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Abstract

The Madden-Julian oscillation (MJO) is the dominant mode of variability in the
tropical atmosphere on intraseasonal timescales and planetary spatial scales. Despite
the primary importance of the MJO and the decades of research progress since it original
discovery, a generally accepted theory for its essential mechanisms has remained elusive.
In recent work by two of the authors, a minimal dynamical model has been proposed
that recovers robustly the most fundamental MJO features of (I) a slow eastward
speed of roughly 5ms™!, (II) a peculiar dispersion relation with dw/dk ~ 0, and (III)
a horizontal quadrupole vortex structure. This model, the skeleton model, depicts
the MJO as a neutrally-stable atmospheric wave that involves a simple multiscale
interaction between planetary dry dynamics, planetary lower-tropospheric moisture,
and the planetary envelope of synoptic-scale activity. In this article, we show that
the skeleton model can further account for (IV) the intermittent generation of MJO

events and (V) the organization of MJO events into wave trains with growth and
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demise, as seen in nature. We achieve this goal by developing a simple stochastic
parametrization for the unresolved details of synoptic-scale activity, that is coupled to
otherwise deterministic processes in the skeleton model. In particular, the intermittent
initiation, propagation and shut down of MJO wave trains in the skeleton model occur
through these stochastic effects. This includes examples with a background warm-
pool where some initial MJO-like disturbances propagate through the western region
but stall at the peak of background convection/heating corresponding to the maritime

continent in nature.

1 Introduction

The dominant component of intraseasonal variability in the tropics is the 40 to 50 day tropical
intraseasonal oscillation, often called the Madden-Julian oscillation (MJO) after its discoverers
(Madden and Julian, 1971; Madden and Julian, 1994). In the troposphere, the MJO is an equa-
torial planetary-scale wave, that begins as a standing wave in the Indian Ocean and propagates
eastward across the western Pacific ocean at a speed of around 5ms~!. The planetary-scale circu-
lation anomalies associated with the MJO significantly affect monsoon development, intraseasonal
predictability in midlatitudes, and the development of the El Nino events in the Pacific ocean,
which is one of the most important components of seasonal prediction.

Despite the primary importance of the MJO and the decades of research progress since its
original discovery, no theory for the MJO has yet been generally accepted, and the problem of
explaining the MJO has been called the search for the Holy Grail of tropical atmospheric dy-
namics (Raymond, 2001). Simple theories provide some useful insight on certain isolated aspects
of the MJO, but they have been largely unsuccessful in reproducing all of its fundamental fea-
tures together (Zhang, 2005). Meanwhile, present-day simulations by general circulation models
(GCMs) typically have poor representations of it (Lin et al., 2006; Kim et al., 2009). A grow-
ing body of evidence suggests that this poor performance of both theories and simulations in
general is due to the inadequate treatment of the organized hierarchy of tropical processes as a

whole (e.g. Hendon and Liebmann, 1994; Zhang, 2005; Moncrieff et al., 2007; Lau and Waliser,
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2012). This hierarchy involves interactions between organized structures of tropical convection
(convectively-coupled waves, cloud-clusters...), that are defined on a vast range of spatiotemporal
scales (synoptic, mesoscale...) and that generate the MJO as their planetary envelope .

This organized hierarchy of tropical processes is the focus of various observational initiatives
and modeling studies. The challenges to deal with are two-fold. First, there is a general lack
of theoretical understanding of this hierarchy and of its relation to the MJO. For instance, in-
sight has been gained from the study of MJO-like waves in multicloud model simulations and in
superparametrization computer simulations, which appear to capture many of the observed fea-
tures of the MJO by accounting for smaller-scale convective structures within the MJO envelope
(Grabowski, 2001; Grabowski and Moncrieff, 2004; Moncrieff, 2004; Majda et al., 2007; Khouider
and Majda, 2007). In fact, the multicloud model coupled to a state of the art GCM with coarse
resolution has been shown to produce a MJO with realistic structure in idealized simulations
(Khouider et al., 2011). As another example, the role of synoptic scale waves in producing key fea-
tures of the MJO’s planetary scale envelope has been elucidated in multiscale asymptotic models
(Majda and Biello, 2004; Biello and Majda, 2005; Majda and Stechmann, 2009a; Stechmann et al.,
2013). Secondly, a consequent limitation of current GCMs and models in general that simulate the
MJO is the resolution of small scale moist processes. In these models computing resources signifi-
cantly limit spatial resolution (to &~ 10 — 100 km), and there are therefore several important small
scales that are unresolved or parametrized according to various recipes. As regards tropical convec-
tion, unresolved processes at smaller scales such as deep convective clouds show some particular
features in space and time, such as high irregularity, high intermittency and low predictability.
Some good candidates to account for those processes while remaining computationally efficient
appear to be suitable stochastic parametrizations (Majda et al., 2008; Palmer, 2012). Generally
speaking, these models consist in coupling some simple stochastic triggers (e.g., birth/death, spin-
flip, coarse-grained lattice models...) to the otherwise deterministic processes, according to some
probability laws motivated by physical intuition gained (elsewhere) from observations and detailed
numerical simulations (Gardiner, 1994; Katsoulakis et al., 2003; Lawler, 2006). This methodology

has been successful in parametrizing with more realism some essential processes of tropical vari-
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ability, in a broad range of applications (Majda and Khouider, 2002; Khouider et al., 2003; Majda
and Stechmann, 2008; Khouider et al., 2010; Stechmann and Neelin, 2011; Frenkel et al., 2012;
Frenkel et al., 2013). A particular focus of the present article is the relevance of such methodology
to the MJO.

While theory and simulation of the MJO remain difficult challenges, they are guided by some
generally accepted, fundamental features of the MJO on intraseasonal-planetary scales that have
been identified relatively clearly in observations (Hendon and Salby, 1994; Wheeler and Kiladis,
1999; Zhang, 2005). These features are referred to here as the MJO’s “skeleton” features (Majda
and Stechmann, 2009b):

L. A slow eastward phase speed of roughly 5ms~!,
I1. A peculiar dispersion relation with dw/dk ~ 0, and
I11. A horizontal quadrupole structure.

