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Abstract

Order-reduction schemes have been used successfully for the analysis and simpli�cation of
high-dimensional systems exhibiting low-dimensional dynamics. In this work we �rst focus
on presenting generic limitations of order-reduction techniques in systems with stable mean
state that exhibit irreducible high-dimensional features such as non-normal dynamics, wide
energy spectra, or strong energy cascades between modes. The reduced order framework that
we consider to illustrate these limitations is the dynamically orthogonal (DO) �eld equations.
This framework is applied to a series of examples with stable mean state including a linear
non-normal system, and a nonlinear triad system in various dynamical con�gurations. Af-
ter illustrating the weaknesses and generic limitations of order-reduction, we develop a novel,
two-way coupled, blended approach based on the quasilinear Gaussian (QG) closure and the
DO �eld equations. The new method (QG-DO) overcomes the limitations of its two ingredi-
ents and achieves exceptional performance in the examples described previously as well as in
other con�gurations with strongly transient character without using any tuned or adjustable
parameters.

1 Introduction

Order-reduction schemes or reduced-order models (ROMs) have been a popular technique for the
simpli�cation and analysis of high-dimensional complex systems across many scienti�c and engi-
neering disciplines. Schemes based on this approach are essentially relying on the projection of the
original system into a `suitable' set of modes representing important and essential components of
the dynamics. Various approaches and rules have been developed for the choice, computation, or
improvement of these modes including empirical criteria such as energy based proper orthogonal
decomposition (POD) (see for example [21, 4]), linear-operator-theoretic model reduction methods,
such as the balanced POD [5, 7], and more recently dynamically orthogonal (DO) �eld equations
that follow from the original system equation [17, 15].
In many cases these ROMs give satisfactory performance allowing for dramatic decrease of the

associated computational cost. In addition, a reduced-order representation of the original system
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often allows for the understanding of the underlying physical mechanisms - an understanding that
could not be achieved using full system realizations either due to the vast computational cost or
due to the complexity induced by the high dimensional phase space. Therefore, it is clear why, for
a big variety of systems, order-reduction is the indicated and most e�cient method of analysis.
Despite these appealing properties ROMs can su�er from severe limitations either i) due to the

wrong choice of the modes where projection is performed or ii) by inherent system properties that
make it essential to project over a very high dimensional subspace (of the original phase space) in
order to obtain representative dynamics in the ROM. The �rst cause may be overcomed by carefully
choosing and optimizing the modes where reduction is performed (see e.g. [3, 23, 22]). The second
cause however, may present signi�cant di�culties even when the mean state is stable, and as we
will see, it may not allow for any kind of e�cient order-reduction. The present work focuses on
systems with such inherent order-reduction limitations - we also assume that the �nite size of the
attractor is caused by external excitation (to some or all of the modes) and not by inherent systems
instabilities, i.e. we consider the case of systems with stable mean state.
To illustrate these limitations we consider the recently developed reduced-order uncertainty

quanti�cation (UQ) framework based on the dynamical orthogonality condition (DO) [17] - this is
a closed set of equations that allows for the coupled evolution of the mean state, the shape of the
modes, and the stochastic information in the reduced-order subspace. In addition, it contains both
the POD method and the polynomial-chaos (PC) method as special cases. In order to quantify
the performance of any ROM we need a suitable stochastic framework that will `measure' the
di�erent kinds of deviations that a ROM approximation may exhibit from the original system - this
is formulated in Section 3 and it is a suitable modi�cation of the empirical information framework
developed in [10, 8, 14] for the quanti�cation and improvement of model errors in climate science.
In Section 4 of this work we investigate and document representative examples illustrating

systems that do not allow for a typical Galerkin projection to a reduced-order subspace. Those
examples are low-dimensional linear and nonlinear dynamical systems, motivated by physical sit-
uations associated with uid ow phenomena such as tracer advection in a turbulent jet stream
(modeled by a linear system with non-normal dynamics) [9, 10], as well as wide range energy spectra
and energy cascades between modes in turbulent ows (modeled by a triad system in various con-
�gurations). The last case that mimics energy cascade in turbulent ows is particularly instructive
since it illustrates in a clear way that omitting modes with respect to their energy content can lead
to errors with an order of magnitude larger that the omitted energy. For all these examples we
derive the DO equations and we use the formulated reduced-order empirical information framework
to understand the limitations and reasons of failure of the reduction process.
In Section 5 we develop a blended approach based on the quasilinear Gaussian (QG) closure [8]

and the DO method. This combined approach overcomes the limitations of each of its two ingredient
methods. As we show it allows for the inexpensive second-order modeling of a very large number
of modes while at the same time it provides, in a fully coupled fashion, a high-order statistical
modeling of a few important modes. The two-way coupling between the QG and the DO models
occurs i) through the non-linear energy uxes acting on the QG equations, computed through the
third-order statistical structure inside the DO subspace and ii) through the QG mean state, over
which the DO equations are computed. In Section 6 we illustrate the very good performance of the
new blended approach in a variety of time-dependent and time-independent examples exhibiting
the inherent limitations for order-reduction described previously.
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2 UQ based on dynamical orthogonality - A critical overview

2.1 System setup and exact statistical dynamics

We start by providing the general setup which will be a �nite-dimensional system with linear
dynamics and an energy preserving quadratic part. More speci�cally, the general system that we
consider is given by

du

dt
= [L+D]u+B (u;u) + F (t) + _Wk (t;!)�k (t) (1)

acting on u 2 RN . In the above equation on for what follows repeated indices will indicate sum-
mation. In some cases the limits of summation will be given explicitly to emphasize the range of
the index.
In the above equation we have:

� L being a skew-symmetric linear operator representing the ��e�ect of Earth's curvature,
topology etc. and satisfying,

L� = �L:

� D being a negative de�nite symmetric operator,

D� = D;

representing dissipative processes such as surface drag, radiative damping, viscosity, etc.

