy in the nonlinear statistical model.
This example together with the previous linear response prediction with much larger errors emphasizes the crucial role
in modeling the important higher order moment feedbacks in achieving accurate prediction for the nonlinear statistical
responses.

4.4 Rigorous statistical bounds for the total statistical responses
Using the statistical reduced-order models, the nonlinear responses along the most important model directions can be
predicted with accuracy. From another perspective, it is also useful to investigate the bounds in the total statistical
variability of the turbulent system. This is related with the statistical saturation bounds concerning the nonlinear stability.
In this last section, we display the major conclusions developed in [70] for the rigorous statistical bounds in the barotropic
model with topography.

In the previous discussions for linear response theory, the fluctuation components about the steady state solution
(Ueq (µ) ,Ψeq (µ)) are characterized by the Gaussian invariant measure (4.4). This invariant distribution becomes unre-
alizable when the linear dependence parameter µ changes to negative. In this scenario, one natural question is how the
system responds to such uncertainties in the unstable regimes µ < 0.

4.4.1 Statistical energy saturation bounds in response to forcing and dissipation

The statistical saturation bounds in general are subject to two classes of flow perturbations: the perturbations in the initial
distribution configuration; and the external forcing and dissipation effect. The two sources of uncertainties are unified
under the same analytical framework using the conservation of statistical pseudo-energy (4.6) in [70]. Here we stick to
the previous model setup with the forcing and damping forms (4.5), and provide the saturation bounds in fluctuation
responses subject to external perturbations.

The total statistical energy 〈Eµ〉 in fluctuation due to the Ekman damping and forcing effects follows the dynamical
equation (4.7)

d 〈Eµ〉
dt

= −2d 〈Eµ〉+ µŪ · δF0 +
∑(

1 + µk−2
)
δF̂ ∗k · ω̄k +Qσ,µ,
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Figure 4.3: Prediction of the nonlinear statistical responses in the mean and variance for the topographic barotropic flow
from the reduced-order model. The upper panel shows the model prediction for the linear response operators for the mean
and variance in the training stage; the lower panel displays the reduced model predictions for the mean and variance
responses due to different deterministic forcing perturbations.
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with the deterministic part applying on the statistical mean state and the stochastic part offering the combined contribution
through Qσ,µ. To find the proper bound of the total statistical energy due to the external forcing, we separate the
interaction terms with the statistical mean by applying Cauchy’s inequality(

1 + µk−2
)
δF ∗k · ω̄k < (4λ)

−1 ∣∣1 + µk−2
∣∣ 〈|ωk|2

〉
+ λ

∣∣1 + µk−2
∣∣ |δFk|2 ,

µδF0 · Ū < (4λ)
−1 |µ|

〈
U2
〉

+ λ |µ| δF 2
0 .

with parameter λ > 0. Using Grönwall’s inequality to the above relations, the saturation bound for the total statistical
energy 〈Eµ〉 due to the effect of damping and external forcing can be found as

〈Eµ〉 =
µ

2

〈
U2
〉

+
1

2

∑
1≤k≤N

(
1 + µk−2

) 〈
|ωk|2

〉
≤ Cµ, (4.12)

with the statistical bound Cµ = µ
2

((
d−1F0

)2
+ d−1σ2

0

)
+ 1

2

∑(
1 + µk−2

) (∣∣d−1Fk

∣∣2 + d−1σ2
k

)
. The result in (4.12) offers

a desirable bound for the stable regime µ > 0. However with µ < 0, one obvious difficulty is that the components in the
statistical energy 〈Eµ〉 are not all positive. Thus (4.12) is no longer a saturation bound for the total energy, but a balance
between the positive and negative subspaces that separate the total 〈Eµ〉.

The trick in [70] is to propose ‘reference states’ with parameter α > 0 but with the real forcing in the form with
parameter µ < 0. The previous bound (4.12) is still valid according to the reference state energy 〈Eα〉, which remains
positive definite in all coefficients of

〈
U2
〉
,
〈
|ωk|2

〉
. Additional ‘reference forcing’ effects need to be separated for the

dynamical equation of Eα based on the reference state with parameter α > 0 in the mean flow and vortical modes. Then
the final saturation bound for the unstable regime µ < 0 is achieved by minimizing among all the bounds in (4.12) with
the reference states α > 0. We state the final conclusion for the saturation bounds with forcing and dissipation effects in
the following theorem:

Theorem 4. (Saturation bound for statistical mean and variance with damping and random forcing) With the linear
damping and forcing as in (4.5), the combined statistical mean fluctuation and variance, θEm + Ev, with the ratio
parameter 0 ≤ θ < 1 can be controlled as in

θEm + Ev ≤ Cθµ, (4.13)

with saturation bound

Cθµ = min
α>0

1

1− θ

[
(α− µ)

2

α2

β2

µ2
+
∑
k

(α− µ)
2
k2

α (α+ k2)

|ĥk|2

(µ+ k2)
2

]
+ d−1

[
σ2
U +

∑
k

(
k−2 + α−1

)
σ2
k,0

]
.