Recently, Majda and Stechmann (2009b) introduced a minimal dynamical model, the skeleton
model, that captures the MJO’s intraseasonal features (I-III) together for the first time in a
simple model. The model is a nonlinear oscillator model for the MJO skeleton features and the
skeleton features of tropical intraseasonal variability in general. Tt depicts the MJO as a neutrally-
stable atmospheric wave that involves a simple multiscale interaction between (i) planetary-scale,
dry dynamics, (ii) planetary-scale, lower-tropospheric moisture and (iii) the planetary envelope
of synoptic-scale convection/wave activity. In particular, there is no instability mechanism at
planetary scale, and the interaction with sub-planetary processes (iii) discussed above is accounted
for, at least in a crude fashion (see alternatively Wang and Liu, 2011; Liu and Wang, 2012).
While the features (I-III) are the salient intraseasonal-planetary features of MJO composites,
individual MJO events often have unique features beyond the MJO’s skeleton. These features are
referred to here as the MJO’s “muscle” features (Majda and Stechmann, 2009b). They include for
example refined zonal and vertical structures as well as complex dynamic and convective features
within the MJO envelope (e.g., front-to-rear vertical tilts, westerly wind bursts...), with charac-

teristics and intensity that differ from one MJO event to another (Kikuchi and Takayabu, 2004;
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Kiladis et al., 2005; Tian et al., 2006; Kiladis et al., 2009). Majda and Stechmann (2011) has
shown that the skeleton model, despite its minimal design, can account qualitatively for certain of
these MJO’s “muscle” features in suitable settings. In an collection of numerical experiments, the
non-linear skeleton model has been shown to simulate MJO events with significant variations in
occurrence and strength, asymmetric east-west structures, as well as a preferred localization over
the background state warm pool region.

In the present article, the goal is to account qualitatively for more realistic MJO’s “muscle”

features within the skeleton model. Two particular features of interest that we will recover are

IV. The intermittent generation of MJO events, and

V. The organization of MJO events into wave trains with growth and demise.

These features, though essential to our understanding of the MJO, remain quite elusive. There
is for example an on-going discussion on assessing to which extent the MJO events are either
generated as resulting from the internal variability of certain tropical processes or as a secondary
response to independently existing extratropical forcings (Zhang, 2005; Lau and Waliser, 2012).
A related question is why this generation is highly intermittent, with sometimes some clearly
identified precursors and sometimes few or none (Matthews, 2008; Straub, 2013). In addition, the
MJO events as observed in nature tend to organize into wave trains i.e. into series of successive
MJO events, either two, three, or sometimes more in a row (Matthews, 2008; Yoneyama et al.,
2013). There is notably a general lack of understanding of the processes controlling the growth
and demise of those wave trains.

Here, we will show that features (IV) and (V) can be accounted for only from the internal
variability of a few essential tropical processes such as the ones depicted in the skeleton model.
To achieve this goal, we will embed within the skeleton model a simple yet suitable stochastic
parametrization, namely a birth/death process (the simplest continuous-time Markov process),
that will allow for an intermittent evolution of (iii) the planetary envelope of synoptic activity
(Gardiner, 1994; Lawler, 2006). This stochastic parametrization follows the same prototype found
in the related studies mentioned above (e.g. as reviewed in Majda et al., 2008). However, while

those studies usually focus on parametrizing unresolved mesoscale processes (the ones unresolved



134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

in GCMs), the stochastic parametrization proposed here is intended at the unresolved synoptic
processes in the skeleton model. Synoptic scale processes are a complex menagerie of convectively
coupled equatorial waves, such as 2-day waves, convectively coupled Kelvin waves, etc, with high
irregularity and intermittency (Kiladis et al., 2009). Some of these synoptic details (but not all)
are important to the MJO, as they can be both modulated by the planetary background state
and contribute to it, for example through upscale convective momentum transport or enhanced
surface heat fluxes (Majda and Biello, 2004; Biello and Majda, 2005; Majda and Stechmann, 2009a;
Stechmann et al., 2013; Dias et al., 2013).

In the present article, we will document to what extent this “stochastic skeleton model” with
minimal design and stochastic parametrization accounts for both the features (I-I1I) and (IV-V) in
suitable simulation settings. We will consider two simulations in statistically equilibrated regime,
one with a homogeneous background state and one with a background state representative of the
equatorial warm pool.

The article is organized as follows. In section 2 we recall the design and main features of the
skeleton model, and present the stochastic version used here. In section 3 we present the solutions
of the stochastic skeleton model for a homogeneous background state. In section 4 we present the
solutions in different settings with a background state representative of the equatorial warm pool.
Section 5 is a discussion with concluding remarks. In appendix A we detail the numerical method,
and in appendix B we briefly summarize some additional sensitivity tests that show the robustness

of results to changes in model parameters.

2 Summary of the Skeleton Model

2.1 Non-linear Skeleton Model

The skeleton model has been originally proposed by Majda and Stechmann (2009b) (hereafter
MS009), and further analyzed in Majda and Stechmann (2011) (hereafter MS2011). It is a min-
imal non-linear oscillator model, defined at planetary scale, that depicts the MJO as a neutrally

stable wave. The fundamental assumption in the skeleton model is that the MJO involves a sim-
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ple multiscale interaction between (i) planetary-scale, dry dynamics, (ii) planetary-scale, lower-
tropospheric moisture and (iii) synoptic-scale, convection/wave activity. The last quantities (ii)

and (iii) in particular are represented by the variables ¢ and a, respectively:
- q: Lower-tropospheric moisture anomalies.
- a: Amplitude of the envelope of synoptic activity.

Note that both quantities are defined at planetary-scale: the planetary envelope a in particular is
a collective (i.e. integrated) representation of the convection/wave activity occurring at synoptic-
scale, the details of which are unresolved. A key part of the ¢ — a interaction is how moisture
anomalies influence convection. Rather than a functional relationship a = a(q), it is assumed that
g influences the tendency (i.e. the growth and decay rates) of the envelope of synoptic activity.

The simplest design that embodies this idea is the following (non-linear) amplitude equation:

Ora = Tqa, (1)

where T" > 0 is a constant of proportionality: positive (negative) low-level moisture anomalies
create a tendency to enhance (decrease) the envelope of synoptic activity.

The basis for equation (1) comes from a combination of observations, modeling, and theory.
Generally speaking, it is well-known that tropospheric moisture content plays a key role in regu-
lating convection (Grabowski and Moncrieff, 2004; Moncrieff, 2004; Holloway and Neelin, 2009).
In observations, specifically on intraseasonal-planetary scales, several studies have shown that the
lower troposphere tends to moisten during the suppressed convection phase of the MJO and that
lower-tropospheric moisture leads the MJO’s heating anomaly, which suggests the relationship in
equation (1) (Kikuchi and Takayabu, 2004; Kiladis et al., 2005; Tian et al., 2006). This relation-
ship is further suggested by simplified models for synoptic-scale convectively coupled waves showing
that the growth rates of the convectively coupled waves depend on the wave’s environment, such
as the environmental moisture content (Khouider and Majda, 2006; Majda and Stechmann, 2009a;
Stechmann et al., 2013). Stechmann et al. (2013) in particular estimates the value of I" from these

growth rate variations.
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In the skeleton model, the ¢ — a interaction parametrized in equation (1) is further combined

with the linear primitive equations. This reads, in non-dimensional units,

Ou — yv = —0,p

yu = —dyp

0=—-0.,p+10

Opu + Oyv + 0w =0 (2)

