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Abstract

This article discusses the challenges in climate science from the emerg-
ing viewpoint of stochastic-statistical properties of turbulent dynami-
cal systems. The mathematical topics discussed here include empiri-
cal information theory, fluctuation-dissipation theorems, reduced order
stochastic modelling, and the development of mathematically unam-
biguous exactly solvable test models for climate science which capture
crucial features of vastly more complex scientific problems. The applied
mathematics topics include the emerging development of multi-scale al-
gorithms for filtering/data assimilation and superparameterization for
climate science and other problems in science and engineering, as well
as suitable unambiguous mathematical test problems for their behavior.
Interesting contemporary research directions and specific open problems
are mentioned throughout the article. The perspective here also should
be useful for applications to other complex dynamical systems arising
in neural science, material science, and environmental/mechanical engi-
neering. c© 2000 Wiley Periodicals, Inc.

1 Introduction

The climate is an extremely complex coupled system involving signifi-
cant physical processes for the atmosphere, ocean, and land over a wide
range of spatial scales from millimeters to thousands of kilometers and time
scales from minutes to decades or centuries [21, 111]. Climate change science
focuses on predicting the coarse-grained planetary scale long time changes
in the climate system due to either changes in external forcing or inter-
nal variability such as the impact of increased carbon dioxide [113]. For
several decades the predictions of climate change science have been carried
out with some skill through comprehensive computational atmospheric and
oceanic simulation (AOS) models [21, 111, 113, 117] which are designed to
mimic the complex physical spatio-temporal patterns in nature. Such AOS
models either through lack of resolution due to current computing power or
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through inadequate observation of nature necessarily parameterize the im-
pact of many features of the climate system such as clouds, mesoscale and
submesoscale ocean eddies, sea ice cover, etc. Thus, there are intrinsic model
errors in the AOS models for the climate system and a central scientific is-
sue is the effect of such model errors on predicting the coarse-grained large
scale long time quantities of interest in climate change science. The central
difficulty in climate change science is that the dynamical equations for the
actual climate are unknown. All that is available from the true climate in
nature are some coarse-grained observations of functions such as mean or
variance of temperature, tracer greenhouse gases such as carbon dioxide, or
the large scale horizontal winds. Thus, climate change science must cope
with predicting the coarse-grained dynamic changes of an extremely com-
plex system only partially observed from a suite of imperfect models for the
climate. Basic questions arise such as the following:

(A) How to measure the skill (i.e., the statistical accuracy) of a given
model in reproducing the present climate and predicting the future
climate in an unbiased fashion?

(B) How to make the best possible estimate of climate sensitivity to
changes in external or internal parameters by utilizing the imperfect
knowledge available of the present climate? What are the most sen-
sitive parameters for climate change given uncertain knowledge of
the present climate?

(C) How do coarse-grained measurements of different functionals of the
present climate affect the assessments in (A, B)? What are the
weights which should be assigned to different functionals of the
present climate as targets to improve the performance of the im-
perfect AOS models? Which new functionals of the present climate
should be observed in order to improve the assessments in (A), (B)?

Predicting how climate will change is one of the great societal and intel-
lectual challenges of our time. Furthermore, predicting and understanding
the seasonal, yearly, decadal and centennial impacts of climate change for
issues ranging from extreme weather events to sea level rise to the evolving
extent of deserts involves assessing the impacts of climate change on a variety
of significant temporal and spatial scales. This is especially difficult because
energy often flows intermittently from the smaller unresolved or marginally
resolved scales in contemporary AOS models to impact much larger and
longer spatio-temporal scales of motion of interest in the above problems [79].
While contemporary AOS models have high skill for the midlatitude upper
troposphere, notable deficiencies in contemporary climate models involve as-
sessing the multi-scale impacts of clouds in the tropics [108], sea ice and land
ice in the polar regions [50], as well as the role of the observed mesoscale and
submesoscale turbulence in the ocean [119]. During the past fifteen years,
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the faculty members at the Courant Institute in the Center for Atmosphere
and Ocean Science (CAOS) have been at the cutting edge in contributing
to all these issues through the modus operandi of modern applied mathe-
matics involving rigorous mathematical theory, quantitative and qualitative
models for crucial issues in climate science, novel multi-scale asymptotic and
numerical models, and data-driven methods to constrain complex models by
observations and theories. Examples include the first theories and models
for large-scale behavior of clouds in the tropics consistent with observations
[91, 107, 63, 92, 84, 13, 61, 62], the development and use of ideas from em-
pirical information theory to quantify and improve long range forecasting
skill and climate sensitivity [67, 81, 68, 1, 47, 95, 36, 37, 104, 105], the first
detailed observations and theory for the Greenland and West Antarctic ice
sheet collapse [51, 58], and the first accurate assessment of the central role of
moist entropy and low level moisture transports in determining subtropical
and midlatitude climate circulations from observed data [114, 71, 115].

The goal of the present article is not to review all of the above interdisci-
plinary developments but instead to emphasize the author’s personal view on
the statistical-stochastic, multi-scale framework for large dimensional turbu-
lent dynamical systems which is emerging at the present time and the central
role it is likely to play for uncertainty quantification and sensitivity in cli-
mate change science in the near future. The mathematical toolkit utilized
below includes empirical information theory, fluctuation-dissipation theo-
rems and systematic physics-constrained, statistical-stochastic modelling for
large-dimensional turbulent dynamical systems; the use of these ideas in cli-
mate change science is only beginning. The author hopes that this article
inspires other mathematicians to contribute to these important emerging
topics. While the bibliography of this paper is not comprehensive, many
of the cited papers contain substantial additional references to the climate
science literature.

2 Climate Change Science and the Statistical Dynamics of
Complex Systems

While the actual equations governing climate dynamics on earth are un-
known, it is natural to assume that these dynamics are Markovian, i.e., the
future state depends only on the present state, on a suitably large space of
(hidden) variables vvv ∈ IRP , P � 1. Thus, it is reasonable to assume that
the perfect dynamical system for the climate is given by

(2.1) vvvt = F (vvv) + σ(vvv)Ẇ ,

for vvv ∈ IRP where σ is a P ×K noise matrix and Ẇ ∈ IRK is K-dimensional
white noise. Already in (2.1), for simplicity in exposition, the important time
varying effects of the seasonal cycle and diurnal cycle [97, 31] have been
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ignored; furthermore, again for simplicity in exposition, no jump process
contributions in (2.1) have been included.