Above Em = Ū2 +
∑
k2|ψ̄k|2 is the total statistical energy in mean fluctuation, and Ev = U ′2 +

∑
k2|ψ′k|2 is the total

variance in the flow fluctuation.

4.4.2 Numerical verification of the saturation bounds

The saturation bound in (4.13) can be verified through simple numerical simulations. The basic model setup is kept the
same as before. The forcing perturbation is added according to the reference steady state (Ueq,Ψeq) defined by µ. The
maximum statistical growth in mean perturbation and variance is tested in the statistically unstable range µ ∈ (−2,−1).
Figure 4.4 compares the total statistical energy in the mean and variance fluctuation through direct numerical simulations
and the theoretical saturation bound (4.13) in the total variability of the statistics. The saturation bound offers a tight
upper limit for the maximum growth in the total statistics in both the mean fluctuation and the variance. Especially, for
the combined mean fluctuation and variance bounds with two ratio values θ, the upper bound estimation is extremely
close to the numerical results, offering an accurate prediction for the maximum increase in the total statistical energy.
A more complete discussion with many different forcing scenarios for the statistical saturation bounds according to both
initial uncertainty and external forcing excitations can be found in [70].

5 Beating the Curse of Dimensionality using Statistical Control Theory for
Complex Systems

The statistical control of inhomogeneous turbulent systems offers another set of problems where the statistical response
theory can play an important role. The efficient control of complex systems remains a challenging problem due to the
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Figure 4.4: Statistical saturation bounds with damping and forcing perturbation in the unstable regime µ ∈ (−2,−1). The
first row shows the bounds in the energy in mean fluctuation and total variance separately, and the second row gives the
combined statistical bounds with different parameter values θ. The theoretical bounds are compared with direct numerical
simulations.

inherent nonlinearity, high-dimensionality, and strong exchange of energy between scales [8, 38, 63, 23]. The major goal
of the control theory can be summarized as to construct an optimal course of action (the control) to drive the perturbed
statistical solution of a complex turbulent system back to the small neighborhood of the original unperturbed target
statistical equilibrium state.

One successful approach for controlling flows in the transition to turbulence is dynamical programing by solving the
Hamilton-Jacobi-Bellman (HJB) equation [3, 5]. However, the curse of dimensionality appears during directly solving this
HJB PDE when the system becomes genuinely high dimensional and fully turbulent [45]. We have shown previously in
Sections 4 that the statistical response theory offers an efficient way to characterize the model sensitivity to perturbations
with robust performance, so that it enables us to construct an alternative approach for the specific control without the
need to run the specific complex system. In this section, we illustrate the ideas presented in [54, 55] for the effective
control combining the statistical energy principle and statistical response theory. The topographic barotropic model (4.1)
is used as a typical example to demonstrate the novel control strategy and its skill.

5.1 Efficient control of total statistical energy with mean response
To avoid directly controlling the high dimensional system (2.1), we first seek to control the scalar statistical energy (2.8)
through manipulating the mean responses δū = ū− ūeq subject to various perturbation forcing δF

dE′

dt
− 2dE′ + ūeq · δF + F̄eq · δū + δF̄ · δū + δF̄ · δū, E′ (t) = E (t)− Eeq.

In the control problem, the focus is on the statistical energy fluctuation E′ = E−Eeq removing the unperturbed equilibrium
Eeq with δF ≡ 0. Instability will not appear in this statistical energy equation due to the symmetry in the nonlinear
interactions [44, 45]. Thus the major difficulty in stabilizing many directions of instability in controlling the original
equation is circumvented.