0,0 +w=Ha— s°
g — Quw = —Ha + s°

oia = T'qa,

with periodic boundary conditions along the equatorial belt. The five first rows of equation (2)
describe the dry atmosphere dynamics, with equatorial long-wave scaling as allowed at planetary
scale. The u, v, and w are the zonal, meridional, and vertical velocity, respectively; and p and ¢
are the pressure and potential temperature, respectively. The sixth row describes the evolution
of low-level moisture g, and the seventh row is the non-linear amplitude equation for a described
previously. All variables are anomalies from a radiative-convective equilibrium, except a. The
interactions between those various components is through the envelope of synoptic activity, a,
which is assumed to act at planetary-scale as a balanced source of both heating and drying. This
model contains a minimal number of parameters: @ is the background vertical moisture gradient,
I is a proportionality constant. The H is irrelevant to the dynamics (as can be seen by rescaling
a) but permits to define a heating/drying rate Ha for the system in dimensional units. The s’
and s? are external sources of cooling and moistening, respectively, that need to be prescribed in
the system (see hereafter).

To obtain the skeleton model in its simplest form, it is necessary to truncate the system from
equation (1) to the first vertical and meridional structures. For this flow trapped within the
equatorial troposphere the relevant structures are the first vertical baroclinic mode and the first
meridional Hermite function (Majda, 2003). First, we project and truncate at the first baroclinic

mode, such that u(z,y,2,t) = u(x,y,t)v2cos(2), O(z,y, 2,t) = 0(z,y,t)V2sin(z), etc., with a
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slight abuse of notation. The skeleton model now reads:

ou—yv—0,0=0

yu— 0,0 =0

8,0 — (Opu+ Oyv) = Ha — (3)
Oiq + Q(Opu + Oyv) = —Ha + s1

oa = T'qa,

where the dry dynamics component is now a time-dependent and non-dissipative version of the
Matsuno-Gill model (Matsuno, 1966; Gill, 1980). Second, we project and truncate at the first
Hermite function, such that a(z,y,t) = A(z,t)do, ¢ = Q¢o , s = Sipy, s° = S%p,, where
do(y) = V2(4m)~V4exp(—y?/2). A suitable change of variables for the dry dynamics component is
to introduce K and R, which are the amplitudes of the equatorial Kelvin wave and of the equatorial
Rossby first symmetric wave, respectively. Indeed, those equatorial waves are the only ones excited

by the meridional heating structures on ¢q, and are easily solved. The skeleton model now reads

0K +8,K = (5° — HA)/2
OR — 8,R/3= (5" — HA)/3

0:Q + Q0. K — 0, R/3) = (HA - S9)(Q/6 — 1)

9,A = (T)QA, (4)

with variables K, R, @), and A. The v =~ 0.6 is a cross-term resulting from the meridional
projection of the non-linear amplitude equation. The variables of the dry dynamics component

can be reconstructed a-posteriori using

u = [K_R]¢0+R¢2/\/§
v =[40,R — HAl$1/3v2 (5)
0 = —[K + R]¢o — R/ V2,
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where the next Hermite functions read ¢(y) = 2y(4r) Y4exp(—y?/2), and ¢o(y) = (2% —
1)(47)"Y*exp(—y?/2). The components ¢, and ¢, are irrelevant to the dynamics, yet they are
necessary to retrieve the quadrupole structure of the MJO (see figure 3 of MS2009). Note that
they are slight differences in notation with respect to MS2009 and MS2011, where A stands for
anomalies, the cross-term -y is absorbed into I', and the amplitudes K and R are chosen differently
(as V2K and 2v/2R in comparison).

We recall briefly the main properties of the skeleton model for the MJO, and the reader is invited
to refer to MS2009 and MS2011 for further details. The skeleton model is designed following two
important principles of energy conservation. For balanced external sources of cooling/moistening

s = 5%, the system in equation (3) conserves a vertically integrated moist static energy

20+ q) — (1 = Q)(Opu + Oyv) =0, (6)

and further conserves a total positive energy (as there are no dissipative processes)

_ 5

) ;UQ + ;92 + ;1?@ <9 + é) + FPé?a - 1;9;105;(@) —9,(uf) — 9,(w0) =0. (7
The linear waves of the skeleton model are shown in figure 1, as computed from the reference
parameter values used in this article (see hereafter). They are four eigenmodes that are, in order
of decreasing phase speed: the dry Kelvin mode (=~ 55ms™!), the MJO mode (~ 5ms™!), the
moist Rossby mode (=~ —3ms™!) and the dry Rossby mode (= —20ms~!). All four of the linear
modes are neutrally stable. The MJO mode in particular captures the fundamental features of the
observed MJO such as a slow eastward phase speed and an oscillation frequency that is roughly
constant. As seen on the associated eigenmode amplitudes, the MJO mode consists of coupled
interactions between the equatorial waves K, R (dominant at small wavenumber) and the moisture
and synoptic activity components @), A (dominant at large wavenumber). At small wavenumber

in particular the physical structure of the MJO mode is a horizontal quadrupole vortex structure,

as seen in nature (not shown, see figure 3 of MS2009).
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2.2 Stochastic Skeleton Model

We now introduce the stochastic skeleton model that is a modified version of the skeleton model
with a simple stochastic parametrization of the synoptic scale processes. In the skeleton model, the
MJO results from a simple multiscale interaction between (i) the planetary-scale dynamics and (ii)
moisture and (iii) the planetary envelope of synoptic activity (see discussion above). The details
of synoptic activity are, however, unresolved. They consist of a complex menagerie of convectively
coupled equatorial waves, such as 2-day waves, convectively coupled Kelvin waves, etc (Kiladis
et al., 2009). Some of these synoptic details (but not all) are important to the MJO, as they can
be both modulated by the planetary background state and contribute to it, for example through
upscale convective momentum transport or enhanced surface heat fluxes (Majda and Biello, 2004;
Biello and Majda, 2005; Majda and Stechmann, 2009a; Stechmann et al., 2013). With respect to
the planetary processes depicted in the skeleton model, the contribution of those synoptic details
appears most particularly to be highly irregular, intermittent, and with a low predictability. To
account for this intermittent contribution while keeping the minimal design of the skeleton model
(i.e., without solving entirely the synoptic details), one suitable strategy is to develop a stochastic
parametrization of the synoptic scale processes.

