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Challenges for turbulent dynamical systems

Uncertainty quantification (UQ) deals with the probabilistic characterization of all the
possible evolutions of a dynamical system given an initial set of possible states as
well as the random forcing or parameters.

Turbulent dynamical systems are characterized by a large dimensional
phase space and high degrees of internal instability.

Instabilities through energy-conserving nonlinear interactions result in
a statistical steady state that is usually non-Gaussian.

Accurate quantification for the statistical variability to general external
perturbations is important in climate change sciences.

Major Task of this work:
Investigate a concise systematic framework for measuring and optimizing
consistency and sensitivity of imperfect dynamical models.
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General framework for statistical modeling
The system setup will be a finite-dimensional system of, u ∈ RN, with linear
dynamics and an energy preserving quadratic part

du

dt
= L [u] = (L + D)u+ B(u,u) +F(t) + σk (t)Ẇk (t;ω) , (1)

L∗ =−L; D≤ 0; u ·B(u,u)≡ 0.

NEW STRATEGIES FOR REDUCED-ORDER MODELS FOR PREDICTING COMPLEX TURBULENT DYNAMICAL SYSTEMS 5
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Figure 1.1. The general strategy for the development of reduced-order statistical models. Three
sequential stages are required to carry out the reduced-order statistical model, and rigorous math-
ematical theories are combined with numerical analysis to calibrate model errors and improve the
imperfect model prediction skill.

The model calibration procedure is usually carried out in a training phase before the prediction, so that the
optimal imperfect model parameters can be achieved through a careful calibration about the true higher-order
statistics. The ideal way is to find a unified systematic strategy where various external perturbations can be predicted
from the same set of optimal parameters through this training phase. To achieve this, various statistical theories
and numerical strategies need to be consulted. Most importantly, we need to consider the linear response theory
to calibrate the model responses in mean and variances; and use empirical information theory to get a balanced
measure for the error in the leading order moments. In the final model prediction stage, the optimal imperfect
model parameters are applied for the forecast of various model responses to perturbations. In the construction
about numerical models, numerical issues also need taking into account to make sure numerical stability and
accuracy. Especially, proper schemes with accuracy order consistent with the reduced model approximation error
should be proposed to ensure optimal performance.

2. Statistical Theory Toolkits for Improving Model Prediction Skill

In this section we introduce the general theoretical toolkits that are useful for capturing the key statistical
features in turbulent systems like (1.1) and improving imperfect model prediction skill. Despite the complex
model statistical responses in each component as the turbulent dynamical system gets perturbed, there exists a
simple and exact statistical energy conservation principle for the total statistical energy of the system describing
the overall (inhomogeneous) statistical structure in the system through a simple scalar dynamical equation. The
theory is briefly described in Section 2.1. Then the construction about the imperfect reduced-order models concerns
about the consistency in equilibrium (climate fidelity) and the responses to perturbations (model sensitivity).
Equilibrium fidelity should be guaranteed in the first place so that the reduced-order model will converge to the
true equilibrium statistics. To further calibrate the detailed model sensitivity to perturbations in each statistical
component, the linear response theory can offer useful quantities to measure for quantifying the crucial statistics in
the model structure. Combining with the relative entropy under empirical information theory, a general information-
theoretical framework can be proposed to tune the imperfect model parameters in a training phase, thus optimal
model parameters can be used for model prediction in various dynamical regimes. We will describe the basic ideas
first in this section.

2.1. A statistical energy conservation principle. Despite the fact that the exact equations for the statistical
mean (1.4) and the covariance fluctuations (1.5) are not closed equations, there is suitable statistical symmetry so
that the energy of the mean plus the trace of the covariance matrix satisfies an energy conservation principle even
with general deterministic and random forcing. Here we briefly introduce the theory developed in [13] about a total
statistical energy dynamics for the abstract system (1.1).
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The two-layer flow with forcing and dissipation

The two-layer quasi-geostrophic model with baroclinic instability is one
simple but fully nonlinear fluid model capable in capturing the essential
physics in ocean and atmosphere science.

Two-layer model

∂qψ

∂ t
+ J
(
ψ,qψ

)
+ J(τ,qτ ) + β

∂ψ
∂x

+ U
∂∆τ
∂x

=−κ
2

∆(ψ− τ)−ν∆sqψ +Fψ ,

∂qτ
∂ t

+ J(ψ,qτ ) + J
(
τ,qψ

)
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∂τ
∂x

+ U
∂

∂x

(
∆ψ + k2

dψ
)

=−κ
2

∆(τ−ψ)−ν∆sqτ +Fτ .

