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Abstract

Turbulent dynamical systems are characterized by persistent instabilities which are bal-
anced by nonlinear dynamics that continuously transfer energy to the stable modes. To model
this complex statistical equilibrium in the context of uncertainty quantification all dynamical
components (unstable modes, nonlinear energy transfers, and stable modes) are equally crucial.
Thus, order-reduction methods present important limitations. On the other hand UQ methods
based on the tuning of the non-linear energy fluxes using steady state information (such as the
modified quasilinear Gaussian (MQG) closure) may present discrepancies in extreme excitation
scenarios. In this paper we derive a blended framework that links inexpensive second-order UQ
schemes that model the full space (such as MQG) with high order statistical models in specific
reduced-order subspaces. The coupling occurs in the energy transfer level by i) correcting the
nonlinear energy fluxes in the full space using reduced subspace statistics, and ii) by modifying
the reduced-order equations in the subspace using information from the full space model. The
results are illustrated in two strongly unstable systems under extreme excitations. The blended
method allows for the correct prediction of the second-order statistics in the full space and also
the correct modeling of the higher-order statistics in reduced-order subspaces.

1 Introduction

The most fundamental property of turbulent dynamical systems, which distinguish them from all
other problems of applied mathematics, is the presence of persistent instabilities over a large number
of modes. From the dynamics point of view these instabilities are always balanced by a nonlinear
energy transfer mechanism which acts both as a stabilizing factor for the unstable modes but also as
a supplier of energy for the stable modes [16], leading to broad energy spectra. From the modeling
or uncertainty quantification (UQ) point of view the presence of internal instabilities naturally leads
to growth of any uncertainties present in the modeling equations, initial conditions, or parameters.
Moreover, this synergistic activity of unstable modes, nonlinear energy transfer mechanisms, and

∗Corresponding author: Email: sapsis@cims.nyu.edu, Tel.: +1 (516) 974-1545

1



stable modes, presents important modeling diffi culties since all the above components are equally
crucial for a correct description of the turbulent dynamics.
Therefore, by the very nature of turbulent dynamical systems it is hard to capture this elegant

balance through a reduced-set of modes. Nevertheless there are a large number of applications
where the dynamics ‘live’in a low-dimensional space (e.g. flows with a laminar character having a
very small number of instabilities) and for these systems it is effi cient to perform order-reduction.
Schemes based on this approach are essentially relying on the projection of the original system into
a ‘suitable’set of modes. These are chosen according to empirical criteria such as energy based
proper orthogonal decomposition (POD) (see for example [17, 2]), linear-operator-theoretic model
reduction methods, such as the balanced POD [3, 6], and more recently dynamically orthogonal
(DO) field equations that follow from the original system equation [14, 13].
The effect of the projection on the linearized dynamics may not allow for the correct modeling of

all the instabilities involved in the case where the modes are not suffi cient in number or appropriately
chosen. The same limitations hold for the modeling of intrinsically irreducible linearized dynamics
(such as non-normal dynamics - see Section 4.1 in [15]) or even dynamical components, which
despite the fact that they do not interact with other modes, their energy is important for the
correct modeling (see Section 4.2.1 - case II in [15]). A blended approach based on the quasilinear
Gaussian (QG) closure and DO equations was developed in [15] to resolve the misleading modeling
of the linear dynamics due to the order-reduction. In this case a reduced-order DO approach
was used just for the modeling of the nonlinear fluxes while the linear dynamics where modeled
completely. The developed QG-DO method performed very well in systems with stable mean and
important nonlinear energy fluxes where the system energy (or the attractors finite size) was caused
mainly due to the external stochastic forcing.
It turns out however, that a reduced-order modeling approach even at the level of nonlinear

energy fluxes is not suffi cient to approximate adequately the synergistic activity of unstable, stable
and nonlinear dynamics in a turbulent system. A first step towards this direction was the devel-
opment of the modified quasilinear Gaussian closure (MQG) scheme [16]. Through a second-order
statistical framework the collective effect of the non-Gaussian statistics or nonlinear dynamics is
quantified in the energy transfer level using second-order steady-state information. Subsequently
this nonlinear energy transfer mechanism is represented and coupled to the original linear dynam-
ics. In contrast to other second-order schemes (e.g. mean square models [1, 9]) MQG not only
recovers the correct steady state statistics but it does this by correctly modeling the energy flow
between different dynamical components (or different locations of the spectrum). This leads to very
good performance of the UQ scheme even in transient regimes where the energy and number of
instabilities are much different than the statistical steady state used to diagnose the energy fluxes.
Despite its very good performance MQG is ‘tied’to the steady-state statistics for which it is

tuned. Therefore in extremely different excitation scenarios with spatially non-homogeneous or even
localized action some discrepancies may occur. This is because, even though the MQG nonlinear
energy fluxes are complete (full-order), they may not be able to model a specific dynamical scenario
which is not present in the dynamics used to diagnose the nonlinear fluxes. Such a scenario can be,
for example, injection of energy in high wavenumbers causing reverse flow of energy to large scale
modes. In addition MQG can provide only second-order statistical information.
The goal of the present work is the improvement of the MQG scheme in extreme excitation

scenarios that ‘push’ the system in very different dynamical regimes from those for which the
MQG nonlinear fluxes have been tuned. To achieve this goal we will develop a blended framework
of inexpensive, full-space, second-order UQ schemes (such as MQG) with high order statistical
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models (such as the Fokker-Planck equation or Monte-Carlo simulation) in reduced-order subspaces
(in the present work these will be DO subspaces). This is a particularly challenging task given
the contradictory character of the two ingredient methods (MQG and DO). The coupling will
be performed at the level of the energy fluxes by correcting the MQG fluxes using higher order-
statistical information from a DO reduced order subspace for which the non-linear dynamics are
modeled explicitly. On the other hand we will use the inexpensive second-order statistical model
to maintain the correct energy content inside the DO subspace by modifying the reduced order
equation so that it implicitly takes into account the interactions of the subspace dynamics with the
dynamics lying outside of it. We will prove that this two-way coupling integrates naturally the two
methods resulting in pure improvement relative to the MQG method.
The structure of the paper is as follows. In Section 2 we present and analyze the dynamics of

two paradigm systems with persistently unstable dynamics: the unstable triad and the Lorenz 96
system. We illustrate how the nonlinear energy fluxes are connected with non-Gaussian statistics
and based on this connection we explain why order-reduction techniques will not be able to describe
the correct dynamics (see [15] for more discussion). In Section 3 we illustrate the limitations of
blended methods that perform reduction at the level of energy fluxes such as QG-DO method. In
Section 4 we present the MQG-DO method and we show how the coupling approach results in a
natural blending of the two methodologies that leads to monotonic improvement with respect to
the number of modes for which the full statistics are resolved. Finally, in Section 5 we illustrate
the advantages of the new blended approach in a variety of time-dependent and time-independent
examples exhibiting a strongly unstable character.

