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Challenges for turbulent dynamical systems

Uncertainty quantification (UQ) deals with the probabilistic characterization of all the
possible evolutions of a dynamical system given an initial set of possible states as
well as the random forcing or parameters.

@ Turbulent dynamical systems are characterized by a large dimensional
phase space and high degrees of internal instability.

@ Instabilities through energy-conserving nonlinear interactions result in
a statistical steady state that is usually non-Gaussian.

@ Accurate quantification for the statistical variability to general external
perturbations is important in climate change sciences.

Major Task of this work:
Investigate a concise systematic framework for measuring and optimizing
consistency and sensitivity of imperfect dynamical models.

V ajda (cms) Low-Dimensional Reduced-Order Statistical Models CAOS Colloquium, October 18, 2017  2/30



General framework for statistical modeling
The system setup will be a finite-dimensional system of, u € RV, with linear

dynamics and an energy preserving quadratic part

d
L*=-L;, D<O0; u-B(u,u)=
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Related Works and Papers

@ Recent new developments

> Majda, Introduction to turbulent dynamical systems in complex systems, Springer,
2016.

» Majda and Qi, New strategies for reduced-order models for predicting the statistical
responses and uncertainty quantification in complex turbulent dynamical systems,
SIAM Review, 2017.

@ Statistical theories

» Majda, Statistical energy conservation principle for inhomogeneous turbulent
dynamical systems. PNAS, 2015.

» Majda and Gershgorin, Link between statistical equilibrium fidelity and forecasting
skill for complex systems with model error. PNAS, 2011.

» Majda and Wang, Linear response theory for statistical ensembles in complex
systems with time-periodic forcing. CMS, 2010.

@ Improving imperfect model skill

> Majda and Qi, Improving prediction skill of imperfect turbulent models through
statistical response and information theory, Journal of Nonlinear Science, 2015.

> Qi and Majda, Low-dimensional reduced-order models for statistical response and
uncertainty quantification: two-layer baroclinic turbulence, )JAS, 2016.

> Qi and Majda, Low-dimensional reduced-order models for statistical response and
uncertainty quantification: barotropic turbulence with topography, Physica D, 2016.
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Outline

e A two-layer quasi-geostrophic model for baroclinic turbulence
@ Two-layer baroclinic turbulence in ocean and atmosphere regimes

9 Reduced-order statistical models for general turbulent systems
@ Formulation of the exact statistical moment dynamics
@ A reduced-order statistical model with consistency and sensitivity
@ Model calibration for optimal performance

e Low-dimensional reduced-order models for the two-layer system
@ Statistical equations for the two-layer model
@ Tuning imperfect model parameters in the training phase
@ Imperfect model prediction in various dynamical regimes
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Outline

ﬂ A two-layer quasi-geostrophic model for baroclinic turbulence
@ Two-layer baroclinic turbulence in ocean and atmosphere regimes
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The two-layer flow with forcing and dissipation

The two-layer quasi-geostrophic model with baroclinic instability is one

simple but fully nonlinear fluid model capable in capturing the essential
physics in ocean and atmosphere science.

Two-layer model
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Flow in high-latitude homogeneous regimes

regime
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Flow in low/mid-latitude regimes with zonal jets

zonal averaged flow field, low/mid-lat ocean
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Outline

e Reduced-order statistical models for general turbulent systems
@ Formulation of the exact statistical moment dynamics
@ A reduced-order statistical model with consistency and sensitivity
@ Model calibration for optimal performance
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General setup of turbulent systems with quadratic

nonlinearities
The system setup will be a finite-dimensional system with linear dynamics
and an energy preserving quadratic part with u ¢ RV

du .
ot =Y[u(t;o); 0] = (L+D)u+B(u,u)+F(t)+ ok (t)Wk(t;®), (2)
u(to;w):uo (a)) (3)
@ L being a skew-symmetric linear operator L* = —L, representing the

B-effect of Earth’s curvature, topography etc.

@ D being a negative definite symmetric operator D* = D, representing
dissipative processes such as surface drag, radiative damping, viscosity etc.

@ B(u,u) being a quadratic operator which conserves the energy by itself so
that it satisfies B(u,u)-u = 0.