The quadratic operator B (u;u) conserves the energy by itself so that it satis�es

B (u;u) :u = 0:

Finally, F (t) + _Wk (t;!)�k (x; t) represents the e�ect of external forcing i.e. solar forcing, which
we will assume that it can be split into a mean component F (t) and a stochastic component with
white noise characteristics.
We use a �nite-dimensional representation of the stochastic �eld consisting of �xed-in-time,

N�dimensional, orthonormal basis

u (t)= �u (t)+
NX
i=1

Zi (t;!)vi:

where �u (t) represent the ensemble average of the response, i.e. the mean �eld, and Zi (t;!) are
stochastic processes.
The exact mean �eld equation is given by

d�u

dt
= [L+D] �u+B(�u; �u)+RijB (vi;vj)+F: (2)

where we have the covariance matrix given by Rij = hZiZji and h�i denotes averaging over the
ensemble members !:
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Moreover the random component of the solution, u0 = Zi (t;!)vi satis�es

du0

dt
= [L+D]u0+B (�u;u0)+B (u0; �u)+B (u0;u0) + _Wk (t;!)�k (t) (3)

By projecting the above equation to each basis element vi we obtain

dZi
dt

= Zj
�
[L+D]vj+B

�
�u;vj

�
+B (vj ; �u)

�
:vi +B (u

0;u0) :vi + _Wk�k:vi (4)

From the last equation we directly obtain the exact evolution of the covariance matrix R= hZZ�i

dR

dt
= LvR+RL

�
v +QF +Q�; (5)

where we have:
i) the linear dynamics operator expressing energy transfers between the mean �eld and the

stochastic modes (e�ect due to B), as well as energy dissipation (e�ect due to D) and non-normal
dynamics (e�ect due to L; D; �u)

fLvgij =
�
[L+D]vj+B

�
�u;vj

�
+B (vj ; �u)

�
:vi (6)

ii) the positive de�nite operator expressing energy transfer due to external stochastic forcing

fQ�gij = (vi:�k) (�k:vj) : (7)

iii) as well as the energy ux between di�erent modes due to non-Gaussian statistics (or nonlinear
terms) given exactly through third-order moments

QF = ZmZnZjB (vm;vn) :vi + ZmZnZiB (vm;vn) :vj (8)

The last term involves higher-order statistics and therefore suitable closure assumptions need to be
made in order to setup a UQ scheme. The above exact statistical equations will be the starting
point for the approximation schemes that we will develop and present below.

2.2 Overview of DO order-reduction method for quadratic systems

Order-reduction techniques for UQ are based on the assumption that the modes that carry small
amounts of energy do not have important inuence on the global dynamics of the stochastic system.
Although in some systems this may indeed be true, there are situations such as a typical turbulent
dynamical system where many low-energy modes act as channels of energy, i.e. they either transfer
or dissipate important amounts of energy and therefore their e�ect has to be considered in the UQ
scheme despite their small energy content.
From an energy transfer point of view a reduced-order representation of the solution would

ultimately lead to incomplete modeling of the nonlinear uxes QF (equation (8)). Moreover, from
the de�nition of the nonlinear uxes it is clear that even if a mode has low energy its joint third-
order moment with a high-energy mode may still be signi�cant, a condition that describes the
case where we have large energy ux from a high-energy mode to a low-energy mode. Finally, in
addition to the incomplete modeling of the nonlinear energy transfer mechanism, a reduced-order
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representation may lead to incomplete description of the linear dynamics since some unstable or
oscillatory modes may be missing from the analysis.
Here we illustrate these limitations using the recently developed UQ approach based on the

Dynamically Orthogonal (DO) equations [17] that has been applied successfully to low-Re ows
having a very small number of instabilities [16, 24, 18]. The choice of DO method as the illustrative
order-reduction technique in this paper follows both from its adaptive character (time-dependent,
dynamically evolving modes) and its generality (under appropriate conditions it reproduces both
POD and PC methods). This stochastic framework is based on a reduced-order representation of
the stochastic solutions with modes that have time-dependence de�ned by an exact set of equations
that follow from the full-system equation. The stochastic coe�cients are obtained by Galerkin
projection to these time-dependent modes and together with the mean �eld equation they form a
non-Gaussian, reduced-order UQ scheme.
We proceed by formulating the DO system of equations for system (1). In particular we use the

DO representation

u (t)= �u (t)+
sX
i=1

Yi (t;!) ei (t) (9)

where ei (t), i = 1; :::; s are time-dependent DO modes, de�ning the time-dependent subspace Vs
and s� N is the reduction order. The system operator will take the reduced-order form

du

dt
= [L+D] �u+B(�u; �u) + F+ _Wk�k

+ [L+D]Yiei + Yi (B (�u; ei) +B (ei; �u))

+ YiYjB (ei; ej)

From the above equation we can already observe the incomplete modeling of both the linear and
quadratic terms (described only along the directions ei). Using the DO equations we obtain [17]
the closed set of equations

� Equation for the mean

d�u

dt
= [L+D] �u+B(�u; �u)+CijB (ei; ej)+F: (10)

� Equation for the stochastic coe�cients

dYi
dt

= Ym ([L+D] em +B (�u; em) +B (em; �u)) :ei (11)

+ (YmYn � Cmn)B (em; en) :ei + _Wk�k:ei

The last equation can also be described in terms of the corresponding Fokker-Planck equation
governing the probability density function pY (y; t) :

@pY
@t

= �divy ((ym ([L+D] em +B (�u; em) +B (em; �u)) + (ymyn � Cmn)B (em; en)) :eipY )

+
1

2
divyry (Q�pY )

where in (10) and (11), Cmn = hYmYni is the covariance matrix in the subspace.
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� Equation for the basis of the stochastic subspace
Finally for the equation describing the stochastic basis we �rst compute the quantity hL [u]YjiC�1ij :
A direct calculation gives

hL [u]YkiC�1ik = [L+D] ei +B (�u; ei) +B (ei; �u) +B (em; en) hYkYmYniC�1ik

Therefore, the modes will evolve according to the equation

@ei
@t

= [L+D] ei +B (�u; ei) +B (ei; �u) +B (em; en) hYkYmYniC�1ik (12)

� ej
�
[L+D] ei +B (�u; ei) +B (ei; �u) +B (em; en) hYkYmYniC�1ik

�
:ej

To understand better the limitations introduced by the reduction process we formulate the
equation for the covariance R . This follows from the reduced-order equation (11). Recalling that

ei =
NX
k=1

(ei:vk)vk we will have the reduced-order, covariance equation

dR

dt
= PLv;RP

�R+RPL�vP
� +Q� +QF;s;

where,
i) P is the projection matrix from RN to Rs

Pij = vi:ej ; i = 1; :::; N and j = 1; :::; s:

ii) Lv;s is the reduced-order linear dynamics

fLv;sgij =
�
[L+D] ej +B

�
�u; ej

�
+B (ej ; �u)

�
:ei; i; j = 1; :::; s:

iii) QF;s is the matrix of the reduced-order nonlinear uxes

fQF;sgij = hYmYnYki [(B (em; en) :vi) (vj :ek) + (B (em; en) :vj) (vi:ek)] ; i; j = 1; :::; N:

By examining the reduced-order form we see that even if the modes ei span all the unstable
directions of the linear operator, there might be non-normal dynamics which are not modeled as
well as dissipation of energy that is not taken into account (since many of the stable modes are not
included in the linear dynamics). This is also the case with stable modes that return important
amounts of energy to the mean �eld. On the other hand, the reduced-order, nonlinear energy uxes
QF;s model partially the nonlinear energy transfers since they only involve energy transfers between
the subspace Vs and not energy interactions over the complete phase space:
Although for a system that possess a low-dimensional attractor the above scheme may have good

UQ properties, for a system where a large number of modes participates in strong energy transfers
and dissipation we will need a vast number of modes in order to get satisfactory UQ properties.
However, modeling a vast number of modes in a fully nonlinear fashion is not e�cient, not feasible
(for realistic systems) and as we will see in Section 5, not necessary.
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3 An empirical information framework for UQ using order-

reduction methods

To quantify the performance of the order-reduction we will use the empirical information theoretic
framework [10, 8, 14]. Let � denote the full solution of the original SDE. Through the DO framework
(or any other ROM) we obtain a reduced-order solution u (see representation (9)) that `lives' in the
reduced-order stochastic subspace Vs of dimensionality s. The projection of any �eld quantity �
into the stochastic subspace Vs is given by P

�� where P is the modes matrix de�ned in the previous
section.
There are several sources of error between the full solution � and its reduced-order approximation

u. Since, the full solution lives in an N�dimensional space while the reduced-order solution is
restricted to the much smaller s�dimensional space a natural question is what do we `lose' by
performing this reduction. In other words what is the amount of inaccessible information that lies
in the orthogonal complement of the reduced-order subspace.
The next question is how good we are doing in the reduced-order subspace. In particular

how close the projection of the reduced-order solution u is to the full solution P ��. This is a
question that can be answered in a straightforward manner by using the empirical information
framework. Note, that the above two sources of error do not include the distance of the mean �elds
in the orthogonal complement since, as we will see, this is not expressed through the amount of
inaccessible information and of course it cannot be quanti�ed by the distance of the two solutions
in the reduced-order subspace.
A) Error within the subspace
This error involves the distance between the exact, full solution and the reduced-order approx-

imation as this is measured in the reduced-order stochastic subspace. We compute directly the
relative entropy between the projection of the full solution P �� and the reduced-order solution
projected to the stochastic subspace P �u (note that the projection in the second case involves only
the mean value which lives into the full space). In this way we obtain

P (P ��; P �u) =
Z
Rs

p�;Vs
log

p�;Vs

pu
: (13)

where p�;Vs
is the probability density function (pdf) for the projection P �� and pu is the pdf for

P �u: The last quantity is always positive and express the quality of the approximation within the
stochastic subspace.
Assuming Gaussian statistics the above expression takes the more explicit form

P (P ��; P �u) =
�
1

2
(��� � �u�)PC�1Y Y P

� (�� � �u)
�

(14)

+

�
�1
2
log det

�
P �C��PC

�1
Y Y

�
+
1

2

�
tr
�
P �C��PC

�1
Y Y

�
� s
��
:

The �rst term in (14) is the signal which measures normalized errors in the mean while the second
term is the dispersion which measures information theoretic errors in the variance [9, 10, 14].
B) L2 distance between the mean �elds in V?

s

The next step involves the quanti�cation of error in the orthogonal complement of Vs. The
reduced-order model provides, in the orthogonal complement, information only for the mean �eld.
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Therefore, the �rst step to quantify the performance of the reduction is to measure the distance
between the mean �eld produced by the approximation and the exact one, both projected to the
orthogonal complement. To achieve this we consider the ad hoc metric that expresses the distance
of the two solutions in V?

s

dV?
s
(u; �) =

1

2
k(I � P �) (�� � �u)k2 :

C) Lack of information due to the reduction
We measure the uncertainty that we `lose' due to the reduction using second-order statistical

properties of the involved pdfs and more speci�cally by using the Frobenius norm of the square
root of C��: In particular we de�ne QC 2 RN�N as

Q2C = C��

Then, the quantity �SFV ; which will measure the uncertainty outside VS ; is de�ned through the
Frobenius norm k�kF

�SFV � ftotal varianceg � ftotal variance in VSg (15)

= kQCk2F � kP
�QCk2F =

NX
i=1

�2i �
sX
i=1

~�2i � 0:

where �2i and ~�
2
i are the eigenvalues of C�� and P

�C��P respectively. To prove the positivity of
this quantity we �rst denote as P? 2 RN�N�s the matrix that contains the basis elements that
span V?

s : We also use the orthogonal matrix ~P =
�
P j P?

�
for which we have

kQCk2F = trace (QCQ
�
C) = trace

�
QC ~P ~P

�Q�C

�
=
 ~P �QC2

F

Furthermore, we have

 ~P �QC2
F
=

NX
i=1

NX
j=1

 
NX
k=1

~PikQC;kj

!2
�

=
sX
i=1

NX
j=1

 
NX
k=1

PikQC;kj

!2
= kP �QCk2F :

This proves the positivity of �SFV : Note that equality is achieved if and only if the directions that
correspond to the orthogonal complement are associated with zero variance.

4 Inherent limitations of order-reduction methods for sys-

tems with stable mean state

We will now focus on systems with irreducible features such as non-normal dynamics or strong
nonlinear energy transfer properties. These features are typical in many physical applications and
as we will see they often cause failure of the order-reduction procedure.

8



The �rst example will be an exactly solvable, linear, non-normal system. Non-normal systems
are characterized by the non-commutability of L and L�. A typical example of such a system is
advection of a passive tracer in a turbulent jet where even though the tracer advection depends
strongly on the ow �eld the opposite is not true. This one-way dependence of the dynamical
variables is expressed as a strong asymmetry in the linear dynamics [9, 10].
The second example will be a low-dimensional, quadratic system with energy-conservative

quadratic terms. In particular we will consider the triad system [6, 11, 12, 13] in various con�g-
urations that mimic strongly nonlinear dynamical mechanisms such as irreversible energy transfer
between modes. The last example will be of particular importance since it will illustrate very clearly
that the energy content of a mode may be an incorrect indicator for its importance in the global
system dynamics.