2 Dynamical systems with unstable mean

We will focus on the development of blended UQ techniques in order to describe the stochastic
attractor of systems with persistently unstable mean. These are systems whose linearized dynamics
are associated with an important number of positive Lyapunov exponents and therefore the careful
and precise consideration of the nonlinear terms is crucial in order to avoid blowup or severe
underestimation of energy in the UQ scheme [16].
This is a particularly challenging task given that our analysis will rely on the blending of two

methodologies with completely opposing natures: one relying on the expensive statistical modeling
of the dynamics in a low-dimensional subspace, and the other on the second-order (i.e. inexpensive)
statistical modeling of the dynamics in the full space.
The generic system formulation on which our analysis and illustrations will be based is given

by the quadratic system

du

dt
= [L+D] u+B (u,u) + F (t) + Ẇk (t;ω)σk (t) (1)

acting on u ∈ RN . In the above equation and for what follows repeated indices will indicate sum-
mation. In some cases the limits of summation will be given explicitly to emphasize the range of
the index.
In the above equation we have:

• L being a skew-symmetric linear operator representing the β−effect of Earth’s curvature,
topology etc. and satisfying,

L∗ = −L.
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• D being a negative definite symmetric operator,

D∗ = D,

representing dissipative processes such as surface drag, radiative damping, viscosity, etc.

The quadratic operator B (u,u) conserves the energy by itself so that it satisfies

B (u,u) .u = 0.

Finally, F (t) + Ẇk (t;ω)σk (t) represents the effect of external forcing, which we will assume that
it can be split into a mean component F (t) and a stochastic component with white noise charac-
teristics. In what follows we give the basic setup for the exact statistical formulas which will be
used in this paper.
We use a finite-dimensional representation of the stochastic field consisting of a fixed-in-time,

N−dimensional, orthonormal basis

u (t) = ū (t) +Zi (t;ω) vi.

where ū (t) = 〈u (t)〉 represents the ensemble average of the response, i.e. the mean field, and
Zi (t;ω) are stochastic processes.
The mean field equation is given by

dū

dt
= [L+D] ū+B(ū, ū) +RijB (vi,vj) +F. (2)

Moreover the random component of the solution, u′ = Zi (t;ω) vi satisfies

du′

dt
= [L+D] u′+B (ū,u′) +B (u′, ū) +B (u′,u′) + Ẇk (t;ω)σk (t) (3)

By projecting the above equation to each basis element vi we obtain

dZi
dt

= Zj
(
[L+D] vj+B

(
ū,vj

)
+B (vj , ū)

)
.vi +B (u′,u′) .vi + Ẇkσk.vi

From the last equation we directly obtain the evolution of the covariance matrix R= 〈ZZ∗〉

dR

dt
= LvR+RL∗v +QF +Qσ, (4)

where we have:
i) the linear dynamics operator expressing energy transfers between the mean field and the

stochastic modes (effect due to B), as well as energy dissipation (effect due to D) and non-normal
dynamics (effect due to L)

{Lv}ij =
(
[L+D] vj+B

(
ū,vj

)
+B (vj , ū)

)
.vi (5)

ii) the positive definite operator expressing energy transfer due to the external stochastic forcing

{Qσ}ij = (vi.σk) (σk.vj) . (6)
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iii) as well as the energy flux between different modes due to non-Gaussian statistics (or nonlinear
terms) modeled through third-order moments

QF = ZmZnZjB (vm,vn) .vi + ZmZnZiB (vm,vn) .vj (7)

The last term involves higher-order statistics and therefore suitable closure assumptions need to be
made in order to setup a UQ scheme. The modeling of the nonlinear energy fluxes QF based on a
blended MQG and DO approach will be the main focus of this work.
We note that the energy conservation property of the quadratic operator B is inherited by the

matrix QF since
Tr [QF ] = 2ZmZnZiB (vm,vn) .vi = 2B (u′,u′) .u′ = 0 (8)

The above exact statistical equations will be the starting point for the approximation schemes
that we will present and develop below. To illustrate and validate the developed UQ scheme we
will consider two specific systems that belong to the general formulation (1) and mimic various
mechanisms of turbulent dynamics. These will be the triad system in an unstable configuration,
and the Lorenz-96 system under extreme time-space dependent excitation. In what follows we
will give a detailed description of those examples as well as an analysis of the statistics and the
associated energy transfers.

2.1 Unstable triad system

The first example that we consider is a simple but nevertheless instructive model, namely the
triad system. This is a three-dimensional system with a quadratic part that is both divergence
free and energy preserving. In the standard formulation the linear part consists of a dissipative
operator that is negative-definite and a skew-symmetric operator. The nonlinear coupling in triad
systems is generic of nonlinear coupling between any three modes in larger systems with quadratic
nonlinearities [10, 11, 12]. We can think of this ‘toy’problem as a ‘poormans’approach to a full fluid
system where the nonlinear terms, dissipation, and skew-symmetric part represent respectively the
advection terms, the viscous dissipation, and the Coriolis effect while the stochastic noise represents
the nonlinear interactions with other modes in a crude fashion.
In this standard formulation the mean is stable and the finite size of the stochastic attractor is

by the external stochastic forcing. In this context the performance of the blended reduced-subspace
algorithm based on the quasilinear Gaussian closure combined with dynamically orthogonal sub-
space reduction (QG-DO UQ scheme) has been proven to be very satisfactory [15]. However, in
a turbulent system a fundamental factor is the internal system instabilities that make the mean
unstable over various directions in phase space as is typical for anisotropic fully turbulent systems.
To examine this case we will modify the standard triad system configuration by imposing nega-

tive damping to one of the degrees of freedom creating a strong, persistent instability that makes the
role of the external stochastic excitation to be of secondary importance. In particular the system
that we consider is a three-dimensional special case of the generic quadratic system (1) given by

du1 = (−γ1u1 + λ12u2 + λ13u3 + β1u3u2 + F1) dt+ σ1dW1 (9a)

du2 = (−γ2u2 − λ12u1 + λ23u3 + β2u1u3 + F2) dt+ σ2dW2 (9b)

du3 = (−γ3u3 − λ13u1 − λ23u2 + β3u2u1 + F3) dt+ σ3dW3 (9c)

with β1 + β2 + β3 = 0. To obtain an unstable configuration in the steady state we choose negative
damping for u1 (the unstable mode) and positive for u2 and u3 : γ1 = −0.4, γ2 = γ3 = 2.We choose
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strong nonlinear coupling β1 = 2, β2 = β3 = −1, and weak external noise σ1 = 0.25, σ2 = σ3 = 0.79
since the energy of the system comes primarily from the instability of the first mode. The nonlinear
coeffi cients are chosen to rapidly transfer energy from u1 to u2, u3 with β1 having the opposite sign
of β2, β3 [10, 11, 12]. We also choose constant external forcing for the second and third degree of
freedom, F2 = −1, F3 = 1, to achieve non-zero steady state values for u2 and u3. This is essential
for these modes to be active causing energy to flow towards them from u1 so that the system
will achieve a finite-energy steady state and u1 will not blow up. The linear instability is always
dominant for u1 so we set F1 = 0. Finally, we also add a skew symmetric component λ12 = 0.03,
λ13 = 0.06, λ23 = −0.09.
The statistical equilibrium of this system relies exclusively on the strong energy transfer (due

to nonlinear mechanisms) from the unstable modes to the stable ones. In Figure 1 (subplots a and
d) we present the time series for the mean and variance for the three degrees of freedom showing
clearly that u1 is the dominant one. The time series for the third-order central moments responsible
for nonlinear energy transfer

Mijk = 〈(ui − ūi) (uj − ūj) (uk − ūk)〉 ,

where 〈·〉 denotes averaging over the probability measure, are presented in subplot b for the first
mode. These plots clearly indicate that there is a continuous energy transfer from the first mode that
balances its unstable character. The latter is expressed through the eigenvalues of the linearized
dynamics operator Lv given by (5) and shown in subplot c. The strong third-order moments
(causing the strong nonlinear energy transfers) are in full agreement with the deformed shape of
the stochastic attractor illustrated in subplots e (through a low-value contour of the probability
density function that contains most of the probability) and f (through two-dimensional scatter
diagrams).
Despite its low dimensionality the unstable triad example is a challenging case to validate and

assess the performance of a blended UQ algorithm since the equilibrium relies on a very sensitive
balance of nonlinear energy transfers (or equivalently third-order moments) and unstable dynamics.
This connection has to be modeled very carefully in the UQ scheme in order to obtain meaningful
results.

