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Efficient computation of geophysical turbulence, such as
occurs in the atmosphere and ocean, is a formidable challenge
for the following reasons: the complex combination of waves,
jets, and vortices; significant energetic backscatter from unre-
solved small scales to resolved large scales; lack of dynamical
scale separation between large and small scales; and small-
scale instabilities, conditional on the large scales, which do
not saturate. Nevertheless, efficient methods are needed to
allow large ensemble simulations of sufficient size to provide
meaningful quantifications of uncertainty in future predictions
and past reanalyses through data assimilation and filtering.
Here a class of efficient stochastic superparameterization al-
gorithms is introduced. In contrast with conventional super-
parameterization, the method here (i) does not require the
simulation of nonlinear eddy dynamics on periodic embedded
domains, (ii) includes a better representation of unresolved
small-scale instabilities, and (iii) allows efficient representa-
tion of a much wider range of unresolved scales. The simplest
algorithm implemented here radically improves efficiency by
representing small-scale eddies at and below the limit of com-
putational resolution by a suitable one-dimensional stochastic
model of random-direction plane waves. In contrast to hetero-
geneous multiscale methods, the methods developed here do
not require strong scale separation or conditional equilibration
of local statistics. The simplest algorithm introduced here
shows excellent performance on a difficult test suite of pro-
totype problems for geophysical turbulence with waves, jets,
and vortices with a speedup of several orders of magnitude
compared with direct simulation.
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Introduction

One of the foremost challenges of modern applied math-
ematics is to guide successful methods of accounting

for unresolved scales in computational models of multiscale
turbulent systems without scale separation. Examples of
such systems include atmospheric and oceanic fluid dynam-
ics, stellar- and geodynamos, mantle convection, and confined
plasmas, among others. In many of these systems direct res-
olution of all relevant scales in numerical simulations is im-
possible given current computers and will remain so for the
foreseeable future. The problem is compounded by the need
to run large ensembles of simulations to quantify the uncer-
tainty in predictions.

The approach here to modeling the effects of unresolved
scales is founded on a multiscale method, called ‘superparam-
eterization’ (SP), developed for capturing the effects of unre-
solved cloud processes in atmospheric convection [1, 2, 3]. SP
deals with unresolved scales by partially resolving them: high-
resolution, horizontally periodic computational domains are
embedded within the grid cells of a low-resolution global at-
mospheric model; computational savings are realized by dras-
tically simplifying both the coupling between the large and
small scales and the detailed dynamics of the small scales
themselves – the embedded domains are reduced to having
only one horizontal coordinate. Despite its success in a va-
riety of problems [3, 4, 5], traditional SP is still extremely

expensive, and does not admit straightforward application to
other multiscale turbulent systems.

The initial successes of SP, given the drastic simplifica-
tion of the large-small coupling and of the small-scale dy-
namics, suggests that further computational savings might be
had, without decreasing performance, by making further sim-
plifications of the small-scale dynamics. Xing, Majda, and
Grabowski [6] have pursued this line of reasoning by devel-
oping sparse space-time SP algorithms using embedded do-
mains that do not fill the spatio-temporal grid of the large
scale model. We follow a similar line of reasoning, but in
a different direction, pursuing the idea that the small scales
might be efficiently modeled stochastically, yet still retaining
the multiscale structure of SP. The algorithm presented here
is inspired by the mathematical test model for superparam-
eterization of [7], the stochastic Gaussian Closure of [8], and
random-direction plane waves in turbulent diffusion [9, 10, 11],
and results in a semi-analytical, nonlinear, stochastic closure
for the unresolved dynamics based on random sampling of uni-
directional, small-scale, unstable plane waves. Unlike conven-
tional SP, our approach does not require computation on em-
bedded domains (although such domains are formally present
in the theory), and as a result is extremely computationally
efficient. In contrast with other multiscale methods like the
heterogeneous multiscale methods (HMM [12]), stochastic SP
requires neither spatial nor temporal scale separation, nor con-
ditional equilibration of the small-scale dynamics.