Barotropic and baroclinic modes:

qψ = ∆ψ, ψ =
1

2
(ψ1 + ψ2) ,

qτ = ∆τ−k2
dτ, τ =

1

2
(ψ1−ψ2) .

Normalized energy-consistent modes:

pψ,k =
qψ,k

|k| =−|k|ψk,

pτ,k =
qτ,k√
|k|2 + k2

d

=−
√
|k|2 + k2

dτk.
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Flow in high-latitude homogeneous regimes

regime N β kd U κ (kmin,kmax) σmax (kx,ky)max

ocean, high lat. 256 10 10 1 9 (2.25,14.61) 0.411 (4, 0)

atmosphere, high lat. 256 1 4 0.2 0.2 (1.58,6.78) 0.099 (2, 0)4 Reduced-order models with homogeneous mean flow 14
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Fig. 4.4: Stability from linear analysis and nonlinear flux in ocean (upper) and atmosphere (lower) regime using param-
eters in Table 1. The growth rate from linear analysis including Ekman damping effect, and the eigenvalues
of the nonlinear flux trQF,k in each wavenumber combining barotropic and baroclinic mode are displayed in
the two-dimensional spectral domain. The last column shows the radial averaged growth rate and nonlinear
flux eigenvalues in positive and negative components.

and validates the feasibility of using quasi-Gaussian approximation in calculating the linear response operators as a
2⇥2 blocked system.

4.2 Testing reduced-order models in homogeneous regime

In the previous section we displayed the unperturbed statistical structures of the two-layer QG system in high-latitude
regime with important nonlinear non-Gaussian features. The major task now is to test the reduced-order model skills
in predicting statistical responses to both stochastic and deterministic forcing perturbations as prescribed in (4.1) and
(4.2) using only low-order closures. Only the large-scale modes |k| < 10 are calculated here, which cover the regime of
most energetic directions. And to investigate the model sensitivity in each component, the perturbations in barotropic
mode and baroclinic mode are applied individually in the tests. Three statistical quantities are of special importance

in characterizing the two-layer system, that is, the barotropic energy,
��py,k

��2, baroclinic energy
��pt,k

��2, and the heat
flux ikxy⇤

k tk. Due to the homogeneous statistics as we have shown before, the mean states become zero and thus we
can focus on the second-order variances in this situation. Therefore we will majorly check the reduced-order method’s
ability in capturing the responses in these key quantities. Like the Algorithm summarized in Section 3.3, the modeling
process are decomposed into a training phase for finding optimal model parameters and a prediction phase for getting
responses to various perturbations.

4.2.1 Training phase with linear response operator

Equilibrium consistency for the reduced-order methods

In testing the reduced-order models, we need to first guarantee climate consistency with the true unperturbed equilib-
rium in statistical steady state. In the construction of low-order correction in Section 3.2, higher-order statistics from
equilibrium are combined with additional damping and noise corrections. It needs to be emphasized that neither the
additional damping and noise (3.7) nor the equilibrium high-order correction (3.6) is stable on its own even with the
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Flow in low/mid-latitude regimes with zonal jets

5 Reduced-order models with inhomogeneous jet flow 25
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Fig. 5.4: Time-averaged statistics (in radial average) in mean and second-order moments in low/mid-latitude regime.
The first row compares the statistical mean states. The following two rows show the variances, and statistical
energy, in barotropic and baroclinic modes, as well as the potential energy.
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Fig. 5.5: Autocorrelation functions and the probability distribution functions in low/mid-latitude ocean and atmo-
sphere regime. The first three most energetic baroclinic modes are displayed. In the autocorrelations, the
solid lines show the real part while the dashed lines are the imaginary part of the functions. In the pdfs, the
corresponding Gaussian distributions with the same variance are also plotted in dashed black lines.
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General setup of turbulent systems with quadratic

nonlinearities
The system setup will be a finite-dimensional system with linear dynamics
and an energy preserving quadratic part with u ∈ RN

du

dt
= L [u(t;ω) ;ω] = (L + D)u+ B(u,u) +F(t) + σk (t)Ẇk (t;ω) , (2)

u(t0;ω) = u0 (ω) . (3)

L being a skew-symmetric linear operator L∗ =−L, representing the
β -effect of Earth’s curvature, topography etc.

D being a negative definite symmetric operator D∗ = D, representing
dissipative processes such as surface drag, radiative damping, viscosity etc.

B(u,u) being a quadratic operator which conserves the energy by itself so
that it satisfies B(u,u) ·u = 0.