The associated Fokker-Planck equation for the probability density p(vvv, t)
is

(2.2) pt = −divvvv
(
F (vvv)p

)
+ 1

2divvvv∇vvv
(
Qp
)
≡ LFP p ,

where Q = σσT . To illustrate the reasonable nature of the Markovian as-
sumption on a sufficiently large phase space, consider the micro-scale process
in the atmosphere where cloud water forms on condensation nuclei from dust
particles in the atmosphere in the presence of small scale turbulence; there
is no doubt here that the dynamics is Markovian and microphysics models
have been made but a detailed precise description of the dynamics is not
available. This example motivates the crucial difficulty in climate change
science; the detailed dynamics of the climate system are unknown and even
the dimension of the phase space IRP , P � 1 is unknown. In fact, all
that is actually known about the present climate are certain coarse-grained
statistical measurements of functionals

(2.3) EEE(uuu), for uuu ∈ IRN , N � P,

for a training interval of time. These measurements encompass satellite
data, weather station data, ocean buoys, ice cores, coral data, etc., where
the extensive earth observing or training period has only occurred in the
last fifty to one hundred years. The coarse-grained statistical measurements
are quantities such as the mean and variance of temperature in the northern
and southern hemisphere or over the continents, tracer gases in the atmo-
sphere, like carbon dioxide, or geochemical tracers in the ocean. Successful
predictions in climate change science are hampered by the fact that the ac-
tual dynamics in (2.1) is a turbulent large-dimensional system with positive
Lyapunov exponents on essentially all spatio-temporal scales, as verified in
our common experience with weather, storms, and gazing at the turbulent
surface of the ocean. The use of statistical descriptions like (2.1), (2.2) for
the climate system is not new and goes back to early predictability studies
for simplified atmosphere models [73, 74, 75, 24].

2.1 The imperfect models

The imperfect models are naturally assumed to be given by a known
dynamical system

(2.4) (vvvM )t = FM (vvvM ) + σM (vvvM )Ẇ , vvvM ∈ IRM ,
which has a similar structure as in (2.1) but the phase space for the imper-
fect model, IRM , is often completely different from the natural system with
usually M � P ; the natural system in (2.1) and the imperfect model in
(2.4) share in common the coarse-grained variables uuu ∈ IRN . The imperfect
models in (2.4) range from comprehensive AOS climate models with billions
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of variables [21, 111, 113, 117], to lower dimensional statistical-stochastic
models for suitable low-frequency teleconnections ([90, 93] and references
therein) to purely data driven regression models with varying degrees of
statistical sophistication ([98, 99] and references therein). A simple example
illustrating the fundamental difficulties in climate science in trying to use
imperfect models like those in (2.4) to predict the sensitivity issues in (2.1)
for the perfect model is presented next [104].

A typical situation with model error for complex systems arises when
the true system has additional degrees of freedom that are hidden from the
family of imperfect models utilized to study this system either through lack
of scientific understanding or the practical lack of computational resolution.
The simplest example with these features is to consider the true system as
given by the two linear stochastic equations

(2.5)

du

dt
= au+ v + F,

dv

dt
= qu+Av + σẆ ,

where Ẇ is white noise; the system of equation in (2.5) has a smooth Gauss-
ian statistical steady state provided that

(2.6) a+A < 0, aA− q > 0.

Assume that the variable v in (2.5) is hidden from the modeling process
where all imperfect models are given by the scalar stochastic equation

(2.7)
duM
dt

= −γMuM + FM + σMẆM .

The natural requirement γM > 0 is needed for (2.7) to have a Gaussian
statistical steady state. Now consider the situation where the model in (2.7)
has been tuned to match the single time statistics for u in (2.5) with perfect
fidelity by matching the mean and variance of uM with u; elementary calcu-
lations show this is true for a one parameter family of models parameterized
by γM > 0 provided that FM , σ2M satisfy the equilibrium mean and variance
equations

(2.8)
FM
γM

= − AF

aA− q
,

σ2M
2γM

= − σ2

2(a+A)(aA− q)
≡ E.

Thus, the conditions in (2.8) for FM and σM guarantee perfect model fidelity
for any γM > 0. In many practical situations such as actual experiments
or climate science, it is important to understand the response of the nat-
ural system to external forcing, δF , and to hope that the response of the
imperfect model captures the features of this response. The natural system
response for (2.5) occurs by replacing F in (2.5) by F + δF while the same
experiment in the model for (2.7) involves replacing FM by FM + δF . For
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both the natural system in (2.5) and the model system in (2.7), the only
change in the equilibrium response is through the change in mean

(2.9) δu = − A

aA− q
δF, δuM =

1

γM
δF,

while the variance of u for the perfect model and uM for the imperfect
model stays constant at the same value E determined through the second
equality in (2.8). Now assume that the natural system satisfies the stability
conditions in (2.6) with A > 0. We claim that no model from (2.7), even
with perfect fidelity in (2.8) for any γM > 0, can match the sensitivity of
the natural system correctly; this is easy to see from (2.9) since for A > 0,
sign(δu) = −sign(δF ) but for all models from (2.7), sign(δuM ) = sign(δF )
and the perfect and model sensitivity are always anti-correlated! Thus,
even though the climate models satisfying (2.7), (2.8) are tuned to exactly
match the true climate, these imperfect models are intrinsically deficient in
calculating the crucial climate sensitivity for A > 0.

2.2 Systematically improving Climate Models Through Em-
pirical Information Theory

With a subset of variables uuu ∈ IRN and a family of measurement func-
tionals EEEL(uuu) = (Ej(uuu)), 1 ≤ j ≤ L, for the perfect system, empirical in-
formation theory [57, 86] builds the least biased probability measure πL(uuu)

consistent with the L measurements of the present climate, EEEL. There is a
unique functional on probability densities [57, 86] to measure this given by
the entropy

(2.10) S = −
∫
π log π,

and πL(uuu) is the unique probability so that S(πL(uuu)) has the largest value
among those probability densities consistent with the measured information,
EEEL. All integrals as in (2.10) are over the phase space IRN unless otherwise
noted. For example, measurements of the mean and second moments of
the perfect system necessarily lead to a Gaussian approximation [81, 86]
to the perfect system from measurements, πL(uuu) = πG(uuu). Any model of
the perfect system produces a probability density, πM (uuu). The natural way
[70, 86] to measure the lack of information in one probability density, q(uuu),
compared with the true probability density, p(uuu), is through the relative
entropy, P(p, q), given by

(2.11) P(p, q) =

∫
p log

(
p

q

)
.

This asymmetric functional on probability densities, P(p, q), has two attrac-
tive features [70, 81, 86] as a metric for model fidelity : (i) P(p, q) ≥ 0 with
equality if and only if p = q; (ii) P(p, q) is invariant under general nonlinear
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changes of variables. The first issue to contend with is the fact that πL(uuu) is
not the actual perfect model density but only reflects the best unbiased esti-
mate of the perfect model given the L measurements, EEEL. Let π(uuu) denote
the probability density of the perfect model, which is not actually known.
Nevertheless, P(π, πL) precisely quantifies the intrinsic error in using the L

measurements of the perfect model, EEEL. Consider an imperfect model with
its associated probability density, πM (uuu); then the intrinsic model error in
the climate statistics is given by P(π, πM ). In practice, πM (uuu) is determined
by no more information than that available in the perfect model.