For such a stochastic parametrization, a simple yet non trivial design is to implement a stochas-
tic birth /death process (the simplest continuous-time Markov process) controlling the evolution of
the envelope of synoptic activity a (see chapter 7 of Gardiner, 1994; Lawler, 2006). Let a be a ran-
dom variable taking discrete values a = Aan, where 7 is a non-negative integer. The birth/death
process allows for intermittent transitions between the states 1, accounting here for intermittent
changes in the envelope of synoptic activity. The probabilities of transiting from one state 7 to

another over a time step At read as follows:

P{n(t+ At) = n(t) + 1} = MAt + o(At)

P{n(t+ At) = n(t) — 1} = pAt + o(At) .
P{n(t+At) =n(t)} =1 — (A + p)At + o(At)

P{n(t + At) #n(t) — 1, n(t), n(t) + 1} = o(At),

11
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where A\ and p are the upward and downward rates of transition, respectively. The envelope of
synoptic activity can intermittently increase at rate A or decrease at rate p. This can alternatively

be expressed in the form of a master equation

o P(n) =[An—1)Pn—=1) = An)Pmn)] + [un+1)Pn+1) — uln)Pn)], 9)

where P(n) is the probability of the state n (not to be mistaken with the conditional probabilities
in equation (8)). There are various possible ways to choose the transition rates p and A. Here, the
design principle is that the dynamics of the skeleton model presented previously must be recovered
on average. In the asymptotic limit of small transitions Aa, the mean-field equation associated to

equation (9) must read:

0 E(a) =TE(qa), (10)
where E denotes the statistical expected value. One simple and practical choice of the transition
rates that satisfies this design principle is as follows:

r +0,0ifg>0 0ifg>0
A= gl 0 if g and p = I (11)

dyo if ¢ <0 Clglnif ¢ <0
Note that the upward and downward rates A and p depend here on the system variables 1 and
¢, which is characteristic of a multiplicative noise. The kronecker delta operator 4, ensures that
A = 1 when n = 0 such that there is no finite-time extinction, and is null otherwise. The associated

mean-field equation reads

O E(a) = Aa E(A+ pu) =TE(qa) + Aa E(d,0) (12)

which is identical to the desired mean-field equation (10) in the asymptotic limit of small transitions
Aa.
This stochastic parametrization follows the same prototype found in previous related studies

(Majda et al., 2008). The methodology consists in coupling some simple stochastic triggers (e.g.,

12
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birth /death, spin-flip, coarse-grained lattice models...) to the otherwise deterministic processes,
according to some probability laws motivated by physical intuition gained (elsewhere) from obser-
vations and detailed numerical simulations (Gardiner, 1994; Katsoulakis et al., 2003; Lawler, 2006).
The methodology has been successful in parametrizing with more realism some essential processes
of tropical variability for which high irregularity, high intermittency and/or low predictability is in-
volved. This includes applications for the treatment of convective inhibition (Majda and Khouider,
2002; Khouider et al., 2003), of convective momentum transport (Majda and Stechmann, 2008),
of the transition from congestus to cumulus to stratiform clouds (Khouider et al., 2010), of the
transition to strong convection (Stechmann and Neelin, 2011), or with a realistic Walker-type cir-
culation (Frenkel et al., 2012; Frenkel et al., 2013). Note that while those studies usually focus on
parametrizing unresolved mesoscale processes (which are the ones unresolved in GCMs), here we
parametrize the unresolved synoptic processes in the skeleton model.

In this article we analyze the dynamics of the stochastic skeleton model in a statistically
equilibrated regime. Appendix A details the numerical method used to compute the simulations.
The reference parameters values used in this article read, in non-dimensional units: @ = 0.9,
' =1.66 (~ 03K 'day™'), H = 0.22 (10 Kday™!), with stochastic transition parameter Aa =
0.001. We will consider two experiments that differ by their background states, i.e. by the external
sources of cooling/moistening s and s?. For the experiment described in section 3 those external
sources are constant and zonally homogeneous, with values s’ = s7 = 0.022 (1 Kday™') at the
equator (where we recall that s’ = S%¢y and s? = S9¢). For the experiment described in section
4 those external sources are constant yet vary zonally to be representative of a background warm
pool state, with values s’ = s7 = 0.022(1 — 0.6 cos(2rx/L)) at the equator and where L is the
equatorial belt length. Such parameter values are consistent with the range of values used in
MS2009 and MS2011. In appendix B we briefly summarize some additional sensitivity tests that
show the robustness of results to changes in model parameters. In the following sections of this
article, simulation results are presented in dimensional units. The dimensional reference scales are

z, y: 1500 km, ¢: 8 hours, u: 50m.s™!, 6, ¢: 15 K (see table 1 of Stechmann et al., 2008).

13



306 3 The stochastic skeleton model with a homogeneous back-
307 ground

308 In this section, numerical solutions are presented with a homogeneous background state, as rep-
309 resented by the constant and zonally homogeneous external sources of cooling/moistening s’ and

310 s?. We analyze the simulations output in the statistically equilibrated regime.

311 3.1 Power spectra with a homogeneous background

312 The stochastic skeleton model simulates a MJO-like signal that is the dominant signal at intraseasonal-
313 planetary scale, consistent with observations (Wheeler and Kiladis, 1999). Figure 2 shows the
314 power spectra of the variables as a function of the zonal wavenumber & (in 27/40,000 km) and
315 frequency w (in ¢pd). The MJO appears here as a sharp power peak in the intraseasonal-planetary
316 band (1 <k <5 and 1/90 < w < 1/30 cpd), most prominent in u, ¢ and Ha. This power peak
317 roughly corresponds to the slow eastward phase speed of w/k ~ 5ms~! with the peculiar relation
318 dispersion dw/dk = 0 found in observations.

319 This MJO signal results from the internal variability of the stochastic skeleton model: the main
320 generation mechanism is that the MJO mode from linear stability (see figure 1) is excited by the
321 stochastic effects. Indeed, the MJO power peak in figure 2 approximatively matches the dispersion
322 curve of this MJO mode. In addition, it is slightly more prominent in v at wavenumber 1 and
323 in ¢ and Ha at wavenumber 5, consistent with the MJO mode eigenvector amplitudes shown in
324 figure 1. Due to the multiplicative stochastic noise and non-linear interactions, there are however
325 some notable differences with the linear solutions. First, the MJO power peak is at slightly lower-
326 frequency than the MJO mode dispersion curve. Second, it also excites weaker power peaks at the
327 double and triple of its frequency (= 0.04 c¢pd and =~ 0.06 cpd, respectively), which results from
328 the non-linear cross term ga in equation (1) or equation (10).