F(t) + σk (t)Ẇk (t;ω) being the effects of external forcing, i.e. solar forcing,
seasonal cycle, which can be split into a mean component F(t) and a stochastic
component with white noise characteristics.
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Exact statistical moment equations
Statistical mean and covariance dynamics, u = ū+ Zivi, Rij =

〈
ZiZ
∗
j

〉
,

dū

dt
= (L + D) ū+ B(ū, ū) + RijB

(
vi,vj

)
+F(t) ,

dR

dt
= LvR + RL∗v + QF + Qσ .

the linear dynamics operator Lv expressing energy transfers between the mean field and
the stochastic modes (B), as well as energy dissipation (D), and non-normal dynamics (L)

{Lv}ij =
[
(L + D)vj + B

(
ū,vj

)
+ B

(
vj, ū

)]
·vi.

the positive definite operator Qσ expressing energy transfer due to external stochastic
forcing

{Qσ}ij = v∗i σ∗k σkvj.

the third-order moments expressing the energy flux between different modes due to
non-linear terms

QF =
〈
ZmZnZj

〉
B(vm,vn) ·vi + 〈ZmZnZi〉B(vm,vn) ·vj.

note that energy is still conserved in this nonlinear interaction part

Tr [QF] = 2〈ZmZnZi〉B(vm,vn) ·vi

= 2〈B(Zmvm,Znvn) ·Zivi〉= 2
〈
B
(
u′,u′

)
·u′
〉

= 0.
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Reduced-Order Statistical Energy Closure
The true statistical model

dū

dt
= (L + D) ū+ B(ū, ū) + RijB

(
vi,vj

)
+F(t) , ū ∈ RN,

dR

dt
= Lv (ū)R + RL∗v (ū) + QF + Qσ , R ∈ RN×N.

QF,ij =
〈
ZmZnZj

〉
B(vm,vn) ·vi + 〈ZmZnZi〉B(vm,vn) ·vj

A preferred approach for the nonlinear flux QM
F combining both the detailed

model energy mechanism and control over model sensitivity is proposed�
�

�

QM

F = QM,−
F + QM,+

F = f1 (E) [−(NM,eq + dMIN)RM] + f2 (E)
[
Q+

F,eq + ΣM

]
.

Higher-order corrections from equilibrium statistics:

QF,eq = Q−F,eq + Q+
F,eq =−Lv (ūeq)Req−ReqL∗v (ūeq)−Qσ , NM,eq =

1

2
Q−F,eqR−1

eq .

Additional damping and noise to model nonlinear flux:

Qadd
M =−dMRM + ΣM.

Statistical energy-consistent scaling to improve model sensitivity:

f1 (E) =

(
E

Eeq

)1/2

, f2 (E) =

(
E

Eeq

)3/2

.
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Reduced-Order Statistical Energy Closure
The reduced-order approximation ūM ∈ RM, M� N

dūM

dt
= (L + D) ūM + B(ūM, ūM) + RM,ijB(vi,vj) + F,

dRM

dt
= LvRM + RML∗v + QM

F + Qσ ,

A preferred approach for the nonlinear flux QM
F combining both the detailed

model energy mechanism and control over model sensitivity is proposed�
�

�

QM

F = QM,−
F + QM,+

F = f1 (E) [−(NM,eq + dMIN)RM] + f2 (E)
[
Q+

F,eq + ΣM

]
.

Higher-order corrections from equilibrium statistics:

QF,eq = Q−F,eq + Q+
F,eq =−Lv (ūeq)Req−ReqL∗v (ūeq)−Qσ , NM,eq =

1

2
Q−F,eqR−1

eq .

Additional damping and noise to model nonlinear flux:

Qadd
M =−dMRM + ΣM.

Statistical energy-consistent scaling to improve model sensitivity:

f1 (E) =

(
E

Eeq

)1/2

, f2 (E) =

(
E

Eeq

)3/2

.
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Reduced-Order Statistical Energy Closure
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Climate fidelity for equilibrium

Equilibrium fidelity refers to the convergence to the same final unperturbed
statistical equilibrium Req in the reduced-order models RM in each resolved
component.

Specifically, it requires that the model nonlinear flux correction term QM

converges to the truth, QM→ QF,eq, when no external perturbation is added

dRM,eq

dt
= 0 = Lv (ūeq)RM,eq + RM,eqL∗v (ūeq) + QM

F,eq + Qσ → RM,eq = Req.

the first component
(

NM,eq,Q
+
F,eq

)
comes from the true equilibrium

statistics.

climate consistency requires the second component correction makes
no contribution in the unperturbed case

ΣM =
1

2
dMReq, f1 (Eeq) = 1, f2 (Eeq) = 1.
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Statistical energy conservation principle1

Theorem
(Statistical Energy Conservation Principle) Under the structural
symmetries on the basis vi, for any turbulent dynamical systems in the form
(1) the total statistical energy, E = Ē + E′ = 1

2 ū · ū + 1
2 trR, satisfies

dE

dt
= ū ·Dū + ū ·F + tr(DR) +

1

2
trQσ ,

where R satisfies the exact covariance equation.