Consider a class of imperfect models, M. The best imperfect model for
the coarse-grained variable uuu is the M∗ ∈ M so that the perfect model has
the smallest additional information beyond the imperfect model distribution
πM∗(uuu), i.e.,

(2.12) P(π, πM∗) = min
M∈M

P(π, πM ).

Also, actual improvements in a given imperfect model with distribution
πM (uuu) resulting in a new πMpost(uuu) should result in improved information for

the perfect model, so that P(π, πMpost) ≤ P(π, πM ). Otherwise, objectively,
the model has not been improved compared with the original perfect model.
The following general principle [95, 85] facilitates the practical calculation
of (2.12)

(2.13)
P(π, πML′ ) = P(π, πL) + P(πL, π

M
L′ )

= (S(πL)− S(π)) + P(πL, π
M
L′ ) for L′ ≤ L.

The entropy difference, S(πL)−S(π) in (2.13) precisely measures an intrinsic
error from the L measurements of the perfect system. With (2.13) and
a fixed family of L measurements of the actual climate, the optimization
principle in (2.12) can be computed explicitly by replacing the unknown
density π by the hypothetically known πL in these formulas so that, for
example, πM∗ is calculated by

(2.14) P(πL, π
M∗
L′ ) = min

M∈M
P(πL, π

M
L′ ).

The most practical setup for applying the framework of empirical infor-
mation theory developed above arises when both the perfect system measure-
ments and the model measurements involve only the mean and covariance of
the variables uuu so that πL is Gaussian with climate mean ūuu and covariance
R while πM is Gaussian with model mean ūuuM and covariance RM . In this
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case, P(πL, π
M ) has the explicit formula [86, 67]

(2.15)

P(πL, π
M ) =

[
1

2
(ūuu− ūuuM )∗(RM )−1(ūuu− ūuuM )

]
+

[
−1

2
log det(RR−1M ) +

1

2
(tr(RR−1M )−N)

]
.

Note that the first term in brackets in (2.15) is the signal, reflecting the
model error in the mean but weighted by the inverse of the model covari-
ance, R−1M while the second term in brackets, the dispersion, involves only

the model error covariance ratio, RR−1M . The intrinsic metric in (2.15) is
invariant under any (linear) change of variables which maps Gaussian dis-
tributions to Gaussians and the signal and dispersion terms are individually
invariant under these transformations; this property is very important.

As a simple illustration of these concepts, let’s assume the elementary
perfect and imperfect climate models discussed in (2.5) and (2.7) above,
where as shown below, empirical information theory reveals an intrinsic
barrier for the imperfect models to prediction of the sensitivity for A > 0.
The formula in (2.15) applies exactly to these models with perfect fidelity
with

(2.16) P(πδ, π
M
δ ) =

1

2
E−1

∣∣∣∣− A

aA− q
− 1

γM

∣∣∣∣2 |δF |2.
In this situation with A > 0, the attempt to minimize the information the-
oretic model error in the sensitivity through the general principle in (2.12)
is futile because no finite minimum over γM of (2.16) is achieved and nec-
essarily γM → ∞ in the approach to this minimum value; in other words,
there is an intrinsic barrier to skill in sensitivity which cannot be overcome
with the imperfect models in (2.7) even though they satisfy perfect model
fidelity in (2.8). In this situation, information theory predicts that one needs
to enlarge the class of models beyond (2.7) by introducing more degrees of
freedom in the model. On the other hand, if the natural system satisfies
(2.6) with A < 0, then using (2.16) to minimize the lack of information in
the sensitivity in the models which satisfy perfect fidelity in (2.8) results in
the unique model with

(2.17) γ∗M = −A−1(aA− q), A < 0,

and this model captures both the model fidelity and model sensitivity to
this forcing parameter exactly.

The relative entropy in (2.11) occupies a central role in statistics [10, 11,
128] and large deviation theory in the limit of large sample sizes [122, 123].
The empirical point of view presented here is useful for developing unbiased
empirical statistical/physics-based models and has been utilized to predict
the location and structure of Jupiter’s Red Spot from observations of the
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Galileo mission, as well as the behavior of large-scale quantities in statistical
fluid dynamics [86]. Kleeman [67] first applied these ideas to the prediction
skill for long range forecasting in perfect models and these concepts have
been developed extensively by scientists in CAOS at CIMS with many ap-
plications and associated theory [69, 81, 68, 1, 47] in the context of perfect
models. Recent research utilizing empirical information theory has focussed
on important coarse-grained descriptions of perfect and imperfect models
and improving the long range forecasting and sensitivity of imperfect mod-
els [95, 36, 37, 104, 105]. This is an active and important area blending
concepts from mathematics, statistics and physics and an exciting area for
future research developments. One of the current directions involves utiliz-
ing the fluctuation-dissipation theorem (FDT) for (2.1) and (2.4) which is
briefly discussed next.

2.3 Fluctuation Dissipation Theorems for Turbulent Dynam-
ical Systems and Climate Change Science

The fluctuation-dissipation theorem is one of the cornerstones of the sta-
tistical physics of identical molecules of gases and liquids [109]. In a very
brief seminal article from 1975, Leith [72] suggested that if FDT can be
established for suitable coarse-grained functionals in climate science, then
climate change assessments can be performed simply by gathering suitable
statistics in the present climate. Here is a brief summary of FDT for the
stochastic dynamical system in (2.1) [85, 97].

The ideal equilibrium state associated with (2.1) is the probability den-
sity peq(vvv) that satisfies LFP peq = 0 and the equilibrium statistics of some
functional A(vvv) are determined by

(2.18)
〈
A(vvv)

〉
=

∫
A(vvv)peq(vvv)dvvv.

Next, perturb the system in (2.11) by the change δwww(vvv)f(t), that is, consider
the perturbed equation

(2.19) vvvδt = F (vvvδ) + δwww(vvv)f(t) + σ(vvvδ)Ẇ .

Calculate perturbed statistics by utilizing the Fokker-Planck equation as-
sociated with (2.19) with initial data given by the unperturbed statistical
equilibrium. Then, FDT [85] states that if δ is small enough, the leading
order correction to the statistics in (2.18) becomes

(2.20) δ
〈
A(vvv)

〉
(t) =

∫ t

0
R(t− s)δf(s)ds,
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where R(t) is the linear response operator that is calculated through corre-
lation functions in the unperturbed climate

(2.21) R(t) =
〈
A(vvv(t))B(vvv(0))

〉
, B(vvv) = −divvvv(www peq)

peq
.

The noise in (2.1) is not needed for FDT to be valid but, in this form, the
equilibrium measure needs to be smooth. Such a rigorous FDT response
is known to be valid for a wide range of dynamical systems under minimal
hypothesis [45].