In this article we describe the implementation of stochas-
tic SP in a difficult, paradigm model of geophysical turbulence
with an inverse cascade of energy from small to large scales,
turbulent dispersive waves, and coherent jets and vortices:
two-layer quasigeostrophic (QG) dynamics. The approach is
tested in a numerical model whose coarse resolution is such
that any parameterization, to be successful, must simulta-
neously model the stochastic backscatter of kinetic energy
from small to large scales in an inverse cascade, and the for-
ward/direct cascade of potential energy from large to small
scales. The success in this setting suggests that stochastic
SP may have application in fields more diverse than two-layer
QG dynamics, for example in atmosphere-ocean modeling, as-
trophysical turbulence, mantle convection, confined plasmas,
etc. – any setting with complex multiscale interactions and
turbulent unresolved scales.
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Fig. 1. Growth rates of the most unstable waves as functions of kx for linear baro-

clinic instability about the state of rest, qj = 0. High latitude (solid), mid latitude

(long dash), and low latitude (short dash). The Nyquist wavenumber of the coarse

grid in the stochastic SP tests is |kx| = 32, and the deformation wavenumber is

kd = 50.

In the next section we review the relevant properties of
two-layer QG turbulence and describe high resolution refer-
ence simulations. Subsequent sections develop the theory, im-
plementation, and performance of stochastic superparameter-
ization in a coarse-resolution model; the article ends with a
brief concluding discussion.

Two-Layer QG Turbulence
We test stochastic SP in the setting of two-equal-layer, rigid-
lid, quasigeostrophic turbulence forced by an imposed, baro-
clinically unstable, horizontally uniform, vertically sheared
zonal (x-direction) flow. The governing equations are

∂tqj = −∇·(ujqj)+(−1)j∂xqj−Πj∂xψj−δj2r∇2ψj−ν∇8qj ,

qj = ∇2ψj +
k2d
2

(−1)j(ψ1 − ψ2), uj = ∇⊥ψj , j = 1, 2 [1]

where qj is the potential vorticity in the upper (j = 1)
and lower (j = 2) layers, kd is the deformation wavenum-
ber (k−1

d is the deformation radius), δj2 is a Kronecker delta,

Πj = β−k2d(−1)j is the mean meridional (y-direction) poten-
tial vorticity gradient arising from the mean shear (k2d(−1)j)
and from the variation of the Coriolis parameter with latitude
(β), the coefficient r specifies the strength of linear bottom
friction (Ekman drag) and ν is the hyperviscous Reynolds
number. The equations are posed in a 2π-periodic domain.
When β < k2d the state of rest qj = 0 is linearly unstable
to Rossby waves of the form qj = q̂jexp{i(kxx + kyy − ct)}.
The most unstable modes occur for ky = 0; for β � k2d the

unstable range is approximately |kx| ∈ (
√
β/2, kd) with peak

instability at |kx| ≈ 0.6kd, though modes with |kx| ≥ kd are
slightly destabilized by bottom friction. Growth rates of lin-
ear instability for the three model configurations detailed be-
low are shown as functions of kx with ky = 0 in Fig. 1.
The dynamics can also be described in terms of barotropic
and baroclinic modes, the former being given by the vertical
average qt = (q1 + q2)/2 = ∇2ψt and the latter by the ver-
tical difference qc = (q1 − q2)/2 = (∇2 − k2d)ψc. The basic
phenomenology for this paradigm model of geophysical tur-
bulence is discussed in [13]: potential energy (k2d(ψ1−ψ2)2/2)
generated at large scales cascades downscale towards the de-
formation radius, where it is converted to barotropic kinetic
energy. This barotropic kinetic energy then cascades upscale
and is absorbed by bottom friction, with the inverse cascade

arrested at a scale determined by β and drag. The dynamics
generate a meridional heat flux (proportional to the domain-
integral of vtψc) which acts to erode the imposed potential
vorticity gradient. Thorough investigations of the parameter
space are provided in [14, 15].

Three model configurations are investigated, correspond-
ing to low (β = k2d/2, r = 1), medium (β = k2d/4, r = 4),
and high (β = 0, r = 16) latitudes; the three reference solu-
tions use a resolution of 512 points in each direction, which
equals the highest resolution used in [14, 15], and adaptive,
fourth-order, semi-implicit Runge-Kutta time integration [16]
which treats the hyperviscous terms implicitly. In every sim-
ulation ν = 1.5× 10−16 and kd = 50; the nonlinear advection
terms are dealiased using the 3/2-rule, which means that they
are equivalent to simulations at 7682 using the 2/3-rule – this
allows a slightly longer time step.

