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Abstract.
Incomplete knowledge of the true dynamics and its partial observations pose a notoriously difficult problem in many

contemporary scientific applications which require predictions of high-dimensional dynamical systems with physical instabilities
and energy fluxes across a wide range of scales. In such cases assimilation of real data into the modeled dynamics is necessary
for mitigating model error and for improving the stability and predictive skill of imperfect models. However, the practically
implementable data assimilation/filtering strategies are also imperfect and not optimal due to the formidably complex nature of
the underlying dynamics. Here, the connections between information theory and the filtering problem are exploited in order to
establish bounds on the filter error statistics, and to systematically study the statistical accuracy of various Kalman filters with
model error for estimating the dynamics of spatially extended, partially observed turbulent systems. The effects of model error
on filter stability and accuracy in this high-dimensional setting are analyzed through appropriate information measures which
naturally extend the common path-wise estimates of filter performance, like the mean-square error or pattern correlation, to the
statistical superensemble setting that involves all possible initial conditions and all realizations of noisy observations of the truth
signal. This information-theoretic framework for an off-line assessment of filter performance is an important complement to
the path-wise approach, and it has natural generalizations to Kalman filtering with non-Gaussian statistically exactly solvable
forecast models. Here, this framework is utilized to study the performance of imperfect, reduced-order filters with Gaussian
models which use various spatio-temporal discretizations to approximate the dynamics of the stochastically forced advection-
diffusion equation. Particular emphasis is on the notion of practically achievable filter skill which requires trade-offs between
different facets of filter performance. Important effects of biases due to model error in the filter estimates of the mean dynamics
are quantified through appropriate information measures, including a new information-theoretic measure of barriers to imperfect
filter performance.

1. Introduction This paper begins the analysis of the performance of Kalman filters with model
error for estimating the discretized dynamics of spatially extended turbulent systems through the methods of
information theory (e.g., [68, 29, 20]). Here, the term filter refers to a sequential Bayesian procedure which
aims to provide optimal statistical estimates of the true state of high-dimensional turbulent dynamical
system based on partial noisy observations and an imperfect model. Appropriate use of concepts from
Shannon’s information theory (e.g., [68, 29, 20]), which are widely applied in communication theory and
coding theory, provides a natural framework for assessing the statistical accuracy of imperfect filters in
this notoriously difficult setting with many degrees of freedom and a large number of positive Lyapunov
exponents. When filtering linear Gaussian dynamics with no model error and subject to linear Gaussian
observations, the classical Kalman filter [43, 44] provides the optimal, minimum error variance solution
to such an estimation problem. Clearly, the ‘perfect model’ and Gaussianity assumptions are hardly ever
justified in practice and a successful application of the Kalman filter framework usually relies on the ability to
design an imperfect filter which, in spite of being suboptimal, performs ‘adequately’ and is computationally
cheap. The strategy behind the design of such imperfect filtering techniques in geophysical and engineering
applications is a purely pragmatic one since it currently offers the only realistic option that is capable of
beating the ‘curse of dimension’ [6, 9, 69] and/or the ‘curse of ensemble size’ [40, 61] for real time filtering
of sparsely observed spatially extended turbulent systems. For example, in the coupled atmosphere-ocean
system, the current operational models for prediction of both weather and climate involve general circulation
dynamics which are unavoidably coarse-grained and discretized in space and time with the multitude of
unresolved processes and often ad-hoc parameterizations of the turbulent backscatter of the unresolved fluxes
impacting the resolved scales. The resulting models for the prediction of weather and climate are extremely
chaotic dynamical systems with millions of degrees of freedom and many positive Lyapunov exponents which
need to be appropriately constrained by the observations for their stability and predictive skill. Designing
statistically accurate imperfect Kalman filters for complex high-dimensional systems is difficult and, while the
design process may sometimes be guided by physical intuition, it invariably involves a considerable amount
of costly trial and error. The present information-theoretic framework is designed to provide systematic yet
practical guidelines for assessing the statistical skill of imperfect high-dimensional Kalman filters and for

∗
†Corresponding author address: branicki@cims.nyu.edu

1



2 Quantifying Filter Performance through Information Theory

improving their performance; this strategy for assessing the filter error is complementary to the standard
path-wise approach which is more sensitive to the effects of the intermittent large amplitude events in the
true dynamics.

The concept of imperfect filtering has been omnipresent in engineering and geoscience applications.
Bayesian hierarchical modeling [8] and reduced order filtering strategies [62, 3, 4, 16, 25, 66] drawing from
the classical Kalman filter in the physical space have been developed with some success in these extremely
complex systems. An alternative radical strategy, exploiting imperfect Kalman filters in Fourier domain and
capable of avoiding the ‘curse of ensemble size’, was proposed and studied in [59, 15, 37, 38, 60] for various
reduced-order forecast models with judicious model error; these techniques were later used to efficiently filter
sparsely observed geophysical flows in [38, 36]. An extension of the latter framework to Fourier domain filters
utilizing non-Gaussian exactly solvable stochastic forecast models was introduced and successfully verified
[31, 30, 61, 34, 60]; these cheap stochastic filters, employing ‘on the fly’ bias estimation for reducing judi-
cious model error, were shown to offer a computationally cheap and skillful alternative for filtering turbulent
systems with many spatio-temporal scales and intermittent instabilities in the unresolved dynamics. The
common feature of all the aforementioned filters is the use of imperfect forecast models and simple Kalman
estimates for the posterior statistics for filtering the high-dimensional turbulent systems from sparse obser-
vations. As shown in [37, 60, 15, 59], a number of important mathematical problems arises in the practical
application of these imperfect filtering strategies to complex spatially extended systems. For example, many
subtle issues associated with violation of the classical observability and controllability criteria (e.g., [2]) occur
in Kalman filtering even in the relatively simple setting of filtering with imperfect linear Gaussian forecast
models. Moreover, when filtering with sparse regular observations, additional issues affecting the filter ac-
curacy and stability arise due to the aliasing and correlations in the imperfect filter estimates [12, 37, 60];
in high-dimensional filtering these effects are difficult to capture and quantify in the traditional path-wise
framework which is commonly used in applications. We show below that the use of concepts and techniques
rooted in information theory allows for a systematic assessment of the error in imperfect Kalman filters
in the statistical superensemble setting which involves all possible initial conditions and all possible noisy
observations of the spatially extended turbulent truth signal; this new framework incorporates the ensemble-
averaged effects of intermittent interactions between the mean state and fluctuations which is important in
accurate assessment of filter error in high-dimensional turbulent systems. On the other hand, the path-wise
approach is more suitable for studying the filter skill in the presence of ‘rare event’-type phenomena in the
turbulent dynamics which are marginalized in the ensemble-averaged skill measures. Thus, the information-
theoretic framework proposed here for assessing the filter error is complementary to the standard path-wise
approach and, in general, a synergistic use of the two methods is needed.

The information-theoretic approach to filtering has received surprisingly little attention in the literature,
especially compared to various applications in control and dynamical systems. The scarce few contributions
to this subject that we were able to trace over the past 50 years are the works of Bucy & Joseph [14], Kailath
[42], Weidemann & Stear [71], Duncan [24], Zakai & Ziv [72], Tomita et.al [70], Galdos & Gustafson [28] and
Newton [64, 65, 63]. Following the prevalent mathematical trend in stochastic filtering theory, most of these
works, except [72, 28], did not consider model error in the filter and sought optimal information estimates
on the filter performance without addressing the practically important issue of suboptimal but achievable
estimates. Moreover, these works approached the problem in the spirit of the coding theory through seeking
optimal estimates on information transfer; an important limitation of this approach in the context of filtering
is that the coding theory framework allows for controlling both the input signal and the decoder/filter in
order to obtain optimal data transfers. In [42, 24, 70] various bounds for the mutual information between the
truth and its noisy observations were derived in terms of the optimal least-squares estimates. More recently,
the statistical mechanical properties of Kalman filters were discussed in [63] and in [64, 65] for linear and
nonlinear filters; in those papers, the signal-filter pair is described by a dissipative system with rates of
information supply and dissipation, and with information flow from the observation process into the filter
state. The two most important publications for our purposes are those of Galdos & Gustafson [28] and Zakai
& Ziv [72] which lay foundations for the design and optimization of imperfect Kalman filters; those results
were achieved for linear Gaussian filtering of a scalar state through the use of Shannon lower bound on the
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constrained rate-distortion function (see, e.g., [7, 28, 72]), providing the lower bound on the imperfect filter
error.

An important theme present throughout this paper is that of practical optimality of imperfect Kalman
filters in terms of best achievable filter skill given structural constraints in the filter and the computational
cost. Imbedding the filtering problem in the appropriate information-theoretic framework allows for a sys-
tematic assessment of these issues and provides guidelines for filter design. It is well known [14, 29, 70] for
the classical Kalman filter with no model error that minimizing the path-wise error variance also maximizes
the pattern correlation between the truth and its filter estimate; these results were extended subsequently
to scalar variables of reduced order Kalman filters in [28]. However, these globally optimal imperfect filters
may be still impossible to implement due to practical constrains on the forecast model dynamics or due to
an unrealistic computational cost; information barriers arising from such structural constraints in modeling
the dynamics are commonplace in geoscience applications (e.g., [58]). Consequently, trade-offs between the
relevant facets of filter skill are often needed in high-dimensional imperfect filtering applications and the
information-theoretic framework developed here provides systematic guidelines for achieving the practically
achievable filter optimality. We begin the analysis of performance and stability for Kalman filters by con-
sidering the linear Gaussian dynamics of the truth and the forecast models. Extensions of this promising
framework to study the accuracy of Kalman filters with non-Gaussian exactly solvable forecast models [60, 61]
will be reported soon elsewhere.

This paper is structured as follows: We start by describing the building blocks of the information-
theoretic framework for assessing the filter performance in §2. First, the augmented system of equations for
the evolution of the Kalman filter with model error is derived in §2.1. The information measures of filter skill
are introduced and discussed in §2.2; the important link between the asymptotic path-wise measures of filter
skill and their statistical ensemble counterparts is outlined in §2.2.2, while the practically important bounds
on the filter error statistics are presented in §2.3. In sections 3 and 4 the skill of various reduced Kalman
filter algorithms is discussed for estimating the spatially extended dynamics; in §3 the case of filtering the
turbulent system with observations of all resolved modes is analyzed while §4 deals with the more difficult
problem of sparse observations when high wave number information is aliased into the observed waveband.
The canonical test model for filtering the turbulent dynamics in Fourier domain, based on the stochastically
driven advection-diffusion dynamics of a turbulent tracer, is described in §3.1 and important differences
between filtering with plentiful and spatially sparse observations are outlined at the beginning of §4. We
close in section §5 by summarizing the main results and remarking on future developments.

2. General information-theoretic framework for quantifying performance of Kalman filters
with model error

The goal here is to develop a statistical framework, rooted in information theory, for quantifying the skill
of Kalman filters with model error for estimating the dynamics of spatially extended and sparsely observed
turbulent systems. There are a number of distinct features in this setup which make this topical problem both
mathematically challenging and important for practical applications. First, in contrast to classical filtering
theory (e.g., [49, 5, 41, 2, 17]), we allow for the presence of model error in the forecast model of the filter.
The imperfect knowledge of the filtered dynamics introduces many additional subtleties into the filtering
problem even in the linear Gaussian setting of Kalman filter. Thus, it is crucial to develop a systematic
framework capable of quantifying the effects of model error and providing bounds on the filter performance
in the presence of model error. While rigorous analysis of the imperfect filter stability and accuracy is still in
its infancy, the framework developed below provides the means for analyzing the skill of imperfect Kalman
filters and leads to new results and insight, complementing the earlier path-wise analysis of [59, 15, 37, 61, 60].
We begin this line of research by constructing information-theoretic tools for analyzing and quantifying the
skill of imperfect Kalman filtering of a linear Gaussian constant-coefficient PDE; this setup is similar in spirit
to the previous work of Majda and collaborators [59, 15, 37, 61, 60] and is motivated by the classical linear
stability tests for finite difference approximations in systems of nonlinear partial differential equations. Akin
to the classical stability analysis of finite difference schemes, this approach allows detailed Fourier analysis
of systems of Langevin equations and provides guidelines for filtering turbulent systems with both plentiful
and sparse observations. Additional issues associated with filtering sparsely observed turbulent systems are
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gradually introduced in the subsequent sections where we study the accuracy and stability of various reduced
filtering techniques introduced in [37, 59, 60].

The key new formulation of the Kalman filtering problem is presented in §2.1 where the augmented linear
Gaussian system is derived for the coupled evolution of the truth and its Kalman filter estimate. We then
introduce a suite of information measures of the filter error in §2.2 which take advantage of the statistical
ensemble framework in formulating the filtering problem. The estimates of the statistics of the filter error
are derived in §2.3 and an information-based approach to optimizing imperfect Kalman filters is discussed in
§2.4. While the derivations below are carried out for Kalman filtering with linear Gaussian forecast models,
extensions of this framework are possible to address similar issues in linear Bayesian filtering with nonlinear
non-Gaussian statistically exactly solvable forecast models.

2.1. Augmented dynamical system for the Kalman filter
A prerequisite for the study of the statistical skill of a filtering algorithm is the derivation of a stochastic

dynamical system for the combined evolution of the truth and its estimate; such a setup allows for computing
biases and correlations between the two processes which are crucial in assessing the filter skill. Here, we
consider a simple canonical setup, analogous to that in [60, 41, 2], in which the discrete dynamics of the
truth signal is given by the linear Gaussian system

uuum+1 =Fuuum+FFFm+1 +σσσm+1, E
[
σσσm+1⊗σσσ∗m+1

]
≡ rm+1, (2.1)

where F is the discrete-time evolution operator for the state vector uuu whose dynamics is driven by the
deterministic forcing, FFF , and a Gaussian noise, σσσ, with covariance r. Filtering the dynamics in (2.1) refers
to the statistical estimation of the state uuu at the consecutive times {tm}m∈Z+ given noisy observations and
a forecast model for the true dynamics in (2.1). Here, we assume linear Gaussian observations of uuu at each
time tm represented by

vvvm+1 =Guuum+1 +σσσom+1, E
[
σσσom+1⊗(σσσom+1)∗

]
≡ rom+1, (2.2)

with the linear observation operator G and the observation noise variance ro. The linear Gaussian forecast
model used to approximate the true dynamics in (2.1) is given by

uuumm+1 =Fmuuumm+FFFm
m+1 +σσσm

m+1, E
[
σσσm
m+1⊗(σσσm

m+1)∗
]
≡ rmm+1, (2.3)

where the forward operator, Fm, the deterministic forcing FFFm, and the model noise variance, rm, are not
necessarily identical to F , FFF and r in the true dynamics (2.1); model error is present in the forecast dynamics
(2.3) when at least one of the following holds true: Fm 6=F , and/or FFFm 6=FFF , and/or rm 6= r.

The discrete-time, discrete-update Kalman filter [43, 41, 2, 17, 60] is a well-known iterative procedure
which provides the maximum likelihood estimate, ūuum+1|m+1, of the conditional density, p(uuum+1|vvvm+1), for
the true state uuum+1 at time tm+1 via a Bayesian update which combines the observations up to vvvm+1 and
the predicted mean estimate ūuum+1|m=Fm ūuum|m, so that

ūuum+1|m+1 =Fmūuum|m+Km+1

(
vvvm+1−GFm ūuum|m

)
, (2.4)

where the Kalman gain, 06Km61, is given by

Km+1 =Em+1|mG
∗
(
GEm+1|mG

∗+rom+1

)−1

, (2.5)

with the forecast error covariance, Em+1|m≡E
[
(uuum+1−ūuum+1|m)⊗(uuum+1−ūuum+1|m)∗

]
. The Kalman gain

weights the estimate in (2.4) towards the model prediction for Km∼0 and towards the observations for
Km∼1; some important issues related to the necessary approximations of the Kalman gain in imperfect
filtering are discussed at the end of this section. The important fact pertaining to the estimate in (2.4) is
that in the absence of model error, i.e., when (Fm =F,FFFm=FFF ,rm = r), the posterior mean ūuum+1|m+1 provides
the optimal estimate for the true state uuum+1 given the sequence of noisy observations {vvvi}i6m+1 (see, e.g.,
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[43, 44, 41, 2, 17, 60]); here, the filter optimality is understood in the sense of minimum error variance
and maximum path-wise correlation between the truth and the filter estimate. However, the optimality
of the estimate in (2.4) no longer holds in the presence of model error which introduces many additional
mathematical subtleties into the above filtering framework, as we show in the following sections. Nevertheless,
this type of ‘perfect model’ assumption is prevalent in the classical mathematical or engineering formulations
of the filtering problem (e.g., [49, 5, 41, 2, 17]).

The information-theoretic evaluation of the performance of imperfect filters is achieved by considering
the augmented dynamics of the true signal uuum and its filter estimate ūuum|m; the coupled evolution of the
augmented state Ym≡ (uuum ūuum|m)T is easily derived by combining (2.1) and (2.4) in the form[

uuum+1

ūuum+1|m+1

]
=

[
F 0

Km+1GF (I−Km+1G)Fm

][
uuum

ūuum|m

]
(2.6)

+

[
σσσm+1

Km+1(Gσσσm+1 +σσσom+1)

]
+

[
FFFm+1

(I−Km+1G)FFFm
m+1 +Km+1GFFFm+1

]
.

The important difference between the dynamics in (2.6) and the augmented Kalman filter systems studied in
[2, 60] is that the present framework focuses on the error in the filter estimate rather than on the model error

in the filter forecast; i.e., we focus on the coupled dynamics of YYYm=
(
uuum ūuum|m

)T
rather than the dynamics

of XXXm=
(
uuum Fm ūuum−1|m−1

)T
. Despite the deceptive similarity of these two formulations, there are significant

differences between these two problems in the presence of model error in the forecast (2.3); we postpone the
discussion of model error in the filter forecast to a separate publication.

The statistics of the linear Gaussian system (2.6) is fully characterized by its mean E[YYYm] and covariance
Cm≡Cov(YYYm,YYYm) =E[YYYm⊗YYY∗m]−E[YYYm]⊗E[YYY∗m] which evolves according to

Cm+1 =FmCmF∗m+Rm, (2.7)

where the operators F and R in (2.7) are given respectively by

Fm=

 F 0

Km+1GPF (I−Km+1GP )Fm

, (2.8)

and

Rm=

 r rG∗K∗m+1

Km+1Gr Km+1

(
ro+GrG∗

)
K∗m+1

. (2.9)

Given the augmented state, YYYm=
(
uuum ūuum|m

)T
, the covariance Cm in (2.7) has a natural block decomposition

Cm=

[
Cov

(
uuum,uuum

)
Cov

(
uuum,ūuum|m

)
Cov

(
ūuum|m,uuum

)
Cov

(
ūuum|m,ūuum|m

)]≡[C(11)m C(12)m

C∗(12)m C(22)m

]
. (2.10)

The block C(11) of (2.10) denotes the covariance of the truth dynamics, C(22) is the covariance of the filter
estimate and C(12) quantifies the correlations between the truth uuum and the filter estimate ūuum|m. It will
prove crucial in the following analysis of filter skill to account for both the covariance of the filter estimates
C(22) and the cross-correlations between the truth and the filter estimates contained in C(12).