2.2 Lorenz 96 system

The second system that we study is the Lorenz 96 system (L-96) which is the simplest paradigm of a
complex turbulent dynamical systems possessing properties found in realistic turbulent systems such
as a linearly unstable mean state, important energy spanning the whole spectrum, a large number of
persistent instabilities, and strong nonlinear energy transfers between modes. It is widely used as a
test model for algorithms for prediction, filtering, and low frequency climate response [4, 5, 7, 9, 8].
Therefore, L-96 is a perfect candidate both to illustrate the limitations of existing UQ schemes but
also to validate the derived UQ model [16].
The L-96 model is a discrete periodic system described by the equations

dui
dt

= ui−1 (ui+1 − ui−2)− ui + Fi, i = 0, ..., J − 1 (10)

with J = 40 and with Fi the deterministic forcing. We can easily observe that the energy conserva-
tion property for the quadratic part is satisfied (i.e. B(u,u) .u = 0) and the negative definite part
has the diagonal form D = −I.
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Figure 1: Triad system with one unstable direction: a) time series for the mean of u; b) time-series
for the third-order central moments of u involving the unstable mode; c) real part of the linearized
dynamics Lv (ū) eigenvalues; d) time series for the variance of the three DOF and the trace of the
covariance matrix; e) a low-probability contour of the full pdf (

{
u|fu (u) = 10−6

}
) in steady-state.

This surface bounds the major part of the probability measure; f) 2D scatter plots in steady-state.
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The model is designed to mimic baroclinic turbulence in the midlatitude atmosphere with the
effects of energy conserving nonlinear advection and dissipation represented by the first two terms in
(10). For suffi ciently strong forcing values such as F = 6, 8 or 16 the L-96 is a prototype turbulent
dynamical system which exhibits features of weakly chaotic dynamics (Fi = 6), strong chaotic
dynamics (Fi = 8), and turbulent dynamics (Fi = 16) (cf. Figure 2 - first row).

In the L-96 system the external noise is zero, and therefore we have no such contribution in eq.
(4), i.e. Qσ = 0. Thus, uncertainty can only build-up from the unstable modes of the linearized
dynamics - described by Lv (ū). Moreover, by observing the statistical steady state spectrum of the
response (Fig. 2 - second row) we notice that energy spans all the wavenumbers, both stable and
unstable; a clear indication that energy is continuously transferred through the nonlinear fluxes QF
caused by important third-order moments.
To obtain a more intuitive picture of the energy transfers between different dynamical compo-

nents we project the statistical steady state solution to the empirical orthogonal function (EOF or
POD) basis consisting of Fourier modes in the translation invariant system [7]. In particular let
u∞ denote the statistical steady state solution in physical space for the L-96. We choose as a base
vi the EOF modes that satisfy

Cuuvj = σ2jvj , j = 1, ..., J

where, Cuu =
〈
(u∞−ū∞) (u∞−ū∞)

∗〉 is the covariance matrix in physical space. We arrange the
EOF modes, in descending order with respect to their energy, i.e. σ21 ≥ σ22 ≥ ... ≥ σ2J and we
represent the steady state solution as

u∞= ū∞+Z∞i (ω) vi.

After projecting the statistical steady state solution to the EOF base we consider the third order
statistics

Mijk = 〈Z∞iZ∞jZ∞k〉 .
This 3-tensor provides information about the energy exchanges between different dynamical com-
ponents (that represent different energy part of the spectrum) occurring in the form of triad inter-
actions. In Figure 2 - third row we present contours that include moments which are, in magnitude,
15% or larger than the maximumMijk. In other words for each forcing value we present the contour
|Mijk| = 0.15max

ijk
Mijk. The coloring is according to the value of the contained moments i.e. red

for negative moments and blue for positive moments.
Even for the smallest value of F from those that we consider, we can clearly observe that

the dominant nonlinear interactions occur in the form of triad energy exchanges involving very
high energy modes and very low energy modes. This property reveals the challenge behind the
precise modeling of the nonlinear fluxes QF since any attempt to ignore very low-energy dynamical
components will have a dramatic impact on the energy transfer properties. This property is more
pronounced as we go to more intense forcing.
The above property is also confirmed if we consider directly the nonlinear energy fluxes computed

using only a few high-energy modes. In particular we saw that the nonlinear energy fluxes are given
in terms of the third-order moments through equation (7). The partially modeled nonlinear energy
fluxes (based only on the first s ≤ J modes) will be given by

QF,s =

s∑
n=1

s∑
m=1

(MmnjB (vm,vn) .vi +MmniB (vm,vn) .vj) (11)
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In Figure 2 - fourth row we present what percentage of the nonlinear energy transfer terms is
captured when we consider the s−most energetic modes. In particular for each s we present the
ratio q (s) =

max
i,j

QF,s

max
i,j

QF
(blue solid curve) together with the normalized energy of the modes (red

dashed curve) and their cumulative energy (red solid curve). We observe that retaining the 14 most
energetic modes (corresponding to more than 50% of the system energy) will not allow capturing
more than 1-2% of the total nonlinear energy fluxes. Even, if we consider more modes this percentage
increases very slowly.
Our recent MQG scheme [16] is able to alleviate this problematic behavior by directly modeling

the fluxes QF in the second order level using a given statistical steady state (over which it is tuned).
However, the scope of the present work is to model the strong variations of the nonlinear energy
fluxes (using third order statistics) caused by strong modifications of the conditions under which the
MQG scheme has been tuned, i.e. to develop a UQ scheme that will be able to perform satisfactory
in extreme conditions very far away from the tuned MQG spectrum.

3 Limitations of existing UQ methodologies for turbulent
systems

In this section we will provide an overview of existing UQ algorithms emphasizing their advantages
and limitations for turbulent systems. In particular we will study the performance of UQ methods in
turbulent systems with strong energy variations (over time) based i) on the reduced-order modeling
of the nonlinear fluxes QF using dynamical orthogonality subspaces (QG-DO method [15]), and ii)
on the modified quasilinear Gaussian (MQG) closure method [16] tuned over a specific energy level
(i.e. a specific statistical steady-state).