Figure 2 shows snapshots of the upper-layer potential vor-
ticity q1 from the three reference simulations. The low- and
mid-latitude dynamics organize into six and four zonal (x-
direction) jets, respectively, with vortical eddies, filaments,
and waves superimposed, and the high-latitude dynamics or-
ganize into a sea of vortices and filaments of various sizes.

Stochastic Superparameterization
Theory. We apply a Reynolds average to the governing equa-
tions (1) to arrive at the following ‘mean’ equations

∂tqj = −∇·(ujqj)+(−1)j∂xqj−Πj∂xψj−δj2r∇
2ψj−ν∇

8qj ,

qj = ∇2ψj +
k2d
2

(−1)j(ψ1 − ψ2), uj = ∇⊥ψj , j = 1, 2. [2]

The coupling to small scales appears in the mean potential
vorticity flux divergence ∇ · (ujqj) = ∇ · (ujqj) +∇ · (u′jq′j);
the eddy component is given by

∇ · (u′jq′j) =
k2d(−1)j

2
∇ · (u′j(ψ′1 − ψ′2))

+
(
∂2
x − ∂2

y

)
u′jv
′
j + ∂xy

(
(v′j)

2 − (u′j)
2
)
. [3]

The ‘eddy’ equations are derived simply by subtracting the
mean equations (2) from the full equations (1)

∂tq
′
j = −∇ · (u′jq′j)′ − (uj − (−1)j)∂xq

′
j

− u′j · ∇Qj − δj2r∇
2ψ′j − ν∇8q′j ,

q′j = ∇2ψ′j +
k2d
2

(−1)j(ψ′1 − ψ′2), u′j = ∇⊥ψ′j , j = 1, 2 [4]

where Qj = Πjy + qj .
We impose scale separation by taking the eddy equation

(4) to apply on domains embedded at each point of the large-
scale domain. This is done by introducing new coordinates
x̃, ỹ, and τ for the embedded domains, requiring the mean
variables to have no dependence on the new coordinates, and

interpreting the average (·) as an average over the new coor-
dinates. The mean variables in the eddy equations are con-
stant and have constant derivatives, as at a point [8, 7]; the
approximation is therefore called the ‘point approximation.’
Unlike the SP framework of [1, 2, 17], the point approxima-
tion includes horizontal gradients of large-scale quantities in
the small-scale equations, allowing correct representation of a
wider range of small-scale instabilities (baroclinic instability,
for example, is precluded in traditional SP).

The above equations provide a potential foundation for a
deterministic SP implementation, where the eddy equations
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Fig. 2. Snapshots of upper layer potential vorticity q1 from the reference simulations at high (left), medium (center), and low latitudes (right).

are solved on horizontally periodic embedded domains. How-
ever, reduction to one fixed horizontal dimension is not pos-
sible here, since the advective nonlinearity responsible for the
turbulence reduces to zero in one horizontal coordinate. Fur-
thermore, we consider a coarse resolution grid of 64×64 points
with a Nyquist wavenumber of 32. In this case embedded do-
mains that completely fill the large-scale computational grid
have a minimum wavenumber of 64, and will not resolve any of
the linear instability because 64 > kd; the sparse-space meth-
ods of [6] are thus not applicable to this problem. Rather,
the embedded domains in a deterministic SP implementation
would have to cover more area than the entire large-scale do-
main in order to minimally interact with the large scales, re-
sulting in a complete loss of computational efficiency.

To overcome these deficiencies of deterministic SP in this
problem, we replace the nonlinear, deterministic eddy equa-
tions (4) by the following quasi-linear, stochastic model

∂τq
′
j =

[
F − Γq′j

]
− (uj − (−1)j)∂x̃q

′
j

− u′j · ∇Qj − δj2r∇̃
2ψ′j − ν∇̃8q′j [5]

where F is additive stochastic forcing and Γ is a positive-
definite pseudo-differential operator. This approximation is
fundamental to our method, and assumes that the eddies are
turbulent; our method should not be expected to work in sit-
uations with weakly nonlinear or non-turbulent eddies.