One important issue in the present analysis of error in imperfect Kalman filtering concerns the necessary
approximations of the Kalman gain, Km+1, in (2.6) when filtering with imperfect forecast model (2.3). It
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can be easily shown (see (2.12) below) that when filtering with imperfect forecast dynamics (2.3) the correct
update of the Kalman gain in (2.5) is practically inaccessible since it requires the knowledge of both the
perfect (2.1) and the imperfect dynamics (2.3); thus, practical implementations of Kalman filtering with
model error imply introducing errors in both the forecast dynamics and in the Kalman gain through the
necessary approximations.

In the absence of model error, i.e., when (Fm =F,FFFm =FFF ,rm = r) in (2.3), the Kalman gain (2.5) can
be computed off-line according to the following coupled dynamics

a) Km+1 =Em+1|mG∗
(
GEm+1|mG∗+rom+1

)−1

,

b) Em+1|m=FEm|mF ∗+rm+1,

c) Em|m= (I−KmG)Em|m−1,

(2.11)

which can be solved independently of the augmented dynamics in (2.7); this can be easily verified by notic-
ing that the evolution of the forecast error covariance Em+1|m≡E

[
(uuum+1−ūuum+1|m)⊗(uuum+1−ūuum+1|m)∗

]
,

and the filter error covariance Em+1|m+1≡E
[
(uuum+1−ūuum+1|m+1)⊗(uuum+1−ūuum+1|m+1)∗

]
do not require the

knowledge of covariance components in (2.10) and can be computed directly from the system (2.11). The
presence of model error in (2.3) and (2.6) drastically changes this situation and, instead of the dynamics in
(2.11b), the forecast error covariance, Em+1|m, evolves according to

Em+1|m=F C(11)mF
∗+FmC(22)m(Fm)∗−F C(12)m(Fm)∗−FmC(21)mF

∗+rm+1

+
(
F 〈uuum〉−Fm〈uuum|m〉+FFFm+1−FFFm

m+1

)
⊗
(
F 〈uuum〉−Fm〈uuum|m〉+FFFm+1−FFFm

m+1

)∗
, (2.12)

where the components of the covariance of the augmented system in (2.7) are defined in (2.10); clearly for
Fm =F , FFFm

m+1 =FFFm+1 and 〈uuu0〉=〈uuu0|0〉 the dynamics in (2.12) reduces to that in (2.11b) since then the
filter error covariance becomes Em|m=C(11)m+C(22)m−C(12)m−C(21)m. An immediate complication arising
in practical applications when filtering with model error is that the true dynamics in (2.1) is not known and
the correct forecast covariance, Em+1|m, in (2.12) cannot be propagated. A common approximation aimed
at circumventing this problem is to approximate the evolution of the forecast error covariance using the
imperfect model dynamics (2.3) with Fm,rm and, instead of (2.11), determine the approximate Kalman gain
by solving

a) Km
m+1 =Em+1|mG∗

(
GE m

m+1|mG
∗+rom+1

)−1

,

b) E m
m+1|m=FmE m

m|m(Fm)∗+rmm+1,

c) E m
m|m= (I−Km

mG)E m
m|m−1.

(2.13)

The point-wise in time error of the approximation in (2.13b) relative to (2.12) can be formally identified by
rewriting the true forecast error covariance, Em+1|m, as

Em+1|m=FmEm|m(Fm)∗+rmm+1 +∆Em+1, (2.14)

where

∆Em+1 =F C(11)mF
∗−FmC(11)m(Fm)∗

+FmC(21)m

(
(Fm)∗−F ∗

)
+
(
Fm−F

)
C(12)m(Fm)∗+rm+1−rmm+1

+
(
F 〈uuum〉−Fm〈uuum|m〉+FFFm+1−FFFm

m+1

)
⊗
(
F 〈uuum〉−Fm〈uuum|m〉+FFFm+1−FFFm

m+1

)∗
−Fm

〈
uuum−ūuum|m

〉
⊗
〈
uuum−ūuum|m

〉∗
(Fm)∗. (2.15)
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Thus, Kalman filtering with imperfect forecast dynamics is associated with two coupled sources of model
error: (i) the error introduced into the forecast mean estimate ūuum+1|m=Fmūuum|m through the incorrect model
dynamics when Fm 6=F , and (ii) the error introduced into the forecast error covariance Em+1|m through the
use of the update in (2.13b) instead of the correct but practically inaccessible update in (2.12). The analysis
presented in the subsequent sections is aimed at elucidating various effects of the model error in imperfect
Kalman filtering via the information-theoretic tools described in the next section. An interesting future
research direction concerns developing techniques for ‘on the fly’ minimization of the additive error, ∆E , in
the Kalman gain in (2.14) via augmenting the imperfect forecast dynamics in (2.3) with a stochastic model
for ∆E in (2.15) in a framework analogous that used in SPEKF filtering [31, 30, 60] and in earlier works
[26, 27, 21, 22].

2.2. Quantifying ensemble error in filtering through information theory The discrepancy
between the true signal and its filter estimate can be measured in various ways. The standard measures of
filter error are based on path-wise time averages of biases and correlations between the truth and its filter
estimate (e.g., [60, 41, 2]). Here, we introduce a complementary approach to quantifying the filter perfor-
mance within the statistical superensemble framework via methods of information theory (e.g., [20]); this
approach provides systematic off-line ensemble-averaged estimates of filter skill and it allows for identifying
lower bounds on the filter error which correspond information barriers [53, 50, 58] in imperfect filters. The
information measures of filter error introduced below are not restricted to the Gaussian framework but they
naturally incorporate the Gaussian indicators of filter skill given by the filter error covariance, mean biases
and correlations between the truth and the filter estimates. As showing in the following sections, these
features are especially important and desirable when quantifying the error in filtering spatially extended
systems from sparse observations which leads to estimating high-dimensional state vectors.

In this section we first introduce some concepts from information theory which are used to quantify the
performance of imperfect Kalman filters. We then show that the well-known measures of the asymptotic
filter error based on the time-averaged, path-wise estimates of biases and correlations between truth and the
filter estimate have natural information-theoretic analogues; importantly, these can be derived exactly from
the attractor statistics of the augmented Kalman filter system (2.6). Finally, we discuss some important
extensions of the time-point-wise ensemble framework to quantify the filter error non-locally in time through
the time-lagged embeddings of the truth and the filter estimates. This extended framework allows, in
particular, for assessing the skill for recovering the autocorrelation functions of the filtered signal. Accurate
estimates of the autocorrelation functions from measurements are crucial for data-driven design of reduced
stochastic models of nonlinear systems from experimental data [54, 57] with the property of having the
right forced response to external perturbations, as well as for tuning the sensitivity of imperfect models for
accurate prediction of forced response via the fluctuation-dissipation theorem (e.g., [52, 51, 1, 58, 13]). The
framework introduced below is subsequently used in §3 and §4 to study the performance of reduced order
filters for spatially extended turbulent systems.

2.2.1. Information-theoretic measures of filter error
Here, we consider three distinct and complementary information-theoretic measures of filter fidelity. As
shown below, a combination of all these measures is necessary to quantify the accuracy of the imperfect
filter estimates in the statistical superenesmble framework. Although, the following analysis is restricted to
the Gaussian framework of Kalman filtering, these measures naturally quantify various facets of information
content in non-Gaussian filter estimates which will be discussed in subsequent publications. For a more
general formulation and additional details on the information measures listed below see, for example, [20].

The Shannon entropyThe Shannon entropyThe Shannon entropy, S
(
UUUm
)
, of the residual UUUm≡uuum−ūuum|m, UUUm∼p, is given by

S
(
UUUm
)

:=−Ep
[

lnp
(
UUUm
)]
≡−

∫
p
(
UUUm
)

lnp
(
UUUm
)

dUUUm, (2.16)

and it expresses the uncertainty in the filter estimate ūuum|m about the true state uuum at time tm; the process
UUUm is in general time-dependent but we skip the explicit time dependence in the joint probability density p

for clarity. While it is well known (e.g., [20]) that the entropy of the residual UUUm=
(
U (1)
m ,. ..,U (N)

m

)
in (2.16)



8 Quantifying Filter Performance through Information Theory

can be negative, it is bounded from above by the entropy of its components

S
(
UUUm
)
6
∑
i

S
(
U (i)
m

)
, (2.17)

with the equality in (2.17) only when the components U (i) are statistically independent. We will show below
that the entropy of the filter error in (2.16) depends on the correlations between the truth and the filter
estimates but is insensitive to the mean biases in the filter estimates.

The relative entropyThe relative entropyThe relative entropy, P
(
π,πf

)
, quantifies the lack of information in the statistics of the filter estimate

with density πf relative to the statistics of the truth with density π as

P
(
π,πf

)
:=

∫
π(uuu)ln

π(uuu)

πf(uuu)
duuu, (2.18)

where, given the joint density of the truth and the filter estimate p(uuum,ūuum|m), the truth density is expressed
via the marginal π(uuum)≡

∫
p(uuum,ūuum|m)dūuum|m, and the imperfect density of the filter estimate is given by the

marginal πf(ūuum|m)≡
∫
p(uuum,ūuum|m)duuum. The relative entropy is often interpreted as a ‘distance’ between the

two probability densities but it is not a true metric. Nevertheless, the relative entropy has many desirable
properties for characterizing model error [46, 47, 55, 52, 53, 58]; in particular, (i) it is non-negative P>0
with P= 0 only when π=πf, and (ii) it is invariant under nonlinear changes of variables. We show below
that when π,πf represent the marginal densities of time-lagged state of the augmented system (2.6), the
relative entropy captures both the statistical biases in the mean filter estimates and the correlations between
uuum and ūuum|m which are equally important when assessing the filter error.

The mutual informationThe mutual informationThe mutual information between the truth uuum and the filter estimate ūuum|m measures the dependence
between these two processes and is given by the symmetric formula

M (uuum,ūuum|m) :=

∫ ∫
p(uuum,ūuum|m)log

p(uuum,ūuum|m)

π(uuu)πf(ūuum|m)
duuumdūuum|m. (2.19)

The mutual information in (2.19) is useful in the context of filtering because it can be interpreted as the
measure of uncertainty reduction in the knowledge about the true state uuum given the filter estimate ūuum|m;
this interpretation becomes obvious upon rewriting (2.19) as

M (uuum,ūuum|m) =S
(
uuum
)
−
∫
S
(
uuum
∣∣ūuum|m)πf(ūuum|m) =S

(
ūuum|m

)
−
∫
S
(
ūuum|m

∣∣uuum)π(uuum). (2.20)

Another useful interpretation of the mutual information is as a measure of lack of information in the factorized
density π(uuu)πf(ūuum|m) relative to the joint density p(uuu,ūuum|m) which follows from the identity

M (uuum,ūuum|m) =P
(
p(uuum,ūuum|m),π(uuum)πf(ūuum|m)

)
. (2.21)

Hence, similar to the relative entropy in (2.18), the mutual information is nonnegative and it is invariant
under nonlinear changes of variables. We show below that, while the mutual information measures the
statistical correlations between the truth and its filter estimate, it is insensitive to the mean biases in the
filter estimates which are particularly important when filtering turbulent dynamics with model error.

The above three measures of information content in the filter estimates quantify different aspects of filter
error. For Kalman filtering with linear Gaussian dynamics (2.6) the differences between these measures are
best expressed through the explicit formulas whose derivation is simplified by the following useful facts:

FACT 1. The Shannon entropy (2.16) for the filter bias, UUUm=uuum−ūuum|m, where the truth uuum and the
filter estimate ūuum|m satisfy (2.6) is given by

S
(
UUUm
)
− 1

2N(1+ln2π) = 1
2 lndet

[
UUUm⊗UUUm

]
= 1

2 lndet
[
C(11)m+C(22)m−2<e[C(12)m]

]
, (2.22)
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where N is the dimension of uuum, C(11),C(12) and C(22) are the respective blocks of the covariance in (2.7).
This simple result is obtained from the the expression for Shannon entropy for Gaussian processes (see,
e.g., [20]) and fact that Cov(UUU ,UUU) =C(11) +C(22)−2<e[C(12)]. It is clear from (2.22) that the entropy for
the continuous valued random process can be negative; in the information measures exploited below we will

use the monotonic mapping of S
(
uuum−ūuum|m

)
into the positive half-line using exp

(
S
(
uuum−ūuum|m

))
which, for

scalar Gaussian fields becomes a multiple of the ensemble averaged root mean square error, as discussed in
§2.2.2.

FACT 2. The relative entropy between the Gaussian truth process, uuum, and its Kalman filter estimate
ūuum|m can be written as a sum of signal and dispersion terms

P
(
π(uuum),πf(ūuum|m)

)
= 1

2E[uuu∗m−ūuu∗m|m] C−1
(22)mE[uuum−ūuum|m]

+ 1
2

[
tr
(
C(11)m(C(22)m)−1

)
− logdet

(
C(11)m(C(22)m)−1

)
−N

]
, (2.23)

where N is the dimension of uuum, the first term is the signal and the second term is the dispersion (e.g.
[46, 47, 55, 52]) and the truth C(11) and model C(22) covariance blocks are defined in (2.10); the signal part
in (2.23)

sigP = 1
2E[uuu∗m−ūuu∗m|m] C−1

(22)mE[uuum−ūuum|m], (2.24)

quantifies the bias in the mean filter estimate while the dispersion part

disP = 1
2

[
tr
(
C(11)m(C(22)m)−1

)
− logdet

(
C(11)m(C(22)m)−1

)
−N

]
, (2.25)

quantifies the lack of information in the covariance of the filter estimate C(22) relative to the true signal

covariance C(11). The relative entropy operates on the marginal densities, π(uuum), πf(ūuum|m); consequently, it
does not take into account the cross-correlations between the truth and the filter estimate but it accounts
for the biases in the ensemble mean through the signal term in (2.23).

FACT 3. The mutual information (2.19) between the Gaussian truth uuum and its Kalman filter estimate
ūuum|m satisfying (2.6) is given by

M (uuum,ūuum|m) =− 1
2 logdet

(
I−C−1

(22)mC∗(12)mC−1
(11)mC(12)m

)
, (2.26)

where the C(11) is the covariance of the truth, C(22) is the covariance of the filter estimate, and C(12) is the
cross-covariance between the truth and the filter estimate in (2.7). The mutual information in (2.26) is
insensitive to biases in the mean filter estimate 〈ūuum|m〉 relative to the true ensemble mean 〈uuum〉, where the
ensemble averages are carried out over all realizations of the observation noise in (2.6).

The identity in (2.26) can be obtained from the representation of the mutual entropy in (2.20) which
for Gaussian uuum and ūuum|m which satisfy (2.6) can be expressed via the respective covariances in (2.10) as
follows:

S
(
uuum
)

= 1
2 logdetC(11)m+ 1

2N(1+log2π), S
(
ūuum|m

)
= 1

2 logdetC(22)m+ 1
2N(1+log2π), (2.27)

and ∫
S
(
ūuum|m

∣∣uuum)π(uuum) = 1
2 logdet

(
C(22)m−C∗(12)mC−1

(11)mC(12)m

)
+ 1

2N(1+log2π), (2.28)

where C(11), C(22) are blocks of the covariance matrix (2.10), and N is the dimension of uuum and uuum|m.
Substitution of (2.27) and (2.28) into (2.20) leads to (2.26).
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The above information measures quantify the filter error point-wise in time. Often, a more compre-
hensive, nonlocal-in-time, diagnostic is necessary for understanding the effects of errors in the correlation
functions in the estimated signals. This is particularly important in many geophysical and engineering
applications for development and validation of physics constrained multi-level nonlinear regression models
[54, 57] which simultaneously reflect the causality and energy conserving principles of the underlying non-
linear physics and, by design, mitigate the non-physical finite-time blow up and pathologies present in the
invariant measure of ad-hoc quadratic regression strategies (e.g., [48]). Particularly important uses of the
autocorrelation estimates in the data-driven design of reduced stochastic models of nonlinear systems from
experimental data [54, 57] involve ensuring the right forced response to external perturbations, as well as
tuning the sensitivity of imperfect models for accurate prediction of forced response via the fluctuation-
dissipation theorem (e.g., [52, 51, 1, 58, 13]). The following fact extends our framework to this much more
general setting:

FACT 4 [Lag-embedded measures of filter error. ] The pointwise-in-time measures of filter error in-
troduced in Facts 1-3 above have direct lag-embedded counterparts given by the entropy, S

(
UUULm
)
, mutual

information, M
(
uuuLm,ūuu

L
m|m

)
, and the relative entropy, P

(
π(uuuL),πf(ūuuLm|m)

)
, of the lag-embedded states given

by

uuuLm≡ (uuum,uuum−1,. ..,uuum−L)T , ūuuLm|m≡ (ūuum|m,ūuum−1|m−1,. ..,ūuum−L|m−L)T . (2.29)

It is trivial to observe that the above lag-embeddings of Gaussian processes yield Gaussian processes in the
extended phase space which makes the Facts 1-3 immediately applicable to the lag-embedded case. The
nonlocal-in-time error in the lag-embedded filter estimates ūuuLm|m provides additional information about the
filter performance beyond the one-point statistics of the filter estimates. In particular, note that in contrast to
the time-point-wise framework, the relative entropy of lag-embedded states depends on the cross-correlation
between the truth and the filter estimates; explicit formulas for the covariance of the lag embedded state of
the discretized spatially extended canonical system (3.1) are presented in Appendix A.

2.2.2. Ensemble counterparts of asymptotic path-wise measures of filter error Here, we
establish some important links between two asymptotic path-wise measures of filter error and two information
measures which exploit the statistical ensemble framework and avoid the need for path-wise sampling. The
path-wise error measures given below are matrix generalizations of the standard root-mean-square error
and pattern correlation; these generalized notions are better suited for higher-dimensional correlated inputs
generated in filtering spatially extended systems.

The path-wise measures considered here are:

Asymptotic path-wise RMS errorAsymptotic path-wise RMS errorAsymptotic path-wise RMS error(
RMSE

(
UUU{∞}

))2

:= lim
K→∞

1

K

K∑
m=m̃

(uuum−ūuum|m)⊗(uuum−ūuum|m)∗, (2.30)

where tm̃ is some suitably large time instant and UUUm=uuum−ūuum|m is the path-wise filter error at tm. The
asymptotic RMS error in (2.30) measures average path-wise distance between the truth and the filter esti-
mate.