4.1 Limitation in skill due to non-normal linear dynamics

To illustrate the irreducible character of a non-normal dynamical feature we consider a linear, 2D
SDE problem [9]. The goal is to reveal and understand the limitations of the reduction method
and we will start from this simple system since most of the derivations can be done analytically.

dx = (�ax+ �1y) dt
dy = (�2x� by) dt+ �dW (t)

We will perform reduction in a 1D subspace. In this case the equation for the mode e1 (t) =

(x1 (t) ; y1 (t))
T
will take the form

de1
dt

= Ae1 �
�
eT1 Ae1

�
e1

where A =

�
�a �1
�2 �b

�
: Since the above equation preserves the magnitude, ke1k = 1; we may

represent the DO vector in polar coordinates as e1 (t) = (sin � (t) ; cos � (t))
T
: In this way we can

solve exactly the mode equation to obtainR �(t)
�0

d�

(b� a) sin � cos � + �1 cos2 � � �2 sin2 �
= t� t0

The steady state values �1 may also be obtained

tan �1 =
(b� a)�

q
(a� b)2 + 4�1�2
2�2

:

One of these solutions is dynamically stable and the other is not. Therefore, the mode is character-
ized by a unique equilibrium that depends only on the system parameters and not the excitation
intensity. The next step is to understand how the variance evolves in this reduced-order 1D sub-
space. The equation for the variance CY Y (t) has the simple form (obtained through eq. (11) after
algebraic manipulations)

dCY Y (t)

dt
= �2

�
a sin2 � + b cos2 � � (�1 + �2) sin � cos �

�
CY Y (t) + �

2 cos2 �
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Figure 1: Performance of reduction for b = 5 over di�erent values of � and a in the steady state
regime: a) Information theoretic distance lim

t!1
log (P (t)) within the stochastic subspace; b) projec-

tion of true covariance in the stochastic subspace lim
t!1

log(eT1 (t)C�� (t) e1 (t)); c) projection of the

exact covariance in the orthogonal complement V?
s : lim

t!1
log(eT2 (t)C�� (t) e2 (t)):

From the last equation we may also obtain the steady state value of the variance (inside the
stochastic subspace)

CY Y1 =
�2

2
�
a tan2 �1 + b� (�1 + �2) tan �1

� :
The extreme non-normal case will be characterized by �1 6= 0; and �2 = 0: Here we will focus on a
`smoother' case where �2 = �

�1
1 = ��1 where � could have both large and small values. This way

we will be able to observe the transition in the UQ performance as we move to more non-normal
regimes.
To measure the performance of the reduction-process we will compare with the exact solution.

For the linear system under consideration, the exact stationary covariance matrix is given by [9]

C��1 =
�2

2 (a+ b) (ab� 1)

�
�2 �a
�a a2 + ab� 1

�
By combining the above expressions for the exact covariance and the DO solution with the empir-
ical information framework formulated in the previous section (eqs. (13)-(15)) we obtain all the
necessary measures to assess the performance of the reduction process. In Fig. 1 we present the
performance of the reduction algorithm for di�erent system parameters. We also show the amount
of variance of the exact covariance matrix projected to the stochastic subspace and to its orthogonal
complement. We observe that for large � the reduction algorithm converges to the wrong subspace
since most of the uncertainty of the exact response is contained in the orthogonal complement. On
the other hand for small � there are some locations in the parametric space where even though the
algorithm captures the correct subspace the amount of covariance captured is not accurate (Figure
1a).
In Figure 2 we present the time evolution of the performance measures as well as of the exact

covariance (projected to the stochastic subspace and its orthogonal complement). In the �rst case
(left plot) the reduction algorithm predicts the right stochastic subspace and captures the variance
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Figure 2: Black-solid line: information theoretic distance log (P (t)) within the stochastic subspace;
Red-solid line: projection of true covariance in the stochastic subspace log(eT1 (t)C�� (t) e1 (t)); Red
circles: covariance log(CY Y (t)) in the subspace computed by the reduction method; Green line:
projection of the exact covariance in the orthogonal complement V?

s : log(eT2 (t)C�� (t) e2 (t));
where e2 ? e1:

very accurately. In the second case however the reduced-order subspace converges to the wrong
direction which is associated with the wrong amount of covariance and thus the reduction scheme
is inaccurate. In both cases we pick an initial covariance matrix for the full system that has all of
its variance concentrated in one direction which coincides with the initial direction of the stochastic
subspace.

4.2 Limitation in skill due to omitted energy or energy transfers

We continue our analysis by considering a simple but nevertheless instructive model, namely the
triad system. This is a three-dimensional system with a quadratic part that is both divergence free
and energy preserving. The linear part consists of a dissipative operator that is negative-de�nite
and a skew-symmetric operator. The nonlinear coupling in triad systems is generic of nonlinear
coupling between any three modes in larger systems with quadratic nonlinearities[11, 12, 13]. We
can think of this `toy' problem as a `poormans' approach to a full uid system where the nonlinear
terms, dissipation, and skew-symmetric part represent respectively the advection terms, the viscous
dissipation, and the Coriolis e�ect while the stochastic noise represents the nonlinear interactions
with other modes in a crude fashion. The goal here is to understand how the reduction performs
over qualitatively di�erent dynamical regimes of this system.
In particular the system we consider is a three-dimensional special case of the generic quadratic
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system (1) given by

du1 = (�1u1 + �12u2 + �13u3 + �1u3u2) dt+ �1dW1 (16a)

du2 = (�2u2 � �12u1 + �23u3 + �2u1u3) dt+ �2dW2 (16b)

du3 = (�3u3 � �13u1 � �23u2 + �3u2u1) dt+ �3dW3 (16c)

with �1+�2+�3 = 0: The case where
�21
21

=
�22
22

=
�23
23

� E is a special one since in this symmetric
situation the statistical system dynamics always converge at long times to an invariant measure
that is Gaussian and with energy that is distributed equally among the three degrees of freedom.
This invariant measure in this case is Gaussian and is given by

pY = C exp

 
�1
2

kuk2

E

!
:

From the form of the invariant measure and in particular from its property with equipartition of
energy in phase space, we anticipate that even in the best case the reduction algorithm will be able
to capture only a fraction of the steady state covariance (13 or

2
3 depending on the number of modes

used for the reduction) as times evolves.

4.2.1 Reduced-order modeling of the triad system using DO

We shall now compare the performance of the DO order-reduction with the full Monte-Carlo so-
lution of the triad system for di�erent parametric regimes. In particular we choose parameters
that correspond to three di�erent dynamical regimes: the strong dissipation regime, the strongly
nonlinear regime with equipartition of energy, and a strongly nonlinear regime with energy cascade.
These three cases are representative of a uid system over di�erent dynamical regimes characterized
respectively by either laminar (but possibly unstable) features or strongly nonlinear (turbulent) dy-
namics with or without energy cascade. For the numerical solution of the DO equations we follow
the approach presented in [17].
For a single mode reduction it can be easily seen that the statistics inside the subspace will

evolve under the e�ect of linear dynamics alone because in this case the DO equation (11) for the
stochastic coe�cient will take the linear form

dY1
dt

= Y1 ([L+D] e1 +B (�u; e1) +B (e1; �u)) :e1 + _Wk�k:e1 (17)

since B (e1; e1) :e1 = 0 and therefore all the quadratic terms in the equation vanish. The dynamics
in 12 is linear and Gaussian with Gaussian intitial data. Therefore, this is an extreme form of
order-reduction where we have complete suppression of the nonlinear energy transfer properties,
since for Gaussian statistics the reduced-order uxes QF;s will vanish. In this section we will present
results for the DO approximation scheme with a single dimensional stochastic subspace.
However, it is important that two mode reduction does not change the performance of the DO

order-reduction and the corresponding results for the same triad test problem can be found in
Section 5.3 (Figures 5, 6 - top rows).