The stochastically-approximated eddy equation (5) has
constant coefficients in x̃ and ỹ so the evolution of Fourier
modes is decoupled. To overcome the difficulties imposed
by using periodic embedded domains (e.g. that the discrete
Fourier spectrum may miss unstable eddy modes, as discussed
above and in [18, 8]) we represent the eddy variables as ho-
mogeneous random functions in formally infinite domains, and
make use of the stochastic Fourier transform

q′j =

∫∫
q̂j,ke

ik·x̃dWj,k. [6]

The average (·), which includes a spatial average, becomes

equivalent to an ensemble average, i.e. (·) is a determinis-
tic quantity. Our method therefore produces a deterministic
model of the eddy terms in the mean equations; we show below

how to make a stochastic approximation of this deterministic
closure whose mean value reduces to the deterministic closure.

The eddy equations for a single Fourier mode are

dq̂j,k = −
[
γk + νk8 + i(uj · k − (−1)jkx)

]
q̂j,kdτ

−
[
(ik ×∇Qj)− δj2rk

2] ψ̂j,kdτ + σj,kdWj,k [7]

where k = |k|, and Wj,k are independent, complex Weiner
processes. We write this as a linear system of Itō stochastic

differential equations for ψ̂j,k, and use Itō’s lemma to derive
a real linear system of four ordinary differential equations for
the covariance

d

dτ
ck = Mkck + Σk,

ck = E
[
(|ψ̂1,k|2,R{ψ̂1,kψ̂

∗
2,k}, I{ψ̂1,kψ̂

∗
2,k}, |ψ̂2,k|2)

]
Σk = E

[
(|σ1,k|2,R{σ1,kσ

∗
2,k}, I{σ1,kσ

∗
2,k}, |σ2,k|2)

]
[8]

where E denotes the expectation, R and I denote the real
and imaginary parts of a complex number, and ∗ the complex
conjugate. The linear propagator Mk incorporates the local
values and gradients of the large-scale variables, so the eddy
statistics will respond to local large-scale conditions; the form
of Mk is given in the supplementary material. We note that
the size of ck is the square of the number of dependent vari-
ables in the system. Systems with more dependent variables
(e.g. systems with more vertical layers) will thus have larger
ck, but the form of equation (8) will remain the same.

The utility of this equation stems from the fact that the
eddy terms in the mean equation are derivable as integrals
over the Fourier covariance, via Plancherel’s theorem; for ex-
ample,

u′1ψ
′
2 = i

εk2d
2

∫ ε−1

0

∫∫ ∞
−∞

E
[
kyψ̂

∗
1 ψ̂2

]
dkdτ

=
εk2d
2

∫ ε−1

0

∫∫ ∞
−∞

kyE
[
I{ψ̂1,kψ̂

∗
2,k}

]
dkdτ. [9]

Thus, to compute the eddy terms in the mean equations one
must specify an initial condition for ck, an integration length
for the time average ε−1, the autocorrelation of the stochastic
forcing Σk, and the additional damping γk.

A ‘zero-order’ approach is adopted whereby the eddies
are required to relax towards a specified equilibrium in the
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absence of a mean flow. The equilibrium is set to have an
isotropic 1D total energy spectrum (kinetic plus potential)

proportional to k−5/3 for k < kd and to k−3 for k > kd, which
is consistent with the theory of QG turbulence (see, e.g. [13]).
In addition, the potential energy spectrum is chosen to be half
the kinetic energy spectrum for k < kd and zero for k > kd
(consistent with the reference simulations), the kinetic energy
is equal in each layer, and the equilibrium does not bias the
eddy terms. These conditions are sufficient to specify the
equilibrium as

ck,eq ≡


(0, 0, 0, 0) for k ≤ k0
A 1

3k14/3

(
1,

k2d−k
2

k2
d

, 0, 1
)

for k0 < k ≤ kd

A
k
4/3
d

e−α
2(k−kd)