Next, The (deterministic) control forcing and the equilibrium statistics are projected to the subspace for control
spanned by a truncated orthonormal basis {ek}Nk=1

δF ≡ ~κ (t) =

M∑
k=1

κk (t) ek, ūeq =

N∑
k=1

ūeq,kek, F̄eq =

N∑
k=1

F̄eq,kek,

where the control forcing ~κ (t) applies on the selected M < N leading modes. The statistical energy fluctuation equation
with leading order responses in the mean can be written with respect to the forcing perturbation along the orthonormal
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modes {ek}Mk=1

dE

dt
= −2dE (t) +

M∑
k=1

[
ūeq,k · κk (t) + F̄eq,k · δūk (t;~κ)

]
, E (0) = E0. (5.1)

Above and later the primes for the fluctuation components are dropped in the statistical energy fluctuation E′, and E0 is
the initial total statistical energy perturbation to be controlled. Only leading order terms O (δ) remains in the dynamics
by assuming the perturbation is kept relatively small.

At last, we link the mean responses δū with the control forcing perturbation κ using the linear response theory.
Through the linear response formula in (2.12), the response in the leading order mean state, δū, subject to the external
forcing ~κ (t) can be estimated using the mean response operator Ru

δūk (t) =

ˆ t

0

Ru,k (t− s)κk (s) ds, Ru,k (t) = 〈uk (t)uk (0)〉 /req,k.

Above we assume that the responses from diagonal components for the variance along each direction ek is dominant, and
cross-covariances between different mode can be neglected. The diagonal model with autocorrelation functions as the
linear response operator for the mean Ru can be shown as an attractive option from judicious simple linear regression
approximations [51, 66, 69].

Using the linearization in both the statistical energy equation and the leading order mean response, the first control
problem for the total statistical energy fluctuation can be formulated using the mean response operator Ru (t). The
statistical control equation in leading order responses can be rewritten from the original statistical dynamics as

dE

dt
= −2dE (t) +

M∑
k=1

[
ūeq,k · κk (t) + F̄eq,k ·

ˆ t

0

Rū,k (t− s)κk (s) ds

]
, E (0) = E0. (5.2)

The control system (5.2) is linear but involves nonlinear statistical functionals as coefficient from the target unperturbed
equilibrium measure. Non-Markovian forcing is introduced through the linear response operator Rk.

5.2 Effective statistical control strategy in two steps
The task now is to find proper formula for the ideal optimal control forcing ~κ (t) on the mean state to drive the perturbed
energy fluctuation E in (5.2) back to zero (or close to zero) efficiently with minimum cost. A local statistical control C (t)
is then introduced as a nonlocal functional of the scalar control forcing ~κ (t) containing all the perturbed feedbacks in the
statistical energy fluctuation.We first construct the linear statistical control problem by proposing a proper cost function
to optimize. With the statistical control C (t) =

∑
k Ck defined with a combination of the contributions from each mode

ek, the control system (5.2) is converted to the linear scalar dynamical equation between time interval [t, T ]

dE

ds
= −2dE (s) +

∑
k

Ck (s) , E (t) = x, t ≤ s ≤ T, (5.3)

regardless of the specific structure in the functional C (t). We attempt to minimize the cost function as a quadratic
combination of the energy fluctuation E and control functional in each mode Ck

Fα [Ck (·)] ≡
ˆ T

t

[
E2 (s) +

M∑
k=1

αkC2
k (s)

]
ds+ kTE

2 (T ) , (5.4)

The weighting parameter αk > 0 is introduced to add a balancing factor between the control efficiency (due to E) and the
control expense (due to Ck). In this way, we need just focus on this statistical control operator C (t) for total statistical
energy E (t) in the first step regardless of the explicit forms of the mean state and specific forcing perturbations or exact
equilibrium statistics. Then in the second step, the task is to invert the (nonlocal) functional C (t) to get the explicit
forcing control strategy for κ (t) using the leading order mean responses.
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5.2.1 Optimal control on statistical energy identity

In the first step of constructing statistical control C (t) in (5.3), this linear statistical control problem can be directly solved
by the HJB equation through dynamic programming [3]. It solves the backward equation in time about the optimal value
function v (x, t) = minC Fα [C (·)]. The HJB equation becomes the Riccati equation [18, 54] that is easy to solve for the
explicit optimal solution. The optimal feedback control C∗k (t) together with the optimal control statistical equation for
E∗ can be found by the following system

C∗k (t) =− α−1
k K (t)E∗ (t) , E∗ (t) = E0 exp

(
−2dt−

∑
k

α−1
k

ˆ t

0

K (s) ds

)
,

dK

dt
=
∑
k

α−1
k K2 + 4dK − 1, 0 ≤ t < T,

(5.5)

with the final time value K (T ) = kT and initial fluctuation energy E∗ (0) = E0.