In order to define the second path-wise measure of filter skill which is sensitive to correlations in the
path-wise filter estimates and the truth signal, we first define the path-wise empirical approximations for the
covariances of the truth and the filter estimate given respectively by

CK =
1

K

K∑
k=m̃

(uuuk−ũuuK)⊗(uuuk−ũuuK)∗, CK|K =
1

K

K∑
k=m̃

(ūuuk|k− ˜̄uuuK|K)⊗(ūuuk|k− ˜̄uuuK|K)∗, (2.31)

where ũuu
K

= 1
K

∑K
k=m̃uuuk and ˜̄uuuK|K = 1

K

∑K
k=m̃ ūuuk|k are the respective path-wise sample average with some

sufficiently large m̃ guaranteeing the attractor dynamics. Give the path-wise covariance estimates in (2.31)
we now define
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Asymptotic path-wise correlation matrixAsymptotic path-wise correlation matrixAsymptotic path-wise correlation matrix between the truth, uuu, and the filter estimate, ūuu·|·,

Corr
(
uuu{∞},ūuu{∞|∞}

)
:= lim

K→∞
C−1
K|KC ∗K C−1

K CK , (2.32)

where the path-wise cross-correlation matrix in (2.32) is given by

CK =
1

K

K∑
k=m̃

(uuuk−ũuuK)⊗(ūuuk|k−˜̄uuuK|K)∗. (2.33)

By construction the correlation matrix in (2.32) between the truth and the filter estimate is insensitive to
biases in the mean dynamics of the filter estimates.

Remarks:
• Note that the asymptotic RMS error and pattern correlation in (2.30) and (2.32) depend on the

whole history of the solutions uuum and ūuum|m. The abbreviated notation on the left-hand sides of
(2.30) and (2.32) should not be confused with evaluating the respective quantities at the asymptotic
limit point-wise in time.

• The above definitions can be reduced to the standard definitions of RMS error and pattern correlation
by taking the trace of (2.30) and (2.32) in the case when the components of uuum and ūuum|m are
uncorrelated; this situation is discussed in §3 when dealing with plentiful observations of spatially
extended systems.

The links between the path-wise asymptotic measures of filter error introduced above and the information-
theoretic measures of the attractor statistics of the filter error are given by the following:

Proposition 2.1. The entropy of the asymptotic filter error, UUU∞=uuu∞−ūuu∞|∞, on the attractor of (2.6)
can be expressed through the asymptotic path-wise RMS error as

S
(
UUU∞

)
= 1

2N
(
1+ln2π

)
+ 1

2 lndet
[(
RMSE(UUU{∞})

)2−E[UUU∞]⊗E[UUU∗∞]
]
, (2.34)

where the asymptotic path-wise RMS error is given by (2.30).

Proposition 2.2. The asymptotic mutual information, M (uuu∞,ūuu∞|∞), between the truth uuu∞ and the filter
estimate ūuu∞|∞ on the attractor of the system (2.6) can be expressed through the correlation matrix as

M (uuu∞,ūuu∞|∞) =− 1
2 lndet

[
I−Corr(uuu{∞},ūuu{∞|∞})

]
, (2.35)

where Corr
(
uuu{∞},ūuu{∞|∞}

)
is given by (2.32) and I is the identity matrix.

Remark: In the above propositions the information measures on the left-hand-sides of (2.34) and (2.35)
are evaluated point-wise in time based on the on the attractor statistics of the filter error of (2.6) while the
expressions on the right-hand-sides of (2.34) and (2.35) involve the nonlocal-in-time attractor solutions of
(2.6) as described in (2.30) and (2.32).

The proofs of the above propositions are straightforward provided that the dynamics in (2.6) is control-
lable (E[σm⊗(σm)∗] = rm 6= 0 in (2.6)) and observable (G 6= 0 in (2.6)); these two conditions imply stability
of the filtering procedure (e.g., [2, 17]) and the existence of an ergodic Gaussian attractor in the dynamics
of (2.6). First, we justify the statement in Proposition 2.1. If the filtering described by the system (2.6) is
stable with an ergodic attractor, we have

E
[
UUU∞⊗UUU∗∞

]
= lim
K→∞

1

K

K∑
k=m̃

UUUk⊗UUU∗k≡
(
RMSE

(
UUU{∞}

))2

, (2.36)
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where m̃�1 is large enough so that the system (2.6) transitions onto the attractor dynamics. Note that
since the dynamics in (2.6) is Gaussian, the following holds for any time, tm,

E
[
UUU∞⊗UUU∗∞

]
−E
[
UUUm
]
⊗E
[
UUU∗m
]

=Cov
(
UUUm,UUUm

)
=

1

(2π)NeN
eS
(
UUUm

)
, (2.37)

where the second equality in (2.37) is due to FACT 1 in §2.2.1. The statement in Proposition 2.1 follows by
taking the limit m→∞ in (2.37) and combining it with (2.36) to obtain (2.34).

The proof of Proposition 2.2 follows similar reasoning; assuming that the filtering procedure described
by the system (2.6) is stable so that it has a Gaussian ergodic attractor, we have

Corr
(
uuu{∞},ūuu{∞|∞}

)
=C−1

(22)∞C∗(12)∞C−1
(11)∞C(12)∞, (2.38)

where the path-wise correlation matrix is given in (2.32) and C(11),C(22),C(12) are the block matrices in the
covariance of the augmented system (2.6) defined in (2.10). The statement in Proposition 2.2 follows from
(2.38) and Fact 2 in §2.2.1.

2.3. Bounds on filter error statistics The quantification of the filter skill in the present superensem-
ble framework relies on the entropy of the filter error S(uuum−ūuum|m), the mutual information M (uuum,ūuum|m),

and the relative entropy P(π(uuum),πf(ūuum|m)), which provide measures of an ‘information distance’ between
the truth uuum and its filter estimate ūuum|m. The relative entropy, P, plays a special role in this framework
since it measures the lack of information in the statistics of the estimated signal, as opposed to the filter
error entropy S and the mutual information M which focus on the correlations between the truth and the
filter estimates. As already pointed out in §2.2.1, all of the above ‘measures’ are not proper metrics but they
have a natural interpretation in terms of bits of information (e.g., [20]) and are easily computable quantifiers
of biases and correlations between the truth and the filter estimates based on the statistical superensemble
averages. However, it is also desirable to derive bounds on the error in the filter estimates for the statistics
of the truth signal in terms of proper metrics in a suitable Hilbert space of probability measures; this is
particularly important when assessing bounds on filter error statistics from the information measures, as
shown below.

The starting point here is to consider a general class of f-divergences between probability measures with
densities p and q and defined as

Df (p,q) :=

∫
f

(
p(uuu)

q(uuu)

)
q(uuu)duuu, (2.39)

where f : [0∞)→ IR, f(1) = 0, is a convex function (for a more general definition in any measurable space
and with respect to an arbitrary dominating measure see, e.g., [35]). Clearly, the above class of f -divergencies
includes the relative entropy (or Kullback-Leibler divergence) defined in (2.18) which is recovered from (2.39)
by setting f(x) =x log(x). As already pointed out earlier, the relative entropy, P in (2.23), is not a proper
metric but this useful measure of ‘lack of information’ can be bounded by metrics obtained from (2.39)
which, in contrast to P, do not have an information-theoretic interpretation.

The Hellinger distance, dH , between two probability densities p and q is obtained from (2.39) by setting
f = 1

2 (
√
x−1)2 which leads to

d2
H(p,q) = 1

2

∫ (√
p(uuu)−

√
q(uuu)

)2

duuu, 06dH 61. (2.40)

The usefulness of the Hellinger distance for our purposes is due to the existence of the following bounds on
the relative entropy P(p,q) (see, e.g., [67, 35])

d2
H(p,q)6P(p,q)6dH(p,q)+ 1

2χ
2(p,q), (2.41)
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where the χ2-divergence is defined by

χ2(p,q) =

∫ (
p(uuu)−q(uuu)

)2
q(uuu)

duuu, (2.42)

and can be obtained from (2.39) for f = (x−1)2. Here, we employ the bounds on dH in (2.41) to constrain
the bias in the filter estimates for the mean dynamics and biases in the covariance of the estimated dynamics.
In order to determine bounds on the filter error statistics, we exploit the general fact [19] that for any two
second-order processes, xp∼p and xq∼ q, with values in some Banach space (X,‖·‖) and densities p and q,
the Hellinger distance dH(p,q) bounds the mean residual between the two processes, i.e,∥∥∥E[xp]−E[xq]

∥∥∥62
(
E[‖xp‖2]+E[‖xq‖2]

)1/2

dH(p,q). (2.43)

Moreover, if the processes xp and xq are fourth-order stable, the bias in the covariance of the filter estimates
is bounded by ∥∥∥E[xp⊗xp]−E[xq⊗xq]

∥∥∥62
(
E[‖xp‖4]+E[‖xq‖4]

)1/2

dH(p,q). (2.44)

Hence, assuming xp=uuum∼π, xq = ūuum|m∼πf, in (2.43)-(2.44) we obtain the following bounds on the second-
order statistics of the filter estimates based on the Hellinger distance:∥∥∥E[uuum]−E[ūuum|m]

∥∥∥62
(
E[‖uuum‖2]+E[‖ūuum|m‖2]

)1/2

dH
(
π,πf

)
, (2.45)

and ∥∥∥E[uuum⊗uuum]−E[ūuum|m⊗ūuum|m]
∥∥∥62

(
E[‖uuum‖4]+E[‖ūuum|m‖4]

)1/2

dH
(
π,πf

)
. (2.46)

Combining (2.45) and (2.46) with the first inequality in (2.41) provides an upper bound on the biases in the
filter estimates for the mean dynamics and its covariance in terms of the relative entropy, P(π,πf), which
can be easily computed via (2.18) or (2.23).

Now, recall that the mutual information (2.19) can be interpreted as the lack of information in the product
of the marginal densities π(uuum)πf(ūuum|m) relative to the joint density p(uuum,ūuum|m), which is expressed via the
relative entropy as (see §2.2.1)

M (uuum,ūuum|m) =P
(
p(uuum,ūuum|m),π(uuum)π(ūuum|m)

)
. (2.47)

Thus, the bounds in (2.41) provide the lower and upper bounds on the mutual information in (2.47) and,
consequently, on the pattern correlation (see Proposition 2.2). The above relationships allow for a flexible
comparison of the present framework with other statistical estimates and provide a means of deriving more
suitable bounds in particular applications.

2.3.1. Some desirable properties of the Hellinger distance
In spite of the lack of information-theoretic interpretation akin to that associated with the relative en-

tropy (2.18), the Hellinger distance in (2.40) possesses some desirable properties which are worth mentioning
here in order to foreshadow some later results associated with filtering sparsely observed systems in §4.2.2.

Similar to the relative entropy P(π,πf) in (2.18), the Hellinger distance dH(π,πf) in (2.40) is based on the
marginal densities, π(uuum), πf(ūuum|m), and it does not account for cross-correlations between the truth and the

filter estimate. However, while the relative entropy is undefined in the limit when the filter densities πf(ūuum|m)
become singular, the Hellinger distance remains well-defined and bounded; this is a desirable property since
it turns out that some reduced filtering strategies for sparsely observed spatially extended systems lead to
singular filter densities, πf, as discussed later in §4.2.2.
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In particular, the Hellinger distance (2.40) between the Gaussian truth uuum with mean 〈uuum〉 and covari-
ance C(11), and the filter estimate ūuum|m with mean, 〈uuum〉, and covariance C(22) is given by

d2
H

(
π(uuum),πf(ūuum|m)

)
= 1−

√
2
(
detC(11)mdetC(22)m

)1/4(
det
[
C(11)m+C(22)m

])1/2 ×
×exp

{
−1

4

(
〈uuum〉−〈ūuum|m〉

)∗
(C(11)m+C(22)m)−1

(
〈uuum〉−〈ūuum|m〉

)}
, (2.48)

where the coupled evolution of the truth and the filter estimate covariances, C(11) and C(22), is given by (2.7).
This standard result is obtained by direct calculation following a similar procedure that leads to the expression
for the relative entropy (2.23) between two Gaussian densities. Note that if the filter estimates are correlated,
i.e., detC(22) = 0, the Hellinger distance in (2.48) attains its upper bound, dH = 1, while the relative entropy
in (2.23) is undefined.

2.4. Information optimization of imperfect Kalman filters
The classical definition of filter optimality ([41, 2]) is linked to the minimization of filter error variance

which, in the present information-theoretic framework, corresponds to minimizing the entropy S(uuum−ūuum|m)
of the filter error in (2.16). It is known [14, 29, 70] that for Kalman filtering with no model error the
minimum error variance filters also maximize the pattern correlation between the truth and the estimates;
analogous lower bounds on the filter error were derived for scalar fields from imperfect Kalman filters in [28].
However, additional barriers to achieving optimal filtering with model error arise from structural constraints
in the forward dynamics of the imperfect filters. Consequently, tuning the imperfect filters to minimize the
entropy of the filter error does not necessarily extremize the mutual information (or pattern correlation)
and/or the relative entropy (mean biases) between the truth and the filter estimate. Thus, the practically
achievable filter skill requires trade-offs between the information measures of filter fidelity, including the
RMS error in (2.34) and pattern correlation in (2.35), which are often equally important in applications
(e.g., [32, 33, 61, 37, 38]).

The present information-theoretic framework allows for a systematic optimization of the information
content in the filter estimates, as well as identification of information barriers [50, 58, 13, 10] in the imperfect
Kalman filters. The construction of the best imperfect filter with a given structure of the forecast model can
be formulated as a constrained optimization problem over the filter parameters with the constraints given
by the desired bounds on the three information measures of filter fidelity. For linear Gaussian filtering the
general problem can be cast in terms of the information measures as follows:

Definition 2.3 (Information Criterion). Consider the information criterion, M, of the augmented
Kalman filter system (3.17) which depends on the true discrete-time dynamics F,r,F in (2.6), the observation

noise variance ro, and on the imperfect model Fm,rm,Fm in (2.6) so that M(F,r,F)

(
Fm(ξξξ),rm(ξξξ),Fm(ξξξ);ro

)
has the following properties

(i) M is nonnegative,
(ii) M decreases monotonically with increasing mutual information, M (uuum,ūuum|m) in (2.26),

(iii) M decays monotonically for decreasing entropy, S(uuum−ūuum|m) in (2.22), of the filter error,

(iv) M decays monotonically for decreasing relative entropy (2.23), P
(
π(P`uuum),πf(P`ūuum|m)

)
, on the

observed modes where P` is the projection of the state vector onto the subset of spatial modes which
are resolved by the observations.

The optimal imperfect model Fm
(
ξξξ∗
)
,rm
(
ξξξ∗),Fm(ξξξ) in (2.6) according to the information criterion M is

given by

M(F,r,F)

(
Fm(ξξξ∗),r

m(ξξξ∗),F
m(ξξξ∗);r

o
)

= min
ξξξ

M(F,r,F)

(
Fm(ξξξ),rm(ξξξ),Fm(ξξξ);ro

)
. (2.49)

Remarks:
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• The above constraints on the information criterion are sufficient only in the linear Gaussian filtering
problem. While the individual information measures can be applied to non-Gaussian processes
with sufficiently smooth densities, the possibility of multiple extrema occurring in the information
measures used in (i)-(iii) above requires much more detailed considerations.

• The use of the relative entropy in (iv) on the marginal densities associated with the observed modes
stems from some technical problems associated with filtering with reduced filters through sparse
observations. As shown later in §4.2.2 in such cases the relative entropy might be undefined for
some unresolved modes, or it might be singular for the joint densities involving the resolved and
unresolved modes due to correlations in filter estimates. An alternative strategy (see §4.4) is to
use the Hellinger distance (2.40), which is well defined in such cases, instead of the relative entropy
(2.23) in the criterion M; however, in contrast to the relative entropy, the Hellinger distance between
two probability densities does not have an information-theoretic interpretation.

One particular choice of the information criterion in Definition 2.3 for assessing the skill of imperfect linear
Gaussian filters is given by

M(F,F ,r)

(
Fm(ξξξ),Fm(ξξξ),rm(ξξξ);ro

)
=

(
exp

(
S
(
uuu∞−ūuu∞|∞

))
+P

(
π(P`uuu∞),πf(P`ūuu∞|∞)

))
M (uuu∞,ūuu∞|∞)

, (2.50)

where uuu∞ is the asymptotic truth state, ūuu∞|∞ is the asymptotic the filter estimate, and the respective infor-
mation measures can be expressed explicitly through Fm,Fm,rm,F,F ,r,ro based on (2.6) and the definitions
in §2.2.1 (see also §4.4 for some other possible choices of M). While more suitable choices of the information
criterion in (2.50) might be derived in the future, it is worth stressing that the utility of the information-based
approach stems from the fact that it is not restricted to the Gaussian case and hence applicable to a much
wider class of filtering problems than those considered here. This is particularly important when filtering
non-Gaussian turbulent systems with sparse observations and unresolved modes contributing to intermittent
energy transfers across multiple scales; relevant extensions will be reported elsewhere.

As shown in [28] for scalar fields, the lower bound on the error in imperfect Kalman estimates when
filtering linear Gaussian systems is given by the error of the perfect filter (i.e., Fm =F , Fm =F , rm = r in
(2.6)). Thus, the information barrier in an imperfect Kalman filter can be defined in the present Gaussian
setting as

Definition 2.4 (Information Barrier). Consider the information criterion M with the properties as
in Definition 2.3 and the ξξξ-parameterized family of imperfect Kalman filters K :={Fm

(
ξξξ
)
,Fm

(
ξξξ),rm

(
ξξξ)}

with the optimal imperfect filter in (2.6) according to M given by Fm
(
ξξξ∗
)
,Fm

(
ξξξ∗),rm

(
ξξξ∗). The information

barrier for the family K is defined as

B=M(F,F ,r)

(
F,F ,r;ro

)
−M(F,F ,r)

(
Fm(ξξξ∗),F

m(ξξξ∗),r
m(ξξξ∗);r

o
)
. (2.51)

Remark: Note that while the above definition depends on the choice of the information criterion M, the
existence of an information barrier in the sense that, B 6= 0, does not depend on M in the Gaussian framework
provided that it satisfies the conditions in Definition 2.3. However, depending on the particular application
and objectives reflected in the choice of the information criterion in (2.51), the information barrier present
in the problem may be negligible.

Simple examples of filter optimization are discussed in §3.4.2 for the case of a single Fourier mode; this
basic setup illustrates a number of important issues arising in filtering with imperfect models.

3. Ensemble filter error for Gaussian spatially extended systems: Plentiful observations
Addressing the issue of filter stability and accuracy for a general discretized nonlinear spatially extended
turbulent system is clearly the ‘holy grail’ of this line of research. However, it is also a formidable one
and the initial step in developing a systematic framework for quantifying filter error in such systems is to
consider an appropriate constant coefficient stochastic PDE test problem incorporating suitable observations
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[60]. This approach is justified by the fact that in many practical geophysical or engineering applications the
equilibrium energy spectrum of the turbulent modes is reasonably well known and suitable linear stochastic
dynamics can be considered [59, 60, 61]. Similar to the classical numerical analysis of the stability of finite
difference schemes, the immediate advantages of this setup lie in the possibility of using discrete Fourier
series to separate variables and reduce the analysis for a PDE system to the stability properties of matrix
amplification factors for each spatial wave number separately. We begin the analysis by studying the case
when the observations of the true signal are available at every node of the discretized forward model in the
filter. As already discussed in [59, 15, 60] and summarized below, in such a configuration all the Fourier modes
of the truth signal that are resolved by the filter forecast model are directly observed and, for independent
initial conditions, the filtering problem in Fourier domain splits into N+1 independent filtering problems
for the individual Fourier modes.