2

3k6
(1, 0, 0, 1) for k > kd

[10]

To preclude the unrealistic inclusion of overly large scales
on the formally infinite embedded domains, we introduce the
large-scale cutoff wavenumber k0, beyond which scale the ed-
dies have no variation; a natural but not mandatory choice
is to set k0 equal to the Nyquist wavenumber of the coarse
grid. The exponential decay at large k is added to approxi-
mate the effect of high-wavenumber damping. The constant
of proportionality A is related to the total eddy energy and is
considered to be constant on the large-scale domain, although
it could be modeled by a large-scale prognostic equation in
inhomogeneous settings [19]. The forcing Σk is specified by

Σk = −Mk,0ck,eq [11]

where Mk,0 denotes Mk including only bottom friction, hy-
perviscosity, γk and β. To complete the specification of the
stochastic model of the eddies we choose 1/γk proportional to

the eddy turnover time, given by 1/
√
k3E(k) where E(k) is

the 1D energy spectrum; thus, γk = γ0e−α
2(k−kd)2 for k > kd

and γk = γ0(k/kd)
2/3 for k ≤ kd. The stochastic approxima-

tion in the eddy equation (5) thus specifies F in terms of the
Fourier transform of σj,kdWj,k. Although γk, and hence Γ
are completely specified, σj,k and hence F are not completely
specified; only the autocorrelation Σk appears in the theory.

Although we have developed the theory of stochastic SP
for the specific case of two-layer QG dynamics, our methods
generalize to a large class of turbulent systems including those
with quadratic and cubic nonlinearities as appear in hydro-
and magnetohydrodynamics.

Implementation. In the low-resolution experiments we choose
γ0 = 50, which is strong enough to damp the linear instability
of the imposed background shear. This choice is motivated
by the finding that the eddy turnover time is faster than the
instability timescale in the multiscale analysis of [19], but the
results are only weakly sensitive to the choice of γ0. The large
scale dynamics generate local conditions whose small-scale in-
stability is more than sufficient to overcome the damping in
the eddy equations: the small scales do not equilibrate.

The exponential decay scale for the equilibrium spectrum
is set to 1/

√
α = 128, but the results are not sensitive to

this choice. The low-wavenumber cutoff k0 is set equal to the
Nyquist wavenumber of the coarse grid, i.e. k0 = 32. Although
this choice implies that there is no formal scale separation be-
tween the large- and small-scale dynamics, there is a practical
scale separation that results from the fact that the large-scale
dynamics near the grid scale are not correctly represented
due to truncation errors. One might therefore choose to set
k0 even smaller than the Nyquist wavenumber of the coarse
grid, but we do not pursue that approach here. This practical
scale separation is exemplified by the need to use a larger co-
efficient of hyperviscosity (ν = 2 × 10−10) on the coarse grid
to prevent the buildup of grid-scale noise, especially since the

Nyquist wavenumber of the coarse grid is approximately equal
to the scale of peak linear instability (see figure 1).

We specify the initial conditions for the eddy covariance
to equal the equilibrium forcing. One might alternatively ini-
tialize the eddies to zero, or attempt to track the state of
the covariance from one large-scale time step to the next, al-
though the latter choice would significantly increase the cost.
The time average of the covariance evolution is given by

ε

∫ ε−1

0

ck(τ)dτ =

[
φ1(Mk/ε)−

1

ε
φ2(Mk/ε)Mk,0

]
ckeq [12]

φ1(A) = A−1
[
eA − I

]
, [13]

φ2(A) = A−2
[
eA − I−A

]
= A−1 [φ1(A)− I] . [14]

This result assumes Mk to be nonsingular, which is true ex-
cept on a set of measure zero in k, which does not affect
the value of the integrals over k that define the eddy terms
(e.g. equation 9). Furthermore, the choice of γk can always be
altered on a set of measure zero to render Mk nonsingular for
all k, although this is not necessary. The length of the time
average is just over twice the length of the time-step used in
the coarse equations, i.e. ε−1 = 5 × 10−4; this allows extra
time for the eddies to respond to the local mean, since we are
re-initializing the eddies at each time step. Although we have
not performed a full sensitivity analysis, we note that perfor-
mance degrades with averaging times much shorter than the
coarse-grid time step.