329 The other feature at intraseasonal-planetary scale is the power peak near the dispersion curve
330 of the moist Rossby mode from linear stability. This signal is, however, weaker than the MJO

331 signal, as can be seen for example by comparing eastward power (average within 1 < k < 3,
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1/90 < w < 1/30 cpd) and westward power (average within —3 < k£ < —1, 1/90 < w < 1/30 ¢pd)
(following e.g. Zhang and Hendon, 1997; Lin et al., 2006). The ratio of eastward /westward power
is 3 for u, 5.5 for ¢, and 2.8 for Ha, indicating dominant eastward propagations, though it is 0.1 for
6. Note however that 6 is weakly associated to the MJO signal in the skeleton model, consistent
for example with the weak temperature gradient approximation in the tropics (see the appendix
of MS2011; Sobel et al., 2001). There are also power peaks at high-frequencies (> 0.08 c¢pd), most
prominent in 6 and ¢, that match well the dispersion curves of the dry Kelvin and dry Rossby
modes from linear stability. Finally, recall that various processes found in nature are missing due
to the minimal design of the skeleton model, for example the synoptic-scale convectively coupled

Kelvin waves that would appear as a power peak around w/k =~ 15ms~!(Wheeler and Kiladis,

1999; Kiladis et al., 2009).

3.2 MJO variability with a homogeneous background

Figure 3 shows the Hovmollers diagrams of the model variables at the equator as well as a data
projection ey ;o that evaluates the MJO intensity by comparison to other waves from the linear
solutions (see MS2011). The data projection, eyrjo(z,t), is obtained by filtering all signals to the
intraseasonal-planetary band (1 < k£ < 3, 1/90 < w < 1/30 c¢pd), then computing the complex
scalar product ey jo(k,t) = X,, X7 for each wavenumber k and time ¢ from the MJO eigenvector
Xn(k) from linear stability (see figure 1) and the corresponding zonal Fourier series of signals
Xs(k,t), then applying the inverse zonal Fourier transform to eyrj0(k,t), with a slight abuse of
notation. This representation, along with the other Hovmollers diagrams shown in figure 3, allows
us to identify clearly the MJO variability despite the noisy signals. In figure 3 they are some
additional large-scale and small-scale propagating structures that are best revealed by computing
data projections on other linear solutions (dry Kelvin, dry Rossby, or moist Rossby mode), but
those structures do not appear to be directly related to the MJO variability (not shown).

On average, the simulated MJO events propagate eastward with a phase speed of around
5 — 15ms~! and a roughly constant frequency, consistent with the composite MJO features found

in observations. Furthermore, the MJO events are most prominent in u at large scale and couple
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to ¢ and Ha through a range of smaller scales, consistent with the power spectra shown in figure
2.

The effect of the stochastic fluctuations is to create a realistic intermittency in the simulated
MJO. As seen in figure 3 the MJO events are irregular and intermittent, with a great diversity in
strength, structure, lifetime and localization. This is an attractive feature of the present stochastic
skeleton model in generating MJO variability. In addition, the MJO events are organized into wave
trains with growth and demise, i.e. into series of successive MJO events following a primary MJO
event, as seen in nature (Matthews, 2008; Yoneyama et al., 2013). One series typically consists of
a succession of either two, three, or four MJO events in a row. In figure 3, there is for example
a series of four events during the time interval 100-250 days, a series of three events during the
time interval 300-450 days, and a series of four events during the time interval 700-900 days. The
primary MJO event of a series is sometimes related to a previous series, and sometimes has no
particular precursor conditions suggesting that it is spontaneously generated (Matthews, 2008).
In addition, each series can be either most prominent at wavenumber 1, wavenumber 2, or both
(Hendon and Salby, 1994; Wheeler and Kiladis, 1999).

Figure 4 shows the details of a selected MJO wave train. The MJO propagations with phase

L are clearly visible on u, ¢, Ha and ejrjo. It appears visually that the

speed around 5 — 15ms™~
MJO is an envelope of synoptic scale structures, as seen by the smaller scale bursts along the tracks
of propagation. This adds to the realism of the simulated MJO, even though the bursts result in
part from the superposition of additional small-scale propagations. Note that the oscillations on

Ha are particularly asymmetric, with sharp and localized maxima: this is expected from the

non-linear nature of equation (1) or equation (10) in the skeleton model.

3.3 Interannual variations of the MJO with a homogeneous background

Figure 5(a) shows the magnitude of the data projection eprjo (smoothed over zonal position and
time) over a long time interval of 10,000 days. This representation allows us to identify the low-
frequency growth and demise of the envelope of each MJO wave train while somewhat filtering

out the intraseasonal oscillations associated to individual MJO events. For comparison, the time
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interval shown in figure 3 is from 38,200 to 39,200 days.

As seen in figure 5(a), there are marked interannual variations of the MJO that consist of
an intermittent alternation between active and inactive low-frequency phases of MJO activity
(Hendon et al., 1999). The active low-frequency phases correspond to time intervals with MJO
wave trains having a strong intensity (i.e., a strong envelope magnitude), while the inactive low-
frequency phases correspond to time intervals with MJO wave trains having a weak intensity (there
is, however, always a MJO activity, even weak). There is for example a pronounced inactive phase
over the time interval 36,000 to 37,000 days, followed by an active phase over the time interval
37,000 to 38,000 days. This low-frequency modulation of the MJO activity results from the internal
variability of the skeleton model alone: indeed the skeleton model here has no prescribed external
sources of low-frequency modulation such as for example a seasonal cycle, an El Nino variability,
etc (Hendon et al., 1999; Zhang, 2005).

The representation in figure 5(a) also allows us to highlight the overall features of the MJO
wave trains, as seen on the evolution of their envelopes. The MJO wave trains show overall slow
growth and demise, with however a great diversity in lifetime and intensity. They can be most
prominent at wavenumber 1, wavenumber 2, or both. Overall they propagate slowly eastward,
while there is visual evidence of some non-propagating standing components (Zhang and Hendon,
1997). In addition, they have no preferred starting location consistent with the background state

being zonally homogeneous.

4 The stochastic skeleton model with a warm pool

While the previous section illustrated dynamics with a homogeneous background state, this section
illustrates the effect of a background state representative of the equatorial warm pool in nature
(see also MS2011). The associated external sources of cooling/moistening s? and s? are shown in
figure 6. The warm pool region is centered from x ~ 10000 km to 30000 km. As in the previous
section, we analyze the simulations output in a statistically equilibrated regime. For such a regime
the statistical means match the background radiative-convective equilibrium and there is increased

convective activity over the warm pool region as seen on the standard deviations of ¢ and Ha (not
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shown).

The figures 7 to 9 repeat all the diagnostics from previous section with the background warm
pool state, while the interannual variations of the MJO are shown in figure 5(b). Overall, the main
features of the stochastic skeleton model remain very consistent with the ones presented in previous
section for a homogeneous background state, and so they will be described only briefly. The main
specific feature with the background warm pool state is that MJO events remain confined to the

warm pool region, which is more realistic.

4.1 Power spectra with a warm pool

Figure 7 shows the power spectra of the variables for the simulation with background warm pool
state (note that the statistical means have been removed prior to this diagnostic). The dispersion
curves from linear stability shown in figure 7 correspond to a homogeneous background state, in
order to make easier comparison with figure 2.