Even in this relatively simple linear configuration, there exist non-trivial effects associated with filtering
the spatially extended turbulent dynamics with imperfect models which commonly arise in applications
[15, 60]. It was shown earlier in [15, 37, 61, 31, 30, 11] that in this idealized setting, cheaper reduced filters
with judicious model errors often have much higher skill than standard ensemble Kalman methods for filtering
signals with rough turbulent spectra in physical space. Moreover, numerous later studies showed agreement
of these guidelines in much more complex scenarios ranging from filtering sparsely observed atmospheric
and oceanic flows in [38, 61, 60, 12], to estimating the poleward eddy heat flux in the oceans from sparse
satellite altimetry data in [45]. Below, we first briefly summarize the canonical test model of [59, 15, 37, 60]
and introduce a suite of imperfect models which are obtained via the finite-difference approximations of the
true dynamics in (3.1). The effects of the filter error are then studied and quantified using the information
measures introduced in §2.2. The more complicated and important case of sparse regular observations in
physical space is studied in §4.

It is important to note that the present framework exploiting measures of information content in the
filter estimates is not restricted to the Gaussian case and hence it is applicable to a much wider class of
problems than those considered here.

3.1. The canonical test model for filtering spatially extended systems in Fourier domain

The simplest models for representing turbulent fluctuations replace nonlinear interactions by additional
linear damping and stochastic white noise forcing in time which are tuned to reproduce the equilibrium
energy spectrum and turnover time for the turbulent field (e.g., [52, 56, 23, 59, 60]). Thus, based on the
earlier developments in [59, 15, 37, 60], the first non-trivial test model for quantifying the Kalman filter error
in turbulent spatially extended dynamical systems is to consider the following canonical linear PDE in a
one-dimensional periodic domain

∂u(x,t)

∂t
=P

(
∂

∂x

)
u(x,t)−γ

(
∂

∂x

)
u(x,t)+σ(x)Ẇ (t)+F (x,t), u(x,0) =u0(x), (3.1)

where the operators, P, γ, in (3.1) are defined in Fourier domain below. The scalar random field solutions,
u(x,t) of (3.1) are driven by the deterministic forcing F and the spatially correlated, Gaussian white noise
field which we write in the ‘physicist’ notation as σ(x)Ẇ (t). The minimum requirement for a global existence
of stochastic solutions to (3.1), apart from constraints on P, γ and F , is that the energy of the initial condition
and of the solution are finite, i.e.,

∫
u2

0<∞ and
∫
u2<∞, which impose restrictions on the noise spectrum in

(3.1). However, there is a genuine physical interest in situations with a rough turbulent spectrum [59, 60, 61]
where the energy spectrum is approximately constant up to a certain cut-off value in Fourier domain; thus,
similar to [30], the correlated ‘white’ noise forcing in (3.1) is understood in Fourier space as

σ(x)Ẇ (t) :=

K∑
k=−K

σ̂kẆk(t), σ̂k =σ∗−k, Wk =W ∗−k, (3.2)

for some suitably large cut-off value K and with Wk(t) in (3.2) representing independent Wiener processes
with values in the complex plane and independent components.
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Here, similar to [59, 37, 60, 61], we consider a discretization of the dynamics in (3.1) on a regular mesh
of points {xj = jh, j= 0,. ..,2N+1} such that (2N+1)h= 2π so that applying the Fourier transform to (3.1)
leads to the Ornstein Uhlenbeck (OU) dynamics for each mode

dûk(t) =
[
−λkûk(t)+F̂k

]
dt+ σ̂kdWk(t), 〈σ̂k⊗ σ̂∗k′〉= δk−k′ r̂k, (3.3)

where λk = γ̂k− P̂k and the scalars γ̂k, P̂k define the operators P,γ, of (3.1) in Fourier domain and F̂k the
k-th Fourier mode of the deterministic forcing. The energy spectrum associated with the dynamics in (3.1)
is given by (see, e.g., [37, 30, 60])

Ek =
r̂k

2<e[λk]
. (3.4)

Note that the energy spectrum in (3.4) for statistical equilibrium solutions of (3.1) can be tuned to mimic
various turbulent spectra, ranging from the ‘equipartition’ spectrum, Ek∝1, |k|6K and Ek = 0, |k|>K, to
steep energy spectra Ek∝k−β ,β >1. The imaginary part of λk, given by =m[P̂k], can be tuned to match any
physical dispersion relation [60]. Both these cases will be exploited in the tests discussed in the subsequent
sections.

3.2. Filter forecast models

Given the linear Gaussian dynamics of the test model (3.1) the Kalman filter in (3.17) defines the optimal
procedure for estimating the state of the discretized system in Fourier space provided that the perfect
dynamics for the in the discretized forecast model is used and when the observability and controllability
conditions are satisfied (e.g., [15, 60]). However, when filtering with imperfect models, significant errors can
be introduced through the choice of discretization and the spatial and temporal time step. These issues were
already studied in detail in [15, 60] and we use the same setup here in order to illustrate the utility of the
information-theoretic framework for gaining new insight into the performance of imperfect Kalman filters
when filtering turbulent spatially extended systems.

Perfect discrete-time forecast modelPerfect discrete-time forecast modelPerfect discrete-time forecast model

The perfect dynamics of (3.1) in Fourier space is given by the independent Ornstein-Uhlenbeck pro-
cesses (3.3). Thus, the discrete-time forward operator consistent with the dynamics in (3.3) is given by

ûk,m+1 =Fkûk,m+F̂k,m+ σ̂k,m, (3.5)

Fk =e−λk∆t, λk = γ̂k− P̂k, rk = 〈σ̂k,m⊗ σ̂∗k,m〉=
σ̂2
k

2<e[λk]
(1−e−2<e[λk]∆t), (3.6)

where the γ̂k, P̂k are the symbols of the pseudo-differential operators in (3.1).

Imperfect discrete-time forecast modelsImperfect discrete-time forecast modelsImperfect discrete-time forecast models

Here, the imperfect forward models introduce errors at the forecast step of the filtering procedure either
through incorrect parameters and/or through finite discretizations of the correct dynamics in (3.1). As
described below, the time discretizations of (3.1) are obtained via the forward Euler, backward Euler, and
the trapezoidal method [60]. The spatial discretization of the true dynamics (3.1) are carried out using the
upwind finite differences which leads to the the imperfect representation for the differential operators γ,P ;
these imperfect operators are represented in Fourier domain by combining the finite difference approximations
with the discrete Fourier transform of the solution, u(xj ,tm) =

∑
|k|6N ûk(tm)eikxj , which leads to

γmk =
∑
j

αjc
(j)
k , Pm

k =
∑
j

βjc
(j)
k . (3.7)
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where the coefficients c
(j)
k are defined via

∂u(x,t)

∂x
→
∑
|k|6N

1−e−ikh
h

ûk =
∑
|k|6N

c
(1)
k ûk, (3.8)

∂2u(x,t)

∂x2
→
∑
|k|6N

1−2e−ikh+e−2ikh

h2
ûk =

∑
|k|6N

c
(2)
k ûk. (3.9)

...

∂nu(x,t)

∂xn
→
∑
|k|6N

c
(n)
k ûk. (3.10)

In particular, we consider the following four imperfect discrete-time forward models in Fourier domain:
• Forward model with correct dynamics for each Fourier mode. This forecast model does not

introduce discretization errors and has the same structure as the perfect system (3.6) but allows for
incorrect parameters λmk , σ

m
k , in the forward operator and the model covariance

Fm
k =e−λ

m
k∆t, rmk =

σm
k

2

2<e[λmk ]
(1−e−2<e[λm

k]∆t). (3.11)

• Forward model obtained via forward Euler time discretization of (3.1) and upwind finite dif-
ference discretizations in space. This model is specified by

Fm
k = 1−λmk∆t, Rm

k =σm
k

2
∆t, λmk = γ̂mk − P̂m

k , (3.12)

where γ̂mk and P̂m
k have the form as in (3.7).

• Forward model obtained via backward Euler time discretization of (3.1) and upwind finite
difference discretizations in space. This model is specified by

Fm
k = (1+λmk∆t)−1, rmk = |1+λmk∆t|−2σm

k
2
∆t, λmk = γ̂mk − P̂m

k , (3.13)

where γ̂mk and P̂m
k have the form as in (3.7).

• Model obtained via trapezoidal time discretization of (3.1) and upwind finite difference dis-
cretizations in space. This model is specified by

Fm
k =

1− 1
2λ

m
k∆t

1+ 1
2λ

m
k∆t

, rmk = |1+ 1
2λ

m
k∆t|−2σm

k
2∆t, λmk = γ̂mk − P̂m

k , (3.14)

where γ̂mk and P̂m
k have the form as in (3.7).

It is worth pointing out here that the choice of the noise amplitude, σm
k , in the imperfect forward models is

not restricted to σm
k =σk and this fact was exploited in [15, 60] to optimize the imperfect filters by minimizing

the lack of information in the imperfect model statistics relative to the truth. One of the advantages of the
framework developed here is that it allows to show that this method of optimization cannot improve the
pattern correlation between the truth and the filter estimate.

3.3. Augmented Kalman filter system for plentiful observations
In most practical applications the spatially extended dynamics is observed at a regular subset of the

model grid {xn=nh̃, n= 0,. ..,2M+1} such that h̃/h=P >1 and the observations are given by

v(xn,tm) =Gu(xn,tm)+σon,m,
〈
σon,m⊗(σon′,m′)∗

〉
= δn−n′δm−m′ ro, (3.15)

where G is a linear possibly rank-deficient operator. The case P = 1 considered in this section corresponds
to full observations when every grid point and every resolved Fourier mode of the model is observed, i.e.,
M=N and the discrete Fourier transform of (3.15) on the 2N+1 node mesh leads to [59, 15, 60]

v̂k,m+1 =Gûk(tm+1)+ σ̂ok,
〈
σ̂ok⊗(σ̂ok′)

∗〉= δk−k′ r
o/(2N+1)≡ δk−k′ r̂ok. (3.16)
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Filtering the solutions of (3.1) with plentiful observations (3.16) and uncorrelated initial conditions results in
independent Kalman filter systems for N+1 independent Fourier modes described by the augmented system
analogous to (2.6) and given by[

ûk,m+1

¯̂uk,m+1|m+1

]
=

[
Fk 0

Km
k,m+1GFk (I−Km

k,m+1G)Fm
k

][
ûk,m

¯̂uk,m|m

]
(3.17)

+

[
σk,m+1

Km
k,m+1(Gσk,m+1 +σok,m+1)

]
+

[
Fk,m+1

Fm
k,m+1 +Km

k,m+1G(Fk,m+1−Fm
k,m+1)

]
,

where ûk,m∈C, |k|<N , represent the true Fourier modes at tm, and ¯̂uk,m|m∈C are the respective filter
estimates. The more complicated and important case of sparse regular observations at every P -th model
grid point so that P >1 and M<N is discussed in §4.

Given the state vector of the truth in Fourier domain uuum≡ (û−N ,. ..,ûN ) and their filter estimates
ūuum≡ (¯̂u−N ,. .., ¯̂uN ), we denote the augmented state of the filtered spatially extended system in Fourier

domain as ŶYYm≡ (ûuum ¯̂uuum|m)T . The Gaussian statistics of the augmented state ŶYYm is fully characterized by
its mean 〈YYYm〉 and covariance Cm≡Cov(YYYm,YYYm) with the evolution of the latter given by

Cm+1 =FmCmF∗m+Rm, (3.18)

where the operators F and R in (3.18) are defined analogously to (2.8) and (2.9). For plentiful observations
only the k-th Fourier mode, ûk, and its estimate, ¯̂uk, are correlated through the dynamics of (3.17) so that
all the blocks in the covariance in (3.18)

Cm=

[
Cov

(
uuum,uuum

)
Cov

(
uuum,ūuum|m

)
Cov

(
ūuum|m,uuum

)
Cov

(
ūuum|m,ūuum|m

)]≡[C(11)m C(12)m

C∗(12)m C(22)m

]
, (3.19)

are diagonal, i.e.,

C(11)m= diag
[
C(11)−N,m,. ..,C(11)N,m

]
,

C(22)m= diag
[
C(22)−N,m,. ..,C(22)N,m

]
,

C(12)m= diag
[
C(12)−N,m,. ..,C(12)N,m

]
,

where C(11)k,m≡Cov(ûk,m,ûk,m), C(22)k,m≡Cov(¯̂uk,m|m, ¯̂uk,m|m) and C(12)k,m≡Cov(ûk,m, ¯̂uk,m|m). The di-
agonality of the cross correlation matrix C(12) and the filter estimates covariance C(22) stems from the plentiful
observations while the diagonality of C(11) arises due to the linearity of the truth dynamics.

Consequently, the mutual information in (2.19) which measures the reduction of uncertainty due to the
filtering can be expressed as a sum of components involving covariances between the individual modes

M (uuum,ūuum|m) =− 1
2

∑
|k|6N

log
[
1−λ2

k,m

]
, λk,m=

√
|C(12)k,m|2

C(22)k,mC(11)k,m
, 06λk,m61, (3.20)

where C(11)k,m≡Cov(ûk,m,ûk,m), C(22)k,m≡Cov(¯̂uk,m, ¯̂uk,m), and C(12)k,m≡Cov(ûk,m, ¯̂uk,m). Note that in
the asymptotic limit tm→∞, λk,∞ in (3.20) becomes the pattern correlation (2.32) between the true and
filtered k-th Fourier mode. Similarly, the entropy of the filter error simplifies to

S
(
uuum−ūuum|m

)
=
(
1+ln2π

)
+
∑
|k|6N

ln
[
C(11)k,m+C(22)k,m−2<e[C(12)k,m]

]
, (3.21)
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and the relative entropy, measuring the lack of information in the probability density of the filter estimates
relative to the statistics of the truth, factorizes as

P
(
π(uuum),πf(ūuum|m)

)
= 1

2

∑
|k|6N

∣∣〈uk,m〉−〈ūk,m|m〉∣∣2C−1
(22)k,m

+ 1
2

∑
|k|6N

[(
C(11)k,mC−1

(22)k,m

)
− log

(
C(11)k,mC−1

(22)k,m

)]
−(2N+1). (3.22)

We use (3.20) and (3.21) to quantify the superensemble model error in filtering in the following sections.

3.4. Filtering single Fourier mode Here, we utilize the plentiful observation setup outlined in
§3.1 and study the ensemble error in filtering a single Fourier mode using the imperfect forecast models
(3.11)-(3.14) in (3.17). Recall, that the filtering of (3.1) discretized on a spatial grid with 2N+1 nodes with
plentiful observations and uncorrelated initial conditions splits into N+1 independent filtering complex
scalar problems for the individual Fourier modes given by (3.17). First, we focus on the model error due to
the temporal discretizations in the imperfect models in the absence of errors due to the spatial discretization
(i.e., γ̂mk = γ̂k and P̂m

k = P̂k in (3.11)-(3.14)). The case of filtering the full spatially extended system with
plentiful observations is discussed subsequently in §3.5 and it draws from the single mode analysis. We use
this simple configuration to illustrate the importance of applying more general error measures in imperfect
filtering than the mean square error estimates (2.30) which are often insensitive to the information barriers
for imperfect filtering improvement. Below we discuss simple examples of such information barriers which
show unambiguously that for imperfect filtering it is often much more advantageous to judiciously modify
the filter forecast model than trying to optimize the filter parameters.

3.4.1. Asymptotic filter error
Filtering the linear Gaussian test model (3.1) with plentiful observations is equivalent to independent

filtering of the dynamics of each Fourier mode in (3.3). In this case the information measures of filter skill, the
error entropy (2.16), mutual information (2.19), and relative entropy (2.23), assume a particularly simple and
revealing form. This complex scalar configuration, exploited earlier in [60] in the path-wise framework, allows
for direct analysis of filter stability and accuracy based on explicit formulas for the asymptotic covariance
of the augmented system (3.17). In particular, this framework is very useful for illustrating the issues of
optimality for imperfect filters discussed earlier in §2.4 and subsequently in §3.4.2.

In the present complex Gaussian scalar case the filter error entropy (2.16) becomes

S(Um) = 1
2 (1+ln2π)+ 1

2 ln
[
C(11)m+C(22)m−2<e[C(12)m]

]
, (3.23)

where the evolution of the covariance Cm is given by (3.18) with C(11)m+C(22)m>2<e[C(12)m]. The mutual
information in (2.26) simplifies to

M (um,ūm|m) = 1
2 log

1

1−λ2
m

, λm=

√
|C(12)m|2
C(11)mC(22)m

, 06λm61, (3.24)

and the relative entropy in (2.23) simplifies to

P
(
π(um),πf(ūm|m)

)
=

∣∣E[um− ūm|m]
∣∣2

C(22)m
+
C(11)m

C(22)m
− log

C(11)m

C(22)m
−1. (3.25)

Provided that the filtering problem in (3.17) is stable (i.e., the system (3.17) has a stable fixed point), exact
formulas for the above information measures can be obtained in the limit m→∞ since it can be easily shown
by direct calculation that the components of the asymptotic covariance C∞ in (3.18) satisfying

C∞=FC∞FT +R, (3.26)
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are given by

C(11)∞=
r

1−|F |2 , C(12)∞=
GKm

∞
(
|F |2C(11)∞+r

)
1−FFm∗(1−GKm∞)

, (3.27)

C(22)∞=
|F |2G2(Km

∞)2C11,∞+GKm
∞(1−GKm

∞)
(
FFm∗C(12)∞+FmF ∗C∗(12)∞

)
+(Km

∞)2(ro+G2r)

1−|Fm|2(1−GKm∞)2
, (3.28)

The component C(11)∞ is the asymptotic covariance of the truth, C(22)∞ is the asymptotic covariance of
the filter estimates, and C(12)∞ contains the asymptotic cross-correlations between the truth and the filter
estimates. The asymptotic imperfect Kalman gain in (3.27)-(3.28) obtained via the approximation in (2.13)
is given by

Km
∞=

1

2G

(
1− G2rm

|Fm|2ro −
1

|Fm|2 +
[(

1− G2rm

|Fm|2ro −
1

|Fm|2
)2

+
4G2rm

|Fm|2ro
]1/2)

, (3.29)

which was derived in detail in [60].
The optimal values of the filter error entropy in (3.23), mutual information in (3.24), and the relative

entropy (3.25) in imperfect filtering are not necessarily achieved for the same imperfect forecast model. In
particular, note that high uncertainty reduction in terms of mutual information does not imply achieving
accurate estimate of the model covariance; indeed, good pattern correlation, λ∞∼1 in (3.24), can be achieved
for imperfect filters with erroneous forecast model variance, C(22)∞�C(11)∞ or C(22)∞�C(11)∞, provided
that |C(12)∞|2∼C(11)∞C(22)∞. Moreover, it is clear from inspecting the dynamics of (3.17) that large biases in
the ensemble mean, |〈um〉−〈ūm|m〉|2, are possible even for statistically consistent models, C(11)∞∼C(22)∞,
minimizing the dispersion part of the relative entropy in (3.25). In the next section we use the simple
exactly solvable complex scalar configuration to present a few concrete examples of the issues discussed in
§2.4; namely the possible lack of a single imperfect model optimizing all the different measures of filter skill
which leads to the existence of information barriers in families of imperfect filters.