Case I: Strong dissipation regime The �rst case that we study is the one where all terms
have the same order of magnitude. We focus on two di�erent temporal regimes: the transient state
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and the steady state. In Figure 3 (top-row) we present the system response - the solid lines on
the left time-series plot represent the mean values of the three components of the solution u1; u2;
u3 computed with a direct Monte-Carlo approach. The estimated mean values using the reduction
technique are plotted as circles.
On the right plot we show the comparison of the exact and reduced-order solution in terms of

the second-order characteristics. In particular we present the projection of the full (Monte-Carlo)
covariance on the reduced-order subspace (blue solid line) superimposed with the variance



Y 21
�
as

this is computed through the reduced-order methodology. We also present the Frobenius distance
�SFV de�ned in (15). Finally, in the bottom row we present the trajectory describing the evolution
of the DO mode which `lives' on the unit sphere - the white dot indicates the initial condition.
In this parametric regime the reduction algorithm, even though it uses only one mode, does

su�ciently well approximating the state of the system both over the transient regime, where variance
is important, but also in the steady state. The magnitude of uncertainty in the reduced-order
stochastic subspace is captured su�ciently well even though the Frobenius distance indicates that
during the steady state regime the resolved uncertainty is only 1

3 of the full uncertainty because
the total variance in the statistical steady state is small in this weakly nonlinear regime. Here 1

3 is
the maximum amount of variance that the reduction algorithm can capture since one mode is used
and the system parameters are such that equipartition of energy is reached in the steady state.

Case II: Strongly nonlinear regime with Gaussian steady state This case mimics dynamics
with high Re number which are still characterized by close to Gaussian statistics (see [14]). To model
this regime we set the damping in the system to be an order of magnitude smaller than all the other
terms making the steady state variance an order of magnitude larger compared with the previous
case. The results are shown in the second row of Figure 3.
Even though the reduction captures the system dynamics satisfactorily during the initial phase,

it begins to diverge when the system approaches the statistical steady state regime. A more care-
ful observation of the time-series reveals that the divergence begins when the ignored covariance
(expressed through the Frobenius distance) becomes important. When this happens, we �rst have
a relatively small divergence of the subspace variance and subsequently (when we have entered the
steady state regime) the estimated mean value performs high amplitude oscillations around the true
mean state. We also notice that contrary to the previous case where the single mode approximation
converged to a steady state point, in this case the mode performs oscillations and it never reaches an
equilibrium point. The observed deviation of the mean value is a direct consequence of the ignored
covariance (due to the reduction) since in the full mean equation (2) this omitted covariance plays
an important role and its e�ect is proportional to the magnitude of the quadratic terms.

Case III: Strongly nonlinear regime with energy cascade This is the most representative
regime for turbulent ows. We have strongly nonlinear dynamics, combined with strong energy
transfers - a property that leads to strongly non-Gaussian statistics with a probability measure
on the attractor that has a full measure but e�ective lower dimensional support (Figure 4). In
particular we consider a set of parameters similar with those used in [1] (shown in the third row
of Figure 3). Here the background linear skew symmetric operator vanishes, the �rst component is
weakly damped and strongly forced by noise while the second and third components are strongly
damped and the nonlinear interaction component of the �rst mode has opposite sign from the other
two modes so there is large energy in the �rst mode which is rapidly transfered to the other modes
[12, 13].
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Figure 3: Performance of the DO reduction for the triad system in three di�erent dynamical
regimes: Strong dissipation regime (top-row), Nonlinear isoenergetic regime (mod-row), and Non-
linear energy cascade regime. The time-evolution of the DO mode for each case is shown in the
bottom plots.
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Figure 4: Strongly nonlinear regime with energy cascade: Full-system statistics predicted with
direct Monte-Carlo in the original system. In the right plots the stready state conditional probability
density functions of pu1u2u3 are shown as well as 2D scatter plots.

In Figure 4 we present the statistics of the system as computed by the direct Monte-Carlo
method. Thus, in the statistical steady state regime we have one mode carrying most of the
system energy and two low-energy modes absorbing energy from the �rst one. This energy transfer
property is manifested by the third-order moment hu1u2u3i (shown in Figure 4) whose negative
value indicates the energy transfer from the �rst mode to the other two. This ow of energy is also
illustrated by the nearly two-dimensional character of the joint probability density function (see [15]
for a rigorous connection of the energy transfer properties and the dimensionality of the probability
measure). This strongly nonlinear regime with energy cascade has a Fokker-Planck equation with
an elliptic generator with a smooth three dimensional steady state probability density which is
nearly two dimensional
Note that since this is a system where only one mode has important variance while the other

two are much weaker in terms of energy one may expect that it is an ideal candidate for single-mode
order-reduction. However this is not the case. In Figure 3 we present the results of the single-mode
reduction and we compare with direct Monte-Carlo simulation. We observe that we have very large
discrepancies both in the �rst and second-order statistics. These discrepancies are much larger in
magnitude than the order of the ignored variance.
The answer comes from the essentially irreducible character of the steady state probability

measure which does not allow for any approximation by a single mode system (or even two mode
reduction - see the results in Section 5.3). This is because the two low-energy modes play an
important role in the global dynamics by extracting energy from the high-energy mode and strongly
dissipating it. In particular, this non-Gaussian cross-correlation structure is responsible for the
persistent energy transfer from mode 1 to modes 2 and 3 which contrary to the magnitude of the
modes 2 and 3 is very important. Ignoring one or both of these modes completely destabilizes
the energy uxes and causes large errors in the eigenvalues of the covariance and subsequently the
estimated mean.
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The above instructive example illustrates very clearly that the small magnitude of the uncertainty
in speci�c directions may not always be an e�cient criterion to neglect dynamics. This is especially
the case for turbulent ows where we have very strong energy transfers among scales (modes) that
have to be modeled even if the modes are associated with weak energy content.