There are important practical and computational advantages for climate
change science when a skillful FDT algorithm is established. The FDT
response operator can be utilized directly for multiple climate change sce-
narios, multiple changes in forcing, and other parameters, such as damping
and inverse modelling directly [42, 43], without the need of running the
complex climate model in each individual case. Note that FDT is a type
of dynamic statistical linearization and does not involve linearizing the un-
derlying nonlinear dynamics. The direct application of FDT to the natural
perfect model in (2.1) is hampered by the fact that the dynamics in (2.1),
the equilibrium measure in (2.18), and even the dimension of the phase space
in (2.1) and (2.18) are unknown. Recently, an important link [105] was es-
tablished through empirical information theory and FDT between the skill
of specific prediction experiments in the training phase for the imperfect
model when the climate is observed and the skill of the model for long range
perturbed climate sensitivity.

There is a growing literature in developing theory [85, 97, 98, 102, 31]
and algorithms for FDT [72, 8, 16, 44, 42, 43, 2, 3, 4, 5, 6] for forced dissipa-
tive turbulent systems far from equilibrium. In fact, the earliest algorithms
which tested the original suggestion of Leith [72] utilized kicked perturba-
tions without model error to evaluate the response operator [8, 16] and these
algorithms have been improved recently [3, 5]; their main limitation is that
they can diverge at finite times when there are positive Lyapunov exponents
[16, 3, 5]. Alternative algorithms utilize the quasi-Gaussian approximation
[85] in the formulas in (2.21); these algorithms have been demonstrated to
have high skill in both mean and variance response in the midlatitude up-
per troposphere to tropical forcing [42, 43] as well as for a variety of other
large dimensional turbulent dynamical systems which are strongly mixing
[85, 2, 4]. There are recent blended response algorithms which combine the
attractive features of both approaches and give very high skill for both the
mean and variance response for the L-96 model [76, 2] as well as suitable
large dimensional models of the atmosphere [4] and ocean [6] in a variety
of weakly and strongly chaotic regimes. Finally, there are linear regression
models [116] which try to calculate the mean and variance response directly
from data; these linear regression models can have very good skill in the
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mean response but necessarily have no skill [98] in the variance response;
they necessarily have an intrinsic barrier [104, 105, 95] for skill in model
response when the perfect model has a large variance response. In fact,
one can regard all of the above approximations as defining various systems
with model error in calculating the ideal response of a perfect model [85];
this is a useful exercise for understanding the information theoretic frame-
work for model error and response proposed recently [105] and examples are
presented there.

2.4 Statistically Exactly Solvable Test Models Capturing Cru-
cial Features of Climate Change Science

An important role of mathematics in applied sciences is to develop sim-
pler exactly or easily solvable test models with unambiguous mathematical
features which nevertheless capture crucial features of vastly more complex
systems in science and engineering. Such models provide firm underpin-
ning for advancing scientific understanding and developing new numerical
or statistical algorithms. With all of the difficult issues in climate science
mentioned in the present article, such unambiguous test models assume a
crucial role. Here, two such models are briefly described.

First, introduce a family of test models for climate change science which
have direct qualitative relevance for actual observed features for tracers in
the atmosphere [112, 12] with the additional attractive feature of exactly
solvable statistics for the mean and covariance [31, 35, 106] with many de-
grees of freedom despite the inherent statistical nonlinearity. Thus, they
are physically relevant unambiguous test models for uncertainty in climate
change science [95, 104, 105]. The models have a zonal (east-west) mean
jet, U(t), a family of planetary and synoptic scale waves with north-south
velocity v(x, t) with x, a spatially periodic variable representing a fixed mid-
latitude circle in the east-west direction, and tracer gas T (x, t) with a north-
south environmental mean gradient α and molecular diffusivity κ [106, 12].
The dynamical equations for these variables are

A)
dU

dt
= −γU + f(t) + σẆ ,

B)
dv

dt
= P

(
∂

∂x

)
v + σv(x)Ẇv + fv(x, t),

C)
∂T

∂t
+ U(t)

∂T

∂x
= −αv(x, t) + κ

∂2T

∂x2
− dTT.

(2.22)

The functions f(t), fv(x, t) are known time-periodic functions with period
of 1 yr reflecting the changing external forcing of the seasonal cycle, while
Ẇ , Ẇv, represent random white noise fluctuations in forcing arising from
hidden nonlinear interactions and other processes [96, 88]. The equation in
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(2.22B) for the turbulent planetary waves is solved by Fourier series with
independent scalar complex variable versions of the equation in (2.22A) for

each different wave number k [96, 88]; in Fourier space the operator P̂k has

the form P̂k = −γk + iωk with frequency ωk = βk/(k2 + Fs) correspond-
ing to the dispersion relation of baroclinic Rossby waves and dissipation
γk = ν(k2 + Fs) where β is the north-south gradient of rotation, Fs is
the stratification, and ν is a damping coefficient; the white noise forcing
for (2.22)B is chosen to vary with each spatial wave number k to gen-
erate an equipartition energy spectrum for planetary scale wave numbers
1 6 |k| 6 10 and a |k|−5/3 turbulent cascade spectrum for 11 6 |k| 6 52
(see [96, 88]). Any other turbulent energy spectrum can be imposed on v.
The zonal jet U(t) = Ū(t) + U ′(t), where Ū(t) is the climatological peri-
odic mean with γ, and σ chosen so that this jet is strongly eastward while
the random fluctuations, U ′(t), have a standard deviation consistent with
such eastward dynamical behavior. While U(t), v(x, t) have exactly solvable
Gaussian statistics mimicking features of the atmosphere, the tracer T (x, t)
has non-Gaussian behavior due to the nonlinear tracer flux term U ′(t)∂T∂x
in (2.22C) with intermittent fat tails like realistic tracers in the atmosphere
[106, 112]; nevertheless, T (x, t) has exactly solvable mean and covariance
climate statistics following [31, 30, 32] with explicit formulas. These proce-
dures define the exactly solvable statistics for the perfect climate. Actual
AOS models utilized in climate change science typically have too much ad-
ditional damping and one can mimic this here in the representative AOS
models by increasing the two parameters γ, v for (2.22A,B) to γM , vM to
define the AOS model velocity fields U(t)M = ŪM (t)+U ′M (t), vM (x, t), with
model error. The turbulent tracer in an AOS model is usually calculated

roughly by an eddy diffusivity [21, 111, 113, 117], U ′M (t)∂T∂x = −κ∗MTxx, and
in the present models there is an exact explicit formula for κ∗M . Thus, the
AOS model tracer satisfies
(2.23)
∂TM
∂t

+ ŪM (t)
∂TM
∂x

= −αvM (x, t) + (κ+ κ∗M )
∂2TM
∂x2

− dTTM + σT Ẇ (x, t),

where Ẇ (x, t) denotes space-time white noise forcing with variance σT to
overcome deterministic model error. With (2.23) the AOS model with
(UM , vM , TM ) has Gaussian statistics.