5.2.2 Attribution of the optimal statistical control

The second step of the problem is to find the optimal control forcing κk (t) from the optimal statistical control C∗ (t)
achieved. Through the explicit formula (5.2), the attribution of the optimal statistical control forcing κ becomes the
nonlinear inversion using the linear response factor Ru

C∗ (t) = ūeqκ
∗ (t) + F̄eq

ˆ t

0

Ru (t− s)κ∗ (s) ds, (5.6)

Combining the above equality (5.6) with the previous explicitly optimal statistical control (5.5), it requires an explicit
expression for the mean response operator Ru so that the nonlocal operator can be inverted. The mean response function
can be simply approximated by the autocorrelation using a linear regression model

RMu (t) = exp (−γM t) = exp [− (dM + iωM ) t] . (5.7)

The imaginary parameter ωM is used to approximate the oscillatary structure that is common in autocorrelations. The
information-theoretic framework [66, 69] again offers an efficient way to reach the optimal model parameters with high
accuracy. We offer some more details about the strategy in finding the optimal model parameters in (5.7) in the next
section

With the approximation in the mean response operator (5.7), the explicit control forcing in (5.6) can be recovered by
solving the following equation

dκ

dt
+ (dM + F̄eq/ūeq)κ (t) + [(dM+2d)K(t)−1]/αūeqE

∗ (t) = 0. (5.8)

By solving the above equation, the proposed control κ (t) is constructed in explicit form to force the perturbed system
back to the neighborhood of initial unperturbed climate. The detailed derivation of the above steps can be found in [55].

In summary, the two-step strategy of the statistical control has the advantage of only requiring equilibrium information
a priori without running the detailed high-dimensional complex turbulent system with perturbations. The linear response
operatorRu for the mean can be approximated using the autocorrelation function in the most sensitive direction. Therefore
the entire control strategy can be carried out easily despite the highly complicated original turbulent dynamical system
in a large phase space with instability.

5.3 Statistical control of the topographic barotropic flow
The statistical control strategy is displayed under the topographic barotropic turbulent model (4.1) with the same model
setup. As shown in the various tests in Section 4, the flows show distinct inhomogeneous divergence from the equilibrium
state with changing directions as forcing perturbation is exerted. In controlling the turbulent flow, we again assume that
the equilibrium state (Ueq, ωeq) (i.e. the climate) is known with reasonable accuracy, and the goal is to find the optimal
control (as one external forcing) that can drive the perturbed states (say, due to unknown climate change perturbation
δF ) back to the unperturbed equilibrium at a fast rate.

27



According to the general framework, we begin with the scalar statistical dynamical equation to derive a optimal
statistical control C (t). Then the the optimal control forcing κ is found by solving a scalar Riccati equation regardless of
the complicated nonlinear effects. The same statistical energy equation (4.7) is adopted for the construction of statistical
control C (t) as in (5.3). As in the previous simulations, the perturbation forcing is only exerted on the large scale flow U
and the largest topographical modes ω1. These are the most sensitive directions to perturbations according to the linear
response analysis in Section 4.2. Therefore, we just need to control on the total statistical energy fluctuation using control
C0 on the mean flow U and C1 on the ground vortical mode ω1

d 〈E〉
dt

= −2d 〈E〉+ 2C1 + C0.

The optimal energy control can be found using the solution in (5.5)

C0 = −α−1
0 K (t) 〈E〉 (t) , C1 = −α−1

1 K (t) 〈E〉 (t) .
The values of α0, α1 can be determined by the energy in mean flow U and mode ω1.

5.3.1 Linear approximation for the statistical responses in perturbed modes

The next task is to recover the explicit control forcing κ (t) with the inversion relation through the statistical control
solutions C0, C1. The first-order response is approximated by the autocorrelation functions so that

δū (t) =

ˆ t

0

Ru (t− s)κ (s) ds = r−1
u

ˆ t

0

〈u (t− s)u (0)〉κ (s) ds,

with u = U controlling the large-scale flow and u = ω controlling the small-scale vortical modes. As a further approximation
for practical computation, linear regression model is used to fit the autocorrelations, that is, RMU (t) = exp

(
−γM0 t

)
and

RMω (t) = exp
(
−
(
γM1 − iωM1

)
t
)
. The first row of Figure 5.1 gives the linear model fitting for the autocorrelation functions.

Good agreement is reached using the linear explicit fitting functions. This guarantees the feasibility to recover the control
forcing form by solving the inversion problem (5.6). More applications of this linear fitting of the response operator will
be shown next in Section 6 for the prediction of intermittency.