@ F(t)+ oy (t) Wi (t; ®) being the effects of external forcing, i.e. solar forcing,
seasonal cycle, which can be split into a mean component F(t) and a stochastic
component with white noise characteristics.
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Exact statistical moment equations

Statistical mean and covariance dynamics, u = u+Z;v;, Rjj = <Z,-Z}‘>,

du _ _

i (L+D)a+B(a,a)+R;B (vi,v;) +F(t),
dR

E :LVR +RL;+OF+OO'-

@ the linear dynamics operator L, expressing energy transfers between the mean field and
the stochastic modes (B), as well as energy dissipation (D), and non-normal dynamics (L)
{Lv};= [(L+D)v;+B(@,v)) +B (v, )] -v;.
@ the positive definite operator Qs expressing energy transfer due to external stochastic
forcing
{Qs}; = Vi Gi Oy,
@ the third-order moments expressing the energy flux between different modes due to
non-linear terms
OF = {(ZmZnZ;}B(Vm,Vn) - Vi+ (ZmZnZi) B(Vm,Vn) - V.
note that energy is still conserved in this nonlinear interaction part

Tr[Qf] = 2(ZmZnZi) B(Vm,Vn) - Vi
=2(B(ZmVm,ZnVn)-Ziv;) =2(B (u',u) -u') =0.
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Reduced-Order Statistical Energy Closure
The true statistical model

da _ o _
E:(L—|—D)u—|—B(u,u)+R;jB(vi,vj)—|—F(t),ueRN,
dR _ -
E:LV(U)R+RLV(U)+OF+00, RERNXN.

‘ Orij = (ZmZnZ;) B (Vin, Vi) - Vi + (ZmZnZ) B (Vim, V) -
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Reduced-Order Statistical Energy Closure

The reduced-order approximation ay ¢ R”, M < N

da _ o

TtM = (L+D)ty+B(Gm,twm) +Rum ;B (vi,v;) +F,
dR .

TtM LyRm +RuL} +QF +Qo,

A preferred approach for the nonlinear flux OQ” combining both the detailed
model energy mechanism and control over model sensitivity is proposed

O = QF "+ 0" = AL (E) [~ (N + i) Rua] + 2 (E) [ Qf o+ 1
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Reduced-Order Statistical Energy Closure

A preferred approach for the nonlinear flux O’,‘:” combining both the detailed
model energy mechanism and control over model sensitivity is proposed

QO = QF "+ QF " = AL (E) [~ (N o + Iul) Rut] + 2 (E) [Qf o+ 1

@ Higher-order corrections from equilibrium statistics:

_ _ _ 1.
QF eq = QF o + Qf oq = —Lv (Tieq) Req — ReqLy (Beq) — Qo,  Nieq = 5QreqReq
@ Additional damping and noise to model nonlinear flux:
Q34 = _dyRy + I

@ Statistical energy-consistent scaling to improve model sensitivity:
E \1/2 E \3/2
ao-(£)" we-(£)"
Eeq Eeq
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Climate fidelity for equilibrium

Equilibrium fidelity refers to the convergence to the same final unperturbed

statistical equilibrium Req in the reduced-order models Ry in each resolved
component.

Specifically, it requires that the model nonlinear flux correction term Qu
converges to the truth, Oy — OF ¢q, When no external perturbation is added

dRm _ _
dtjeq =0 =Ly (Ueq) Rmeq +Rmeqly (Ueq) + ogeq +Qs — Rumeq = Req-

@ the first component (NM,eq,Qﬁeq) comes from the true equilibrium
statistics.

@ climate consistency requires the second component correction makes
no contribution in the unperturbed case

1
Yy = EdMReq, fi(Eeq) =1, f2(Eeq) = 1.
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Statistical energy conservation principle!

Theorem

(Statistical Energy Conservation Principle) Under the structural
symmetries on the basis v;, for any turbulent dynamical systems in the form
(1) the total statistical energy, E=E+FE = %ﬁ -u+ %trR, satisfies

dE 1
—f = U'DU+U-F+tr(DR)+ >trQo,

where R satisfies the exact covariance equation.

Corollary

Under the assumption of the Theorem, assume D = —dl, with d > 0, then the
turbulent dynamical system satisfies the closed statistical energy equation
for E=1a-a+itrR,

dE

_ 1
P —2dE+u-F+ EtrOG.