The MJO-like signal is the dominant signal at intraseasonal-planetary scale, consistent with
observations (Wheeler and Kiladis, 1999). As compared to figure 2 with a homogeneous background
state, there is here a slightly increased power at the wavenumbers -1 and 1, consistent with the
zonal scale of the background warm pool state. In addition, the power spectra are slightly more
blurred, which is likely due to the presence in the skeleton model of two regions (inside and outside
the warm pool) with different properties. The ratios of eastward to westward power remain similar:
they are here around 2.5 for u, 4.5 for g, 2,5 for Ha, indicating dominant eastward propagations,

and 0.1 for 6.

4.2 MJO variability with a warm pool

Figure 8 shows the Hovmollers diagrams of the variables as well as the data projection e;; ;0 that
evaluates the MJO intensity, for the simulation with background warm pool state.

I and

On average, the MJO events propagate eastward with a phase speed of around 5—15ms~
a roughly constant frequency, consistent with observations. The effect of the stochastic fluctuations

is to create a realistic intermittency in the simulated MJO, with furthermore an organization into
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MJO wave trains with growth and demise (Matthews, 2008; Yoneyama et al., 2013). As compared
to figure 3 with a homogeneous background state, the MJO events are here confined to the warm
pool region, which is more realistic, and they are overall more prominent at wavenumber 1, which is
consistent with the zonal scale of the background warm pool state. Similar features were found in
MS2011. Most of the MJO events propagate through the entire warm pool region (from = ~ 10, 000
to 30,000 km), as seen for example during the time interval 800 to 950 days. However, some of the
MJO events propagate through the western warm pool region but stall at the warm pool center
corresponding to the maritime continent in nature (x = 20,000 km), as seen for example during
the time interval 100 to 250 days (Wang and Rui, 1990; Zhang and Hendon, 1997).

Figure 9 shows the details of a selected MJO wave train for the simulation with background
warm pool state. The MJO propagations with phase speed around 5 — 15ms~! are clearly visible
for u, ¢, Ha and eyrj0. This MJO wave train is confined to the warm pool region, though the

MJO event at time interval 780-820 days stalls at the warm pool center.

4.3 Interannual variations of the MJO with a warm pool

Figure 5(b) shows the interannual variations of the MJO (i.e., the magnitude of the data projection
enmgo ) for the simulation with background warm pool state. For comparison, the time interval
shown in figure 8 is from 18,800 to 19,800 days.

There are marked interannual variations of the MJO that consist of an intermittent alternation
between active and inactive low-frequency phases of MJO activity (Hendon et al., 1999). As
compared to figure 5(a) with a homogeneous background state, the MJO activity in figure 5(b)
is confined to the warm pool region, which is more realistic. The alternation between active and
inactive low-frequency phases of MJO activity is also faster in comparison. As seen in figure 5(b),
some MJO wave trains occupy the entire warm pool region (from z ~ 10,000 to 30,000 km), as
seen for example at time 15,000 days, while some occupy only the western half (from x ~ 10,000
to 20,000 km), as seen for example during the time interval 11,000 to 12,000 days. Some MJO

wave trains occasionally even develop outside the warm pool region.
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5 Discussion and Conclusions

We have analyzed the dynamics of a stochastic skeleton model for the MJO. It is a modified version
of a minimal dynamical model, the skeleton model, that has been presented in previous work by
two of the authors (Majda and Stechmann, 2009b; Majda and Stechmann, 2011). The skeleton
model has been shown in previous work to capture together the MJO’s salient features of (I) a

1. (IT) a peculiar dispersion relation with dw/dk ~ 0,

slow eastward phase speed of roughly 5ms™
and (III) a horizontal quadrupole structure. In addition to those features, the stochastic skeleton

model accounts for some realistic MJO features as seen in nature such as:
IV. The intermittent generation of MJO events, and
V. The organization of MJO events into wave trains with growth and demise.

We have achieved these results by developing a simple stochastic birth/death process for the
envelope of synoptic scale activity, that is coupled to otherwise deterministic processes in the
skeleton model. The features (I-V) have been recovered in simulations with either a homogeneous
background state or a background state representative of the equatorial warm pool, and have been
shown to be robust to main parameter changes.

There is an on-going discussion on assessing to which extent the MJO events are generated either
as resulting from the internal variability of certain tropical processes or as a secondary response
to independently existing extratropical forcings (Zhang, 2005; Lau and Waliser, 2012). Here we
contribute to this discussion by showing that (IV) the intermittent generation of MJO events can
be accounted for from only the internal variability of a few essential tropical processes such as the
ones depicted in the skeleton model. Here, the simulated MJO events are generated spontaneously
as resulting from the interaction between the stochastic changes in the level of synoptic activity
and the otherwise deterministic planetary processes. Furthermore, this generation is operating
with no planetary-scale instability; hence there is also no "scale selection” in the sense of linear
instabilities. In fact, as seen in nature, a range of planetary scales is active: wavenumbers 1 and 2
appear prominently for zonal wind, and slightly smaller scales are also prominent for the convective

activity. On average, the characteristics of the simulated MJO events are in fair agreement with
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the ones of the linear solutions of the skeleton model, but due to their intermittent generation
process they further show a great diversity in strength, structure, lifetime and localization.

The stochastic skeleton model presented here simulates MJO events that are (V) organized into
wave trains with growth and demise i.e. into series of successive MJO events, either two, three
or sometimes more in a row. This feature is qualitatively consistent with the observational record
where around 60% of MJO events immediately follow a previous event (Matthews, 2008). During
the recent CINDY/DYNAMO field campaign for example, three successive MJO events where
observed followed by a pause and an isolated fourth MJO event (Yoneyama et al., 2013; Zhang
et al., 2013). In addition, this organization of MJO events into wave trains results in interannual
variations of the MJO in the skeleton model, that consist of an intermittent alternation between
active and inactive low-frequency phases with enhanced or diminished MJO activity, respectively
(Hendon et al., 1999). This low-frequency modulation of the MJO activity results from the internal
variability of the skeleton model alone: indeed the skeleton model here has no prescribed external
sources of low-frequency modulation such as for example a seasonal cycle, an El Nino variability, etc
(Hendon et al., 1999; Zhang, 2005). For a representative background state of convection/heating
the MJO wave trains are preferentially confined to the region corresponding to the equatorial warm
pool in nature. In particular, some MJO-like disturbances propagate through the western warm
pool region but stall at the peak of background convection/heating activity corresponding to the
maritime continent in nature (Wang and Rui, 1990; Zhang and Hendon, 1997). As a perspective
for future work, the simulation results hint at various plausible mechanisms for the growth and
demise of the MJO wave trains. They may be controlled for example by dispersive processes (but
not by dissipation), by the stochastic effects, or by the energy transfers from/to the other linear
modes of the skeleton model (i.e., the dry Kelvin, dry Rossby, and moist Rossby modes).