5.3.2 Verification of the statistical control in the perturbed barotropic flow

In the numerical test, the same setup as in Section 4.1 is adopted again for the control tests. The unperturbed equilibrium is
reached with no additional forcing δF0 = δF1 = 0, while perturbations are added on the largest scales, δF0 = dF, δF1 = dF .
Still all the rest uncontrolled modes in smaller scales count for large percentage of the total energy, thus are crucial in the
final flow structure.

In the verification step, the skill of the optimal control forcing (κ0, κ1) is applied to the perturbed flow at time t = 5.
The lower panel of Figure 5.1 gives the control results compared with uncontrolled case where the forcing perturbation is
simply removed. The mean and variance responses in the large scale U and first mode ω1 both converge to the unperturbed
state. Compared with the uncontrolled case, the control forcing κ effectively speeds up the convergence process to a much
faster rate. This illustrate the effectiveness of the efficient statistical control strategy to propose the explicit control forcing
valid for high dimensional turbulent systems with many degrees of internal instability and uncertainty.

6 Predicting Extreme Events and Tracer Statistics in the Passive Scalar
Turbulence

Turbulent diffusion and intermittency form another rich group of highly nontrivial multiscale problems requiring strategies
using the statistical response theory [49, 61, 21, 69]. Intermittent phenomena in passive scalar turbulence refer to the
bursts of extreme values followed by low-amplitude phases that are representative in the observational data [62, 65, 20].
Even with no positive Lyapunov exponents, exactly solvable models have shown to exhibit intermittent behaviors from
rigorous analysis [57].

Linear and nonlinear response theories provide effective calibration strategies for the statistically accurate prediction
of these extreme events. Here we illustrate the application of statistical response theory developed in [58, 57] for the
prediction of intermittency under the framework of the two-layer baroclinic model (2.9e). The more complicated two-layer
model is picked here due to its wider range of representative features for typical intermittency in ocean and atmosphere
regimes [72, 76, 83].
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Figure 5.1: Control of the topographic barotropic model. The upper panel shows the fitting the of the autocorrelation
functions in the leading modes; and the lower panel gives the control results in mean and variance for the most sensitive
directions.

6.1 Stochastic formulations for the passive scalar turbulence
The scalar field T (x, t) is characterized by the concentration of the passive tracers which immerse in the turbulent fluid
with velocity v but do not inversely influence the dynamics of the fluid. The evolution of the scalar field is described
through the joint effect of turbulent advection and diffusion [72, 75, 52]

∂T

∂t
+ v · ∇T = −dTT + κT∆T. (6.1)

The dissipation is set as a linear damping and diffusion, where dT has a stronger effect on the large-scale modes and κT
applies to the small-scale modes for the diffusion. The statistical description of tracer transport in turbulent flows is a
prevalent concern in atmospheric and oceanic fluid dynamics when the advection flow v becomes turbulent [75, 67]. There
exists well developed statistical-dynamical understanding for the above problem but with much simpler master equations
for the advection flow [57, 78]. The dynamics of the passive tracers can be also investigated via the Lagrangian approach
tracking the tracer trajectories [60, 52].

6.1.1 Equations of the passive tracer turbulence with mean gradient

The existence of a background mean gradient for the tracer field has been shown responsible for many important phenomena
[4, 7]. A background mean gradient varying along y direction is then introduced in the tracer field

T (x, t) = αy + T ′ (x, t) . (6.2)

The fluctuation part of the tracer T ′ satisfies the following dynamics by substituting the decomposition (6.2) into the
original tracer equation (6.1)

∂T ′

∂t
+ v (x, t) · ∇T ′ (x, t) = −αv (x, t)− dTT ′ + κT∆T ′. (6.3)

The turbulence flow v = (u (x, t) , v (x, t)) is the solution of the two-layer equations (2.9e).
The equations (6.3) offer a detailed illustration about the energy exchange mechanism between the tracer and underlying

flow field. Explicit solutions for the mean, variance, and cross-covariance between tracer and flow modes can be derived
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explicitly and intermittency can be predicted through the random resonance between modes of the turbulent velocity and
the passive tracer [57]. The system (6.3) advected by the two-layer flow contains more realistic features with inherent
internal instability and strong non-Gaussian statistics. The reduced-order model is then constructed with a careful
calibration according to the true model nonlinear responses.

6.1.2 Reduced-order stochastic model for the passive tracer turbulence

Usually high computational cost is required to resolve the tracer equation (6.3) as well as the complex turbulent advection
flow (2.9e) through direct methods. As a continuation of the idea for model reduction in Section 3.3 and [39], we adopt the
model reduction procedure with linear corrections to approximate the advection flow field in the leadingM most energetic
modes so that the principal variability can be captured.