1Majda, Statistical energy conservation principle for inhomogeneous turbulent dynamical
systems, PNAS, 2015.
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Model calibration blending statistical response and
information theory

Accurate modeling about the model sensitivity to various external
perturbations requires the imperfect reduced-order models to correctly
reflect the true system’s “memory” about its previous states.

@ the linear response operator can characterize the model sensitivity
involving the nonlinear effects in the system regardless of the specific
forms of the external perturbations.

@ empirical information theory can be used as the distance between
these two operators to calculate the unbiased and invariant measure
for model distributions.
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Linear response operator % (t)

Linear response theory: The linear response of a system, u; = f(u),
o = £+ 5F (t), can be predicted by observing appropriate statistics of the
system in equilibrium 7eq

EPA (u) = Eeq (A)+ 5E, +0 (82),

t
55;:/ Ta(t—5)8F (s)ds.
0

without the need of applying any perturbations.

kicked response: For 6 small enough, the linear response operator % (t)
can be calculated by solving the unperturbed system with a perturbed initial
distribution

T |t=0= Tleq (U — 8U) = Teq — U - VTeq + O (5?).

5% (t) = Su- % :/A(u)57r’+0(82).
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Link between equilibrium fidelity and forecasting skill

Given the optimal model for the unperturbed climate 7.y, how can we
assess the error in the climate change prediction

P (m, ') :/JrlnnlM,

based on the unperturbed climate?

Under assumptions with diagonal covariance matrices R = diag (Rx) and
equilibrium model fidelity & (76, 7% ) = 0

P (ns.m5) = S (m65) — (7s)
1 _ _ _ _
+§Z (5Uk — 5UMJ<) RI:]- (5Uk — 6UM,k)

+= ZR 6Rk76RMk) +0(83).

R is the equilibrium variance in k-th component, and 6, and 6Ry are the
linear response operators for the mean and variance in k-th component.
(Majda & Gershogorin, PNAS, 2011)
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Optimization in the training phase

To summarize, consider a class of imperfect models, .#. The optimal model
M* € ./ that ensures best information consistent responses is characterized
with the smallest additional information in the linear response operator %a,

such that
H@ (p&pf? )

11(0.7]) Mel,H‘@(pévpa)HLl([or]

° p’g’ can be achieved through a kicked response procedure in the training
phase compared with the actual observed data pg in nature;

e the information distance between perturbed responses & (ps,p¥) can
be calculated through the expansion formula;

e the information distance & (p; (t),pY (t)) is measured at each time
instant, so the entire error is averaged under the L'-norm inside a time
window [0, T].
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Outline

e Low-dimensional reduced-order models for the two-layer system
@ Statistical equations for the two-layer model
@ Tuning imperfect model parameters in the training phase
@ Imperfect model prediction in various dynamical regimes
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Exact statistical moment equations for the two-layer
model

The rescaled set of equations of (1) can be summarized in the abstract form

d T
P _p (Pk: PK) + (L — Zk) P+ ;. Pk = (Pyk:Prk) Pk - Bk (Pk; Pk) =0,
dt

K

where the normalized state variable px = (pw‘k,p,,k)T is in barotropic and baroclinic mode, the
linear operator is decomposed into non-symmetric part 4i involving B-effect and shear flow U
and dissipation part %y, together with the forcing #x combining deterministic component and
stochastic component.

ikx B ikxU 1
. -1 S —
S = lk\z(k P . ) Vg )2
. 1-(kg ik ’ _
'kXU\/H(kd/\k\)Z kI +k3 V14 (ka/|K))? 1+(kq/|K])?
1. 24k2
Ymtn=k m‘k‘n <%Pwﬁmpw,n + 4|‘|:|‘\2+k% Pr,mPr,n)
_ Bw,k d
Bk(Pkapk)*|: B.y ]f
T,

2
Tomsnok min \/In|?+k3
m+n=
VIK2+K3

In]
m[~ Py.mPtn + mP‘nme,n)
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Exact statistical moment equations

Statistical energy in each spectral mode

‘p%k}z Py kP k

Re=pP'P=| = 2
pw,kpr,k ’p‘f:k|

oA — Rk = Ix !
s P1kP2ok = P1kP2k P11 kP2 K

Rk combines the variability in both mean and variance. The true statistical
dynamical equations form a 2 x 2 system about Ry € C2*?

dR
[ T;( = (% — Z)Rk+Qrk+Qsx+c.c., |kl<N, ]