3.4.2. Optimizing imperfect Kalman filters for individual Fourier modes
The general idea of information optimization of imperfect Kalman filter was discussed in §2.4. Here,

we exploit the simple complex scalar configuration associated with plentiful observations which allow for
independent filtering of individual Fourier modes. We use this simple setup and the exact formulas for the
asymptotic covariance in filtering problem (3.18) in order to illustrate the lack of a single imperfect filter
optimizing all the information measures discussed in §2.2.1. The possible lack of a single best filter when
confined to a class of imperfect forecast models drives the need for synergistic use of the entropy, mutual
information, and the relative entropy in optimizing imperfect filtering with model-induced constrains.

The imperfect forecast models used in the filters for estimating the true dynamics of the individual
Fourier modes ûk in (3.17) are described in §3.2. The optimal values of model noise, rm∗, in the imperfect
filters are computed according to the criterion (2.50) which for the scalar case becomes

M
(
Fm(ξξξ),rm(ξξξ);F,r,ro

)
= 1

2 log
C(11)∞C(22)∞

C(11)∞C(22)∞−|C(12)∞|2
×
(
C(11)∞+C(22)∞−2<e[C(12)∞]

+
|〈u∞〉−〈ū∞|∞〉|2

C(22)∞
+
C(11)∞
C(22)∞

− log
C(11)∞
C(22)∞

−1

)
, (3.30)

with the expressions for the asymptotic covariance components of C∞ (3.18) given by (3.27)-(3.28).
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M(u∞, ū∞|∞)
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Fig. 3.1: Entropy of filter error S (∼ RMS error) and mutual information M (∼ pattern correlation) for filtering the complex
scalar with imperfect filters (3.12)-(3.14) as a function of the forecast model variance rm in the non-stiff regime with λ=γ− iω,
γ= 0.5,ω= 2,σ= 1, large observation time ∆tobs = 1/τcorr = 2, and observation noise ro = 0.25. Unoptimized values of error
entropy S and mutual information M for the imperfect filters are denoted by the squares; the optimal values of the individual
measures are denoted by the dots. Note that for the imperfect filters the optimal error entropy/RMSE does not coincide with
optimal mutual information/pattern correlation. The dashed vertical lines indicates the optimal model variance according to
the information criterion M in (2.50).

Figure 3.1 illustrates optimization of imperfect Kalman filters for a single Fourier mode in the spatially
extended dynamics of (3.1) with no deterministic forcing and zero mean; the top four panels show the time-
asymptotic entropy of the filter error, S(u∞−ū∞|∞) in (3.23), and mutual information, M(u∞,ū∞|∞) in
(3.24), for the imperfect filters discussed in §3.2 with model error due various time discretizations. Unsur-
prisingly, in the case of the filter in (3.11) without time-discretization errors the minimum of M in (3.30)
coincides with the parameter values as in perfect dynamics, i.e., λm =λ, σm =σ. Importantly, the optimal
values of the error entropy/RMSE (2.22) and and the mutual information/pattern correlation (3.24) coincide
with the perfect dynamics parameter values. For the remaining imperfect filters the extrema of the filter
error entropy, mutual information, and the information criterion M generally do no not coincide. Note that
for parameter values as in the perfect dynamics (squares) the skill of the imperfect filters with unoptimized
noise (squares) is significantly reduced relative to the optimal values derived from (3.30). The bottom two
panels in figure 3.1 show, respectively the discrepancies between the entropy of the filter error for the perfect
and imperfect models (left), and the mutual information discrepancies between the perfect and imperfect
filters as a function of the system noise variance. Clearly, none of the imperfect models considered here
can achieve the accuracy of the perfect model which gives rise to the information barriers (2.51) within the
rm-parameterized families of the imperfect time-discretized models. Note, in particular, that it is possible to
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Fig. 3.2: Time evolution of the information measures introduced in §2.2.1 for assessing the skill of imperfect filtering; here
the skill for filtering a single Fourier mode (i.e., complex scalar) in (3.3) with model error due to different time discretizations
(see legend) and §3.2 is shown for stiff discrete-time dynamics (3.5) with γ= 0.5,ω= 10,σ= 1,ro = 0.25. The dashed black lines
correspond to the information measures computed directly from the noisy input, i.e., they are computed without any filter.
Columns corresponds to, respectively, filtering with unoptimized imperfect models (left), imperfect models with approximate
Kalman gain (2.13) which are optimized via the simple noise inflation (middle), and imperfect models with correct Kalman gain
(2.11); results in the last two columns cannot be achieved without the knowledge of the truth but they illustrate the potential
performance gains assuming that suitable approximations are implemented.

have a filter which very poor statistical fidelity of the estimated state but with good performance according
to the filter error entropy and the mutual information.

3.4.3. Numerical tests in the one-mode configuration Here, we present numerical examples of
information-theoretic quantification of filter error within the superensemble framework for a single Fourier
mode (3.3) in the spatially extended discretized dynamics of (3.1). Sections §3.5.1, and §4.3 provide numerical
examples of quantifying filter error in more complex configurations from filtering the spatially extended tur-
bulent dynamics with plentiful observations in §3.5.1 to filtering such systems when only sparse observations
are available in §4.3.

Filtering the single Fourier mode in the dynamics of (3.1) is equivalent to filtering a complex scalar
discussed earlier in [60]. We assume for simplicity that the imperfect forecast models for filtering the single
Fourier mode introduce model error only through the temporal discretization of the dynamics in (3.1) with
the perfect spectral decomposition as in (3.3). The superensemble filter error is quantified via the mutual
information (3.24), the filter error entropy (3.23), and the relative entropy (2.23). In order to allow for easy
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comparison with the path-wise analysis of the same problem discussed in [60], we focus on the stiff dynamical
regime of (3.3) with parameters

γ= 0.5, ω= 10, σ= 1, (3.31)

and a non-stiff regime with parameters

γ= 0.5, ω= 0.7, σ= 1. (3.32)

Both these regimes are characterized by the same decorrelation time τcorr = 1/γ= 2 and equilibrium variance
σ2/(2γ) = 1 but the stiff regime contains fast oscillatory dynamics. In figures 3.2-3.5 different facets of
filter error are examined in the above two dynamical regimes of (3.3) for various observation times ∆to and
observation noise variances ro. By analogy to [60], in all these cases we compare the imperfect filter skill
for (i) unoptimized filters with parameter values in (3.11)-(3.14) set to the perfect dynamics parameters in
(3.31) or (3.32), or (ii) imperfect filters with the Kalman gain approximated by (2.13) and model noise rm

in (3.12)-(3.14) optimized to minimize the asymptotic filter error covariance in terms of the relative entropy
in (2.23) (see [60, §2.3.4] for details); such an optimization provides the best possible imperfect filter skill in
the absence of mean biases in the filter estimates. We also consider the skill of imperfect filters (3.12)-(3.14)
with correct Kalman gain obtained from (2.11). Similar to the information optimization of the filter error
covariance this last strategy is not a practical solution since it requires the knowledge of the truth; however,
such tests provide guidelines for improving the imperfect filters.

In figure 3.2 we show the time evolution of the filter error for filtering the dynamics of the single
Fourier mode (3.3) in the stiff regime with parameters (3.31). The filter error is quantified in terms of the

three individual information measures M (um,ūm|m),S(um− ūm|m),P(π(um),πf(ūm|m)) discussed in §2.2.1;
recall that the filter error entropy in (2.22) is linked to the RMS error (2.30) in the absence of mean
biases (Proposition 2.1) and the mutual information in (2.26) is linked to the asymptotic pattern correlation
(Proposition 2.2). The model error in the imperfect filters (3.12)-(3.14) is introduced via the finite difference
approximations of the temporal evolution in (3.1). Figure 3.3 shows the filter skill for the same filters and



M. Branicki & A.J. Majda 25

filter parameters as in figure 3.2 but in terms of the information criterion (2.50) which combines the three
information measures.

The most comprehensive insight into the imperfect filter skill is obtained via the time-lagged information
criterion M

(
π(uL∞),π(ūL∞|∞)

)
in (2.50) based on the lag-embedded truth and its lag-embedded filter estimate

discussed in §2.2.1 and defined in (2.29); recall that the lag-embedded state with L>1 accounts for correla-
tions in the truth and the filter estimate and the information measures applied to the lag-embedded states
provide a nonlocal in time characterization of filter error. This is particularly important in development and
validation of physics constrained multi-level nonlinear regression models [54, 57] which simultaneously reflect
the causality and energy conserving principles of the underlying nonlinear physics and, by design, mitigate
the non-physical finite-time blow up or pathology present in the invariant measure of ad-hoc quadratic re-
gression strategies (e.g., [48]). Figures 3.4 and 3.5 illustrate different aspects of the the nonlocal-in-time
filter error for the imperfect filters with forward dynamics (3.11)-(3.14). In figure 3.4 the two representative
stiff and non-stiff cases with parameters (3.31), (3.32) are examined. In both regimes the simple informa-
tion optimization achieved through minimization of the relative entropy between the truth and the filter
estimates does not improve the filter skill for short observation time (∆tobs� τcorr). On the other hand,
for long observation times (∆tobs∼ τcorr) large improvements can be achieved for both the backward Euler
and the trapezoidal filters; the perfect dynamics and the forward Euler filters are unaffected by the simple
information optimization. The lag-embedded measures of filter skill are very sensitive to the observation
noise levels and quickly deteriorate for L>1 with increasing values of r̂o.

Finally, in figure 3.5 we focus on the recovery of the autocorrelation functions by the imperfect filters;
these important statistical properties can be easily extracted from the lagged covariance matrices computed
from (2.6) using the relationships obtained in Appendix A. Accurate recovery of the correlation functions
by the filter is crucial in many geophysical and engineering applications and it allows for constructing robust
reduced stochastic models from data of nonlinear systems [54, 57], and for accurate prediction of forced
response of the truth system via the fluctuation-dissipation theorem (e.g., [52, 51, 1, 58, 13]). The four
panels in figure 3.5 show the correlation functions estimated from the perfect filter (3.11) and the imperfect
filters (3.12)-(3.14). Note that the perfect filter and the forward and backward Euler filters recover the
normalized autocorrelation comparably well; however, the backward Euler filter grossly underestimates the
variance of the truth. The filter based on the trapezoidal discretization underestimates the true variance
and introduces spurious oscillations in the estimated autocorrelation function.

In summary, we make the following points in regard to filtering a single Fourier mode which further reinforce
the conclusions of the path-wise analysis of [60]:

• The ensemble error in the filter estimates can be computed via the ergodic averages on the attractor
of the augmented system (3.17); good agreement between the ensemble averages and time-averages
was verified by direct computations (see Table 3.1).

• When filtering with imperfect models the ‘minimum error variance’ filter (the filter with minimum
error entropy) does not necessarily provide optimal estimates in terms of mutual information/pattern
correlation (figure 3.1).

• The backward Euler and the trapezoidal filters gain significant skill after the simple system noise
inflation via the information optimization, or if the correct Kalman gain is used (figures 3.3, 3.4).

• The forward Euler filter trusts the observations and it is either insensitive to the system noise
inflation (stiff dynamics) or loses practical controllability (non-stiff dynamics); its performance does
improve for sufficiently short observation times in the idealized scenario with correct Kalman gain
(see figure 3.3).

• The unoptimized forward Euler filter and the backward Euler filter have a similarly good skill for
recovering the normalized correlation functions (figure 3.5); however, the backward Euler filter vastly
underestimates the truth variance.

• The lag-embedded information measures of filter skill are very sensitive to the observation noise
values and quickly deteriorate for L>1 for increasinf r̂o.

• The hierarchy of unoptimized filter skill (figures 3.3, 3.4):
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Filtering complex scalar dynamics
ensemble average RMSE path-wise RMSE (1000 cycles)

perfect filter 0.4418 0.4450
frw. Euler filter 0.5018 0.5164
bckw. Euler filter 0.9802 0.9609
trapezoidal filter 0.8450 0.8464

frw. Euler filter/info optim. 0.5018 0.4997
bckw. Euler filter /info optim. 0.4464 0.4564
trapezoidal filter /info optim. 0.4945 0.4859

Filtering spatially extended dynamics
ensemble average RMSE path-wise RMSE (1000 cycles)

perfect filter 27.2709 27.0783
frw Euler filter 31.5690 31.3023
bck Euler filter 63.1765 64.0741
trapezoidal filter 62.7162 62.8249

frw Euler filter /info optim. 31.5634 31.6274
bck Euler filter /info optim. 28.7110 28.4654
trapezoidal filter /info optim. 31.7556 31.1732

Table 3.1: Numerical evidence in support of the attractor ergodicity assumption which allows for connecting the
asymptotic path-wise averages with their ensemble counterparts in §2.2.2. The tables above compare the asymptotic
RMS error estimated from the path-wise averages and the ensemble RMS error for the complex scalar (top) and the
spatially extended system (3.33) with N =20 and plentiful observations and equipartition energy spectrum Ek ∝1.

Non-stiff regime: For short observation times ∆tobs� τcorr all imperfect filters are similar and
beat observations but are significantly worse than the perfect filter. For long observation times the
unoptimized imperfect filters perform poorly.
Stiff regime: only the perfect filter beats direct observations.

• The hierarchy of filter skill after the simple information optimization by system noise inflation
(knowledge of truth required); see [37, 60].
Non-stiff regime: For short observation times ∆tobs� τcorr all imperfect filters are similar and
beat observations but are significantly worse than the perfect filter. For long observation times,

perfect filter (3.11)>backward Euler (3.13)> trapezoidal (3.14)>direct observations,

while the forward Euler loses practical controllability.
Stiff regime: For short observation times ∆tobs� τcorr only the perfect filter performs better than
direct observations. For long observation times ∆tobs∼ τcorr the backward Euler filter performs
comparably to the perfect filter while the forward Euler and the trapezoidal filters do not beat the
observations.

• The hierarchy of imperfect filter skill after with correct Kalman gain (knowledge of truth required)
Non-stiff regime: All filters beat the direct observations. For short observation times ∆tobs� τcorr
all imperfect filters are similar and beat observations but thee perform worse than the perfect filter.
For long observation times, ∆tobs∼ τcorr, the filter skill satisfies

perfect filt. (3.11)>backward Euler (3.13)> trapezoidal (3.14)> forward Euler (3.12)>obs.

Stiff regime: For short observation times ∆tobs� τcorr only the perfect filter performs better than
direct observations. For long observation times, ∆tobs∼ τcorr, the filter skill satisfies

perfect filter (3.11)>backward Euler (3.13)> trapezoidal (3.14)>obs.> forward Euler (3.12).



M. Branicki & A.J. Majda 27

1 1.5 2 2.5 3

101

102

103

104

1 1.5 2 2.5 3

1 1.5 2 2.5 3

101

102

103

104

1 1.5 2 2.5 3

1 1.5 2 2.5 3

101

102

103

104

1 1.5 2 2.5 3

Unoptimized filters Information optimized filters
approximate K

Information optimized filters
correct K

∆tobs=0.1=τcorr/20a)

b) ∆tobs=2 = τcorr

worst

b est

worst

b est

M

L L L

M

1 1.5 2 2.5 3

101

102

103

104

1 1.5 2 2.5 3
 

 
perfect
frw Euler
bck Euler
trapezoidal
obs

1 1.5 2 2.5 3

1 1.5 2 2.5 3

101

102

103

1 1.5 2 2.5 3 1 1.5 2 2.5 3

Unoptimized filters Information optimized filters
approximate K

Information optimized filters
correct K

∆tobs=0.1=τcorr/20a)

b) ∆tobs=2 = τcorr

worst

b est

worst

b est

L L L

Fig. 3.4: Imperfect filter skill for estimating the dynamics of a single Fourier mode in (3.3) computed via the lag-embedded
information criterion in (2.50) (see also (2.29)); the skill is shown as a function of the time lag L. (Left) non-stiff dynamics
with γ= 0.5,ω= 0.7,σ= 1,ro = 0.05, (right) stiff dynamics with γ= 0.5,ω= 10,σ= 1,ro = 0.05. The lag-embedded skill is very
sensitive to the observation noise values and quickly deteriorates for L>1 for increasing r̂o.

Next, we extend the the off-line assessments of the filtering skill for single Fourier mode to the spatially
extended turbulent dynamics case which factorizes to independent filtering problems of each Fourier mode
due to the plentiful observations.

3.5. Filtering spatially extended systems with plentiful observations
In order to illustrate the present information-theoretic framework for assessing the superensemble filter

error on a concrete spatially extended example, we consider filtering the dynamics of the one-dimensional
stochastically forced advection-diffusion equation

∂u(x,t)

∂t
=−du(x,t)−c∂u(x,t)

∂x
+µ

∂2u(x,t)

∂x2
+F (x,t)+σ(x)Ẇ (t), (3.33)

which is a particular case of the general test model (3.1) with

γ

(
∂

∂x

)
=d+µ

∂2

∂x2
, P

(
∂

∂x

)
=−c ∂

∂x
, c,d,µ>0. (3.34)

Following [15, 37, 60], we refer to the dynamics with µ>0 as the selective damping case and the dynamics
with d 6= 0, µ= 0 as the uniform damping case; this distinction is easily understood in Fourier domain where
the dynamics of each Fourier mode of (3.33) is given by (3.3) with

λk =d+µk2− ick, (3.35)

so that for µ= 0 the damping, <e[λk] =d, is the same for all Fourier modes. The deterministic forcing F in
(3.33) acts acts in the large-scale waveband, which in Fourier domain is realized by

F̂k(t) =

Ake
ω0(k)t for k6K,

0 for k>K,
(3.36)
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for some fixed K6N . We write the discretized dynamics of (3.33) as

ûk,m+1 =Fkûk,m+F̂k,m+1 + σ̂k,m+1, (3.37)

where Fk = exp(−λk∆t), 〈σ̂k,m+1⊗ σ̂k,m+1〉= r̂k, and the deterministic forcing in (3.37) consistent with the
continuous dynamics in (3.3) is given by

F̂k,m+1 =


Ake

iω0(k)m∆t

iω0(k)−λk

(
eiω0(k)∆t−e−λk∆t

)
for k6K,

0 for k>K.

(3.38)

The dynamics of the forecast models in the imperfect filters is given by (3.12)-(3.14) with

λmk =d−µ1−2e−ikh+e−2ikh

h2
−c1−e−ikh

h
, (3.39)

and Fm
k ,R

m
k specified in §3.2 so that all the imperfect forecast models converge to the perfect model dynamics

when h→0,∆t→0.