3.1 Reduced order modeling of the dynamics of the nonlinear fluxes
(QG-DO method)

Order-reduction techniques for UQ are based on the assumption that the modes that carry small
amounts of energy do not have important influence on the global dynamics of the stochastic system.
Based on this assumption order-reduction may be performed either on the complete dynamics (e.g.
DO or POD equations) or just on the computation of the nonlinear fluxes QF (QG-DO method).
The advantages of the latter method over standard reduction techniques have analyzed in detail in
[15] and they are primarily related with the adequate modeling of i) non-normal dynamics which
otherwise may be ignored, and ii) linear processes that contribute to the state covariance that plays
an important role to the computation of the mean (eq. (2)).
Although in some systems this may indeed be the case, there are situations where this assumption

does not hold, such as the systems presented in the previous section, where many low-energy modes
act as nonlinear channels of energy that either transfer or dissipate important amounts of energy
and therefore their effect has to be considered in the UQ scheme. Here we illustrate these limitations
by applying the QG-DO methodology to the unstable triad and the L-96 system.
We proceed by recalling the QG-DO UQ scheme (see [15] for details). As mentioned previously,

it is based on the reduced-order modeling of the nonlinear fluxes using statistical information from
a low-dimensional subspace (called the DO subspace). The solution inside this s−dimensional

9



Figure 2: The three different dynamical regimes for the Lorenz-96 system. Spatiotemporal patterns
(first row); Steady-state spectrum (second row); Third order central moments between principal
modes. Only the significant moments are plotted (i.e. larger than 15% of the maximum) and
are colored according to their magnitude and sign (third row); Captured percentage of the total
nonlinear fluxes QF using the s most energetic modes (blue solid curve), captured percentage of
energy using s modes (red solid curve), and the normalized energy of each mode with respect to
the maximum energy (red dashed curve).

10



subspace is represented as

u (t) = ū (t) +
s∑
i=1

Yi (t;ω) ei (t)

where ei (t), i = 1, ..., s are time-dependent modes and s � N is the reduction order. The modes
and the stochastic coeffi cients evolve according to the DO condition [14]. In particular the equations
for the QG-DO scheme are as follows.

• Equation for the mean
The equation for the mean is obtained by averaging the original system equation (i.e. eq. (2))

dū

dt
= [L+D] ū+B(ū, ū) +RijB (vi,vj) +F. (12)

• Equation for the stochastic coeffi cients and the modes
Both the stochastic coeffi cients and the modes evolve according to the DO equations. The
coeffi cients equations are obtained by a direct Galerkin projection and the DO condition

dYi
dt

= Ym ([L+D] em +B (ū, em) +B (em, ū)) .ei (13)

+ (YmYn − Cmn)B (em, en) .ei + Ẇkσk.ei

Moreover, the modes evolve according to the equation obtained by stochastic projection of
the original equation to the DO coeffi cients

∂ei
∂t

= [L+D] ei +B (ū, ei) +B (ei, ū) +B (em, en) 〈YkYmYn〉C−1ik (14)

− ej
(
[L+D] ei +B (ū, ei) +B (ei, ū) +B (em, en) 〈YkYmYn〉C−1ik

)
.ej

• Equation for the covariance
The equation for the covariance will be the exact equation (4) with approximated nonlinear
fluxes

dR

dt
= LvR+RL∗v +QF,s +Qσ

where the nonlinear fluxes are computed using reduced-order information from the DO sub-
space

QF,s = 〈YmYnYk〉 (B (em, en) .vi) (vj .ek) + 〈YmYnYk〉 (B (em, en) .vj) (vi.ek) (15)

The last expression is obtained by computing the nonlinear fluxes inside the subspace and
project those back to the full N−dimensional space.

The QG-DO UQ method provides dramatic improvement compared with the standard Galerkin
order-reduction methods [15]. However, in systems with large number of instabilities, if s is not
large enough to capture the complete nonlinear energy fluxes, the QG-DO scheme will not be able
to equilibrate to the correct amount of energy leading to i) either severe underestimation of energy
to suffi ciently low levels where the modeled part of the fluxes can balance the corresponding (for this
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Figure 3: Misleading performance of QG-DO and DO method for the Lorenz 96 system with F = 8.
In both cases a large number of modes is employed (s = 26).

energy level) number of instabilities, or ii) to blowup of the solution due to instabilities which are
not balanced by negative nonlinear fluxes. The above two scenarios have been analyzed previously
in the context of completely absent modeling of the nonlinear fluxes QF = 0 (quasilinear Gaussian
closure) [16].
In Figure 5 (upper plots) we compare the performance of the QG-DO algorithm (using s = 2)

with direct Monte-Carlo simulation in the unstable triad system presented in the previous section.
As we described previously, the two low-energy modes act as energy channels and therefore by
ignoring one of them we do not allow the UQ scheme to reach a statistical equilibrium creating
important discrepancies both to the mean and the variance.
For L-96 the problems are even more important since in this case we know a priori (using the

results of Fig. 2) that for s ≤ 14 the captured portion of the nonlinear fluxes is close to zero and
thus the QG-DO scheme behaves essentially like the QG closure with poor behavior documented
and explained in [16]. To this end we increase the number of modes to s = 26 corresponding
(according to Fig. 2) to a captured portion of the nonlinear fluxes greater than 50% and to a
captured portion of total energy by the subspace that is greater than 80% (for F = 8). The results
are presented in Fig. 3 for constant forcing in space and time: F = 8. We observe that there
is an important underestimation of the energy of the mean - a feature caused by the misleading
modeling of the nonlinear fluxes that cannot balance the number of instabilities occurring at the
correct energy level. We also observe that there is essentially zero improvement compared with the
DO method since the main cause of the failure is not misleading modeling of linear processes but
rather insuffi cient modeling of the nonlinear mechanisms.

3.2 Modified quasi-linear Gaussian (MQG) method

In the MQG closure the modeling of the nonlinear fluxes is done by using statistical steady state
information for a given set of forcing and system parameters [16]. In particular we consider the
first two moment equations (2) and (4) associated with the original system with respect to an
orthogonal, fixed basis vi. In the statistical steady state the nonlinear fluxes QF will satisfy the
relation

Lv (ū∞)R∞ +R∞L
∗
v (ū∞) +Qσ +QF∞ = 0.
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We split the empirical fluxes into a positive semi-definite part Q+F∞ and a negative semi-definite
part Q−F∞ :

QF∞ = Q−F∞ +Q+F∞.

Note that the empirical fluxes must satisfy for every time instant the conservative property of
B which in the above context is expressed by the constraint:

Tr [QF ] = 0⇒ Tr
[
Q+F
]

= −Tr
[
Q−F
]
. (16)

The positive fluxes Q+F indicate the energy being ‘fed’on the stable modes in the form of external
stochastic noise. On the other hand the negative fluxes Q−F should act directly on the positive
part of the Lv−spectrum, effectively stabilizing the unstable modes. To achieve this we choose to
represent the negative fluxes as additional damping

Q−F (R) = N∞R+RN∗∞

with N∞ determined by solving the equation

Q−F∞ = N∞R∞ +R∞N
∗
∞

which has as a unique solution

N∞ =
1

2
Q−F∞R

−1
∞ .

In addition, as explained in detail in [16] we add a small amount of damping and noise to improve
the marginal stability which otherwise occurs in the steady state. Moreover, we scale the fluxes
with a suitable functional (here we use the square-root of the total energy) in order to achieve the
best possible accuracy in the timescales of the system and the transient response. This will give
the final MQG closure scheme:

dū

dt
= [L+D] ū+B(ū, ū) +RijB (vi,vj) +F (17a)

dR

dt
= LvR+RL∗v +NR+RN∗ +Q+F +Qσ (17b)

N =
1

2

f (R)

f (R∞)

(
Q−F∞ − qI

)
R−1∞ and Q+F = −

Tr
[
Q−F
]

Tr
[
Q+F∞

] (Q+F∞ + qI
)