Corollary
Under the assumption of the Theorem, assume D =−dI, with d > 0, then the
turbulent dynamical system satisfies the closed statistical energy equation
for E = 1

2 ū · ū + 1
2 trR,

dE

dt
=−2dE + ū ·F +

1

2
trQσ .

1Majda, Statistical energy conservation principle for inhomogeneous turbulent dynamical
systems, PNAS, 2015.
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Model calibration blending statistical response and

information theory

Accurate modeling about the model sensitivity to various external
perturbations requires the imperfect reduced-order models to correctly
reflect the true system’s “memory” about its previous states.

the linear response operator can characterize the model sensitivity
involving the nonlinear effects in the system regardless of the specific
forms of the external perturbations.

empirical information theory can be used as the distance between
these two operators to calculate the unbiased and invariant measure
for model distributions.
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Linear response operator RA (t)

Linear response theory: The linear response of a system, ut = f(u),
fδ = f + δ f′ (t), can be predicted by observing appropriate statistics of the
system in equilibrium πeq

Eδ A(u) = Eeq (A) + δE′A + O
(
δ 2
)
,

δE′A =
∫ t

0
RA (t−s)δ f ′ (s)ds.

without the need of applying any perturbations.

kicked response: For δ small enough, the linear response operator RA (t)
can be calculated by solving the unperturbed system with a perturbed initial
distribution

π |t=0= πeq (u−δu) = πeq−δu ·∇πeq + O
(
δ 2
)
.

δRA (t)≡ δu ·RA =
∫

A(u)δπ ′+ O
(
δ 2
)
.
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Link between equilibrium fidelity and forecasting skill

Given the optimal model for the unperturbed climate πeq, how can we
assess the error in the climate change prediction

P
(
π,πM

)
=
∫

π ln
π

πM
,

based on the unperturbed climate?

Under assumptions with diagonal covariance matrices R = diag(Rk) and
equilibrium model fidelity P

(
πG,πM

G

)
= 0

P
(
πδ ,πM

δ
)

= S
(
πG,δ

)
−S (πδ )

+
1

2 ∑
k

(
δ ūk−δ ūM,k

)
R−1

k

(
δ ūk−δ ūM,k

)

+
1

4 ∑
k

R−2
k

(
δRk−δRM,k

)2
+ O

(
δ 3
)
.

Rk is the equilibrium variance in k-th component, and δ ūk and δRk are the
linear response operators for the mean and variance in k-th component.
(Majda & Gershogorin, PNAS, 2011)
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Optimization in the training phase

To summarize, consider a class of imperfect models, M . The optimal model
M∗ ∈M that ensures best information consistent responses is characterized
with the smallest additional information in the linear response operator RA,
such that ∥∥∥P

(
pδ ,p

M∗
δ

)∥∥∥
L1([0,T])

= min
M∈M

∥∥P
(
pδ ,p

M
δ
)∥∥

L1([0,T])
,

pM
δ can be achieved through a kicked response procedure in the training

phase compared with the actual observed data pδ in nature;

the information distance between perturbed responses P
(
pδ ,p

M
δ
)

can
be calculated through the expansion formula;

the information distance P
(
pδ (t) ,pM

δ (t)
)

is measured at each time
instant, so the entire error is averaged under the L1-norm inside a time
window [0,T].
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Exact statistical moment equations for the two-layer

model

The rescaled set of equations of (1) can be summarized in the abstract form

dpk

dt
= Bk (pk,pk) + (Lk−Dk)pk +Fk, pk =

(
pψ,k,pτ,k

)T
, ∑

k

pk ·Bk (pk,pk)≡ 0,

where the normalized state variable pk =
(
pψ,k,pτ,k

)T
is in barotropic and baroclinic mode, the

linear operator is decomposed into non-symmetric part Lk involving β -effect and shear flow U
and dissipation part Dk, together with the forcing Fk combining deterministic component and
stochastic component.