First, the flow potential vorticity qj and passive tracer disturbance T ′j can be written in the expansion under modes as

q =

N∑
k=1

q̂ke
ik·x, T ′ =

N∑
k=1

T̂ke
ik·x.

It has been shown that important non-Gaussian and intermittent structures in the tracer field can be generated from a
simplified linear Gaussian advection flow. Therefore the reduced-order advection flow equations can be proposed using
the imperfect model reduction idea as in Section 3.3 and 4 to replace the complex quadratic interaction with equivalent
linear damping and noise

dq̂M,k = − (γq,k + iωq,k) q̂M,kdt −DM
q,kq̂M,kdt+ ΣMq,kdWq,k, 1 ≤ |k| ≤M. (6.4)

The turbulent velocity field can be achieved from the streamfunction vM = ∇⊥ψM . Only the first M � N large-scale
modes, 1 ≤ |k| ≤ M , are resolved in the reduced-order formulation in (6.4). (γq,k, ωq,k) are the linear dissipation and
dispersion operators. Additional damping and noise

(
DM
q ,Σ

M
q

)
are introduced to correct model errors due to the neglected

nonlinear interactions in the flow equations, so that consistent equilibrium statistics in first two moments and optimal
linear response functional can be recovered.

Next, the tracer dynamics is modeled directly without additional model calibrations about the tracer field statistics in
case of over fitting about data

dT̂M,k +
(
vM · ∇T̂M

)
k
dt = iαkxψM,kdt− (γT,k + iωT,k) T̂M,kdt, 1 ≤ |k| ≤M. (6.5)

Consistent with the advection flow model (6.4), only the first leading modes |k| ≤ M � N are resolved in the tracer
approximation model. The advection flow solution vM = ∇⊥ψM is solved from the Gaussian linear model solution in
(6.4), The damping and dispersion operators are γT,k = dT +κT |k|2, and ωT,k = kxU due to the dissipation and advection
in large-scale zonal mean flow.

In this modeling process, we only consider the calibration about the advection flow field, and the flow solution is
applied to the tracer equations for predicting tracer statistics directly. One crude approximation in flow equation (6.4) is
to replace the nonlinear advection with linear damping and noise

(
DM
q ,Σ

M
q

)
as discussed in Section 4 and previous works

[66, 57]. Using the statistical formulation (3.9), the additional damping and noise corrections for the reduced-order flow
vorticity model (6.4) is proposed in the following form

DM
q,k = −1

2
Qq,−F,eq,k

(
Rqk,eq

)−1

+Dadd
M , ΣMq,k =

(
Qq,+F,eq,k +

(
Σadd
M,k

)2)1/2

. (6.6)

Above QqF,eq is the nonlinear flux (3.10) from the equilibrium statistics, and the parameters
(
DM
q,k,Σ

M
q,k

)
are additional

corrections. Comparing with the exact true system, the reduced-order approximation is equivalent to replacing the nonlin-
ear interaction terms with the judiciously calibrated damping and noise (6.6) in consideration with both the equilibrium
energy transfer mechanism and further sensitivity correction. Still this approximation may introduce large model er-
rors due to neglecting the feedbacks from the unresolved smaller scale fluctuations. Next, the imperfect model error is
calibrated and minimized using the information-theoretical framework by calibrating the linear response functionals.
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6.2 Predicting extreme events using the statistical response theory
6.2.1 Training phase for optimal linear response with information theory

Now we describe the model calibrations for consistency in equilibrium moments, and model optimization using linear
response theory under a systematic information-theoretic framework. This information-theoretic framework has been
utilized to systematically improve model fidelity and sensitivity and to make an empirical link between model fidelity and
forecasting skill. Using the statistical response theory, proper imperfect model parameters can be proposed according to
the detailed model calibration using equilibrium statistics.

Especially in the case for capturing model intermittency with fat-tailed distributions in the leading modes, accurate
characterization about the transient state with instability becomes crucial. It is realized that with only the corrections
from the equilibrium nonlinear interactions, large errors may still exist in the reduced-order model predictions since
the autocorrection functions are not well characterized). As illustrated in the linear response theory (2.12), the mean
sensitivity in the stochastic process for q (t) can be approximated by its autocorrelation functions

Rqu (t) ≡ 〈(q (t)− q̄) (q (0)− q̄)〉eq . (6.7)

Next we follow the general strategy introduced in [66, 69] for measuring autocorrelation functions with the help of
information theory.