5 A blended approach based on quasilinear Gaussian method

with DO energy uxes: QG-DO method

From the previous section it is clear that in many applications of practical interest order-reduction
approaches will fail to capture essentially irreducible dynamics such as non-normality features or
energy cascade properties. This is due to the incorrect energy balance or uxes caused by the
ignored modes and the associated energy transfers. This limitation naturally leads us to consider
simpli�ed statistical dynamics in the larger phase space in our analysis. A relevant approach towards
this direction is the quasilinear Gaussian closure (QG) which we will briey describe.

5.1 Overview of Quasi-Linear Gaussian (QG) closure schemes

The simplest closure scheme [8] for the moment problem stated in the Section 2 is to completely
neglect the third-order moments in the evolution equation for the covariance, i.e. set QF = 0.
As illustrated in [9] and the references therein, this type of simple closure with augmented noise
can handle UQ in systems with transient intermittent instabilities. This QG closure is equivalent
with neglecting quadratic terms only in the equation for the covariance (partial linearization of the
moment system) or by assuming Gaussian statistics. In this case the evolution of the covariance
matrix is performed with the closed set of equations

d�u

dt
= [L+D] �u+B(�u; �u)+RijB (vi;vj)+F (18a)

dR

dt
= LvR+RL

�
v +Q� (18b)

Despite its simplicity QG closure is characterized by some very important limitations which are
connected with the misleading modeling of the nonlinear energy uxes (see [20] for a detailed
illustration of these limitations). In particular by completely ignoring the third order moments
we neglect energy transfers due to nonlinear terms. In systems with inherent instabilities these
uxes are responsible for the �nite amount of energy in the unstable modes and non-zero energy in
the stable modes [20]. In the context of systems with linearly stable mean state, nonlinear energy
uxes still play an important role since this is the only means of energy transport from one mode to
another (e.g. Case III in the previous section). Alternatively, a complete modeling of the nonlinear
energy uxes would require a vast amount of statistical information which for systems with large
phase space would be computationally intractable.
Therefore, on one hand we have the QG closure that can handle a large part of the spectrum

but ignores the non-Gaussian character of the statistics and the nonlinear nature of the dynamics
which for some modes may play a crucial role. In other words QG respects the dimensionality of
the problem but fails to capture nonlinear energy exchanges between di�erent modes. On the other
hand we have the reduced-order DO framework which can fully handle the nonlinear, non-Gaussian
character of the dynamics, but only within a small part of the spectrum. This is because DO
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omits low energy modes that can be important when they act as energy channels (e.g. non-normal
systems, energy cascades, etc.).
The goal of the following section is to combine these two complementary approaches towards a

new blended UQ strategy that will be able to handle both the irreducible features (such as non-
normal dynamics) but also the strongly non-linear features such as non-Gaussian statistics. In
particular the basis of this blended method will be the evolution of the full system covariance (from
now on called QG covariance) through equation (5) where the energy uxes due to the nonlinear
terms will be computed only in the reduced-order subspace. This idea combines the advantages of
both methods while it overcomes their disadvantages.

5.2 Description of QG-DO blended method

We will now present in detail the blended approach which combines the two models. The basic
setup is to consider a small number of modes resolved with the DO equations (describing high
energy dynamics) coupled with a much larger number of modes which will not evolve in time and
for which we will resolve only the second order statistics. Essentially we will have two coupled
models propagating uncertainty. The �xed basis model (QG) will be used to evolve the i) mean
and ii) second order statistics (using high dimensional equations) and the time-dependent basis
model will be used to compute the i) non-Gaussian information for the high energy modes, ii) the
shape of the high energy modes, as well as the third-order moments used for the computation of
the energy ux between di�erent modes.
The coupling between the two models will be naturally performed at two levels: i) the evolution

of the reduced-order dynamics (DO subspace and coe�cients) using the mean �eld information ob-
tained by the full mean �eld equation, and ii) the evolution of the full (or QG) second order statistics
using energy uxes computed by the reduced-order, non-Gaussian (DO) statistical information.
We will use a double representation for the solution. Speci�cally, we will represent the solution

to perform UQ through the QG representation that employes a �xed basis

u (t)= �u (t)+
NX
i=1

Zi (t;!)vi

while the representation of the uncertainty used to compute the energy uxes due to nonlinearities
and non-Gaussian statistics in the high energy modes will be given by

u (t)= �u (t)+
sX
i=1

Yi (t;!) ei (t)

which is the reduced-order DO representation.

� Mean �eld equation

The mean �eld equation that we will employ is the one that takes into account the full covariance
information - expressed through the QG covariance R. This is essentially the mean �eld equation
for the �xed basis

d�u

dt
= [L+D] �u+B(�u; �u)+RijB (vi;vj)+F (19)

This is exactly the mean �eld equation produced by the QG methodology.
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� Evolution of the QG covariance matrix

To approximate the QG covariance matrix we will use the (exact) equation for the �xed basis
(4). This can also be written as

dR

dt
= LvR+RL

�
v +QF +Q� (20)

where Lv is the linearized dynamics operator given by (6), Q� the positive energy transfer due to
external noise given by (7), and QF is the ux of energy connected (see eq. (8)) to the unknown
third-order statistics de�ned over the space RN spanned by vi; i = 1; :::; N .
Note that the equation for the covariance can also be seen as a generalized K�arm�an-Howarth

relation [2] which is used for the connection of the third order statistics and the energy content of
a system in steady state. The straightforward computation of the third order statistics involves
a closure problem which we will not handle directly. In contrast to the QG method where this
quantity is set to zero, in this blended QG-DO approach this quantity will be approximated through
a reduced-order DO approach that will run in parallel to the above two equations for the mean and
covariance.
Speci�cally, we will approximate the energy ux QF using the reduced-order DO basis. Then,

the DO reduced-order energy ux will be given by

QF ' QF;s (21)

= hB (u0;u0) :viZji = hYmYnYki (B (em; en) :vi) (vj :ek) + hYmYnYki (B (em; en) :vj) (vi:ek)

The above quantity expresses the energy uxes to any element of the high-dimensional �xed sub-
space from the DO reduced-order subspace only. This equation can be used to study energy transfer
properties from the stochastic subspace to the orthogonal complement and vise-versa. Using this
approach we have not performed reduction on the dynamics of the system but only on the way the
energy uxes are computed.
We emphasize that for systems with persistent instabilities in the linearized dynamics and with

su�ciently low-dimensional DO subspace the nonlinear uxes QF may not be adequately modeled
by QF;s since some unstable modes may not be contained in the stochastic subspace. In this case
we may have large approximation error and another approach should be followed where the QG
closure scheme is substituted by a modi�ed QG closure (see [20, 19]). However, in the present work
we assume that the linearized dynamics are stable and that the system energy is mainly due to
external noise and not due to internal instabilities.