Lk =




ikxβ
|k|2 − ikxU√

1+(kd/|k|)2

−ikxU 1−(kd/|k|)2√
1+(kd/|k|)2

ikxβ
|k|2+k2

d


 , Dk =

κ
2




−1 1√
1+(kd/|k|)2

1√
1+(kd/|k|)2

− 1
1+(kd/|k|)2


 ,

Bk (pk,pk) =

[
Bψ,k

Bτ,k

]
=




∑m+n=k
m⊥·n
|k|

(
|n|
|m|pψ,mpψ,n +

√
|n|2+k2

d

|m|2+k2
d

pτ,mpτ,n

)

∑m+n=k
m⊥·n√
|k|2+k2

d

(√
|n|2+k2

d
|m| pψ,mpτ,n + |n|√

|m|2+k2
d

pτ,mpψ,n

)


 .
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Exact statistical moment equations

Statistical energy in each spectral mode

Rk = pk
∗pk =



∣∣pψ,k

∣∣2 p∗ψ,kpτ,k

pψ,kp∗τ,k
∣∣pτ,k

∣∣2


 , p∗1,kp2,k = p̄∗1,kp̄2,k + p′∗1,kp′2,k.

Rk combines the variability in both mean and variance. The true statistical
dynamical equations form a 2×2 system about Rk ∈ C2×2

�



�
	dRk

dt
= (Lk−Dk)Rk + QF,k + Qσ ,k + c.c., |k| ≤ N,

QF,k = pk
∗Bk (pk,pk) =

[
p∗ψ,kBψ,k p∗ψ,kBτ,k

p∗τ,kBψ,k p∗τ,kBτ,k

]
, ∑

k

trQF,k ≡ 0.
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Statistical energy conservation principle

The total statistical energy dynamical equation concerns the evolution of the
total variability in mean and variance in response to external perturbations

E =
1

2 ∑
1≤|k|≤N

|k|2 |ψk|2 +
(
|k|2 + k2

d

)
|τk|2 =

1

2 ∑
1≤|k|≤N

∣∣pψ,k

∣∣2 +
∣∣pτ,k

∣∣2.

The exact dynamics for the statistical energy can be derived as

dE

dt
+ Hf =−κE +

κ
2

F−νH + Qσ .

Hf is the meridional heat flux due to baroclinic instability, F is the additional damping effects
due to the non-symmetry in Ekman drag only applied on the bottom layer

Hf = k2
dU
∫

ψxτ = k2
dU∑ ikxψ∗kτk, F = ∑k2

d |τk|2 + 2 |k|2Reψ∗kτk.
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Set-up for the numerical problem

The true statistics is calculated by a pseudo-spectra code with 128
spectral modes zonally and meridionally, corresponding to
256×256×2 grid points in total.

In the reduced-order methods, only the large-scale modes |k| ≤ 10 are
resolved, which is about 0.15% of the full model resolution.

External forcing in stochastic and deterministic component:

The amplitude of the stochastic forcing σkẆk is introduced according to
the equilibrium energy so that

σ2
ψ,k = δσ2

0

∣∣qψ,k

∣∣2
eq, σ2

τ,k = δσ2
0

∣∣qτ,k
∣∣2

eq.

The deterministic forcing is introduced through a perturbation in the
background shear Uδ = U + δU

δ fψ,k = δUikx

(
−|k|2

)
τk, δ fτ,k = δUikx

(
−|k|2 + k2

d

)
ψk.
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Tuning parameters in the training phase

4 Reduced-order models with homogeneous mean flow 18
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Fig. 4.10: Tuning imperfect model parameters in the training phase. The information errors with varying model pa-
rameters, dM =

�
dy ,dt

�
, are plotted for stochastic barotropic perturbation case. The errors using total

energy as scalar factor from the statistical equation and method without the scaling factor are compared.
The prediction skill and information error with and without using the total energy correction are compared
in the last row for a typical test case of perturbing the barotropic mode.

corrections from low-order moments (that is, mean and variance) are used.
The high-latitude ocean regime responses in barotropic and baroclinic energy and heat flux in large-scale wavenum-

bers to stochastic perturbations are first shown in Figure 4.11. The perturbation amplitude is chosen as ds2
0 = 0.5 of the

equilibrium energy in the stochastic forcing (4.1) so that the response is large and nonlinear. We compare the responses
in perturbing only the barotropic mode and baroclinic mode. The most energetic and most sensitive scales take place at
wavenumbers |k| = 4,5,6. Both barotropic and baroclinic perturbations can lead to large changes in a wide spectrum
in both barotropic and baroclinic component due to the strong coupling between the modes. In the reduced-order meth-
ods, only the first large-scale modes |k| < 10 are resolved, while the responses in these dominant modes are all captured
with accuracy in both perturbation cases though the complicated higher-order interactions with small-scale modes are
not computed explicitly. Further the time-series with the total statistical energy from the equation (3.11) are compared.
The dashed black lines mark the level of energy in unperturbed and perturbed case. In this regime, the total statistical
energy can also be recovered exactly with little error. This in turn explains the high skill of the reduced-order models
in predicting this regime. Instead, if we only consider the energy in the resolved subspace shown by blue lines, a large
gap can be observed compared with the total energy. Figure 4.12 shows the results in the high-latitude atmosphere
regime. Alternating blocked and unblocked structures appear in this regime and generate quite complicated statistical
features. The leading mode |k| = 1 contains most of the energy and becomes highly sensitive to perturbations. The
reduced-order method keeps the skill in capturing the responses in the most sensitive directions in this difficult regime.
Also it is observed that the baroclinic perturbation case becomes a little less accurate in both spectra and total statistical
energy. This might be due to the stronger nonlinear energy interactions from baroclinic to barotropic mode.