Note that the above perfect and imperfect climate models do not have
positive Lyapunov exponents but nevertheless exhibit non-normal transient
growth through the non-zero mean gradient, α > 0, for the tracer. These
models have been utilized as unambiguous test models for all the issues of
climate change science, information theory, prediction, and FDT described
earlier in this section [95, 104, 105]. These are also important test models for
the real-time recovery of turbulent tracer fields from partial observations, an
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important topic with much practical interest in climate science, as well as
other disciplines [35]. A complete development of the turbulent statistics of
such test models is presented in [106]. Similar exactly solvable test models
with intermittent positive Lyapunov exponents are developed elsewhere [33,
34, 15] and mentioned briefly in section 3 in the context of filtering.

There is recent interest in deriving reduced stochastic models for climate
and extended-range weather prediction. An attractive property of atmo-
spheric low-frequency variability is that it can be efficiently described by
just a few large-scale teleconnection patterns (see [26, 9, 14], and references
therein). These patterns exert a huge impact on surface climate and sea-
sonable predictability. Reduced stochastic models are an attractive alterna-
tive for climate sensitivity studies via FDT [98] because they are computa-
tionally much more efficient than state-of-the-art climate models and often
have been shown to have comparable long-range prediction skill [28, 87, 37].
Systematic mathematical stochastic-mode reduction strategies [90, 82, 83]
have been utilized recently to develop normal forms for reduced, stochas-
tic climate models [93]. The one-dimensional, normal form was applied in
a regression strategy in [93] for data from a prototype AOS model [26] to
build one-dimensional stochastic models for low-frequency patterns such as
the North Atlantic Oscillation (NAO) and the leading principal component
(PC-1) that has features of the Arctic Oscillation. These one-dimensional,
normal form stochastic models have been utilized to show the high skill of
FDT algorithms despite deterministic, structural instability to both changes
in external forcing and dissipation parameters as well as test models for cli-
mate sensitivity and model error via information theory [102, 95]. The
canonical, one-dimensional stochastic models for low-frequency variability
[93] are given by the scalar stochastic equation

(2.24) dx = [F + ax+ bx2 − cx3]dt+ (A−Bx)dW + σdWA,

with corresponding Fokker-Planck equation

(2.25)
∂p

∂t
= − ∂

∂x

[
(F + ax+ bx2 − cx3)p

]
+

1

2

∂2

∂x2
[
((Bx−A)2 + σ2)p

]
.

As calculated elsewhere [93], the Fokker-Planck equation in (2.25) has an ex-
plicit, smooth equilibrium distribution peq(x) with a Gaussian tail provided
that the physically imposed restriction, c > 0, is satisfied. The explicit
form of the PDF, peq(x), allows one to calculate explicit forms of the ideal
response operator to perturbations in forcing, F , or the dissipation param-
eter, a, as well as explicit analytic expressions for the FDT linear response
operator and various approximations [102]. One of the striking features of
atmospheric general circulation models is that there are different regimes
of low-frequency behavior despite uni-modal, nearly-Gaussian PDFs for the
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low-frequency variables [9, 14, 27, 28, 87]. The stochastic models are stud-
ied in parameter regimes where this behavior occurs and in the vicinity of
where there is deterministic, structural instability. Figure 1 from [102] il-
lustrates how intermittent regimes can happen in a stochastic dynamical
system with nearly unimodal PDF’s and (2.24), (2.25) is the simplest model
which illustrates this phenomenon, which is very different from the usual
(often incorrect!) association of regimes necessarily with multiple peaks in
the PDF’s. The information theoretic perspective on model error and long
range prediction has been applied to these stochastic models recently [95, 38]
as an elementary unambiguous test problem.

3 Multi-scale Algorithms for Turbulent Dynamical Systems:
Superparameterization, Filtering or Data Assimilation, and

Judicious Model Errors

The complexity of anisotropic turbulent processes over a wide range of
spatial and temporal scales in atmospheric and oceanic flows requires novel
computational strategies, even with the current and next generations of su-
percomputers. This is especially important since energy often flows intermit-
tently from the smaller unresolved or marginally resolved scales to affect the
largest observed scales in such anisotropic turbulent flows due to the effects
of rotation, stratification and moist processes [79]. Atmospheric weather and
climate processes cover about 10 decades of spatial scales, from a fraction
of a millimeter to planetary scales. A similarly staggering range of intercon-
nected scales characterizes the oceanic circulation. While the smaller scales
(of order millimeters to tens of meters) are comparatively less complex, as
they fall within the inertial range of turbulence, scales above this range and
up to the planetary scales, are dominated by an array of intermittent and
anisotropic turbulent processes that cannot be described by traditional clo-
sures. For example, atmospheric motions on scales between 100 m and 100
km show an abundance of processes associated with dry and moist convec-
tion, clouds, waves, boundary layer, topographic, and frontal circulations.
Oceanic scales from 10 meters to 100 km display a similar range of behav-
iors, albeit without phase transitions, but with a two-component density
reflecting temperature and salt variations. On the atmospheric side, a ma-
jor stumbling block in the accurate prediction of weather and short term
climate on the planetary and synoptic scales is the accurate parameteriza-
tion of moist convection. Moist convective processes involve intermittency
in space and time due to complex evolving chaotic and quiescent regions,
without statistical equilibration and with only moderate scale separation,
so that traditional turbulence closure modeling fails [49, 110, 120]. Cloud-
resolving models realistically represent convective-scale and mesoscale pro-
cesses with fine computational grids. However, due to their extremely high
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computational cost, they cannot be applied to large ensemble-size weather
prediction or climate simulations. This state of affairs, unfortunately, will
remain for the foreseeable future. In ocean models used for coupled climate
simulations, the situation is arguably even worse. Here, the computational
grid is typically on order 100 km, near the spectral peak of the oceans ki-
netic energy (which is dominated by baroclinic eddies somewhat larger than
the deformation scale). Eddy-permitting simulations for ocean-only process
studies are now becoming common [48], but even these leave a vast frontier
of scales, from order 50 km down to the 10 m scale where inertial range
turbulence finally takes over, almost completely unaddressed.

The complexity of these problems motivates the development of novel
approaches that would directly address the multi-scale nature of the prob-
lem. In atmospheric modeling, superparameterization (SP), or more specif-
ically to its initial application, cloud-resolving convection parameterization,
[39, 40, 118, 41, 129] uses a spatially periodic 2-dimensional cloud-system-
resolving model in each column of a large-scale model to explicitly repre-
sent small-scale and mesoscale processes, and interactions among them. In
this context, SP blends conventional parameterization on a coarse mesh
with detailed cloud-resolving modeling on a finer mesh. This approach has
been shown to be ideal for parallel computations on supercomputers and
has yielded promising new results regarding tropical intraseasonal behavior
[39, 40, 41, 65]. The SP approach to convective parameterization in the
atmosphere is powerful and invites application of SP to a broader array of
problems in climate-atmosphere-ocean science such as mesoscale and sub-
mesoscale eddies in the ocean and gravity wave drag in the stratosphere, as
well as other science and engineering problems. However, that particular
approach is difficult to replicate because of the ad-hoc nature of its devel-
opment. Recently, however, the author and collaborators have shown how
multi-scale models may be exploited to enable rigorous, systematic devel-
opment of SP schemes [89, 129]. Moreover, a general statistical numerical
analysis framework has been introduced recently [94] which illustrates why
such methods can successfully model systems with only modest scale sepa-
ration and without statistical equilibration of the small-scale dynamics [94].