� Evolution of the DO stochastic subspace and stochasticity

The evolution of the DO basis should not be inuenced by the fact that we consider a higher
(than s) dimensional space. This is because if we include on the right hand side of the DO basis
equations, the extra dimensions resolved using the QG model, then the stochastic subspace will not
move towards these directions (in general the subspace tends to capture directions associated with
higher energy).Thus we keep the DO basis equation as it is

@ei
@t

= [L+D] ei +B (�u; ei) +B (ei; �u) +B (em; en) hYkYmYniC�1ik (22)

� ej
�
[L+D] ei +B (�u; ei) +B (ei; �u) +B (em; en) hYkYmYniC�1ik

�
:ej
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In addition, the evolution of uncertainty within the stochastic subspace is performed using the
equations that come directly from the Galerkin projection to the time evolving subspace. Note that
although we do not have terms representing the e�ect of the orthogonal complement dynamics on
the stochastic subspace we have an implicit inuence through the mean �eld,

dYi
dt

= Ym ([L+D] em +B (�u; em) +B (em; �u)) :ei (23)

+ (YmYn � Cmn)B (em; en) :ei + _Wk�k:ei

To summarize we propose the closed set of equations (19) - (23) as a new blended QG-DO UQ
method for systems with stable mean state. This blended approach overcomes the disadvantages of
each of the methods that it is based on. In particular we have a UQ methodology that evolves the
second order characteristics in a �xed basis while it computes the non-Gaussian characteristics only
for high energy, time-dependent modes, described by the DO �eld equations. This non-Gaussian,
reduced-order information is used for the computation of the energy uxes and the evolution of the
second-order structure in the high-dimensional, �xed basis subspace. Finally, it is worth remarking
here that for blended QG-DO algorithms with s = 1 and a single mode in DO, with (17), essentially
the QG closure is recovered, with a Monte-Carlo algorithm in the one dimensional subspace.

6 Application of blended QG-DO to the triad system

We consider the triad system in various con�gurations as previously, including non-normal linearized
dynamics and strong energy cascade regimes. To assess the performance of the developed UQ
algorithm we also consider time-dependent excitations that drive the system between regimes of
equipartition of energy (with zero nonlinear energy transfers and Gaussian statistics) and regimes
of strong energy cascade (with strongly non-Gaussian characteristics).
More speci�cally, we will be using time-dependent noise intensity and forcing. In particular we

will consider the following more generic (than (24)), time-dependent triad system

du1 = (�1u1 + �12u2 + �13u3 + �1u3u2 + g) dt+
�
�1 + f

2 (�T1 � �1)
�
dW1

du2 = (�2u2 � �12u1 + �23u3 + �2u1u3 + g) dt+
�
�2 + f

2 (�T2 � �2)
�
dW2

du3 = (�3u3 � �13u1 � �23u2 + �3u2u1 + g) dt+
�
�3 + f

2 (�T3 � �3)
�
dW3

where f2 and g are time-dependent functions and �Ti > �i. Below we give a summary of all the
cases that we present:

� Strongly nonlinear regime with Gaussian steady state: This case has �xed in time parameters
(f = 0) and zero mean forcing (g = 0). The parameters are chosen so that

�21
21

=
�22
22

=
�23
23

= E: (25)

This particular constraint results in a Gaussian steady state with equipartition of energy.

� Strongly nonlinear regime with energy cascade: This case has also �xed in time parameters
(f = 0) and zero mean forcing (g = 0). The parameters are chosen so that

1 � 2; 3 and �1 � �2; �3: (26)
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This particular constraint results in strong energy transfer from the �rst degree of freedom
to the the second and third degrees of freedom (Figure 4). This strong energy transfer is also
manifested by the strongly non-Gaussian properties of the steady-state probability measure.

� Time dependent parameters I: Periodic and step-function dependence: For this case we use
time-dependent parameters. We consider two cases: f (t) = g (t) = sin

�
�
4 t
�
; and f (t) =

H (t� T ) where H is the Heavyside function. The parameters �1; �2; �3 are chosen to satisfy
condition (26) and the parameters �T1; �T2; �T3 satisfy condition (25) so that the system
oscillates between two regimes of completely di�erent behavior.

� Time dependent parameters II: Stochastic time-dependence dependence: In this case we also
use time-dependent parameters but this time f (t) and g (t) are Ornstein{Uhlenbeck processes
described by the equation

df = � 1
T
f + a

r
2

T
dW

The correlation time is chosen as T = 2 and we also choose a = 0:5� this choice produces
random series having maxima of O(1). The noisy intensity is set as in the previous case so
that we have random transitions between the energy cascade regime and the equipartition
regime.

Strongly nonlinear regime with Gaussian steady state

In this case of parameters the system reaches a statistical equilibrium where all directions of phase
space have equal amount of energy. As we saw in Section 4 where the limitations of order reduction
were illustrated, the single mode reduction is performing badly for this set of parameters. In Figure
5 (upper-left panel) we also present the results for the two-mode DO reduction and the same
conclusions can be made for the UQ performance during convergence to the statistical steady state.
We observe (upper-right panel) that in both cases (s = 1; 2) the DO algorithm captures correctly
the variance inside the subspace. However, the amount of variance that is omitted is su�cient to
create discrepancies in the mean values.
This is not the case for the QG and blended QG-DO algorithms (second row) where the estimated

and exact mean values compare favorably as it can be seen from the second row of Figure 5. To
get a more accurate picture of the algorithms performance we use the information distance between
the approximation u and the Monte-Carlo solution � by applying (14) on the whole space [9, 10].
As can be seen in the lower-left plot both algorithms are performing equally well. The very good
performance of the QG closure was expected for this case if we take into account the Gaussian
character of the invariant probability measure and the absence of any nonlinear energy transfer
properties between modes. In the next numerical experiment we will see that the latter feature
may create important errors in the QG algorithm.