A further test requires to check the model’s robustness in predicting perturbations with different amplitudes. Figure
4.13 displays the prediction results with changing stochastic forcing amplitude ds2

0 in the barotropic modes. The
reduced-order model maintains the skill in predicting responses with various forcing strength, and the nonlinear trends
in the total resolved barotropic and baroclinic energy as well as the heat flux are captured compared with the linear
prediction in the FDT shown by dashed lines.

Figure: Tuning imperfect model parameters in the training phase. The information
errors with varying model parameters, dM =

(
dψ ,dτ

)
, are plotted for stochastic

barotropic perturbation case.
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High-latitude: Mean shear flow perturbation

The model is perturbed by changing the background zonal flow strength
U;

The entire spectral is perturbed due to the mean flow advection in each
spectral mode.

5 Reduced-order models with inhomogeneous jet flow 21
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Fig. 4.14: Reduced-order model predictions to mean shear flow perturbation dU = ±0.05 (that is, 5% of the original
value U0) in the ocean regime. The spectra for the resolved modes 1  |k| < 10 are compared. Black lines
with circles show the perturbed model responses in the normalized barotropic energy, baroclinic energy, and
heat flux. The dashed black lines are the unperturbed statistics. And the reduced order model predictions
are in red lines.

Model responses to the perturbed mean shear dU

In checking the model responses to deterministic forcing, we introduce the forcing perturbation by changing the back-
ground jet strength U as in (4.2). The same perturbation is tested in [24] for a more complicated reduced-order modified
quasi-Gaussian closure (RoMQG), and we test the same perturbation form here under our systematic reduced-order
modeling framework. Note that the deterministic perturbation in (4.2) forms a more difficult test case compared with
the stochastic forcing (4.1) because the forcing is applied along all wavenumbers with stronger mean-fluctuation in-
teractions involved. On the other hand, for the reduced order methods, only the perturbations at the limited resolved
modes are quantified. This gives the inherent difficulty for applying the reduced order models to this kind of perturba-
tions since we have no knowledge of the unresolved modes where large amount of energy is contained. Therefore the
statistical energy equation (3.11) plays a crucial role.

The results with mean flow perturbations dU = ±0.05 in the ocean regime and perturbations dU = 0.02,�0.01 in
the atmosphere regime are shown in Figure 4.14 and 4.15 separately. The perturbation accounts for about 5%-10% of
the original shear strength U , and the corresponding responses in both energy and heat flux spectra are large due to
this global perturbation at every wavenumber and nonlinear energy cascade. In the ocean regime, a wide waveband of
modes |k| = 3,4,5,6 becomes sensitive to the perturbations; while in the atmosphere regime, the first dominant mode
|k| = 1 is especially sensitive according to even small perturbations. This illustrates the strong nonlinear interactions
between the high and low wavenumber modes. The reduced-order method displays uniform skill in capturing the
sensitive responses in the large-scale modes for both positive and negative perturbation cases with only first 10⇥ 10
spectral modes resolved compared with the 256⇥256 full resolution model.

5 Reduced-order models with inhomogeneous jet flow

In mid or low latitude regimes, both the ocean and atmosphere are distinctly inhomogeneous on large scales. The
existence of large-amplitude meandering zonal jets in these regimes suggests the regional metastable equilibria, while
the large-scale forced perturbations may lead to regular or irregular fluctuations in some extent. Following the same
systematic information-theoretic procedure, we test the prediction skill of the reduced-order method in this inhomoge-
neous regime with anisotropic jets in this section.