Filtering or data assimilation is the process of obtaining the best statisti-
cal estimate of a natural system from partial observations of the true signal
from nature. In many contemporary applications in science and engineering,
real time filtering of a turbulent signal from nature involving many degrees
of freedom is needed to make accurate predictions of the future state. This
is obviously a problem with significant practical impact. Important contem-
porary examples involve the real time filtering and prediction of weather and
climate as well as the spread of hazardous plumes and pollutants or the pre-
diction of storm surges in environmental science and engineering. Thus, an
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important emerging scientific issue is the real time filtering through observa-

tions of noisy signals for turbulent nonlinear dynamical systems as well as the

statistical accuracy of spatio-temporal discretizations for filtering such sys-

tems. See the recent review article [96] and the many references therein, as

well as the introductory graduate text book [103]. From the practical stand-

point, the demand for operationally practical filtering methods escalates as

the model resolution is significantly increased. In the coupled atmosphere-

ocean system, the current practical models for prediction of both weather

and climate involve general circulation models where the physical equations

for these extremely complex flows are discretized in space and time and the

effects of unresolved processes are parametrized according to various recipes;

the result of this process involves a model for the prediction of weather and

climate from partial observations of an extremely unstable, chaotic dynami-

cal system with several billion degrees of freedom. These problems typically

have many spatiotemporal scales, rough turbulent energy spectra in the so-

lutions near the mesh scale, and a very large dimensional state space yet

real time predictions are needed. There is an inherently difficult practical

issue of small ensemble size in filtering statistical solutions of these complex

problems due to the large computational overload in generating individual

ensemble members through the forward dynamical operator.

The above discussion motivates the need for systematic mathematical

ideas in devising algorithms for superparameterization (SP) and filtering/data

assimilation (FDA) for large-dimensional turbulent dynamical systems, as

well as new types of statistical/stochastic numerical analysis to assess the

performance skill of various proposed algorithms. Thus, there is a natural

link between the viewpoint developed here and the earlier discussion in sec-

tion 2. The recent review paper [96] and graduate text [103] contain much

more detailed material for the interested reader on this emerging viewpoint

for FDA for turbulent dynamical systems.
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The general mathematical approach to SP or FDA for large-dimensional
turbulent dynamical systems advocated here is a four-stage process:

(3.1)

(i) Multi-scale formulation: A multi-scale physi-
cal/mathematical formulation into larger scale mean
and smaller scale fluctuating components in space-time (for
examples, see [129, 89, 101, 66] and references therein).

(ii) Small-scale model: A mathematical model to represent the
behavior of the smaller scales, typically involving a spatial
periodic approximation and an imposed scale-gap (see [129,
94]).

(iii) Computational strategies to reduce the cost of the small
scale models by making judicious model errors: Mathe-
matical algorithms that allow for computationally efficient
but statistically accurate implementation of the small-scale
model as a SP or FDA algorithm in a larger scale model
while retaining statistical accuracy [129, 89]. This can be
implemented by replacing more expensive three-dimensional
models by much simpler two-dimensional [39, 40] and even
cheaper stochastic models [60, 94, 90, 46, 96, 103].

(iv) A-posteriori validations of the FDA and/or SP approxima-
tions: The accuracy of the approximations made during
steps (ii) and (iii) must be evaluated, with particular at-
tention on the ability of the SP representation or FDA algo-
rithm to capture multi-scale interactions.

The multi-scale SP and FDA methods discussed here can be contrasted
to recent complementary ideas in applied mathematics. In the work of the
author and collaborators [89, 129] a theoretical link has been established
between SP algorithms and heterogeneous multi-scale methods (HMM) [19,
20, 121, 25]. HMM algorithms are a mathematical synthesis of earlier work
(see [85, 78] and references therein) as well as an abstract formulation that
leads to new multi-scale algorithms for complex systems with widely dis-
parate time scales [19, 20, 121, 25]. However, as noted in [89, 129], there are
significant differences in the regimes of nonlinear dynamics being modeled
by SP algorithms as compared with HMM. A key difference between SP
and HMM lies in that while reduced HMM time-steppers have been ana-
lyzed and applied for various physical systems with wide scale separation,
ε = 10−3, 10−4, with ε the scale separation ratio between large and small
scales, and rapid local statistical equilibration in time [19, 20, 121, 25], the
skill and success of superparameterization algorithms relies on intermittency
in space and time due to complex evolving strongly chaotic and quiescent
regions without statistical equilibration despite only modest values of scale



18 ANDREW J. MAJDA

separation, ε = 1/6 to 1/10 [129, 89, 124, 127]. Another related mathemat-
ical tool is the so-called gaptooth scheme [7]. The gaptooth method has
formal similarity with SP but only works well on problems with an iner-
tial manifold and for systems in which most modes are strongly decaying.
The SP methods discussed here, by contrast, work in the strongly wave-like
unstable regimes where there is intermittency and without even local equi-
libration, let along an inertial manifold, as shown in a recent paper [94].
This work introduces a class of mathematical test models for SP that are
simple enough to be analyzed with large confidence in a given physical con-
text, yet reveal essential mechanisms and features of both SP and HMM
numerical algorithms. This non-classical numerical analysis of model test
problems provides firm mathematical underpinnings for the proposed new
algorithms. Such test models can be designed in any physical context follow-
ing the recipe developed there. The emphasis is on models with intermittent
strongly unstable fluctuations and only moderate scale separation without
statistical equilibration, so that more traditional numerical closure methods
such as HMM cannot be applied. In the remaining parts of this section
we illustrate a general idealized framework for mathematical issues related
to steps i) and ii) in (3.1) and then discuss examples and important issues
regarding judicious model error for FDA and SP.