(17c)

with q = qsλmax [QF∞] and f (R) =
√
Tr (R). The last formulation guarantees the conservation

property (16) on every time-instant.
In the MQG closure the modeling of the nonlinear fluxes occurs in the second-order level and

therefore no statistical information for higher order moments is required to be computed or mea-
sured. Essentially, we are using the steady information to determine the magnitude (for each degree
of freedom) of the minimum amount of additional damping and additional noise required to ap-
proximate the effect of the nonlinear energy transfer terms. This additional damping will balance
the linear, persistent instabilities while the additional noise will ‘feed’the stable modes with energy.
The MQG closure presents remarkable performance even under forcing conditions that ‘push’

the system to energetic regimes which are very far from the tuning regime [16]. However, for forcing
conditions which are strongly inhomogeneous in space and create local, in space, instabilities the
additional damping and noise N,Q+F (which have been computed for homogeneous conditions) may

13



0 5 10 15
0

200

400

600

time

Total variance

0 5 10 15
0

100

200

300

400

500

time

Energy of Mean

0 10 20 30 40
­10

0

10

20

30
Forcing for t = 0

i

F i
0 5 10 15

0

200

400

600

time

Total variance

0 5 10 15
0

100

200

300

400

500

time

Energy of Mean

0 10 20 30 40
­10

0

10

20

30
Forcing for t = 0

i
F i

0 5 10 15
0

500

1000

1500

time

Total variance

0 5 10 15
0

200

400

600

800

time

Energy of Mean

Monte Carlo MQG

0 10 20 30 40
4

4.5

5

5.5

6

6.5
Forcing for t = 0

i

F i

Figure 4: Comparison of MQG UQ scheme (solid line) with Monte-Carlo (dashed line) in L-96
for different spatial dependence of the forcing Fi (t) (eq. (18)). First row: a = 0 - no spatial
dependence; second row: a = 0.2 - weak spatial dependence; third row: a = 1 - strong spatial
dependence. The tuning of the fluxes has been made using steady state statistics that correspond
to constant forcing F = 8.
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fail to capture the correct energy transfers. Here we measure the performance of the MQG closure
scheme through the L-96 system with a strongly time-space dependent forcing given by

Fi (t) = F + 2F sin

(
a

3i

10
− 3t

20

)
sin

(
a

3i

2
+

3t

4
+ π

)
, 0 ≤ i ≤ 39 (18)

where F = 8 and the nonlinear fluxes have been tuned based on the F = 8 steady state. Note that
there are large inhomogeneous changes in the forcing magnitude compared to the tuning value for
any a. In Figure 4 we observe that for a = 0 and a = 0.2, i.e. zero or slow spatial variation of the
forcing but large changes in magnitude, the MQG algorithm has very good performance on capturing
first and second order-moments. For much faster spatial variation of the forcing (a = 1) MQG is
unable to adequately model the energy transfers. Therefore, despite its very good performance for
homogeneous or close to homogeneous conditions, MQG may have important discrepancies in the
case of strongly inhomogeneous excitations (Figure 4). Modeling such inhomogeneous responses
will be the goal of the next section where the nonlinear fluxes will be modeled by combining ideas
from reduced-order subspaces with the MQG approach.

4 A blended approach based on MQG and subspace gener-
ated nonlinear fluxes (MQG-DO method)

We saw that MQG has the most robust behavior in UQ of turbulent systems, compared with all the
other UQ methodologies. However, for strong forcing or variation of system parameters additional
instabilities may be introduced which cannot be modeled appropriately by the MQG fluxes. For
this case we introduce a blended approach where the MQG fluxes will be improved through a
reduced-subspace model which will run over a DO basis. The reduced order model that runs inside
the subspace has also to take into account the energy fluxes coming from the nonlinear processes
outside the subspace. To this end, we will have a two-way coupling between MQG and DO where i)
the nonlinear fluxes of the MQG model will be corrected using higher-order stochastic information
from the subspace, while ii) the evolution of the dynamics inside the subspace will take into account
the nonlinear fluxes occurring due to the nonlinear interactions between the subspace modes and
the orthogonal (to the subspace) modes, a feature that is captured by the MQG fluxes.
We will use a double representation for the solution. Similarly with the QG-DO method, we

will represent the solution i) using a fixed, high-dimensional basis

uMQG (t) = ū (t) +

N∑
i=1

Zi (t;ω) vi

and ii) a time-dependent, low dimensional basis

uDO (t) = ū (t) +

s∑
i=1

Yi (t;ω) ei (t)

that represent the dynamics within a reduced-order subspace VS = span [ei (t)] . We require the
two solutions to have the same mean and also to be identical inside the subspace. This is expressed
by the condition

uDO (t) .ei (t) = uMQG (t) .ei (t) , for i = 1, ..., s

15



or equivalently,
N∑
j=1

Zjvj .ei = Yi

which gives the consistency condition between the high dimensional covariance (R= 〈ZZ∗〉) and the
reduced-order covariance (CY Y = 〈YY∗〉):

CY Y = P ∗RP, where RN×s 3 Pji = vj .ei (19)

The MQG-DO UQ scheme is developed as follows.

• Mean field equation

The mean field equation that we will employ is that one that takes into account the high-
dimensional covariance information - expressed through the covariance R. This is equation (2)
rewritten here for convenience

dū

dt
= [L+D] ū+B(ū, ū) +RijB (vi,vj) +F. (20)

• Evolution of the covariance matrix R

We recall the second-order moment equation (eq. (4))

dR

dt
= LvR+RL∗v +QF +Qσ.

In the MQG approach we represent the nonlinear fluxes QF , using steady state information, through
a positive definite (external noise) and negative definite (minimum additional dissipation) part. In
the QG-DO this is done using higher-order statistical information inside the subspace. In this
blended MQG-DO approach we will combine these ideas by using MQG fluxes but improving
those (since they rely on steady state information) by correcting them using higher-order statistical
information from the low dimensional subspace VS . In particular from the MQG nonlinear fluxes
we will i) subtract the steady state nonlinear fluxes QVS ,∞ that correspond to the subspace VS , and
ii) we will add the corresponding fluxes computed using the high-order statistics of the subspace
which also include transient dynamics information:

QF = QMQG +QVS −QVS ,∞. (21)

where QMQG = NR + RN∗ + Q+F (see eq. (17c)). This correction of the nonlinear fluxes (i.e.
QVS instead of QVS ,∞) will be able to take into account important transient, and spatially non-
homogeneous effects. To this end the evolution equation for the full covariance will take the form

dR

dt
= LvR+RL∗v +Qσ +QVS +QMQG −QVS ,∞. (22)

The next step is to write down explicit formulas for the fluxes QVS and QVS ,∞. The energy flux
in the reduced order subspace will be given by

QVS = 〈YmYnYk〉 [(B (em, en) .vi) (vj .ek) + (B (em, en) .vj) (vi.ek)]
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This is the nonlinear flux matrix inside the subspace projected back to the high dimensional basis.
The above fluxes also sum up to zero since VS ⊂ spani [vi] and therefore em = (vq.em) vq. Thus
we will have

Tr [QVS ] = 2 〈YmYnYk〉 (B (em, en) .vp) (vp.ek)

= 2 〈YmYnYk〉 (B (em, en) .ek) = 0.

To represent the steady state nonlinear fluxes within the subspace we use the steady state skewness
(assumed to be known) suitably rescaled with the current variance of the system:

QVS ,∞ = µmnk,∞

√
〈Y 2m〉 〈Y 2n 〉 〈Y 2k 〉 [(B (em, en) .vi) (vj .ek) + (B (em, en) .vj) (vi.ek)]

where the steady state skewness coeffi cients are given by

µmnk,∞ =
〈Ym,∞Yn,∞Yk,∞〉√〈
Y 2m,∞

〉 〈
Y 2n,∞

〉 〈
Y 2k,∞

〉 , with Ym,∞ = (u∞ − ū∞) .em (t) .