The problem here is about to find a proper metric to measure the errors in the imperfect model autocorrelation
functions in the training phase in a balanced way. A preferable measure to offer an unbiased metric for the imperfect
model probability distribution pM from the truth p is to use the relative entropy (3.5) concentrating on the leading order
moments. However one additional difficulty in tuning the autocorrelation functions under the information metric is that the
functions given in (6.7) is not actually a distribution function to measure in the relative entropy. The problem can be solved
by instead considering the spectral representation of the random process q (t), from the theory of spectral representation
of stationary random fields [82]. It is proved by Khinchin’s formula [82], that if the autocorrelation function R (t) makes
smooth and rapid-decay, a positive definite matrix E (λ) > 0 can be constructed so that the spectral representations of
the autocorrelation R (t) and stationary process q become

R (t) =

ˆ ∞
−∞

eiλtdF (λ) , q (t) =

ˆ ∞
−∞

eiλtẐ (dλ) , (6.8)

where the spectral random measure Ẑ (dλ) has independent increments and energy spectrum measured by dF (λ) =
E (λ) dλ = E|Ẑ (dλ) Ẑ∗ (dλ) |. Applying the theory for spectral representation of stationary processes, we find the one-to-
one correspondence between the autocorrelation functionR (t) and positive-definite energy spectra E (λ), together with the
spectral representation Ẑ (dλ) of the stochastic process q (t). We seek a spectral representation about the autocorrelation
function like

P (E (λ) , EM (λ)) =

ˆ
D
(
E (λ)EM (λ)

−1
)
dλ, (6.9)

where D (x) ≡ − log detx + trx − 2 is the Gaussian relative entropy with a zero mean state. And since here we only
concentrate on the leading order statistics (that is, mean and variance), thus this representation is enough. We can find
the optimal model parameter θ∗ = (dM , ωM ) by minimizing the information metric defined in (6.9)

P (E (λ) , EM (λ,θ∗)) = min
θ
P (E (λ) , EM (λ,θ)) . (6.10)

Note that in the reduced-order model in (6.4), the dynamics in each mode is set to be simple and linear, thus the model is
efficient to run and even affordable for ensemble method to run a group of particles to capture the statistics in important
spectral modes. The detailed description of the above strategy can be found in [66, 69].

6.2.2 Prediction of extreme events in tracers in the baroclinic turbulence

We test the reduced-order models described in the framework of the two-layer baroclinic model (2.9e). In numerical
simulations, the true statistics is calculated by a pseudo-spectra code by resolving the two-layer equations with 64 spectral
modes zonally and meridionally, corresponding to 128× 128× 2 grid points in total. The time integration is through the
standard 4th-order Runge-Kutta methods. The tracer field is simulated directly using the two-layer flow solution. In the
reduced-order models, we only compute the large truncation |k| ≤M = 10 in largest scale modes, compared with the true
system resolution |k| ≤ N = 64.
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Figure 6.1: Illustration about tracer intermittency with heat flux. The first row is the snapshots of the flow field with
blocked and unblocked regime. The following parts show typical time-series for both the heat flux and scalar passive
tracer.

As a typical example, Figure 6.1 displays the representative flow and tracer structures from direction numerical
simulations. The time-series of the heat flux Hf =

ffl
vτ =

ffl
ψxτ illustrate the heat transfer mechanism. In the unblocked

regime with strong zonal flow, the meridional heat flux is suppressed; while in the blocked regime strong meridional heat
flux can be observed showing a strong meridional transport of the heat. The source of intermittency in passive scalar tracer
is described qualitatively in [7] under an elementary model. Strong tracer intermittent bursts are always corresponding to
the strong meridional heat transport in blocked regime leading to high mixing rate in tracer modes; the quite regime with
little meridional heat flux in the unblocked regime also shows little intermittency of the tracer field in small amplitude.

The above on and off intermittent mechanism detailed in [7, 52] explains the turbulent mixing and intermittency
via streamlines blocking and opening through simple elementary model with no instability and turbulence, while similar
phenomena are also observed in the numerical simulations through much more complex two-layer baroclinic model in
turbulence here. Even though simple and qualitative, the intuitive reasoning hints that the first two most energetic leading
modes (0,1) and (1,0) which represent the competitive unblocked and blocked regime might be crucial for modeling the
intermittent structures in the tracer field.