Strongly nonlinear regime with energy cascade

In this con�guration the parameters are chosen so that strong energy transfer occurs from one high
energy mode to the other two low-energy modes. The performance of the various UQ approaches
considered in this paper are shown in Figure 6. In the �rst row we can clearly see the limitations of
the order-reduction approach. The absence of even one mode does not allow for the approximation
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Figure 5: Comparison of the considered UQ algorithms for the triad system in the strongly nonlinear
regime with Gaussian steady state. The results are presented in terms of the �rst and second
moments and they are compared with direct Monte-Carlo simulations.
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scheme to reach a statistical equilibrium. Moreover, the DO modes continuously oscillate creating
arti�cial uctuations in the amount of variance in the subspace.
On the other hand we see that the QG and QG-DO methods overcome these limitations. In

particular QG-DO with a two-dimensional subspace gives the best performance (see information
distance panel in Figure 6) since it captures the energy transfers from the high energy mode to
the other two modes. In contrast, the QG method, by construction, cannot capture any nonlinear
energy transfers and the information distance grows monotonically as a result of this continuous
error. With our remark at the end of Section 5.2, it is not surprising that QG-DO with s = 1
behaves similarly to QG.
In the bottom right panel of Figure 6 we also present the pdf inside the DO subspace (for

s = 2) after the system has reached a statistical equilibrium. The pdf had been visualized using
a histogram on the samples of the stochastic coe�cients (Y1; Y2). This is compared with the
corresponding histogram of the projection of the Monte-Carlo realizations to the QG-DO subspace
with s = 2 and it is clear that QG-DO captures these non-Gaussian statistics very well.

Time dependent parameters I: step-function and periodic dependence

Here we validate our UQ algorithms for a time-dependent set of system parameters. In particular
the system parameters change suddenly from a set that corresponds to a Gaussian steady state
to one that corresponds to a strongly non-Gaussian steady state with an energy cascade. The
results are shown in Figure 7 in terms of the covariance trace and the response pdf inside the
stochastic subspace. In both regimes the QG-DO with a two-dimensional subspace compares very
well with the direct Monte-Carlo simulation. The next numerical experiment involves the same setup
as previously but with periodic variation of the system parameters as well as with deterministic
periodic forcing. The results are shown in Figure 8. Direct DO reduction creates important error
both in the �rst and second order statistics. Additionally, from the form of the captured variance
(upper-right panel) it is clear that the modes follow an aperiodic trajectory since the captured
covariance time series is non-periodic.
On the other hand, the QG method has surprisingly good performance given that it does not

capture any nonlinear energy transfers. This can clearly be seen from the information distance panel
where the QG and QG-DO (s = 1) discrepancies are presented during the temporal regimes where
the system parameters correspond to strong nonlinear energy transfers. For a two-dimensional
subspace, the blended QG-DO method reduces this error signi�cantly since it captures a large part
of the non-Gaussian structure and thus it models an important portion of the nonlinear energy
uxes.

Time dependent parameters II: random dependence

In the �nal numerical experiment that we consider the system parameters uctuate stochastically
(see the beginning of the section for a detailed description) between a set that corresponds to strong
energy transfers and one where we have Gaussian statistics (zero energy transfers). The results are
presented in Figure 9. We observe that both the �rst and second order properties of the system
present strong uctuations. In contrast to the standard DO method, the QG and the QG-DO
method are able to track very well the variations of the system statistics. Moreover, in a similar
manner with the previous numerical experiment the QG-DO with the two-dimensional subspace
outperforms the QG and QG-DO, s = 1 methods in the regimes where strong energy transfers are
present (i.e. regimes where f (t) ' 0).
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Figure 6: Comparison of the considered UQ algorithms for the triad system in the strongly nonlinear
regime with energy cascade. The time-series results are presented in terms of the �rst and second
moments and they are compared with direct Monte-Carlo simulations. The pdf is in the steady-state
DO subpspace is shown and compared with the pdf computed through Monte-Carlo.
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Figure 7: Trace of covariance and pdf in VS resolved with DO-QG (s = 2) for the case of step-
function time dependence f (t) on the parameters.
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Figure 8: Comparison of the considered UQ algorithms for the triad system for periodic dependence
of system parameters. The time-series results are presented in terms of the �rst and second moments
and they are compared with direct Monte-Carlo simulations.
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The above numerical experiments illustrate clearly the need to consider, even through a very
simpli�ed and inexpensive approach like QG, the maximum amount of relevant modes so that we
capture essentially irreducible features such as non-normal dynamics or important variance in modes
that essentially behave linearly (i.e. they do not interact with other modes). Nonlinear interactions
such as energy transfers between modes require knowledge of the non-Gaussian structure and as we
saw in this case, the blending of the QG closure with a non-Gaussian reduced-order DO algorithm
provides an inexpensive approach for UQ in such systems.

Application of QG-DO to large dimensional systems

The direct use of the QG closure in the blended QG-DO algorithm is impractical for u 2 RN
with N ' 1000. In this important practical situation, one can choose the fvigMi=1 to span a
�xed M dimensional subspace with M su�ciently large and repeat the derivation of the QG-DO
algorithm. This subspace can be chosen, for example, to capture both intermittency and low-
frequency variability through the NLSA algorithm [3].

7 Conclusions and future directions

Reduced-order modeling has been proven successful for describing a variety of systems that have
low-dimensional attractors. Here we have analyzed and illustrated generic limitations of order-
reduction in dynamical systems with essentially irreducible features. Such features, as non-normal
dynamics, variance over a wide range of modes, and energy transfers due to nonlinear terms are
typical in realistic applications involving turbulent uid ows and advection of passive tracers. The
quanti�cation of the UQ performance was done using an empirical information framework as well
as through more standard measures.
Subsequently, we developed a blended method using two existing approaches. The �rst ingredi-

ent was the classic quasilinear Gaussian closure which is an inexpensive way to model a wide range
of modes, although the underlying Gaussian assumption ignores important energy transfers (con-
nected with third-order moments) that may be present in systems with strong nonlinearities such as
those that we consider. This important drawback of the QG method was overcome by blending this
inexpensive approach with the DO framework that models the full non-Gaussian statistical features
but only for a low-dimensional stochastic subspace. The blending of the methods resulted in a new
approach that overcomes the limitations of its two ingredients and performs well and inexpensively
in modeling strong energy transfers associated with non-Gaussian statistics. Beyond the very good
performance on capturing second order statistics over the full phase space, the blended method was
also able to provide accurate high-order, statistical information within the stochastic subspace.
Our analysis was restricted to systems where the �nite size of the stochastic attractor is due to

the external stochastic excitation only, i.e. systems with stable mean state. This limitation is due
to the choice of the QG method (as one of the ingredients of the blended approach) which cannot
handle systems with persistent internal instabilities [20]. Therefore a di�erent approach should
be followed, based on the blending of a modi�ed quasilinear Gaussian closure and reduced-order
subspace techniques as DO. Results along this direction will be reported by the authors in the near
future [19].
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Figure 9: Comparison of the considered UQ algorithms for the triad system for random dependence
of system parameters. The time-series results are presented in terms of the �rst and second moments
and they are compared with direct Monte-Carlo simulations.
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