We emphasize that the time-dependence in the skewness coeffi cients µmnk,∞ comes only through
the time-dependent modes. Additionally, we have by construction

Tr [QMQG] = Tr [QVS ] = Tr [QVS ,∞] = 0.

Therefore, the nonlinear flux formulation (21) is consistent with the energy conservation property
of the nonlinear operator B. Equation (22) expresses the first level of coupling, i.e. the influence of
the DO subspace dynamics on the evolution of the high-dimensional covariance.

• Evolution of the DO stochastic subspace

The evolution of the DO basis will be done using the standard DO equations for the basis [14]

∂ei
∂t

= [L+D] ei +B (ū, ei) +B (ei, ū) +B (em, en) 〈YkYmYn〉C−1ik (23)

− ej
(
[L+D] ei +B (ū, ei) +B (ei, ū) +B (em, en) 〈YkYmYn〉C−1ik

)
.ej

• Reduced-order stochastic dynamics

The last step of our scheme is the formulation of a reduced order dynamical system inside the
time-dependent subspace. This will be formulated by minimally modifying the standard reduced-
order model (obtained by Galerkin projection to the DO basis, i.e. eq. (13)) so that the subspace
covariance (expressed through the coeffi cients Y) is energetically consistent with the covariance of
the coeffi cients Z (consistency condition (19)). Differentiating equation (19) gives

dCY Y
dt

= P ∗
dR

dt
P + Ṗ ∗RP + P ∗RṖ (24)

(where dR
dt is known, given by equation (22)). This is the consistency constraint expressed in

differential form.
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On the other hand for the evolution of the dynamics inside the subspace we consider the standard
Galerkin projection model with an additional damping matrix NC ∈ Rs×s and noise term Q

1/2
C ∈

Rs×s that will represent the nonlinear interactions between modes of the subspace and the modes
outside of it. With this ansatz we will have the reduced-order dynamical system

dYi
dt

= ((P ∗LvP )im +NC,im)Ym + (YmYn − CY Y,mn)B (em, en) .ei + ẆmQ
1/2
C,im + Ẇkσk.ei (25)

In the above equation all the quantities are known except for the pair NC and QC . This will be
determined by using the differential constraint (24). In particular we formulate the second order
equation for the covariance CY Y by using eq. (25)

dCY Y
dt

= (P ∗LvP +NC)CY Y + CY Y (P ∗LvP +NC)
∗

+QC + P ∗QσP + P ∗QVSP (26)

From the covariance consistency condition (eqs. (19), (24)) and the evolution equation for R (eq.
(22)) we have

dCY Y
dt

= P ∗ (LvR+RL∗v +Qσ +QVS +QMQG −QVS ,∞)P + Ṗ ∗RP + P ∗RṖ

By equating the two right hand sides of the last two equations we obtain (also taking into account
that CY Y = P ∗RP )

NC (P ∗RP ) + (P ∗RP )N∗C +QC (27)

= P ∗Lv [I − PP ∗]RP + P ∗R [I − PP ∗]L∗vP + P ∗QMQGP − P ∗QVS ,∞P + Ṗ ∗RP + P ∗RṖ

We recall that QMQG = NR+RN∗+Q+F and we choose the positive definite matrix QC as follows

QC = P ∗Q+FP (28)

which is always possible since Q+F is by construction positive definite. Then equation (27) takes the
form

NC (P ∗RP ) + (P ∗RP )N∗C

= P ∗ (Lv [I − PP ∗] +N)RP + P ∗R ([I − PP ∗] +N∗)L∗vP − P ∗QVS ,∞P + Ṗ ∗RP + P ∗RṖ

From which we obtain NC

NC =
1

2

[
P ∗ ((Lv [I − PP ∗] +N)R+R ([I − PP ∗]L∗v +N∗)−QVS ,∞)P + Ṗ ∗RP + P ∗RṖ

]
(P ∗RP )

−1

(29)
With the above construction it is guaranteed that the dynamics inside the subspace will always
contain the correct second-order information (correct energy) by taking into account the nonlinear
energy fluxes due to the nonlinear interactions with the dynamics outside the subspace. The above
construction can also be seen as a generalized Galerkin projection that takes into account available
information for the dynamics which are not spanned by the employed basis. Equations (28) and
(29) express the second level of coupling between MQG and DO, i.e. the influence of the MQG
fluxes on the reduced-order dynamics. This completes the set of equations for the MQG-DO UQ
scheme.
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Note that for s = 0, MQG-DO is simplified to the standard MQG scheme while for s = N we
recover the original equation. For s = 1 the dynamics in the DO subspace become linear since
B (e1, e1) .e1 = 0. Therefore we expect Gaussian statistics for the stochastic coeffi cient Y1. In this
case the nonlinear fluxes QVS generated by the subspace will vanish since

〈
Y 31
〉

= 0. On the other
hand, the steady state fluxes QVS ,∞ that we subtract will be non-zero since µ111,∞ is based on
exact statistics. Thus, for s = 1 we expect inferior performance compared with MQG.

4.1 Consistency of the MQG-DO with the exact steady state statistics

Here we will prove that the MQG-DO UQ method will result in the correct steady state statistics.
Essentially, we will need to prove that the steady state of the MQG-DO scheme is compatible with
the exact steady state statistics. First we observe that

QVS |Y∞
= 〈Ym∞Yn∞Yk∞〉 [(B (em, en) .vi) (vj .ek) + (B (em, en) .vj) (vi.ek)]

= µmnk,∞

√
〈Y 2m∞〉 〈Y 2n∞〉 〈Y 2k∞〉 [(B (em, en) .vi) (vj .ek) + (B (em, en) .vj) (vi.ek)]

= QVS ,∞.

We will also have

dR

dt

∣∣∣∣
ū∞,R∞,Y∞

= Lv (ū∞)R∞ +R∞L
∗
v (ū∞)− lim

t→∞
QVS +QMQG +QVS ,∞ +Qσ

= Lv (ū∞)R∞ +R∞L
∗
v (ū∞) +QMQG +Qσ = 0

where the last equation vanishes by the construction of the MQG nonlinear fluxes QMQG.
Next, we consider the equation for the coeffi cients (25). By construction the covariance of the

coeffi cients satisfies equation (24). Therefore, assuming that the subspace has converged to a steady
state, i.e. Ṗ = 0 we obtain that for Y = Y∞, ū = ū∞, R = R∞

dCY Y
dt

∣∣∣∣
ū∞,R∞,Y∞

= 0.

The mean equation is trivially satisfied. Thus, the MQG-DO model is indeed consistent (up to
second order), by construction, with the correct steady state information.

4.2 Summary of the MQG-DO equations

Here we present a summary of the blended MQG-DO method for the convenience of the reader.
Equation for mean and covariance

dū

dt
= [L+D] ū+B(ū, ū) +RijB (vi,vj) +F,

dR

dt
= LvR+RL∗v +Qσ +QVS +QMQG −QVS ,∞.

(30)
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where,

QMQG = NR+RN∗ +Q+F

N =
1

2

f (R)

f (R∞)

(
Q−F∞ − qI

)
R−1∞ and Q+F = −

Tr
[
Q−F
]

Tr
[
Q+F∞

] (Q+F∞ + qI
)

Q−F∞ +Q+F∞ = QF∞ = −Lv (ū∞)R∞ −R∞L∗v (ū∞)−Qσ
q = qsλmax [QF∞] and f (R) =

√
Tr (R),

and

QVS = 〈YmYnYk〉 [(B (em, en) .vi) (vj .ek) + (B (em, en) .vj) (vi.ek)]

QVS ,∞ = 〈Ym∞Yn∞Yk∞〉 [(B (em, en) .vi) (vj .ek) + (B (em, en) .vj) (vi.ek)] .