, Y trQrx=0.

k

QF k = Pk*Bk (Px: Pk) = [

* *
p%kB%k p%kBr,k
PzkBvk  PriBrk
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Statistical energy conservation principle

The total statistical energy dynamical equation concerns the evolution of the
total variability in mean and variance in response to external perturbations

1 T2 21 2 2
E=S ¥ Il + (kP +k3) [’ =5 ¥ [pyul*+Ipel”
1<|k|<N 1<|k|<N
The exact dynamics for the statistical energy can be derived as

9 = ke KF vHiO
dt T 2 o

Hr is the meridional heat flux due to baroclinic instability, F is the additional damping effects
due to the non-symmetry in Ekman drag only applied on the bottom layer

He = kgu/ Vit =kUY ikcwgte, F=Y k3|ml? +2 |k|* Reygric.
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Set-up for the numerical problem

@ The true statistics is calculated by a pseudo-spectra code with 128
spectral modes zonally and meridionally, corresponding to
256 x 256 x 2 grid points in total.

@ In the reduced-order methods, only the large-scale modes |k| < 10 are
resolved, which is about 0.15% of the full model resolution.

External forcing in stochastic and deterministic component:

@ The amplitude of the stochastic forcing Gka is introduced according to
the equilibrium energy so that

Glf/,k = 66(? !qw,klzeq, Gg,k = 5Gg}qu|zeq~

@ The deterministic forcing is introduced through a perturbation in the
background shear Us = U+ 6U

8F, 1 = SUiky (f |k|2) T, ey = SUiky (— k|2 +/<§) Vic.

Majda (cvs)

Low-Dimensional Reduced-Order Statistical Models CAOS Colloquium, October 18, 2017 24/30



Tuning parameters in the training phase

tuning parameters with energy correction
g/

(a) tuning with energy scaling

baroclinic energy

15

tuning parameters without energy correction 35

(b) tuning without energy scaling

error

8 1
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(c) prediction and info. errors

Figure: Tuning imperfect model parameters in the training phase. The information

errors with varying model parameters, dy = (d,,,,df), are plotted for stochastic

barotropic perturbation case.
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High-latitude: Mean shear flow perturbation

@ The model is perturbed by changing the background zonal flow strength
u;

@ The entire spectral is perturbed due to the mean flow advection in each
spectral mode.

baratropic energy
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Flow in low-latitude regimes with zonal jets
regime N B kg u K (Kmin, Kmax) Omax  (KxyKy)max
ocean, high lat. 256 100 10 1 1 (7.14,15.63) 0.104 (2,8)
atmosphere, high lat. 256 2.5 4 0.2 0.05 (2.51,7.06) 0.053 (3,0)
zonal averaged flow field, Iow/rpid-lat ocean

zonal averaged flow field, low/mid-lat atmosphere
o L il

Wk inanyon I e
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I » ) '
time
=] = = = 9©ac
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Low-latitude: Stochastic perturbation with §o§ = 0.2
autocorrelation functions and probability density functions
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Current and future work

@ Reduced-order stochastic modeling strategies to capture passive scalar

intermittency

> Majda & Tong, Intermittency in turbulent diffusion models with a mean gradient,
Nonlinearity, 2015

> Majda & Gershgorin, Elementary models for turbulent diffusion with complex
physical features: eddy diffusivity, spectrum and intermittency, Phil. Trans. R. Soc.
A, 2013

> Qi & Majda, Predicting fat-tailed intermittent probability distributions in passive
scalar turbulence with imperfect models through empirical information theory,
Comm. Math. Sci, 2015.

> Qi & Majda, Predicting Extreme Events for Passive Scalar Turbulence in Two-Layer
Baroclinic Flows through Reduced-Order Stochastic Models, Comm. Math. Sci, 2017.

@ Design of a mitigation control strategy by using novel low-order

statistical models;
> Majda & Qi, Effective control of complex turbulent dynamical systems through
statistical functionals, PNAS, 2017
» Majda & Qi, Using Statistical Functionals for Effective Control of Inhomogeneous
Complex Turbulent Dynamical Systems, submitted to Physica D.

@ Rigorous statistical UQ for turbulent geophysical flows
» Majda & Qi, Rigorous statistical uncertainty quantification for one-layer turbulent
geophysical flows, in preparation.
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