While the stochastic skeleton model appears to be a plausible representation of the MJO
essential mechanisms, notably with features (I-IV) summarized above, several issues need to be
adressed as a perspective for future work. First, one important issue is to find an appropriate
observational surrogate for the envelope of synoptic scale wave activity. Secondly, due to it’s

[13

minimal design the model does not account for several finer details of the MJO’s “muscle”. These
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details include for example refined zonal and vertical structures as well as complex dynamic and
convective features within the MJO envelope (e.g., front-to-rear vertical tilts, the vertical structure
of westerly wind bursts), the characteristics and intensity of which differ from one MJO event
to another (Kikuchi and Takayabu, 2004; Kiladis et al., 2005; Tian et al., 2006; Kiladis et al.,
2009). A more complete model should also account for more detailed sub-planetary processes
within the MJO’s envelope, including for example synoptic-scale convectively coupled waves and /or
mesoscale convective systems. This may achieved for example by building suitable stochastic
parametrizations, such as the one proposed in the present article, that account for more details of
the synoptic and/or mesoscale variability (e.g., Khouider et al., 2010; Frenkel et al., 2012; Frenkel
et al., 2013).
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Appendix

A. Numerical Method

This appendix details the numerical method used to compute the simulations. The stochastic
skeleton model is the vertically and meridionally truncated system of variables K, R, (), A from
equation (4), where the non-linear amplitude equation is replaced by the stochastic birth/death
process from equation (9). In practice, we however solve a more suitable system of variables K, R,
Z, a, where we introduce the new variable Z = ¢ + Q6. To remain consistent with the notations
from both section 2.1 and 2.2, consider here that the variables ¢, 8, a (and Z) are defined in a zonal
strip along the equator, with ¢ = ¢(z,0,t), 6 = 0(z,0,t) and a = a(z,0,t). Therefore, we have
q = Qpo(0), 0 = —[K + R]po(0) and a = Agpy(0) for consistency with equations (4). In addition,

we recall that a = Aan for consistency with equations (9).
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All model variables K, R, Z, a are random variables, and we solve for the evolution of one
model realization. The spatial and temporal resolution is identical to MS2011, with a spatial step
Ax of 625 km spanning the equatorial belt (40,000 km) and a timestep AT of around 1.7 hours.
We use a splitting method to update the system over each timestep AT. First, Z and a in the
zonal strip are held fixed and we solve for the evolution of K and R exactly using zonal Fourier
series (cf. first and second rows of equation (4)). Second, K and R are held fixed and we solve for

the evolution of Z and a together. For this, we solve a local system of equations:

0Z =(1-Q)(s7— Ha) (13)

a(t+ 1) = a(t) + £Aa.
The first row of equation (13) can be deduced by combining the third and fourth rows of equation
(3), or alternatively the three first rows of equation (4). The second row of equation (13) ensues
when solving one realization of the master equation (9) (see below). Here, the equation (13) is
solved over each timestep AT as a series of consecutive transitions over smaller timesteps 7 (where
7 as well as £ are recomputed after each consecutive transition). The last consective transition
in particular usually occurs after the end of the timestep AT, and is therefore approximatively
omitted in order to retrieve Z(t + AT') and a(t + AT).

The second row of equation (13) ensues when solving one realization of the master equation
(9) with the Gillespie algorithm (Gillespie, 1975; Gillespie, 1977). This consists in updating a
sequentially according to the random variables 7 and £. Here, 7 > 0 is the random time interval
between two consecutive transitions, with cumulative distribution function P(7) = exp(—(A+pu)7)
that corresponds to a Poisson distribution. This depends on the transition rates A and p given

earlier in equation (11). In addition, & is the transition direction, and it takes the discrete values

{—1, 1} according to the cumulative distribution function P(£) = {u/(A + u), A/(A + u)}. For
the transitions rates given in equation (11), £ = 1if ¢ > 0 and £ = —1 if ¢ < 0 (though
¢ = 1 unconditionnaly if a = 0), which is consistent with equation (1). In other words, the

main stochastic effect in the second row of equation (13) is that the growth/decay of the envelope

of synoptic activity a can be randomly enhanced or diminished as compared to the otherwise
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deterministic equation (1).

In this article we analyze the dynamics of the stochastic skeleton model in a statistically
equilibrated regime. The statistically equilibrated regime is reached after around 10,000 days of
simulations, after an initial growth in oscillation amplitude. The simulations are initiated from
the radiative-convective equilibrium state plus an initial perturbation, as in MS2011. Due to
the stochastic effects, the choice of the initial perturbation has no impact on the statistically
equilibrated regime, yet this allows us to “start” the stochastic fluctuations because it sets A # 0
and p # 0. This model is inexpensive computationally: 1000 days of simulation take around 2

minutes of computer time on a typical laptop computer.

B. Sensitivity to Parameters

The main features of the stochastic skeleton model are overall robust to parameter changes, as
shown here with a few sensitivity tests (see also section 2.2 for the reference values). While the
previous sections illustrated dynamics with stochastic transition parameter Aa = 1073, we have
also analyzed additional simulations with Aa = 107% and Aa = 107°. The robustness of results
is briefly illustrated in figure 10 that shows the power spectra of u. For all simulations, the MJO
signal is the dominant signal at intraseasonal-planetary scale and it appears as a sharp power peak
slightly under the dispersion curve of the MJO mode from linear stability. For the simulations
with background warm pool state there is furthermore a slightly increased power at wavenumber
-1 and 1. Those results are consistent with the ones from previous sections. We have also found
overall consistent results in additional simulations with an intermediate warm pool strength, and

in simulations with modified parameter I'/2 or 2I" like in MS2009 (not shown).
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Figure Captions

Figure 1: Summary of the skeleton model linear stability: (a) phase speed w/k (m.s™1), (b)
frequency w (cpd), and (¢) component amplitudes of the eigenvector X,,(k) = [K, R, Q, A,
as a function of the zonal wavenumber k (27/40000km). The black circles mark the integer
wavenumbers satisfying periodic boundary conditions. This is repeated for each eigenmode, from
top to bottom in order of decreasing phase speed: (a)(b)(c) dry Kelvin mode, (d)(e)(f) MJO mode,
(h)(i)(j) moist Rossby mode, and (k)(1)(m) dry Rossby mode.

Figure 2: Zonal wavenumber-frequency power spectra (with homogeneous background): For
(a) u (ms™1), (b) 6 (K), (¢) q (K), and (d)Ha (Kday™') taken at the equator, as a function of
zonal wavenumber (in 27/40000km) and frequency (cpd). The contour levels are in the base 10-
logarithm, for the dimensional variables taken at the equator. The black circles mark the dispersion

curves from linear stability as in figure 1. The black dashed lines mark the periods 90 and 30 days.