Equation for the subspace basis

∂ei
∂t

= [L+D] ei +B (ū, ei) +B (ei, ū) +B (em, en) 〈YkYmYn〉C−1ik (31)

− ej
(
[L+D] ei +B (ū, ei) +B (ei, ū) +B (em, en) 〈YkYmYn〉C−1ik

)
.ej .

Equation for the subspace dynamics

dYi
dt

= ((P ∗LvP )im +NC,im)Ym + (YmYn − CY Y,mn)B (em, en) .ei + ẆmQ
1/2
C,im + Ẇkσk.ei, (32)

where Pij = vi.ej and

NC =
1

2

[
P ∗ ((Lv [I − PP ∗] +N)R+R ([I − PP ∗]L∗v +N∗)−QVS ,∞)P + Ṗ ∗RP + P ∗RṖ

]
(P ∗RP )

−1

QC = P ∗Q+FP.

4.2.1 Numerical implementation of the MQG-DO scheme

The numerical implementation of the MQG-DO scheme is as follows:
i) Computation of the current third-order statistics inside the subspace and subsequent compu-

tation of the subspace nonlinear fluxes QVS , QVS,∞ (s−dimensional computation).
ii) Evolution of the DO modes with a first-order Euler method (s−dimensional computation).
iii) With fixed nonlinear fluxes from step i) we evolve the nonlinear equations (30) for a numerical

time step using a 4th order Runge-Kutta method (N−dimensional computation).
iii) We compute the matrices NC and QC using the evolved values of R and ū from the previous

step (s−dimensional computation).
iv) We evolve the stochastic coeffi cients Yi for a numerical time step using a 4th order Runge-

Kutta method on eq. (32) with fixed matricesNC andQC given by the previous step (s−dimensional
computation).
v) We perform orthonormalization of the DO modes and the stochastic coeffi cients to avoid

numerical errors according to the procedure described in [18] (Section 5.2) (s−dimensional compu-
tation).
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Figure 5: Triad system in an unstable configuration with constant forcing/parameters resolved with
various UQ methods. The mean and the variance are plotted. In the lower plots a comparison is
given between the pdf inside the subspace computed with MQG−DO and direct Monte-Carlo.

5 Application of MQG-DO to systems with unstable dynam-
ics

Here we apply the new blended algorithm to the two unstable systems presented previously. We will
consider for each system two configurations: i) a case with constant parameters where the system
reaches the steady state which has been used to tune the MQG fluxes, and ii) a case where we
have explicit time-dependence to the system/forcing parameters. This time dependence is chosen
so that it ‘pushes’the system away from the energetic regime for which the steady state statistics
have been computed by introducing additional instabilities.
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5.1 Triad system with unstable mean state

5.1.1 Steady state dynamics

The first case that we consider is the triad system in the unstable configuration presented in Section
2.1. In Figure 5 we compare the performance of the MQG-DO with direct Monte-Carlo simulation
and with other UQ methods (MQG and QG-DO). Note that the performance of the QG-DO UQ
scheme for the constant forcing case has been discussed already in Section 3.1 and it will not be
considered here. For MQG we observe that even though it recovers very well the steady state
performance it presents some discrepancies during the transient regime, especially in the variance.
On the other hand MQG-DO with 2 modes is able to resolve much more effectively the transient
dynamics while it still maintains the very good performance of MQG in the steady state. In
addition, through MQG-DO we are able to recover the full non-Gaussian statistical steady state
statistics inside the DO subspace which compare favorably with the exact ones (Fig. 5). This is
due to the fact that the fluxes are partially resolved explicitly

5.1.2 Time dependent forcing

To illustrate more clearly the advantages of the MQG-DO method we consider a case where both
the forcing and the system parameters fluctuate over time. Their fluctuations are chosen so that the
system moves between dynamical regimes of zero, one, and two instabilities. Note that the steady
state statistics are chosen based on the response of the previous (constant-parameters) configuration
where only one instability is present. In particular the triad system that we consider has the form

du1 = (−γ1u1 + λ12u2 + λ13u3 + β1u3u2 + g1) dt+
(
σ1 + f2 (σT1 − σ1)

)
dW1

du2 = (−γ2u2 − λ12u1 + λ23u3 + β2u1u3 + g2) dt+
(
σ2 + f2 (σT2 − σ2)

)
dW2

du3 = (−γ3u3 − λ13u1 − λ23u2 + β3u2u1 + g3) dt+
(
σ3 + f2 (σT3 − σ3)

)
dW3

where the system parameters remain as in Section 2.1 and g1, g2, g3, and f are functions of time.
Moreover, we choose the new additional parameters for the noise as σTi = 3

5σi so that important
variations in the noise intensity occur. We consider two cases for the time dependent functions: a
time-periodic and one with random time dependence. For the periodic case we choose

g1 (t) = 0, g2 (t) = −1 + 0.5 sin
πt

2
, g3 (t) = 1 + 0.2 cos

πt

2
, f (t) = 1.3 sin

πt

2

and as we observe in Figure 6 (lower-left subplot) the system oscillates between a stable and an
unstable regime with one instability. The blended MQG-DO method (s = 2) recovers very well both
the periodic attractor and the initial transient regime in terms of the first and second order statistics.
MQG does very well for the mean but it cannot track the second-order statistics very effectively.
This is due to the fact that MQG has been tuned for a dynamical regime with one unstable direction
and, as the results indicate, the correct nonlinear fluxes are not effectively represented in the fully
stable regime. This is also the case for QG-DO where nonlinear fluxes are partially represented
through the non-Gaussian statistics inside the DO subspace. By comparing QG-DO and MQG we
can conclude that for unstable systems it is more effective to use a complete (full-order) model of
the nonlinear fluxes based on steady state statistics which may refer to a different energy/dynamical
regime rather than model the nonlinear fluxes using an explicit approach such as QG-DO which
gives an incomplete (reduced-order) representation of the nonlinear dynamics and creates important
discrepancies.
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Figure 6: Triad system with time dependent parameters and forcing. The system oscillates between
a stable and an unstable regime. The performance of MQG-DO algorithm is compared with Monte-
Carlo and other UQ methods.
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In the case with random time-dependence we have the functions gi given by

g (t) =

 0
−1
1

+ g (t)

 1
1
1

 where dg = −1

4
g + 0.4

√
1

2
dWg (t;ω)

and the noise intensity is also controlled by an Ornstein—Uhlenbeck (OU) process

df = −1

4
f + 0.7

√
1

2
dWf (t;ω) .

In Figure 6 (lower-right subplot) we show the resulted evolution of the eigenvalues for the linearized
dynamics. The transition involves fully stable and unstable regimes with one and two instabilities.
From Figure 6 (second plot on the right column) we observe the explosion of variance occurring right
after the system passes very briefly through the regime with two instabilities (t ∼ 7.5). MQG-DO
(s = 2) is able to track very effectively this unstable transition while QG-DO and MQG overestimate
the system variance since they cannot model the correct nonlinear fluxes during the subsequent
stable phase. Similarly with the periodic case MQG performs very well for the estimation of the
mean given its extremely inexpensive computational character. When we compare MQG with QG-
DO we can make similar conclusions with the periodic case, i.e. that an empirical, but nevertheless
complete (full-order) model, of the nonlinear fluxes (such as MQG) performs much better than a
scheme that explicitly model the nonlinear fluxes through a reduced order approach.