(a) ocean regime δU =±0.05, U0 = 1
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Fig. 4.15: Reduced-order model predictions to mean shear flow perturbation dU = 0.02,�0.01 (that is, 5%-10% of the
original value U0) in the atmosphere regime. The spectra for the resolved modes 1  |k| < 10 are compared.
Black lines with circles show the perturbed model responses in barotropic energy, baroclinic energy, and
heat flux. The dashed black lines are the unperturbed statistics. And the reduced order model predictions
are in red lines.

regime N b kd U k n s (kmin,kmax) smax (kx,ky)max

ocean regime, low/mid lat. 256 100 10 1 1 1.2⇥10�15 4 (7.14,15.63) 0.104 (2, 8)

atmosphere regime, low/mid lat. 256 2.5 4 0.2 0.05 5⇥10�15 4 (2.51,7.06) 0.053 (3, 0)

Tab. 2: Model parameters for ocean and atmosphere dynamical regimes in low/mid latitude. N is the model resolution,
b ,kd are the rotation parameter and the deformation frequency, U is the background mean shear flow, k is
the Ekman drag in the bottom layer, and the hyperviscosity is measured by the operator �n—2s. The last
three columns display the unstable waveband from linear analysis. (kmin,kmax) shows the range of unstable
wavenumbers; smax is the largest linear growth rate; and (kx,ky)max is the position of the mode with maximum
growth rate.

5.1 True model results with anisotropic jets

The setting-up of the two-layer system in this low/mid latitude case is kept exactly the same as previous in Section
4. The parameters used for low/mid latitude ocean and atmosphere regime are listed in Table 2. Larger b -effect is
applied in this regime, and the Ekman friction is in smaller value. Compared with the high latitude case, first unstable
wavenumber takes place at larger values in smaller scales, and the linear growth rate is weaker than the high latitude.

Flow snapshots in both ocean and atmosphere regime in low/mid latitude are plotted in Figure 5.1. In the ocean
regime, multiple steady jets can be observed and the jets can be persistent for a long time; in the atmosphere regime,
there appears one dominant jet meandering in time. The jet structures are illustrated in more detail in Figure 5.2 for the
time-series of the zonally average mean flow, u = �∂yy . Linear analysis and nonlinear flux eigenvalues can be found
in Figure 5.3. In this low/mid latitude case, especially for the ocean regime, due to the strong zonal jets in wavenumber
ky = 6, zonal modes with kx = 5,6 become active due to the nonlinear interactions.

Unperturbed statistical steady state energy spectra in mean and variance are displayed in Figure 5.4. The mean
states stay in small values except for the active zonal modes in both ocean and atmosphere regimes. One dominant
mode (ky = 6 for ocean and ky = 1 for atmosphere) appears representing the zonal jet structure. This illustrates the
stronger mean-fluctuation interactions in this regime, and a more challenging test case for the reduced-order schemes.
Most of the energy and variances are contained in the first 20 modes in both barotropic and baroclinic component in the
ocean regime, while in the atmosphere regime the first mode contains most energy of the system. The autocorrelation

(b) atmos. regime δU =±0.02, U0 = 0.2
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Flow in low-latitude regimes with zonal jets

regime N β kd U κ (kmin,kmax) σmax (kx,ky)max

ocean, high lat. 256 100 10 1 1 (7.14,15.63) 0.104 (2, 8)

atmosphere, high lat. 256 2.5 4 0.2 0.05 (2.51,7.06) 0.053 (3, 0)
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Low-latitude: Stochastic perturbation with δσ2
0 = 0.2

autocorrelation functions and probability density functions
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Fig. 5.4: Time-averaged statistics (in radial average) in mean and second-order moments in low/mid-latitude regime.
The first row compares the statistical mean states. The following two rows show the variances, and statistical
energy, in barotropic and baroclinic modes, as well as the potential energy.
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Fig. 5.5: Autocorrelation functions and the probability distribution functions in low/mid-latitude ocean and atmo-
sphere regime. The first three most energetic baroclinic modes are displayed. In the autocorrelations, the
solid lines show the real part while the dashed lines are the imaginary part of the functions. In the pdfs, the
corresponding Gaussian distributions with the same variance are also plotted in dashed black lines.
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Fig. 5.6: Model responses in low/mid-latitude ocean regime with random forcing perturbation s2
0 = 0.2 (while no

stochastic forcing for the unperturbed case). The left panel shows the spectra for the barotropic and baroclinic
energy as well as the heat flux. Only first 10 modes are resolved in the reduced-order method. The right panel
is the time-series of the (resolved) total energy and heat flux. The truth is shown in black lines.

Like the previous case, the perturbation amplitude is large enough to generate strong nonlinear responses in the sta-
tistical energy in each mode. In the reduced-order model, only the modes with wavenumbers |k|  10 are calculated.
Thus the resolved subspace is 102 compared with the full dimensionality of the system of 2562 (⇠ 65000). Note from
the stability analysis in Table 2, the resolved spectrum is even smaller than the total number of unstable modes, that
is, there are also unresolved unstable modes that have positive growth rate. Again, the first step should make sure
the reduced methods keep the ability to reproduce the exact statistics in the unperturbed equilibrium, and get optimal
reduced-order model parameters in the training phase. The exactly same procedure as in Section 4.2.1 can be followed
and we neglect the detailed tuning regime results here.