The advection-diffusion dynamics (3.33) will be also used in section §4 to analyze filter performance
with sparse observations when the failure of the classical observability condition [2] for the discretized
PDE in (3.33) gives rise to subtle and important effects which affect the filter performance.
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Fig. 3.6: Filtering the turbulent advection-diffusion dynamics (3.33) with uniform damping and decaying mean through
plentiful observations (µ= 0,d= 0.01,µ= 0, N = 21,M = 21,P = 1). The three information measures discussed in §2.2.1 and
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filter performance is shown in figure 3.7.

3.5.1. Numerical examples

Here, similar to the analysis of [15, 60], we consider the problem of filtering the stochastically forced
advection-diffusion dynamics in (3.33) with uniform damping d 6= 0, µ= 0 and plentiful observations P = 1.
The uniform damping setup is the most challenging one. The present superensemble framework for assessing
the filter skill further reinforces the previous results obtained in the path-wise framework [15, 60]. Moreover,
the superensemble framework allows for assessing the statistical accuracy of the filtered signal via the relative
entropy measure which adds important new insight about the imperfect filtering of the turbulent spatially
extended dynamics.

The truth in the studied tests is generated by solving for 2N+1 = 41 Fourier modes (3.3) in the discretized
advection-diffusion dynamics of (3.33) with c= 1,d= 0.01, and ∆t= 50 = τcorr/2 where the decorrelation time
τcorr=1/d=100 is the same at each wavenumber. In this uniformly damped setting the amplification factors in
the perfect system satisfy |Fk|=e−d∆t=e1/2<1 implying strong asymptotic stability in the truth dynamics
and the perfect filter (3.11). We consider the turbulent signals generated from two distinct turbulent spectra:
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Fig. 3.7: Illustration of potential benefits of imperfect filter optimization. The information criterion M in (2.50) for filtering
the turbulent advection-diffusion dynamics (3.33) with uniform damping and decaying mean through plentiful obser-
vations (µ= 0,d= 0.01,µ= 0, N = 21,M = 21,P = 1); the individual information measures combining the information measures
are shown in figure 3.6. The perfect filter is given by (3.11) and the imperfect filters (3.12)-(3.14) introduce model error due to
time-space discretizations (see §3.2). The dashed black line corresponds to the signal estimated directly from the observations.

an equipartition spectrum Ek = 100 and a “−5/3” spectrum with Ek = 1000k−5/3. The observation noise
variance in Fourier domain is r̂o= ro/(2N+1)≈24 with ro= 1000. In total we consider six different imperfect
filters including three different temporal discretizations (3.12)-(3.14) and two different ways of choosing the
noise variance. Similar to the one-mode study in §3.4.3, the unoptimized filters use the same system noise
variance as in the perfect dynamics, i.e., σm =σ in (3.12)-(3.14), and the optimized filters have inflated model
noise variance, rm, according to the information criterion used previously in [60]; the optimal noise variance
in these filters corresponds to the minimum lack of information in terms of relative entropy (2.18) between
the statistics of the perfect filter error and the imperfect filter error in the absence of mean biases in the
filter estimates. For the filters using the backward Euler (3.13) and trapezoidal (3.14) schemes, the condition
|Fm
k |<1 is always satisfied for any discretization step ∆t. In the trapezoidal scheme, however, almost every

mode is marginally stable so that Fm
k '1 for most modes. For the unstable forward Euler scheme in (3.12),

the amplitude satisfies |Fm
k |>1 for every considered time step and it increases sharply with the resolution.

The performance of the imperfect filters (3.11)-(3.14) for recovering the turbulent advection-diffusion
dynamics of (3.33) with plentiful observations is summarized in figures 3.6 and 3.7. Figure 3.6 shows the
three information measures: the mode-averaged mutual information (3.20), the mode-averaged filter error
entropy (3.21), and the mode-averaged relative entropy (3.22) between the truth and the filter estimate as a
function of the observation noise variance. Figure 3.7 shows the information criterion (2.50) which combines
the individual information measures from figure 3.6; the three two columns in figure 3.7 illustrate the filter
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skill for unoptimized imperfect filters (left), imperfect filters with approximate Kalman gain (2.13) after the
simple noise inflation (middle), and for the imperfect filters with correct Kalman gain (2.11).

In summary, we make the following points in regard to filtering the spatially extended dynamics of the test
model (3.33) with plentiful observations:

• The ensemble error in the filter estimates can be computed via the ergodic averages on the attractor
of the augmented system (3.17); good agreement between the ensemble averages and time-averages
was verified by direct computations (see Table 3.1).

• When filtering with imperfect models the ‘minimum error variance’ filter with the smallest error
entropy does not necessarily provide optimal estimates in terms of mutual information/pattern
correlation or relative entropy (figure 3.7).

• The imperfect filters 3.12-3.14 generally fail to recover the variance of the truth signal except in the
practically unrealistic case when the correct Kalman gain (2.11) in the filters is implemented (see
figure 3.6). For correct forcing the mean of the truth is recovered accurately (see figure 4.11 for a
different case when incorrect forcing causes large biases in the mean).

• For long observation times the backward Euler and the trapezoidal filters gain significant skill after
the simple system noise inflation via the information optimization of the filter error, or if the correct
Kalman gain is used (figure 3.3, 3.4). Both these cases require the knowledge of the truth dynamics
but these results point to the potential gains in filter improvement when appropriate approximations
are implemented.

• The forward Euler filter trusts the observations and it is largely insensitive to the system noise
inflation (see figures 3.6, 3.7).

• The hierarchy of unoptimized filter skill:
– For short observation times, ∆tobs� τcorr, all imperfect have good pattern correlation/mutual

information (see figure 3.6) but perform worse that the direct observations in terms of filter
error entropy. All imperfect filters vastly misrepresent the variance of the truth signal in terms
of the relative entropy.

– For long observation times, ∆tobs∼ τcorr, all filters except the trapezoidal filter perform similarly
and slightly better than direct observations in terms of mutual information/pattern correlation;
the trapezoidal filter performs worse than the observations. In terms of error entropy and
relative entropy the imperfect filters perform worse than observations.

• The hierarchy of filter skill after the simple information optimization (knowledge of truth required)
– For short observation times ∆tobs� τcorr the conclusions are the same as above (see figure 3.6).
– For long observation times, ∆tobs∼ τcorr, all filters except the trapezoidal filter perform simi-

larly in terms of mutual information and slightly better than direct observations; the trapezoidal
filters performs worse than the observations. The information optimization improves the back-
ward Euler so that it is comparable to the perfect filter in terms of filter error entropy. The
trapezoidal and backward Euler vastly misrepresent the variance of the signal while the forward
Euler which trusts the observations has similar relative entropy to the observations.

• The hierarchy of imperfect filter skill with correct Kalman gain (knowledge of truth required)
– All filters beat the raw observations estimates in terms of mutual information and pattern

correlation (see figure 3.6).
– For short observation times, ∆tobs� τcorr, all imperfect filters beat the raw observations esti-

mates in terms of mutual information and filter error entropy with the hierarchy

perfect filter (3.11)> forward Euler (3.12)> trapezoidal (3.14)>backward Euler (3.13)>obs.,

The backward Euler also has good relative entropy.
– For long observation times, ∆tobs∼ τcorr, all filters perform similarly to the perfect filter and

raw observations in terms of mutual information.
– The backward Euler performs well and similar to the perfect filter in terms of the filter error

entropy. The hierarchy of filter skill is the same as for the short observation times.
– The trapezoidal filter has a high skill for estimating the variance of the truth in terms of the

relative entropy (see figures 3.6, 3.7).
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4. Ensemble filter error for Gaussian spatially extended systems: Sparse regular observa-
tions Robust and accurate filtering of turbulent systems with rough energy spectra near the mesh scale of
the discretized models and intermittent energy transfers from the unresolved scales is both challenging and
important in practical applications. In low-dimensional filtering problems the standard requirements on the
filtering algorithm involve bounds on the error mean and variance. However, the development of appropriate
filtering techniques in this high-dimensional setting with sparse observations requires a framework for esti-
mating the error in imperfect Kalman filtering which is capable of capturing the filter error and correlations
across multiple scales in the turbulent dynamics and unambiguously incorporates the effects due rare events
which might be difficult to capture in the path-wise framework. Here, we consider the superensemble error
in imperfect, reduced-order filtering techniques proposed earlier in [37, 60] for sparsely observed spatially
extended turbulent systems with sufficiently steep energy spectra, Ek∝k−β , β >1/2. In such dynamical
regimes the path-wise tests carried out in [37] indicated that these cheap reduced algorithms had high fil-
tering skill which was superior to the full filter skill in the presence of non-trivial mean state and resonant
forcing, especially when the classical observability conditions for the filtered dynamics were violated (e.g.,
[2, 60]). The present superensemble framework for assessing the filter error provides further unambiguous
evidence supporting those earlier results. Below, we first recapitulate the most important consequences of
sparse observations in physical space on the filtering problem in Fourier domain. Sparse observations are
commonplace in most geophysical applications and they induce correlations between Fourier modes, as de-
scribed in [59, 37, 60] and outlined below. We then outline the most important features of the reduced filters
and study their performance in the superensemble framework using information-theoretic skill measures de-
veloped in §2. In section §4.3.1 the filter performance is studied for sparsely observed stochastically forced
advection-diffusion dynamics (3.33) with decaying mean dynamics; the ultimate tests of reduced filter per-
formance are studied in §4.3.2 based for the sparsely observed turbulent dynamics of (3.33) with non-trivial
mean dynamics due to resonant forcing.

As shown earlier in [59, 37, 60], for sparse observations (3.15) on a grid with 2M+1 points (M<N) and
uncorrelated initial conditions the problem of filtering linear Gaussian dynamics of (3.1) in Fourier domain
splits into independent filtering problems for the P -dimensional state vectors

(
P = (2N+1)/(2M+1)

)

uuu{`}≡


û`

û`+(2M+1)q2
...

û`+(2M+1)qP

≡

ûk1
ûk2

...
ûkP

 , (4.1)

which contain all the Fourier modes from the aliasing set of wavenumber |`|6M given by

A(`) =
{
k : |k|6N, k= `+(2M+1)q, k,q∈Z

}
. (4.2)

We refer to the 2M+1 wavenumbers ` resolved by the observation grid as the primary wavenumbers and
note that these primary wavenumbers are not necessarily the most energetic modes in their aliasing sets
(see e.g., [37]). Transformation of the sparse observations (3.15) into the Fourier domain produces 2M+1
independent sets, v{`}, which scramble together the wavenumbers resolved by the discretized model and
contained in the aliasing sets A(`) (see, e.g., [59, 37, 60]); specifically, the aliased observations in Fourier
domain can be written as

v{`},m+1 =
∑

k∈A(`)

ûk(tm+1)+σo≡GP uuu{`}(tm+1)+σo,
〈
σ̂o⊗(σ̂o)∗

〉
= δ`−`′ r

o/(2M+1)≡ ro{`}, (4.3)

with the linear, rank-deficient observation operator GP :CN→C. Similar to the simple case discussed in §2.1,
the action of the discrete-time Kalman filter within each aliasing set A(`) is described by the augmented
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system[
uuu{`}m+1

ūuu{`}m+1|m+1

]
=

[
F{`} 0

Km
{`}m+1GPF{`} (I−Km

{`}m+1GP )Fm
{`}

][
uuu{`}m

ūuu{`}m|m

]
(4.4)

+

[
σσσ{`}m+1

Km
{`}m+1(GPσσσ{`}m+1 +σσσo{`}m+1)

]
+

[
FFF {`}m+1

(I−Km
{`}m+1GP )FFFm

{`}m+1 +Km
{`}m+1GPFFF {`}m+1

]
,

where uuu{`}, ūuu{`}m|m∈CP are defined by (4.1) and contain the aliasing Fourier modes in the set A(`). The

diagonal operators F{`}= diag
[
F̂k1 ,. ..,F̂kP

]
, Fm
{`}= diag

[
F̂m
k1
,. ..,F̂m

kP
], ki∈A(`), propagate the dynamics of

the Fourier modes within each aliasing set. The forward dynamics of the truth is driven by both the
deterministic forcing FFF {`} and white noise σσσ{`} given by

FFF {`} :=
[
F̂k1 ,. ..,F̂kP

]T
, σσσ{`} :=

[
σ̂k1 ,. ..,σ̂kP

]T
, ki∈A(`).

Analogous notation is adopted for the remaining vectors in the imperfect dynamics of the forecast model
involving FFFm

{`} and σσσm
{`}. Here and below, we assume for simplicity that the Fourier modes in the initial

data from disjoint aliasing sets are uncorrelated [59, 60].

Note that the filter estimates for the modes in each aliasing set are correlated due to the spatially sparse
observations even in the simple canonical linear test problem (3.1) where the true Fourier modes evolve
independently between the observations. Thus, for sparse observations with P >1, the covariance of the
augmented state Ym≡ (uuum ūuum|m)T has a block-diagonal structure with the individual blocks containing the
covariances of the aliasing modes which evolve according to

C{`}m+1 =F{`}mC{`}mF∗{`}m+R{`}m, (4.5)

where the operators in (4.5) are given by

F{`}m=

 F{`}m 0

Km
{`}m+1GPF{`}m (I−Km

{`}m+1GP )Fm
{`}m

, (4.6)

R{`}m=

 r{`} r{`}G∗PK
m∗
{`}m+1

Km
{`}m+1GP r{`} Km

{`}m+1

(
ro+GP r{`}G∗P

)
Km
{`}m+1
∗

, (4.7)

and the covariance has a natural block decomposition

C{`}m=

[
Cov

(
uuu{`}m,uuu{`}m

)
Cov

(
uuu{`}m,ūuu{`}m|m

)
Cov

(
ūuu{`}m|m,uuu{`}m

)
Cov

(
ūuu{`}m|m,ūuu{`}m|m

)]≡[C{`}(11)m C{`}(12)m

C∗{`}(12)m C{`}(22)m

]
. (4.8)

The block C{`}(11) of (4.8) denotes the covariance of the truth modes k∈A(`) in the aliasing set (4.2) of the
primary mode |`|6M , C{`}(22) is the covariance of the filter estimate, and C{`}(12) quantifies the correlations
between the truth uuu{`}m and the filter estimate ūuu{`}m|m within each disjoint aliasing set A(`). It will prove
crucial in the following analysis to account for both the covariance of the filter estimates C(22) and the
cross-correlations between the truth and the filter estimates C(12).

The block-diagonal structure of the full covariance with the blocks indexed by the primary modes |`|6M
allows for simplifications in the general expressions for the mutual information M (uuum,ūuum|m) in (2.26), the

entropy of the filter error S
(
uuum−ūuum|m

)
in (2.22), and the relative entropy projected onto the individual

modes,
∑
kP
(
π(uk,m),πf(ūk,m|m)

)
in (2.23); the specific formulas are as follows:
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• The mutual information (2.19) for the full sparsely observed system can be expressed through the
sum of the covariances within the disjoint aliasing sets A(`) as

M
(
uuu{`}m,ūuu{`}m|m

)
=− 1

2

∑
|`|6M

logdet
[
I−C−1

{`}(22)C∗{`}(12)C−1
{`}(11)C{`}(12)

]
, (4.9)

where |`|6M indexes the aliasing sets A(`) in (4.2) and the covariance blocks for each aliasing set
are defined in (4.8); for clarity we skipped the explicit time dependence on the right hand side of
(4.9).

• The entropy of the filter error (2.16) for the full sparsely observed system decomposes as

S
(
uuu{`}m−ūuu{`}m|m

)
= 1

2 (2N+1)
(
1+ln2π

)
+ 1

2

∑
|`|6M

lndet
[
C{`}(11)+C{`}(22)−2<e[C{`}(12)]

]
, (4.10)

with the covariance blocks defined in (4.8).
• The relative entropy (2.23) for the full sparsely observed system projected onto the individual Fourier

modes decomposes as

P
(
π(uuu{`}m),πf(ūuu{`}m|m)

)
= 1

2

∑
k∈A(`)
|`|6M

E
[
u∗k,m− ū∗k,m|m

](
C(22)k,m

)−1E
[
uk,m− ūk,m|m

]

+ 1
2

∑
k∈A(`)
|`|6M

[
tr
(
C(11)k,m

(
C(22)k,m

)−1
)
− logdet

(
C(11)k,m

(
C(22)k,m

)−1
)]
−(2N+1), (4.11)

where |`|6M indexes the aliasing sets A(`) in (4.2) and we again skipped the explicit time depen-
dence in the vectors of the aliased Fourier modes and their covariances on the right hand side of
(4.11) for clarity. Due to the possibility of correlations in the filter estimates of the Fourier modes
it will prove useful to consider projection of the relative entropy on to the individual Fourier modes
which is given by (3.22) considered earlier for plentiful observations.

We use these three information measures to quantify the filter performance through the information
criterion in (2.50).

4.1. Reduced filters for sparsely observed turbulent systems
The reduced-order techniques for real time filtering of sparsely observed turbulent systems, which are

briefly outlined in this section, were originally introduced in [37, 60] as cheap and robust filters for dynamical
regimes with sufficiently steep energy spectra. The advantages of these reduced algorithms stem from a vastly
improved computational efficiency, and from improved stability, observability and accuracy when estimating
the resolved modes û` in (4.1) with |`|6M 6N (see [37, 60] for details). These reduced algorithms judiciously
neglect covariances between the Fourier modes in different aliasing sets and retain the covariances only in
a small subset of the most energetic aliasing modes; these approximations guarantee observability on the
reduced subspace of the most energetic Fourier modes while providing reasonably consistent estimates for
the energy in the remaining modes in the truth signal. Further confirmation of the earlier findings of
[37, 60] based on the path-wise analysis is presented in §4.2.1, and §4.3 based on the information-theoretic
superensemble framework introduced in §2.

The filters considered here are (see [37, 60] for details):

FDKF: The Fourier Domain Kalman Filter (FDKF) is the standard Kalman filter applied to the disjoint
sets of aliasing Fourier modes A(`), |`|6M 6N . FDKF represents the perfect filter when filtering the linear
Gaussian dynamics of (3.1) with independent initial conditions.

SDAF and VSDAF: The Strongly Damped Approximate Filter in Fourier domain (SDAF) is motivated
by the following situation which often occurs in practice in dynamics with dominant selective damping and
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steep energy spectra. These filters introduce a judicious model error by assuming that there are two disjoint
sets of Fourier modes in the filtered signal with

• Moderate damping : |Fm
ki
|∼O(1), 16 i6P0, ki∈A(`),

• Strong damping : |Fm
ki
|�1, Po+16 i6P, ki∈A(`).