5.2 Lorenz 96 with time-space dependent forcing

The second application where we illustrate and validate MQG-DO method is the Lorenz 96 system
presented in Section 2.2. Similarly with the triad system we will consider two cases: i) constant
parameters where a statistical steady state is reached, and ii) strongly time-space dependent forcing.

5.2.1 Steady-state dynamics

For this constant parameters case we choose F = 8 and we use the second order statistics describing
the statistical steady state to obtain the MQG nonlinear fluxes. Then we resolve the transient
problem in order to examine how well the blended MQG-DO method does on capturing the transient
dynamics, the steady state spectrum, and also recovering the higher-order statistical structures
inside the subspace. Based on the study of the nonlinear energy fluxes that we presented previously
(Fig. 2), we obtain an estimate of the maximum improvement on the nonlinear fluxes, by resolving
s modes within the DO subspace. For example we can immediately conclude that if s < 15 the
impact of the DO correction to the MQG nonlinear fluxes will be less than 2-3%. To this end
we choose s = 26 so that we have equal orders of contribution between the MQG and the DO
component.
Note that due to the special geometry of the triad interactions occurring in the Lorenz 96

system the problem is particularly hard. In more realistic turbulent systems we do not expect the
very low-energy modes to directly interact with the largest energy modes. In this case we rather
expect strong triad interactions between high and intermediate energy modes and subsequent flow
of energy through the inertial scales to the dissipations scales.
In Figure 7 we present the performance of the MQG-DO scheme with s = 26 modes. The

recovery of the correct spectrum indicates that the two-level coupling between MQG and DO
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Figure 7: Lorenz-96 system for F = 8 resolved with MQG-DO method and s = 26. The time series
for the mean, the spectrum, and the third-order central moments within the subspace are shown
and compared with direct Monte-Carlo. The plotting of the third order moments follows the same
technique used in Figure 2.
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occurs naturally without causing important discrepancies. This is also suggested by the higher-
order statistics in steady state. In particular in the lower plots of Figure 7 we present the third
order moments in steady state Mijk = 〈Y∞iY∞jY∞k〉 as those are computed with MQG-DO and
with direct Monte-Carlo. In particular we plot only the moments that have values for which
|Mijk| > 0.15max

ijk
Mijk and we color those according to their values. Through these results we can

clearly see that the third order moments inside the subspace are recovered very effectively even
though a full Monte-Carlo scheme is run only for the DO dynamics inside the subspace.

5.2.2 Time-space dependent forcing

Here we consider the strongly forced Lorenz 96 presented in Section 3.2 in the extreme regime
where the MQG scheme fails to performs UQ adequately. In particular we consider the forcing
given by equation (18) with a = 1. The spatiotemporal pattern of the excitation is shown in Figure
8 (upper-left subplot). Under the effect of this excitation we inject energy directly to the high
wavenumber modes and an important portion of it is transferred back to the small-wavenumber
modes. MQG is not capable to model adequately this energy transfer since it has been calibrated in
a completely different dynamical regime where such energy transfers do not occur. To this end, as
we can observe in the MQG spectrum of Figure 8, energy is overestimated in the high wavenumber
modes while the low wavenumber modes have smaller energy than the Monte-Carlo simulation.
On the other hand, MQG-DO directly models an important part of the nonlinear energy fluxes.

As we observe in Figure 9 the DO modes localize exactly in the locations where the high frequency
forcing is active. The non-Gaussian statistics in the stochastic subspace explicitly model the nonlin-
ear fluxes from the high wavenumber modes to the low-wavenumber modes. However, as explained
previously, due to the peculiarity of the nonlinear interactions in Lorenz 96, we need an important
number modes in order to have an effective correction of the MQG nonlinear fluxes (which do not
take into account the time-space character of the external excitation). Therefore for s = 14 the
improvement is minimal and is restricted in the low-wavenumber modes of the spectrum. For a
larger subspace (s = 20) things are improved more but still the large-wavenumber modes do not
carry completely the correct amount of energy to the low-energy modes. This is achieved when
s = 26 where the obtained spectrum has very good agreement with the exact spectrum. Note that
some minor discrepancies are expected since still we do not resolve the full nonlinear energy fluxes
and an important portion of them is based on steady state information.
In Figure 8 we also present the time series for the energy of the mean and the trace of the

covariance. We can immediately conclude the monotonic convergence to the Monte-Carlo statistics
as the number of modes is increasing. This is another manifestation of the natural coupling between
the MQG and the DO components that results in pure improvement of the MQG. Finally, in Fig
10 we present the third order moments inside the subspace as those are computed for t = 8 using
the MQG-DO scheme and a direct Monte-Carlo simulation. We emphasize that these results refer
to a transient problem and even though the agreement is not in the point-wise sense we still have
a very satisfactory estimation of the nonlinear interactions inside the subspace.

6 Conclusions and Future directions

We have presented a blending framework between inexpensive,full-space, second-order methods
based on diagnostic nonlinear energy fluxes from a steady-state (MQG) and high-statistical-order
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Figure 8: Lorenz 96 system with extreme time and space dependent forcing. The performance of
MQG and MQG-DO methods (for various s) is shown and compared with Monte-Carlo in terms of
the spectrum, the energy of the mean, and the total stochastic energy.
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Figure 9: Upper plot: Localization of the energy spanned by the DO modes {ej}26j=1 expressed

through the grid point energy density
26∑

m,n=1

CY Y,mnemkenk for t = 8 and s = 26 (blue bold curve);

the forcing Fj (t) for t = 8 (red solid curve) plotted together with the large scale modulation
envelope of the forcing. Lower plot: The first three modes e1, e2, e3 for t = 8.
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Figure 10: Comparison of third-order central-moments for Lorenz 96 subjected to extreme excita-
tion. The moments inside the subspace are shown (for t = 8) computed with MQG-DO (s = 26)
and Monte-Carlo. The visualization follows the same technique used in Figure 2.

methods for reduced-order subspaces (DO). The coupling of these two methodologies presents par-
ticular challenges due to the contradictory nature of the two ingredients. Based on energy fluxes
arguments we establish a two-way coupling by i) correcting the MQG nonlinear energy fluxes using
non-Gaussian statistical information from the DO subspace, and ii) correct the reduced order dy-
namics inside the subspace so that the interactions with dynamical components outside the subspace
are fully taken into account.
With this blended MQG-DOmethod we prove that i) the steady state statistics are still recovered

correctly (as it happens in the MQG method), and ii) we obtain a pure improvement compared
with the MQG method, which increases monotonically as the number of modes, whose full statistics
are modeled, increases. We illustrate the blended approach in two unstable systems (where MQG
and order-reduction approaches fail to approximate correctly) under extreme excitation scenarios
involving localized forcing and energy injected in high-wavenumber modes. The results indicate that
the MQG-DO method is able to recover the correct evolution of the spectrum and the mean (second-
order statistics) over the full dimensionality of the system, but also approximate satisfactorily the
higher order statistics within the stochastic subspace. Future work includes the application of the
above framework in realistic turbulent systems using a combination of DO and carefully chosen,
fixed modes. Also, the above methodology has great potential for the correct quantification of
non-Gaussian statistics and in particular extreme events for specific modes of interest (e.g. extreme
waves in the ocean, etc.).
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