Calculation of the eddy terms by the Fourier integrals
over k, as in equation (9), results in a deterministic, non-
linear closure for the eddies in terms of the mean variables
which, if implemented directly, is still expensive due to the
quadrature required. (Although such an approach is much
less expensive than traditional SP.) Additionally, it is often
advantageous to include an element of stochasticity in models
of unresolved eddies, particularly when modeling stochastic
backscatter from unresolved scales into resolved ones. We re-
duce the cost and randomize the algorithm by computing the
Fourier integrals that define the eddy terms using a random
integration method based on sampling unidirectional plane
waves with random directions. Specifically, we re-write the
2D integrals in polar coordinates and integrate in k along one
azimuthal direction which is randomly chosen at each coarse
grid point and time step. We approximate the polar eddy
Fourier integrals by a midpoint-rule quadrature in k using
nodes with integer values k = 32, . . . , 256 (from the Nyquist
wavenumber of the coarse grid to the Nyquist wavenumber
of the DNS). The deterministic closure can be reproduced by
integrating the polar Fourier integral along a large number of
azimuthal directions chosen randomly from a uniform distri-
bution; we present results only for integrals in one randomly
chosen azimuthal direction at each coarse-grid point. The use
of one-dimensional integrals is similar to the conventional SP
practice of using reduced dimensional embedded domains, al-
though such a practice would not work in this setting, as noted
earlier. The use of one-dimensional integrals is also motivated
by the success of random plane waves in models of turbulent
diffusion [9, 10, 11].

We further reduce the cost by noting that the Fourier inte-
grals depend on the mean variables only through three scalar

parameters: uc · k̂, ∇ωc × k̂, and ∇ωt × k̂ where k̂ is a unit
vector in the direction of the azimuthal Fourier line integral
and ωj = ∇2ψj is the local large-scale vorticity. The mean
barotropic velocity ut has no impact on the eddy fluxes since it
amounts to uniform translation in the eddy domains. Rather
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Fig. 3. Time series of the heat flux generated by high-resolution DNS (left) and stochastic SP (right) solutions at high latitude (β = 0, r = 16).

Fig. 4. Time-series of zonally-averaged zonal barotropic velocity at low latitude (β = k2d/2, r = 1) from the high-resolution DNS (left) and stochastic SP (right)

solutions. Time increases to the right; the grayscale is the same in both figures.

than repeatedly calculate similar values for the eddy terms at
every time step and grid point of the coarse simulation, we
pre-compute the eddy terms as functions of the three scalar
parameters, using 101 equispaced nodes for each scalar pa-
rameter. The range of values of the three scalar parameters
over which solutions are pre-computed is chosen to encom-
pass the variation seen in the low-resolution simulations. The
eddy terms in the mean equation are evaluated using linear
interpolation based on these pre-computed values.

The large-scale equations (2) are solved using the same
methods as the high-resolution reference simulations, but on
a grid of 64×64 points and with a fixed time step of 2×10−4.
The eddy terms are evaluated using new random directions
at the beginning of each time step, and are held constant for
the duration of the step. The inflated hyperviscous Reynolds
number ν = 2 × 10−10 and the time step 2 × 10−4 are kept
the same in all three test cases, leaving A as the only tunable
parameter. After minimal tuning, the results of the stochas-
tic superparameterization algorithms are presented for the
low-latitude case using A = 1.5 × 103, for the mid-latitude
case using A = 6 × 103, and for the high-latitude case using
A = 2× 104.

Results.The most striking feature of the high-latitude test
case (β = 0, r = 16) is the appearance of strong vortex cores
(Fig. 2, left panel) which are unresolved on the coarse grid
(Fig. S1, left panel). However, the net poleward heat flux
(proportional to the domain integral of vtψc) is generated
primarily by dynamics at larger scales, as discussed by [14],
and these scales are resolved on the coarse grid. Figure 3

demonstrates that the time series of the heat flux generated
by the coarse-resolution stochastic SP solution in the high-
latitude case (right half) has a nearly identical character to
that generated by the high-resolution reference solution (left
half), despite the complete lack of small-scale vortex cores on
the coarse grid. The time-averaged 1D energy spectra of the
high-resolution and stochastic SP solutions also show good
agreement (Fig. S2).