Still, the two-layer turbulent model includes much more complicated non-Gaussian nonlinear features. So next we
test the performance with combination of the reduced-order models (6.4) and (6.5), and check how the tuning procedure
in training phase can improve the imperfect model prediction skill. Figure 6.2 plots the time-series and PDFs of the
leading tracer modes with strong intermittent structures. First qualitatively, the reduced model captures the occurrence
of extreme events with much less computation cost. Next quantitatively in the PDFs, the fat tails representing the more
frequent occurrence of extreme values are also captured from the reduced order model. Notice here in the reduced-order
approximation, only the largest scale modes |k| ≤ 10 are resolved compared with the full model with a resolution of 128
grid points along each horizontal direction. The model efficiency can be effectively improved by adopting the low-order
model. A complete comparison of the skills of the reduced-order stochastic model for the recovery of tracer energy spectra,
eddy diffusivity, and various fat-tailed distributions in different ocean/atmosphere regimes is shown in [69].

7 Summarizing Discussions
Linear and nonlinear statistical response theory provides an effective tool to analyze the various problems and challenges in
high-dimensional turbulent dynamical systems [45, 37, 81, 39]. In this paper, we summarize several useful perspectives of
the linear and nonlinear response theory with applications to sensitivity analysis, uncertainty quantification, and control
of complex turbulent systems [45, 39, 54, 68]. The effectiveness of the various strategies described in the main text
are displayed under a hierarchy of simplified prototype models ranging from exactly solvable equations to geophysical
turbulence with anisotropic dynamics.

We first provide a brief introduction to the general statistical response theory in Section 2. The practical skills in
predicting multiscale variability in mean and variance using the linear response operators with various approximation
strategies are discussed in Section 3 using the two-layer L-96 model showing nontrivial nonlinear responses. The accuracy
with the different equilibrium statistical approximations is calibrated under the unbiased information metric [40]. Already
under this simple framework, it shows the importance of considering the higher order non-Gaussian statistics even for
the accurate prediction in the second order variance responses. The extent of the prediction skill in the linear response
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Figure 6.2: Prediction about tracer intermittency using stochastic reduced order model. The left panel is the time-series
for the first two leading modes (1,0) and (0,1) between true model and reduced model results; the right panel compares
the PDFs in the first four modes between the truth in blue and reduced model prediction in red with the Gaussian fit in
dashed black lines.

theory is limited in the small perturbation regime. This shortcoming becomes more obvious in the anisotropic barotropic
turbulence in Section 4 where the nonlinear response to the external forcing perturbations is particularly strong.

A systematic information-theoretic framework [45, 39, 49] is shown effective to improve the prediction skill and capture
the nonlinear response trend. Without dependence on the specific perturbation form, a statistical model reduction strategy
in general can be applied to any turbulent dynamic systems with model error for predicting any perturbed responses. It is
required for the models to recover the crucial features of the natural system in statistical equilibrium for climate fidelity, and
improve the model sensitivity in response to various external perturbations like climate change and mitigation scenarios.
Linear response theory, in turn, provides important guideline for the tuning of optimal imperfect model parameters in
the training phase in a systematic fashion. The validity of the reduced-order statistical models is displayed first in the
simplest three-dimensional triad model for characterizing the typical features in the strategy, and then to the more complex
topographic barotropic flows including multiscale flow interactions with detailed investigation in Section 4. The model error
is effective reduced by combining the linear response theory with the efficient information theory calibration. Besides the
turbulent flow field, the dynamics of passive tracers advected by the turbulent flow also contain many distinctive features,
such as, the occurrence of extreme events characterized by fat-tails in the tracer density distributions. The same model
reduction idea is applied to the construction of stochastic models [69, 66] aiming to capture such extreme events. In
Section 6, the reduced-order stochastic model displays uniform high skill in capturing fat-tails in the leading resolved
modes using the complex two-layer baroclinic model.

The statistical response theory also displays a promising role in the development of effective control of high-dimensional
dynamical systems [54, 55]. Instead of a direct control on the state variables in a high-dimensional phase space, the simple
scalar dynamical equation makes it possible for the control of total statistical energy in an efficient way. Using the total
statistical energy equation [54] avoids treating the complicated higher order nonlinear interactions with instabilities. The
statistical responses in the mean subject to external forcing is approximated using linear response theory without the need
to run the explicit model. The control performance is illustrated using the same topographic barotropic model in Section
5. Despite the model errors introduced through the leading order expansion in both the statistical equation and linear
prediction in mean response, the statistical control methods have uniform robust skill for controlling the homogeneously
and inhomogeneously perturbed system in the same fashion. Furthermore this statistical control strategy shows potential
for extremely high dimensional problems in combination with turbulent flows and passive turbulence.
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