(4.12)

The above configuration implies strong damping in a subset of the aliased modes which always contains the
primary modes û`, |`|6M 6N . In this situation the dynamic covariance update in FDKF can be inaccurate
because in each aliasing set the cross-covariances between the first P0 modes and the strongly damped P −P0

modes involve multiplications by large and small numbers to get order one quantities. Thus, in order to
mitigate the potential numerical artifacts, SDAF assumes memoryless dynamics in the filter forecast model
for modes ûki with i>P0,

Fm
ki = 0 for Po+16 i6P, P0 >0, ki∈A(`), (4.13)

so that

ûmki,m+1|m=Fki,m+1 +σm
ki , i>P0, (4.14)

and the model covariance for the aliasing modes, ki∈A(`), within each aliasing set A(`), |`|6M 6N , takes
the form

Rm
{`}m+1|m=


[
Rm
{`},m+1|m

]
(1:P0,1:P0)

0

0 diag
[
rmkP0+1

,. ..,rmkP

]
, (4.15)

where the model noise, rmki ,i>P0, for the memoryless modes does not need to be updated dynamically [37, 60].
In contrast to SDAF, the Variance Strong Damping Approximate Filter (VSDAF) utilizes the memoryless
approximation only in the computations of the variance (4.15) while the mean is updated using the full
dynamics rather than (4.14) (see [37, 60] for details).

RFDKF: The approximation implemented in the Reduced Fourier Domain Kalman Filter (RFDKF) is
based on the idea that for sufficiently rapid decay in the turbulent spectrum of the true signal the primary
mode in each aliasing set A(`) contains the most energy so only this mode should be actively filtered. Thus,
RFDKF always trusts the dynamics for all the aliased modes ki∈A(`), 26 i6P , so that the Kalman gain
in (2.6) is approximated as

K̃m
{`}m+1 =

(
Km
k1,m+1,0,. ..,0

)T
, (4.16)

while the primary mode ûmk1 in each aliasing set is filtered using

ûmk1,m+1|m=Fm
k1 û

m
k1,m|m+Fm

k1,m+1 + σ̂m
k1,m+1, (4.17)

v̂k1,m+1 =GP uuu{`}m+1−G̃P uuum{`}m+1 +σσσo{`}m+1, (4.18)

where GP = (G G ... G), G̃P = (0 G ... G) and the observations of the primary mode ûk1 are estimated
from the sparse observations v̂{`} of the aliased modes uuu{`} in (4.1) based on the model dynamics for the
remaining aliasing modes

ûmki,m+1|m=Fm
ki û

m
ki,m|m−1 +Fm

ki,m+1 + σ̂m
ki,m+1, ki∈A(`), 26 i6P. (4.19)
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The augmented system for RFDKF is derived in Appendix B. Compared with SDAF, which uses the
memoryless dynamics on the unresolved modes but provides nontrivial estimates for their mean, the RFDKF
fully trusts the dynamics on the unresolved modes. Both VSDAF with P0 = 1 and RFDKF require detailed
Kalman filtering on the primary mode alone in each aliasing set and they both satisfy observability [37, 60].
Furthermore, VSDAF provides a natural blending between the SDAF and RFDKF filters by using the
explicit Kalman gain vector to weight the unresolved dynamics and the effect of sparse observations in the
state estimates.

4.2. Characteristics of filter error in the reduced filtering algorithms Here, we discuss various
aspects of filter error in the reduced algorithms presented in the previous section. Two important aspects
are (i) the effects mean dynamics on the filter error in the presence of resonant/non-resonant forcing and
violation of the observability condition [2, 60] and (ii) the filter-induced correlations in the estimates for the
Fourier modes within the same aliasing set. The framework developed in §2.1 allows for a semi-analytical
treatment of the above issues which are discussed below.

4.2.1. Filter bias due to incorrect mean dynamics and lack of observability for sparsely
observed turbulent systems

Here, we focus on the effect of errors in filtering which arise due to errors in the estimates of the mean
dynamics, i.e., we consider situations when

lim
m→∞

E[UUU{`}m ]≡E[uuu{`}m−ūuu{`}m|m] 6= 0, (4.20)

in the filtering problem (4.4). The importance of the detrimental effects of such biases on the filter perfor-
mance was recognized and discussed in [37, 60] where it was shown that the skill of FDKF (see §4.1) in terms
of the asymptotic RMS error (2.36) was significantly degraded in the presence of non-trivial mean dynamics
and resonant forcing. In particular, violation of the classical observability condition when filtering spatially
extended systems can grossly amplify the filter error, as noted earlier in [18] and discussed in [37, 60]. In
this section, we use the statistical superensemble framework in order to further elucidate these issues. In
particular, we show that time-dependent errors in the forcing of the filter forecast model induce significant
errors in the mean filter estimates, E[ UUU{`} ], which degrades the filter skill in terms of the relative entropy
(2.18) as well as the RMS error (2.36); on the other hand, the remaining information measures of filter error,
the entropy in (2.22) and the mutual information in (2.26), are insensitive to the biases on the mean filter
estimates. These issues are investigated further for the reduced filters in §4.3 and §4.3.2.

Recall that, according to the classical control theory literature (e.g., [2, 17]), the filtering problem

a)
duuu

dt
=Fuuu, b) vvv=Guuu, uuu∈CN , F ∈CN×N , G∈CM×N , M 6N, (4.21)

is observable if and only if the initial conditions, uuu0, in (4.21a) can be reconstructed from the observations
vvv(t), t∈ [0 t∗ ], t∗<∞ in (4.21b). It turns out (e.g., [2, 17]) that the system (4.21) is observable if the
following algebraic condition holds

det
[
GT ,FTGT ,(FT )2GT ,(FT )N−1GT

]
6= 0. (4.22)

The observability condition (4.22) often fails for wave-like systems with uniform damping and, as shown in
[37, 60] for the discretization (2.1) of the canonical system (3.1), the above condition reduces to∏

i<j

(Fki−Fkj ) 6= 0, (4.23)

so that the observability is violated for the discretized dynamics of (2.1) when

P̂ki− P̂kj = 2πiQ/∆tobs, Q∈Z+, (4.24)
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where ∆tobs denotes the time separation between the data assimilation cycles. Note that for the uniformly
damped advection-diffusion dynamics in (3.33) the observability fails simultaneously for all wave numbers
which poses a severe computational test problem [60].

In order to study the effects of deterministic forcing on the performance of the reduced filters discussed in
§4.1, consider the dynamics of the augmented system (2.6) with the error in the forcing of the filter forecast
model, i.e.,

Fm
{`}m=F{`}m+∆F{`}m, (4.25)

for each aliasing set A(`), |`|6M 6N . We assume that the deterministic forcing acts only on the primary
modes associated with the sparse observation grid in each aliasing set so that, given A(`) ={k1 = `,k2,. ..,kP },
we have

F{`}= (Fk1 ,0,. ..)
T , Fm

{`}= (Fm
k1 ,0,. ..)

T , ∆F{`}m= (∆Fk1 ,0,. ..)
T .

This formulation combined with the dynamics of the filtering problem in (4.4) leads to the following straight-
forward results:

FACT 1. The ensemble-averaged performance for the Kalman filtering of linear Gaussian dynamics with
model error described by (2.6) does not depend on the details of the deterministic forcing and it is only
sensitive to the forcing error ∆F{`}.

The mutual information (2.19) and filter error entropy (2.16) for Kalman filtering with linear Gaussian
dynamics do not depend on the mean dynamics by construction. The relative entropy in (2.23) and the ensem-
ble RMS error in (2.36) depend on the mean dynamics through the residual, UUU{`}m+1 =uuu{`}m+1−ūuu{`}m|m,
in (4.26) which can be written explicitly in each disjoint aliasing set A(`) as

UUU{`}m+1≡uuu{`}m+1−ūuu{`}m+1|m+1 = (1−Km
{`}m+1GGGP )

[
F{`}uuu{`}m−Fm

{`}ūuu{`}m|m
]

+(1−Km
{`}m+1GGGP )σσσ{`}m+1−Km

{`}m+1σσσ
o
{`}m+1 +(1−Km

{`}m+1GGGP )∆F{`}m+1, (4.26)

using the augmented system dynamics (2.6); clearly, the residual in (4.26) involves only the forcing er-
ror ∆F{`}m+1.

FACT 2. Given the evolution of the Kalman filter in (2.6) with the Gaussian joint probability density
p(uuu{`}m,ūuu{`}m|m) for the truth and the filter estimate in each disjoint aliasing set A(`), the mean filter error
Ep[UUU{`}m] depends on the error ∆F{`} in the deterministic forcing but not on the forcing itself.

This statement is obvious based on (4.26); the mean filter bias is given by

Ep
[
uuu{`}m+1−ūuu{`}m+1|m+1

]
= (1−Km

{`}m+1GGGP )
[
F{`}Ep

[
uuu{`}m

]
−Fm
{`}E

p
[
ūuu{`}m|m

]]
+(1−Km

{`}m+1GGGP )∆F{`}m+1, (4.27)

where the perfect and imperfect forward dynamics operators,, and the Kalman gain are deterministic, which
is independent of the forcings Fm

{`}m and F{`}m.

FACT 3. Finite-dimensional Kalman filtering in (2.6) with the reduced filters in §4.1 and correct forcing is
stable in the mean provided that the perfect filter is stable in the mean.

This sufficient condition for the stability of the imperfect filters in §4.1 can be derived as follows. Consider
first the evolution of the mean filter error in (4.27) with incorrect forcing (4.25) which can be rewritten in
terms of the initial values as

Ep
[
UUU{`}m

]
=Am

(
Fm{`}E

[
uuu{`}0

]
−(Fm

{`})
mE
[
ūuu{`}0|0

])
+

m∑
k=1

(
m+1−k∏
i=1

(1−Km
{`}m+1−iGGGP )F{`}

)
F−1
{`}∆Fm

{`}m.

(4.28)
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where Am=
∏m
i=1(1−Km

{`}iGGGP ). For correct forcing Fm
{`}m= 0 and the last term in (4.28) drops out. Fact 3

follows from the simple estimate of the first term in (4.28)∥∥∥Am(Fm{`}E[uuu{`}0]−(Fm
{`})

mE
[
ūuu{`}0|0

])∥∥∥
∞
6
∥∥∥AmFm{`}(E[uuu{`}0]−E[ūuu{`}0|0])∥∥∥∞

+2
∥∥∥AmFm{`}E[ūuu{`}0|0]∥∥∥∞, (4.29)

where we used the fact that ‖Fm
{`}‖∞6‖F{`}‖∞ for the reduced filters in §4.1. A sufficient condition for

the stability of the reduced filters with correct forcing, without imposing restrictions on F{`} and Fm
{`},

requires that ‖(1−Km
{`}∞GGGP )F{`}‖<1 and ‖(1−Km

{`}∞GGGP )
(
F{`}−Fm

{`}
)
‖<1; this condition can be weakened

in particular cases of the reduced filters discussed in §4.1 but we avoid the unnecessary technicalities here.

FACT 4. If the Kalman filter in (2.6) with correct forcing is stable, its asymptotic skill in terms of the
information measures of §2.2.1 does not depend on the mean dynamics.

The mutual information (2.19), entropy (2.16), and the pattern correlation (2.32) for Kalman filtering
with linear Gaussian dynamics do not depend on the mean dynamics by construction. The asymptotic RMS
error in (2.30) is also independent of the mean dynamics, since for stable Kalman filter in (2.6) (see Fact 3)
we have

Ep
[
UUU{`}∞

]
= lim
m→∞

1

m

m∑
k=1

(
m+1−k∏
i=1

(1−Km
{`}m+1−iGGGP )F{`}

)
F−1
{`}∆Fm

{`}m. (4.30)

It is clear by inspecting (4.30) that for correct forcing, ∆Fm
{`}= 0, the asymptotic mean filter error is zero

so that the asymptotic relative entropy in (2.23) and the RMS error in (2.30) are independent of the mean
dynamics of the augmented system (4.4) as claimed. For incorrect forcing, i.e., when ∆Fm

{`}m 6= 0, the issue

of the filter error sensitivity to the mean dynamics depends on the limit in (4.30).

The above facts indicate that for correct forcing the filter error in the mean decays asymptotically to
zero for both observable and unobservable times. However, the decay rates may vary substantially depending
on the observation time and the filtering algorithm which determines F{`} and Km

{`} in (4.27). For incorrect

forcing the asymptotic filter error is given by (4.30) whose asymptotic behavior depends on the nature of the
forcing error and on the observability of the filtering problem in (4.4). As discussed in [37, 60], the problem
of filtering the sparsely observed dynamics in (3.33) with the constant advection speed c and 2M+1 observed
nodes is unobservable when

∆tobs=
2πQ

c(2M+1)
, Q∈Z+. (4.31)

On the other hand, the observability of (3.33) is always satisfied in the selective damping case µ 6= 0. The
effects non-observability when filtering (3.33) particularly important when filtering in the presence of resonant
forcing in the truth signal in (3.37) so that the ω0(k) =ωk = ck for all |k|6M in (3.38). In figure 4.1 we
illustrate these issues for filtering the sparsely observed advection-diffusion dynamics (3.33) in the uniform
damping case, µ= 0, d 6= 0 with FDKF (cf. §4.1) for both observable and unobservable assimilation times
∆tobs. The two columns in figure 4.1 correspond to filtering with correct forcing (left) and incorrect forcing
(right) with time-dependent error in the forcing amplitude (cf. (3.38))

∆Fm
{1}m=


∆Ake

ick(m+1)∆t

d

(
1−e−d∆t

)
for k= 1,

0 for k>1.

(4.32)

For correct forcing the mean residual decays to zero, as predicted in the considerations above and summarized
in Facts 1-4, but the rate of decay of the mean dynamics strongly depends on the observability of the system.
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Fig. 4.1: Evolution of the mean dynamics bias 〈U{1}m〉= 〈ûuu{1}m− ¯̂uuu{1}m|m〉 between the true aliasing Fourier modes and their
FDKF estimates for the aliasing set A(1); the initial conditions are not the same in the different insets. (Left) The evolution
of the mean bias for correct resonant forcing F in (3.38) with ω0(k) = ck for non-observable assimilation times ∆tobs (red) and
observable times (blue); see (4.22) for the definition of observability. The mean bias decays to zero in agreement with (4.28)
for for two different energy spectra. (Right) The evolution of the mean bias for incorrect resonant forcing with non-observable
assimilation time for different incorrect amplitudes Am of the time-periodic forcing Fm

{1}; note that small errors in the forcing

lead to significant errors in the estimates for the mean dynamics.

For time-dependent error in the forcing and unobservable times satisfying (4.31) the mean residual does not
vanish and may cause substantial contribution to the filter error from the mean, as shown in figure 4.1 for
Am 6=A for two different energy spectra. We also note without providing detailed numerical evidence that
when the forcing error is independent of time, the asymptotic mean (4.30) tends to zero in a wide variety of
cases.

4.2.2. Correlated filter estimates for modes within the same aliasing set
Filtering spatially extended turbulent systems with reduced filters and sparse observations can lead to

artificial correlations in the filter estimates. Depending on applications this artifact might be either irrelevant
or it may lead to spurious biases in the filter estimates. For example, these correlations are irrelevant for the
skill of the cheap reduced algorithms with improved observability, introduced in [37, 60] and described in
§4.1, which were designed for recovering the primary modes |`|6M in each aliasing set A(`) (4.2) in regimes
with steep energy spectra and rapidly decorrelating aliasing modes. On the other hand, such correlations
need to be avoided in situations when robust estimates of the aliasing modes are required.

Below we show that the artificial correlations in imperfect filtering algorithms arise through the combined
effect of the model reduction and Kalman filtering which results in the same information flow into the
unobserved modes and degeneracy of the covariance matrix for the filter estimates C(22) in (4.5). The
analytical treatment of this issue seems difficult. However, the mechanism for the occurrence of the unwanted
correlations between the aliasing modes can be intuitively understood by considering the Kalman gain in the
reduced algorithms of §4.1 in dynamical regimes where the design assumptions for these filters are deliberately
and explicitly violated. Specifically, we consider the extreme case of filtering the dynamics with equipartition
energy spectrum with SDAF and RFDKF. Recall that the assumption of memoryless dynamics in SDAF
for the unresolved modes ûki , with i>P0 in each aliasing set ki∈A(`) implies that both the forecast model
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Fig. 4.2: Artificial correlations in the reduced filter estimates based on sparse observations (indicated by e2,e3∼0) which
cause the lack of information for recovery of the aliased modes according to the relative entropy measure (2.23). Time evolution
of the eigenvalues of the covariance C{1}22 in (4.5) associated with the filter estimates for the aliasing modes in A(1) in the
turbulent advection-diffusion dynamics (3.33) with decaying mean for different energy spectra with either uniform or selective
damping. The first eigenvalue is aligned with the primary mode in A(1). The advection diffusion dynamics in (3.33) computed
with N=61,M=20,P=3,c= 1.

covariance Rm
m+1|m and the posterior covariance Rm

m+1|m+1 have a diagonal structure for the modes with

i>P0 (cf. (4.15)). Thus, in the simple configuration with P = 3 and P0 = 1 and the observation operator
GP = (1 1 1) the model covariance for the primary mode `=k1 and the aliasing modes k2,k3 is given by

R{k1}=

Rk1 0 0
0 r̂k2 0
0 0 r̂k3

 ,
where the variance Rk1 of the primary mode is updated via the Kalman filter and the time-independent
model noise variances, r̂k2 , r̂k3 , are tuned to the equilibrium energy of (3.33) via r̂ki = σ̂2

ki
/(2<e[λki ]), i= 2,3.

Then, the Kalman gains (2.11) for SDAF and RFDKF (see §4.1) become, respectively,

Ksdaf
{k1}=R{k1}G

∗
P

(
GPR{k1}G

∗
P + r̂o

)−1

=

Rk1/RΣ

r̂k2/RΣ

r̂k3/RΣ

 , Krfdkf
{k1} =

Rk1/RΣ

0
0

 , (4.33)

where RΣ =Rk1 + r̂k2 + r̂k3 + r̂o. When filtering the spatially extended system in (3.33) with uniform damp-
ing, d 6= 0, µ= 0, and the equipartition energy spectrum, r̂k1=r̂k2=r̂k3 = r̂, the Kalman gains for SDAF and
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RFDKF become

Ksdaf =

Rk1/RΣ

r̂/RΣ

r̂/RΣ

, Krfdkf =

Rk1/RΣ

0
0

 , (4.34)

so that the information flow into the unresolved aliasing modes is either the same or zero, suggesting corre-
lations in the filter estimates for the unresolved aliasing modes.