The reference solution in the mid-latitude test case (β =
k2d/4, r = 4) includes strong vortex cores and intermittently
broken barotropic zonal jets (Fig. 2, center panel); these
jets constitute a barrier to transport and limit the poleward
(meridional) heat flux, resulting in a net flux an order of mag-
nitude smaller than the high-latitude simulation (Fig. S3).
Figure 5 compares the time-averaged 1D energy spectra for
the stochastic SP solution and the reference solution at mid-
latitudes, demonstrating good agreement between kinetic and
potential energies, and a peak at k = 4 corresponding to the
four barotropic zonal jets that develop. Although the total
energy content is similar, the peak of the kinetic energy spec-
trum in the stochastic SP solution is weaker than the reference
solution; the jets in the stochastic SP solution are also more
intermittent (Fig. S4). The result is that the heat flux gen-
erated by the stochastic SP solution is about 50% too large
(Fig. S3). Generating a heat flux correct to within 50% on a
grid with 1/64 as many points constitutes a resounding suc-
cess; it is likely, however, that the result could be improved
by allowing variation of the A across the large-scale domain.

The low-latitude case (β = k2d/2, r = 1) is particularly
difficult because (i) the band of linear instability responsi-
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ble for the turbulence is almost completely unrepresented on
the coarse grid (see Fig. 1; indeed, the hyperviscous diffu-
sion is sufficient to completely stabilize the linear instability
on the coarse grid) and (ii) the coarse grid allows only ap-
proximately ten points per pair of east-west jets, making a
single jet barely resolved. Figure 4 compares the time evolu-
tion of the zonally-averaged zonal barotropic velocity

∫
utdx

from the stochastic SP and reference solutions in the low lat-
itude test case. The reference simulation initially develops
eight jets, but later transitions to six, while the stochastic SP
simulation initially develops seven jets and later transitions
to five. As with the mid-latitude case, the jets comprise a
strong barrier to heat transport, and the net transport is two
hundred times smaller than the high-latitude case (Fig. S5).
Nevertheless, the stochastic SP solution is able to correctly
predict the heat transport to within about 30%. In addition,
the time-averaged 1D spectra are closely matched (Fig. S6).

Discussion and Conclusions
The main result of this article is the development of an ef-
ficient method for the stochastic parameterization of unre-
solved scales in a multiscale, turbulent dynamical system. The
method is based on the ideas of superparameterization [1, 2],
stochastic eddy modelling [8], and on the test model for super-
parameterization of [7]. In contrast with conventional SP, (i)
our method does not require the solution of prognostic eddy
equations on embedded domains, although such domains are
formally present in the theory, (ii) includes a better represen-
tation of certain small-scale instabilities including baroclinic
instability, which is the primary driver of atmospheric and
oceanic variability, and (iii) allows efficient representation of
a much wider range of eddy scales through the use of formally
infinite embedded domains. Compared with HMM [12], our
method does not require scale separation in space or time,
and does not require the equilibration of local eddy statistics.
The stochastic nature of the parameterization suggests that it
will improve the ability of coarse-resolution models to assim-
ilate observational data [18, 20, 21], and the computational
efficiency enables larger ensemble sizes for improved uncer-
tainty quantification. The success of our approach in simul-
taneously parameterizing the quasigeostrophic inverse kinetic

energy cascade from small scales and forward potential energy
cascade to small scales, and the flexibility of the stochastic su-
perparameterization framework suggest that the method may
prove useful in a wide range of multiscale, turbulent dynami-
cal systems. The implementation here through random plane
waves with re-initialization of the eddies at each large-scale
time step is the simplest of several strategies that retain com-
putational efficiency. Other options for implementing stochas-
tic superparameterization, as suggested here, should be pur-
sued in the future.
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Fig. 5. Time-averaged 1D energy spectra for the high-resolution DNS (dashed)

and stochastic SP (solid) solutions at midlatitude (β = k2d/4, r = 4). Total energy

in red, kinetic in blue, and potential in green.
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