3.1 Simple Gaussian Closure Models for Turbulent Dynami-
cal Systems

In climate atmosphere ocean science, it is often useful [86, 80, 85] to
consider the turbulent dynamical system from (2.1) with a special structure
(note that the notation here is different from that in (2.1)),

(3.2) uuut = Luuu+B(uuu,uuu) + S(uuu) + F̄ + F ′, uuu ∈ IRN ,
where F̄ is time-dependent deterministic forcing and F ′ is zero-mean random
forcing. In applications the linear operator L involves rotation, stratifica-
tion, topography, drag dissipation, etc.; B(uuu,uuu) denotes the quadratic effect
of nonlinear advection, while S(uuu) denotes nonlinear source terms such as
heating from clouds. Here and below, the decomposition of a variable such
as uuu into

(3.3) uuu = ūuu+ uuu′,

denotes the formal decomposition of the random field uuu into its mean, ūuu,
and fluctuations uuu′ with uuu′ ≡ 0. For simplicity in exposition it is assumed
here that the source term S(uuu) is cubic so that

(3.4) S(uuu) = S(ūuu+uuu′) ≡ S(ūuu) + S1(ūuu)uuu′ + S2(ūuu)(uuu′,uuu′) + S3(ūuu)(uuu′,uuu′,uuu′),

where the last two terms are bilinear and trilinear forms in the fluctuations,
uuu′. Closure approximations for statistical solutions of (3.2) are developed
by using the (Reynolds) decomposition uuu = ūuu + uuu′ in (3.2) and computing
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separate dynamic equations for the mean and fluctuations. First, the exact
average equation for the mean is given by
(3.5)

ūuut = Lūuu+B(ūuu, ūuu) + S(ūuu) + F̄ +B(uuu′,uuu′) + S2(ūuu)(uuu′,uuu′) + S3(ūuu)(uuu′,uuu′,uuu′).

To derive an exact equation for the fluctuations it is convenient to introduce
the linear operator depending on ūuu defined by

(3.6) L(ūuu)vvv′ ≡ Lvvv′ +B(ūuu,vvv′) +B(vvv′, ūuu) + S1(ūuu)vvv′.

The exact equations for the fluctuations are given by

(3.7) uuu′t = L(ūuu)uuu′ + F ′ +
[
B(uuu′,uuu′) + S2(ūuu)(uuu′,uuu′) + S3(ūuu)(uuu′,uuu′,uuu′)

]
,

where in (3.7) [f ] = f ′ = f − f̄ . So far both (3.5) and (3.7) are exact
formulas. The Gaussian closure for (3.2) consists of replacing the last two
terms in (3.7), the forcing and the term in brackets, which are turbulent
fluctuations by a model with additional damping, −ΓMuuu

′, with ΓM > 0
and Gaussian random forcing, assumed here for simplicity to be white noise
forcing, σMẆ . Thus, the Gaussian Closure Model for the Fluctuations is
given by

(3.8) (uuu′M )t = L(ūuuM )uuu′M − ΓMuuu
′
M + σMẆ .

Note that uuu′M is a Gaussian random field with zero mean at each instant of
time so that

A) (uuu′M ,uuu
′
M ,uuu

′
M ) = 0,

(3.9)

and

B) the statistics of uuu′M are completely determined by the symmetric

(3.10)

covariance matrix, CM ≡ uuu′Muuu′
T
M .

In particular, it is easy to calculate from (3.8) that CM satisfies the Lyapunov
equation for the covariance

(3.11) (CM )t = (L(ūuuM )− ΓM )CM + CM (L(ūuuM )− ΓM )T +QM ,

with QM > 0 given by QM = σMσ
T
M . With (3.7) and (3.9) the equation for

the mean of the Gaussian closure model is given by
(3.12)

(ūuuM )t = LūuuM +B(ūuuM , ūuuM ) + S(ūuu) + F̄ +B(uuu′M ,uuu
′
M ) + S2(ūuuM )(uuu′M ,uuu

′
M ).

The equations for the covariance in (3.11) and the mean (3.12) completely
specify the entire dynamics for the Gaussian closure model; furthermore
this is a realizable closure since CM (0) > 0 and (3.11) guarantee CM (t) > 0
for all times. While the Gaussian closure models provide an important
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theoretical framework for illustrating the general use of the decomposition in
(3.1 i), practical implementation is hampered by the fact that the covariance
equation in (3.11) cannot be solved directly for large-dimensional turbulent
dynamical systems with N � 1. Nevertheless, with judicious model error,
such closure models can have very high skill for filtering turbulent dynamical
systems [15, 96, 103]; non-Gaussian variants involving nonlinear stochastic
parameters, finite state Markov chains and Gaussian mixtures can have even
more skill for filtering and superparameterization (see §3.3 below). Such
approximations become much more relevant for both SP and FDA when
they are implemented on the small scales in a multi-scale environment as
illustrated next [94].

3.2 Multi-scale Test Models for Superparameterization and
Filtering

Following [94], the goal here is to show briefly how to develop simple
multi-scale Gaussian mathematical test models for studying the issues in
(3.1) for SP and FDA, as well as the accuracy of HMM algorithms with
much wider scale separation. In the derivation here the multi-scale test
models mimic (3.8), (3.11), (3.12) in a formal multi-scale environment. This
is made explicit by introducing two spatial scales, X and x ∈ IRN with
X = εx and two time scales t, τ with τ = t/ε with ε < 1, a scale separation
parameter. Assume that the physical field has the multi-scale decomposition

(3.13) uuu = ūuu(X, t) + uuu′(X,x, t, τ).

For a function f(t, τ),

(3.14) 〈f〉(t) = ε

∫ ε−1

0
f(t, τ)dt,

denotes the empirical time average over the fluctuations for a fixed value of
ε. Repeating the derivation of the Gaussian closure model in this multi-scale
context yields the mean model for ūuuM (X, t) involving only the large scale
variables (X, t)
(3.15)

(ūuuM )t = LūuuM+B(ūuuM , ūuuM )+S(ūuu)+F̄+
〈
B(uuu′M ,uuu

′
M )
〉
+S2(ūuuM )〈 (uuu′M ,uuu′M ) 〉,

and the leading order multi-scale equation for the covariance CM (X, t, τ)
with (X, t) regarded as frozen variables,

(3.16)
∂CM
∂τ

= ε (L(ūuuM )− ΓM )CM + ε CM (L(ūuuM )− ΓM )T + εQM .

Note that the two averaging terms in the large scale equation from (3.15)
are determined from the small scale time averaged covariance by

(3.17)
〈
B(uuu′M ,uuu

′
M )
〉

+ Su(ūuuM )
〈

(uuu′M ,uuu
′
M )
〉
≡ L (ūuuM (X, t))〈CM 〉(X, t),
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where L is just a pointwise linear operator on the large scales. Thus, the
dynamics of the mean in (3.15) is completely determined by the empirical
time average of the covariance matrix in (3.16). In turn, this small scale
covariance depends nonlinearly (and nonlocally !) on this mean state. The
equations in (3.15), (3.16), (3.17) are a more systematic version of the test
models for SP proposed in [94] and the above viewpoint should be relevant
for future applications and statistical numerical analysis.