Figure 3: Hovmoller diagrams (with homogeneous background): for (a) u (m.s™1), (b) 6 (K),
(c) q (K), and (d) Ha (K.day™') at the equator, as well as (e) the data projection ey 0, as a

function of zonal location x (in 1000 km) and time (in days from a reference time at 38,200 days).

Figure 4: Hovmollers diagrams (with homogeneous background), zoomed on the time interval
70-270 days from figure 3: for (a) u (m.s™1), (b) 0 (K), (¢) q (K), and (d) Ha (K.day™') at the
equator, as well as (e) the data projection eprj0, as a function of zonal location x (in 1000 km)

and time ¢ (in days from a reference time at 38,200 days).

Figure 5: Interannual variations of the MJO: Hovmoller diagram of the magnitude of the data
projection ey 0, as a function of zonal location x (1000 km) and time ¢ (in 1000 days from the
simulation beginning). This is for (a) the simulation with a homogeneous background state, and
(b) the simulation with a background warm pool state. The data are smoothed 5 times with a

3000km by 20 day box kernel.

Figure 6: Zonal shape of the background warm pool state: s’ = s¢ (Kday™!) at the equator as

a function of zonal location x (1000 km).
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Figure 7: Zonal wavenumber-frequency power spectra (with warm pool): For (a) u (ms™1), (b)
0 (K), (c) q (K), and (d)Ha (Kday™"), as a function of zonal wavenumber (in 27/40000km) and
frequency (in c¢pd). The contour levels are in the base 10-logarithm, for the dimensional variables
taken at the equator. The black circles mark the dispersion curves from linear stability as in figure

1. The black dashed lines mark the periods 90 and 30 days.

Figure 8: Hovmoller diagrams (with warm pool): for (a) u (m.s7!), (b) 6 (K), (¢) ¢ (K), and
(d) Ha (K.day™') at the equator, as well as (e) the data projection ey 0, as a function of zonal

location z (in 1000 km) and time ¢ (in days from a reference time at 18,800 days).

Figure 9: Hovmoller diagrams with (warm pool), zoomed on the time interval 770-970 days
from figure 8: for (a) u (m.s71), (b) 6 (K), (¢) ¢ (K), and (d) Ha (K.day™') at the equator, as
well as (e) the data projection ey 0, as a function of zonal location = (1000 km) and time ¢ (in

days from a reference time at 18,800 days).

Figure 10: Sensitivity to Aa: Zonal wavenumber-frequency power spectra of u, for (a) Aa =
107, (b) Aa = 107*, and (¢) Aa = 1073, as a function of zonal wavenumber (in 27 /40000km)
and frequency (in cpd), for simulations with a homogeneous background state. (d)(e)(f) repeats
the graphs for simulations with background warm pool state. Figure setup is identical to the one

of figure 2 and figure 7.
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Figure 1: Summary of the skeleton model linear stability: (a) phase speed w/k (m.s™'), (b)
frequency w (cpd), and (¢) component amplitudes of the eigenvector X,,(k) = [K, R, Q, Al
as a function of the zonal wavenumber k (27/40000km). The black circles mark the integer
wavenumbers satisfying periodic boundary conditions. This is repeated for each eigenmode, from
top to bottom in order of decreasing phase speed: (a)(b)(c) dry Kelvin mode, (d)(e)(f) MJO mode,
(h)(i)(j) moist Rossby mode, and (k)(1)(m) dry Rossby mode. .
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Figure 2: Zonal wavenumber-frequency power spectra (with homogeneous background): For (a)
u (ms™Y), (b) 6 (K), (c) ¢ (K), and (d)Ha (Kday™') taken at the equator, as a function of
zonal wavenumber (in 27/40000km) and frequency (cpd). The contour levels are in the base 10-
logarithm, for the dimensional variables taken at the equator. The black circles mark the dispersion
curves from linear stability as in figure 1. The black dashed lines mark the periods 90 and 30 days..
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Figure 3: Hovmoller diagrams (with homogeneous background): for (a) u (m.s7!), (b) 0 (K), (c)
q (K), and (d) Ha (K.day™') at the equator, as well as (e) the data projection ey 0, as a function
of zonal location = (in 1000 km) and time (in days from a reference time at 38,200 days).
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Figure 4: Hovmollers diagrams (with homogeneous background), zoomed on the time interval 70-
270 days from figure 3: for (a) u (m.s7'), (b) 6 (K), (¢) q (K), and (d) Ha (K.day™') at the
equator, as well as (e) the data projection eprj0, as a function of zonal location x (in 1000 km)
and time ¢ (in days from a reference time at 38,200 days).
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Figure 5: Interannual variations of the MJO: Hovmoller diagram of the magnitude of the data
projection eyrj0, as a function of zonal location x (1000 km) and time ¢ (in 1000 days from the
simulation beginning). This is for (a) the simulation with a homogeneous background state, and
(b) the simulation with a background warm pool state. The signals are smoothed 5 times with a
3000km by 20 day box kernel.
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Figure 7: Zonal wavenumber-frequency power spectra (with warm pool): For (a) u (ms™'), (b) 6
(K), (c) q (K), and (d)Ha (Kday™'), as a function of zonal wavenumber (in 27/40000km) and
frequency (in c¢pd). The contour levels are in the base 10-logarithm, for the dimensional variables
taken at the equator. The black circles mark the dispersion curves from linear stability as in figure
1. The black dashed lines mark the periods 90 and 30 days.
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Figure 8: Hovmoller diagrams (with warm pool): for (a) u (m.s™'), (b) 8 (K), (¢) ¢ (K), and
(d) Ha (K.day™') at the equator, as well as (e) the data projection eyr;0, as a function of zonal
location = (in 1000 km) and time ¢ (in days from a reference time at 18,800 days).
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Figure 9: Hovmoller diagrams with (warm pool), zoomed on the time interval 770-970 days from
figure 8: for (a) u (m.s™'), (b) 0 (K), (c) q (K), and (d) Ha (K.day™!) at the equator, as well as
(e) the data projection eyr 0, as a function of zonal location (1000 km) and time ¢ (in days from
a reference time at 18,800 days).
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Figure 10: Sensitivity to Aa: Zonal wavenumber-frequency power spectra of u, for (a) Aa = 107°,
(b) Aa = 107*, and (¢) Aa = 1073, as a function of zonal wavenumber (in 27 /40000km) and
frequency (in cpd), for simulations with a homogeneous background state. (d)(e)(f) repeats the
graphs for simulations with background warm pool state. Figure setup is identical to the one of
figure 2 and figure 7.
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