In Figure 5.6 and 5.7, we compare the model responses in both low/mid-latitude ocean and atmosphere regimes.
In this inhomogeneous regime with anisotropic jets, the statistical variables combine the responses in the mean and
variance, p⇤1,k p2,k = p̄⇤1,k p̄2,k + p0⇤1,k p02,k, to display the total effect from the perturbation. In the ocean regime, we
use the unperturbed case with no random forcing, and the perturbed is added with white noise variance s2

0 = 0.2.
The dominant mode with largest sensitivity is at wavenumber |k| = 6 due to the zonal jet structure. The sensitivity
is captured with accuracy in the reduced-order method. Also we compare the time evolvement of the total resolved
energy and heat flux. The prediction is also good with small error. In the atmosphere regime, the unperturbed case
is with random forcing s2

0 = 0.2 and the perturbation is added with s2
0 = 0.4. The first mode k = (0,1) has a large

mean state representing the zonal mean flow. Thus |k| = 1 mode gets the largest statistical energy and is most sensitive
to perturbations. One important feature is the large change in the heat flux in the first two modes, representing the
exchange of energy in the dominant barotropic and baroclinic mode. Still the responses can be captured with accuracy
in each mode in the spectra as well as the total energy and heat flux profile with only 102 modes resolved. Note that in
both cases, the heat flux is weak due to the blocking effect from strong zonal jets.

6 Summary

In this paper, we discuss the development of efficient low-dimensional reduced-order models for the two-layer quasi-
geostrophic turbulence to capture statistical responses to external perturbations in various dynamical regimes. The
computational cost is reduced through a systematic approximation about the expensive nonlinear higher-order interac-
tions following the generic framework developed in [19, 22]. Additional damping and noise corrections are proposed
to replace the third-order moments, and the model errors are calibrated through an information-theoretic framework
using information theory as in [17]. Two successive steps are then carried out in the algorithm concerning model
consistency in unperturbed equilibrium and sensitivity to external perturbations. Noted that imperfect models with sta-
tistical equilibrium fidelity still suffer inherent information barrier in model sensitivity to perturbations, linear response
operators involving only unperturbed equilibrium statistics are proposed to fit the model parameters in a training phase
to achieve optimal model prediction skill. The imperfect model sensitivity is further improved using the total statistical

(c) ocean regime
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Fig. 5.7: Model responses in low/mid-latitude atmosphere regime with random forcing perturbation s2
0 = 0.4 (while

stochastic forcing s2
0 = 0.2 for the unperturbed case). The first mode k = (0,1) has a large mean state

representing the zonal mean flow. The left panel shows the spectra for the barotropic and baroclinic energy
as well as the heat flux. Only first 10 modes are resolved in the reduced-order method. The right panel is the
time-series of the (resolved) total energy and heat flux. The truth is shown in dashed black lines.

energy equation[16] for the two-layer baroclinic flow. The total statistical energy characterizes the entire energy struc-
ture in the system according to specific external perturbations despite the inhomogeneity, and introduces one global
scaling factor that offers more detailed model calibration for the unresolved higher-order interactions. The additional
computational cost only requires solving one additional scalar dynamical equation.

The feasibility of the reduced-order models is tested on various dynamical regimes in the two-layer QG system
in response to both stochastic and deterministic perturbations. Distinct statistical structures can be generated as the
model parameters change. Homogeneous statistics with zero mean state can be observed in the high-latitude regime,
while anisotropic jets become representative in the low/mid-latitude regime [6, 20, 27]. Also atmosphere regime shows
more large-scale structures and ocean regime contains more small-scale eddies in the vorticity field. These dynamical
regimes offer desirable testbeds for testing the robustness of the reduced-order model skill in treating different types
of statistical features. To simulate the various external effects that drive the atmosphere/ocean flow, the forcing per-
turbation is decomposed into the barotropic and baroclinic component. The reduced-order method is organized in the
uniform framework for predicting all the dynamical regimes with different kinds of external forcing and perturbation.
High prediction skill is displayed in the reduced-order model among the various test regimes in capturing model re-
sponses in principal modes with only about 0.15% of the full resolution modes calculated explicitly. In contrast, FDT
performs well in the linear regime with small perturbation amplitude, but loses its skill as stronger nonlinearity takes
place in the model [11, 5].

Finally, the systematic approach we develop in this paper shows potential to be applied to more realistic climate
models. Also, passive tracer advected by the geophysical turbulent flow contains a number of attractive features and is
worth investigating under this framework. It is worthwhile to pursue similar analysis and application of the reduced-
order models about turbulent tracer advection in the geophysical flow.
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