In [94], a test model is developed for a single, real-valued scalar field u, in
a single space dimension. A scalar differential operator is chosen to include
advection, dispersion and dissipation, as in typical anisotropic systems. In
the Fourier representation of the small-scale dynamics, a uniform damping
and variance are chosen to yield a -5/3 turbulent spectrum. Thus, if the in-
teraction with the large scale field is ignored, the statistical equilibrium state
for the small-scale dynamics is an energetic turbulent field without scale sep-
aration. Intermittency is built in by making the large time behavior of the
small-scale dynamics dependent on u. The resulting small-scale dynamics
can then be solved exactly, and its effects on the large-scale dynamics ex-
plored precisely. In one parameter regime limit, the small-scale dynamics
equilibrates on the short time-scale (the HMM limit), leading to a solvable
equilibrium statistical closure on the large scales. Even here, however, non-
trivial pattern formation in the large-scale dynamics can be generated solely
by interaction with the small scales. The more interesting and relevant pa-
rameter regime leads to no small-scale equilibration on the short time scale,
and hence no closed statistical equilibrium model for the large scale dynam-
ics. The regimes of success and failure of the large-scale dynamics in this
limit are then delineated systematically. This is the great advantage of the
test-model approach: the error entailed in a specific SP scheme can be de-
termined. Much more systematic mathematical work understanding step iii)
from (3.1) needs to be developed in the context of superparameterization;
namely, how can cheaper models capture the statistical dynamics of more
complex systems. Examples already exist in the context of turbulent dif-
fusion where time alternating superpositions of one-dimensional plane wave
random fields can be used to simulate accurate large scale statistics of a
turbulent tracer in a field with many spatio-temporal scales [78, 77, 22, 23].

3.3 Judicious Model Errors in Filtering Turbulent Dynami-
cal Systems: Stochastic Parameterization Extended Kalman
Filters (SPEKF)

All of the above theoretical developments utilize Gaussian closures as test
models for highly anisotropic inhomogeneous turbulent systems. Can simple
models incorporate non-Gaussian features of turbulent dynamical systems
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yet have the advantage of cheap computational overhead for filtering turbu-
lent dynamical systems from sparse observations? A key feature of turbu-
lence is bursts of energy across multiple scales with intermittent instability
and random forcing. Stochastic Parameterization Extended Kalman Filters
(SPEKF) have been introduced and analyzed recently [33, 34, 96, 103] as
computationally cheap algorithms which make judicious model errors which
retain high filtering skill for complex turbulent signals [46, 59, 15, 96]. For
example, aliasing is usually viewed as a bad feature of numerical algorithms;
in the present context, judicious use of aliasing yields stochastic superreso-
lution [96, 59, 103].

The basis for the SPEKF algorithms is the following system for the com-
plex scalar partially observed turbulent signal u (the reader can think of
a Fourier amplitude of turbulence at a given spatial wavenumber) coupled
with stochastic additive forcing and multiplicative damping/instability co-
efficients, b, γ, which are learned “on the fly” from the observed turbulent
signal

(3.18)

(a) du(t) =
[
(−γ(t) + iω)u(t) + b(t) + f(t)

]
dt+ σudWu(t),

(b) db(t) =
[
(−γb + iωb)(b(t)− b̂)

]
dt+ σbdWb(t),

(c) dγ(t) = −dγ(γ(t)− γ̂)dt+ σγdWγ(t),

where Wu,Wb are independent complex Wiener processes with independent
components and Wγ is a real Wiener process. There are nine parameters
in the system (3.18): two damping parameters γb, dγ , two oscillation fre-

quencies ω and ωb, two stationary mean terms b̂ and γ̂ and noise amplitudes
σu, σb, σγ ; f is a deterministic forcing. The advantage of the equations in
(3.18) is that they have non-Gaussian dynamics but nevertheless exactly
solvable first and second-order statistics, so they are readily implemented
practically in a filtering algorithm. The equations in (3.18) have rich sta-
tistical behavior in a variety of regimes and this complex behavior can be
utilized to test the filter performance of a wide variety of Gaussian filter
approximations [15]. Such models are also useful as an unambiguous test
bed for all of the issues of prediction and model error discussed in section 2.

4 Concluding Discussion and Future Directions

Here, we briefly mention several topics for mathematical research directly
connected with this expository article and not discussed in detail in sections
2 and 3 above.
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4.1 Mathematically Rigorous FDT and Stochastic-Statistical
Numerical Analysis

The recent paper [45] only begins the mathematically rigorous analysis
of fluctuation-dissipation theorems for turbulent dynamical systems. Much
more rigorous work should be done for time-periodic systems, general mul-
tiplicative noise, and rigorous FDT representation formulas. Further devel-
opments of the important role of information theory for model error and
sensitivity are needed beyond references [95, 98, 102, 104, 105]. The recent
papers [97, 31] contain much of the formal research program and demon-
strate it on an exactly solvable test model. Besides the statistical/stochastic
numerical analysis research program described in section 3, there is a great
need for mathematical theory and the assessment of numerical algorithms
which capture the long-time statistical dynamics of turbulent dynamical
systems with high accuracy. Wang has carried out this important research
program for the example of a turbulent dynamical system arising in the large
Prandtl number limit of classical Rayleigh-Benard convection [125, 126] and
this work serves as a model for further research.

4.2 Physics Constrained Data-Driven Statistical-Stochastic Mod-
els

It is extremely important to develop data-driven reduced stochastic-
statistical models of turbulent dynamical systems for long range forecast-
ing and uncertainty quantification. Standard linear regression models can
have some skill but suffer from inherent mathematical limitations and in-
trinsic barriers in skill [98]. Ad-hoc nonlinear regression models can ex-
hibit improved skill in a training time series (see references in [99]) but
can suffer unphysical finite-time blow-up of statistical solutions, as well
as unphysical pathology in their invariant measure [99]. There are rigor-
ous proofs [130] that physics-constrained stochastic mode reduction mod-
els which are Markovian have the physically correct asymptotic behavior
for their invariant measure for low-frequency variability but they require
further generalizations to include non-Markovian memory effects for many
applications. There is a wide array of data-driven clustering algorithms
[87, 52, 53, 54, 29, 28, 55, 56] to develop multiple regime Markov models
for use in prediction. Giannakis and the author [36, 37, 38] apply empirical
information theory to assess the skill of coarse-grained partitions of phase
space and reduced Markov models for long-range prediction. The methods
of Horenko [52, 53, 54, 55, 56, 38] are especially promising in this context
but need further physical constraints to be more useful for long range fore-
casting. This is an exciting area for future interdisciplinary research.
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4.3 Multi-scale Models, Waves, and PDE’s for the Tropics

This is a very important topic for climate science research to explain
observations, develop theories, and improve numerical models [92]. It is
also a very interesting topic with many new phenomena for rigorous PDE
analysis [100, 18, 17, 108] with many open problems. Due to the lack of
space, it is not discussed here despite the author’s enthusiasm for these
topics. Nevertheless, the interested reader can consult the above references,
as well as the current research/expository article [64] for these developments.
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