Further evidence of correlations in the unresolved aliasing modes is shown in figure 4.2 in more compli-
cated configurations based on numerical experiments; these examples are computed using the reduced filters
for different energy spectra in the sparsely observed truth dynamics (3.33) with either the uniform or selec-
tive damping, and P=3 Fourier modes in a single aliasing set A(1). The presence of spurious correlations
in the reduced filter estimates can be observed by computing the eigenvalues of the covariance matrix, C(22),
of the filter estimates in (4.5). It is important to stress here that the use of the reduced filters from §4.1 for
filtering the dynamics in (3.33) with equipartition energy spectrum is technically unjustified, since for Ek = 1
the conditions (4.12) allowing for derivation of the reduced filters are violated; nevertheless, these examples
serve as a useful illustration of artifacts which might occur in reduced-order Kalman filtering of spatially
extended systems based on sparse observations and imperfect forecast models. The tough dynamical regimes
imposed on the reduced filters help reveal important differences between skill of the reduced filters outlined in
§4.1 for recovering the statistics of the unresolved modes. Regardless of the energy spectrum in the dynamics
of (3.33), there are strong correlations in the RFDKF estimates for the unresolved aliasing modes, i.e., the
only non-zero eigenvalue is aligned with the primary mode and rank(C(22)) = 1. Unsurprisingly, when filter-
ing with SDAF in the extreme case of uniform damping, d 6= 0,µ= 0, the correlations in the filter estimates
for the unresolved aliasing modes are also significant. However, when filtering the dynamics in (3.33) with
selective damping, µ 6= 0, SDAF performs comparably to FDKF even for the equipartition energy spectrum
(second row in figure 4.2). The reduced filters, SDAF and RFDKF, were designed for recovering only the
primary modes in the aliasing sets in dynamical regimes with steep energy spectra. Therefore, the overall
good performance of SDAF, even in the dynamical regimes for which it was not designed, is particularly
encouraging.

The main technical drawback arising from the presence of such correlations is that the relative entropy
in (2.23) is undefined on the marginal densities of for the reduced filter estimates within each aliasing set;
this is the main reason for projecting the relative entropy measure on the primary mode in the filter skill
estimates. An alternative strategy is to use the Hellinger distance (2.40) between two probability densities
which is well defined and bounded even in such cases; however the drawback here is that, in contrast to the
relative entropy, the Hellinger distance does not have the information-theoretic interpretation.

4.3. Filtering sparsely observed advection-diffusion equation
Here, similar to the case with plentiful observations studied in §3.5.1 we consider discrete-time filtering

of the stochastically forced advection-diffusion dynamics (3.33); the advection-diffusion dynamics represents
one particular but rich example of the canonical dynamics in (3.1). In contrast to the case considered in
§3.5.1, we focus on a much tougher case of filtering the turbulent spatially extended dynamics of (3.33) with
sparse observations. As already indicated in §4 and [59, 37, 60], the problem of filtering the 2N+1 Fourier
modes of the spatially extended system (3.33) with uncorrelated initial conditions and 2M+1 spatially sparse
observations (4.3) splits into M+1 independent filtering problems for the P -dimensional sets of aliasing
Fourier modes, such that (2M+1)P = 2N+1.

The truth dynamics in the examples studied in this section is generated by solving for the 2N+1 = 123
Fourier modes in (3.3) associated with the advection-diffusion dynamics (3.33) in two distinct dynamical
regimes: (i) uniform damping with d 6= 0,µ= 0, and (ii) selective damping with d= 0, µ 6= 0; the default
parameter values are c= 1,d= 0.01, µ= 0.01 so that even in the uniformly damped setting the amplification
factors in the perfect system satisfy |Fk|=e−d∆t<1 for a wide range of observation times, implying strong
asymptotic stability. The truth signal is observed at every third node of the model grid, implying M=20
observation nodes and P=3 Fourier modes in each aliasing set A(`), associated with the 2M+1=41 primary
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wavenumbers |`|6M resolved by the observation grid. Similar to the analysis of [37, 60] and to the plentiful
observations case studied in §3.5.1, two different turbulent spectra are considered: (i) the equipartition
energy spectrum, Ek∝1, and (ii) the steep energy spectrum, Ek∝k−5/3; these spectra were chosen in order
to highlight properties of the reduced filters in a wide range of dynamical scenarios.

The error in filtering the sparsely observed dynamics of the canonical turbulent system (3.33) is quantified
using the information measures introduced in §2.2.1 in the form (4.9), (4.10), (4.11) which is more suitable
for configurations with possible correlations in the filter estimates (see §4.2.2).

4.3.1. Filter performance for estimating the turbulent advection-diffusion dynamics via
reduced filters based on perfect dynamics

Here, we utilize the superensemble framework introduced in §2 in order to examine the skill of FDKF and
the reduced filtering algorithms, introduced in [37, 60]) and outlined in §4.1. First, the superensemble filter
error is examined in a single aliasing set of the turbulent advection-diffusion dynamics (3.33). Subsequently,
the performance of FDKF and the reduced strategies is discussed for filtering the full spatially extended
dynamics in (3.33) when contributions to the filter error from all the aliasing sets, A(`), |`|6M<N , play a
role. The analysis of this section involve dynamics with correct forcing in the filters; consequently, the effects
of the biases in the estimates for the mean dynamics discussed in §4.2.1 are not present in this configuration;
the effects biases in the mean dynamics induced by uncertainties in the forcing terms of the imperfect filters
are discussed in §4.3.2.

Reduced filter skill for different energy spectra
In figures 4.3 - 4.6 we compare the filter error in terms of the individual information measures (4.9),
(4.10), (4.11) or based on the information criterion M in (2.50); two different turbulent spectra, Ek = 1
and Ek∝k−5/3, in the dynamics of (3.33) with either the uniform damping or the selective damping are
examined. In both cases we compare the filter error for the aliasing set of the large scale wavenumber
A(1)={1−40 42} which contains two aliasing modes with comparable spatial scales; for steeper energy spec-
tra, e.g., k−5/3, the aliasing modes contain little energy. The results are qualitatively similar for other
aliasing sets and we do not show them here. In the tough configuration with uniform damping and equipar-
tition energy spectrum the reduced filters have significantly worse skill than FDKF; however, even the worst
performing reduced filter, RFDKF, beats the least-squares estimates obtained from the raw sparse data
for sufficiently large observation noise. For the steep energy spectrum, Ek∝k−5/3 all the examined filters
perform very similarly for both the uniform damping (figures 4.3, 4.4) and the selective damping (figures
4.5, 4.6) which further reinforces the path-wise results of [37, 60] and validates the design principles for these
filters. For the equipartition energy spectrum SDAF and VSDAF are essentially as good as the perfect filter
while RFDKF performs poorly especially for long observation times.

Filtering skill for increasingly sparse observations
In figures 4.7 and 4.8 we illustrate the dependence of the filter skill on the sparseness of the observation
grid which is associated with the number, P , of Fourier modes in each aliasing set A(`) of the primary
modes |`|6M<N resolved by the observations. Here, we consider the aliasing set of the large-scale primary
mode, A(1), in the tough dynamical regime of uniformly damped (µ= 0,d 6= 0) advection diffusion dynamics
in (3.33) in the absence of deterministic forcing and identical decorrelation time, τcorr = 1/d, for all modes;
the effects of filter error due the non-decaying mean dynamics are considered in §4.3.2.

For the equipartition spectrum, Ek = 1, the overall filter skill deteriorates with the number of aliasing
modes; this is not surprising since all modes in the aliasing set have the same energy and decorrelation time
and filtering through the sparse observations of the primary modes is bound to be affected by the number
of the unresolved aliased modes. Recall that the reduced filters outlined in §4.1 and introduced in [37] were
designed for filtering turbulent dynamics with steep energy spectra. However, even in this tough regime with
equipartition spectrum SDAF and VSDAF perform comparably to the perfect filter for large observation
times time ∆tobs∼ τcorr while RFDKF performs well only in terms of the filter error entropy. For sufficiently
short observation times ∆tobs� τcorr all imperfect filters outperform the least-squares estimates obtained
from the raw sparse observations but the skill of RFDKF deteriorates the fastest with the increasing number
of aliasing modes P .
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Fig. 4.3: Filtering the turbulent advection-diffusion dynamics (3.33) with uniform damping and decaying mean through
sparse observations in the aliasing set A(1)A(1)A(1) (parameters d= 0.01,µ= 0,c= 1, N = 61,M = 20,P = 3). The three information
measures discussed in §2.2.1 are shown as a function of the observation noise, r̂o for two different data assimilation times,
∆tobs, and for two energy spectra Ek = 1, Ek∼k−5/3; the relative entropy measure is projected on the primary mode for
reasons discussed in §4.2.2 and in figure 4.2. The reduced filters are described in §4.1. The dotted black lines correspond to
least-squares estimates based on the raw sparse observations and the dashed black lines corresponds to estimates from full
observations with the same observation noise levels. See figure 4.4 for the information criterion M in (2.50) corresponding to
this example.

In the steep energy regime Ek∝k−5/3 all imperfect filters are effectively indistinguishable from the
perfect filter for long observation times, i.e., ∆tobs∼ τcorr. The skill of all filters does not vary significantly
with increasing sparsity; the lack of skill sensitivity to the number of aliasing modes is a direct consequence of
the steep energy spectrum with little energy in the aliasing modes. For short observation times ∆tobs� τcorr
all the imperfect, reduced filters perform similarly and worse than FDKF; however, all the reduced filters
beat the least-squares estimates obtained from the raw sparse observations.

Ensemble filter error for the full spatially extended advection-diffusion dynamics
Finally, we utilize the superensemble framework and the information measures of filter sill introduced in
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Fig. 4.4: The filter skill according to the information criterion M in (2.50) for the reduced filters (see §4.1) applied to
weakly damped turbulent advection-diffusion dynamics (3.33) with uniform damping and decaying mean through sparse
observations in the aliasing set A(1)A(1)A(1) (d= 0.01,µ= 0,c= 1, N = 61,M = 20,P = 3). The dotted black lines correspond to least-
squares estimates based on the raw sparse observations and the dashed black lines corresponds to estimates from full observations
with the same observation noise levels. Figure 4.3 shows the individual information measures combined in (2.50).

§2.2 to examine the skill of the reduced filters algorithms for filtering the full sparsely observed turbulent
dynamics of the stochastically forced advection-diffusion system (3.33). Here, the contributions from all the
aliasing sets to filter error are taken into account when assessing the filter performance. The information
measures of filter skill introduced in §2.2.1 are particularly useful and revealing in this complex filtering
setting where the sparse observations induce correlations between multiple spatial scales of the turbulent
dynamics.

Figures 4.9 and 4.10 illustrate the performance of the reduced filters for estimating the full turbulent
advection-diffusion dynamics of (3.33) for two different energy spectra as a function of the observation noise
amplitude. In this setting SDAF and VSDAF perform well in dynamical regimes ranging from equipartition
to steep energy spectra and greatly outperform the least-squares estimates obtained form the raw sparse
observations; recall again that the reduced filters were originally designed to cope with steep energy spectra
[37]. RFDKF performs well only in the steep energy spectrum regime for which it was originally designed
(see §4.1 and [37, 60]).

In summary, we make the following points regarding the skill of the reduced filtering algorithms for estimating
the turbulent dynamics with no significant mean dynamics component:

• When filtering the spatially extended dynamics with imperfect filters the skill based on the RMS error
(2.30) or the entropy of the filter error (2.16) is an insufficient measure of the filter performance; filters
with comparable error entropy/RMS error can have very different pattern correlation properties
(figures 4.3 - 4.6). The results for the RMS error/ filter error entropy agree with those of [37].
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Fig. 4.5: Filtering the turbulent advection-diffusion dynamics (3.33) with selective damping and decaying mean through
sparse observations in the aliasing set A(1)A(1)A(1) (parameters d= 0,µ= 0.01,c= 1, N = 61,M = 20,P = 3); the unoptimized re-
duced filters used for state estimation are described in §4.1. The three information measures discussed in §2.2.1 are shown
as a function of the observation noise, r̂o for two different data assimilation times, ∆tobs, and for two energy spectra Ek = 1
(top row), and Ek∼k−5/3 (bottom row); the relative entropy measure is projected on the primary mode for reasons discussed
in §4.2.2 and illustrated in figure 4.2. The black dotted lines correspond to least-squares estimates based on the raw sparse
observations and the dashed black lines corresponds to estimates from full observations with the same observation noise levels.
See figure 4.6 for the information criterion M in (2.50) corresponding to this example.

• Performance of the reduced filters for estimating sparsely observed turbulent dynamics (3.33) with
steep energy spectra and decaying mean:

– For selective damping FDKF and the reduced filters, SDAF, VSDAF and RFDKF are prac-
tically indistinguishable in terms of the information measures introduced in §2.2. These sta-
tistical, superensemble-based results further validate the path-wise results of [37, 60] and the
design principles for constructing these reduced filters.

– For uniform damping the reduced filters are comparable to FDKF for filtering aliasing sets of
the primary modes with sufficiently short decorrelation times relative to the observation time
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Fig. 4.6: The filter skill according to the information criterion M in (2.50) for the reduced filters (see §4.1) applied to weakly
damped turbulent advection-diffusion dynamics (3.33) with selective damping and decaying mean through sparse
observations in the aliasing set A(1)A(1)A(1) (d= 0,µ= 0.01,c= 1, N = 61,M = 20,P = 3). The black dotted lines correspond to
least-squares estimates based on the raw sparse observations and the dashed black lines corresponds to estimates from full
observations with the same observation noise levels. Figure 4.5 shows the individual information measures combined in (2.50).

∆tobs (see figure 4.3); these cheap reduced filters have a worse skill than FDKF on the aliasing
sets of primary modes with long decorrelation times ∆tobs∼ τcorr.

– The skill of all considered filters does not vary significantly with increasing sparsity of the ob-
servations P ; the lack of skill sensitivity to the number of aliasing modes is a direct consequence
of the steep energy spectrum with little energy in the aliasing modes.

• Performance of the reduced filters for estimating sparsely observed turbulent dynamics (3.33) with
decaying mean in the difficult setting with equipartition energy spectrum:

– For selective damping the reduced filters, SDAF and VSDAF, are essentially as good as the
perfect filter while RFDKF performs poorly especially for long observation times; these are
very positive results since none of the reduced filters were designed to cope with rough and
shallow energy spectra, like the equipartition spectrum.

– For uniform damping all the reduced filters have good and comparable skill for aliasing sets
with short decorrelation times ∆tobs� τcorr (figure 4.3); for aliasing sets with long decorre-
lation times ∆tobs� τcorr SDAF and VSDAF approach the skill of FDKF while RFDKF has
significantly worse mutual information/pattern correlation and relative entropy (see figures 4.3,
4.5, 4.7).

– Unsurprisingly, the skill of all filters deteriorates with the number P of the aliasing modes
in the aliasing set. The skill of RFDKF deteriorates at the fastest rate, especially for long
observation times (∆to∼ τcorr). SDAF performs almost as well as FDKF for any P especially
for long observation times (see figures 4.7, 4.8).
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Fig. 4.7: Dependence of filter skill on sparsity of observations P in filtering the turbulent advection-diffusion
dynamics. The turbulent advection-diffusion dynamics (3.33) with uniform damping and decaying mean is filtered through
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(bottom row); the relative entropy measure is projected on the primary mode for reasons discussed in §4.2.2 and illustrated
in figure 4.2. The black dotted lines correspond to least-squares estimates based on the raw sparse observations and the
dashed black lines corresponds to estimates from full observations with the same observation noise levels. See figure 4.8 for the
information criterion M in (2.50) corresponding to this example which is used to rank the filters.

– For sufficiently large observation noise filtering turbulent dynamics through sparse observations
even with the poorest performing reduced filter, RFDKF, generally outperforms the estimates
obtained by the least squares estimates obtained from the raw sparse observations (dotted lines
in figures (see figures 4.3, 4.5, 4.7)).

• The superensemble estimates of performance of FDKF and the reduced filters based on the infor-
mation theoretic measures further reinforce the path-wise estimates of [37, 60].
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4.3.2. Filter performance for estimating the turbulent advection-diffusion dynamics via
reduced filters with model error

Here, we revisit and verify the earlier path-wise results of [37] associated with filter skill in the presence
of non-trivial mean dynamics in the truth signal using the information-theoretic framework introduced in
§2.2. One important feature associated with filtering turbulent signals with non-trivial mean dynamics
is that for some observations times, ∆tobs, filtering with the perfect model might be non-observable (see
§4.2.1 and [37, 60]). This effect is particularly severe for the advection-diffusion dynamics in (3.33) where
the observability condition (4.22) fails simultaneously for all wave numbers when ∆tobs satisfies (4.31) (see
§4.2.1 and [37, 60]). Moreover, when filtering the turbulent dynamics (3.33) with weak uniform damping
(µ= 0,d�1) the observation times ∆tobs might be below the decorrelation time τcorr = 1/d of all spatial
wavenumbers. These features combine to make this problem an extremely difficult testbed for filtering
sparsely observed turbulent systems especially with equipartition energy spectrum and resonant forcing,
Fm, with with ω0(k) = ck in (3.38) which often leads to the emergence of large-scale coherent structures in
the turbulent field. Some aspects related to this issue were already discussed in §4.2.1 in the superensemble
framework and in [37, 60] in the path-wise framework where it was shown that incorrect forcing in the filters
can lead to large biases in the estimates for the mean dynamics.

On the other hand, the observability condition (4.22) which is crucial for filter accuracy is always satisfied
for the canonical model (3.33) in the presence of selective damping µ 6= 0 when the dissipation, γ̂k, in (3.33)
strictly increases with |k| so that the determinant in (4.22) is always non-zero. This observation, pointed
out in [37, 60], provides one possible computational filtering strategy that avoids the failure of observability
when filtering the uniformly damped dynamics in (3.33); this strategy relies on filtering the uniformly
damped turbulent truth signal generated from (3.33) with the uniform damping γ̂k =d using modified forecast
model in the filter with additional selective damping, i.e., γ̃k =d+ µ̃k2, 0<µ̃�1 in the forward operator
Fm = exp(−(γ̃k− P̂k)∆t) of the discrete time filter forecast, similar to that in (3.38). This strategy was
already analyzed within the path-wise framework in [37] where it was shown that the performance of this
approach depends on the signal-to-noise ratio of the true mean signal being filtered; those earlier results can
be summarized as follows:

• Small signal-to-noise ratio (e.g., with decaying mean or non-resonant periodic forcing). In this
regime, the use of modified reduced filters (see §4.1) with additional weak selective damping leads
to some improvements in estimating the dynamics although the improvement in filter skill is not
significant. FDKF was shown to be the best method for equipartition spectrum while SDAF had
a significant but worse skill. For smoother spectra all the cheap reduced filters had comparable
performance to FDKF since the signal-to-noise ratio for smoother spectrum is slightly larger than
the one for equipartition spectrum, especially in the high wave numbers.• Large signal-to-noise ratio (e.g., dynamics with resonant periodic forcing) when the errors in the filter
forcing term induce significant errors in the mean dynamics, as shown in §4.2.1. In this situation,
SDAF and RFDKF produced the best filter performance since they both satisfy the observability
condition and do not introduce model errors into the dynamics of the primary (observed) modes
[37, 60]. The modified FDKF filter with the additional selective damping term, γ̃k, fails even when
the observability condition (4.22) is reinstalled; this is because the model errors introduced through
the additional selective damping are too large in the presence of large amplitude coherent events
in the truth dynamics. The unmodified FDKF algorithm fails completely in this configuration and
forcing errors since the observability condition (4.22) is practically violated.

Below, we consider the same filtering setup and strategy as the one described in [37, 60] but we assess the
performance of the reduced filters with model error within the information-theoretic framework. By analogy
to the setup used in [37, 60], we assume no discretization errors in the reduced filters but the model error
is purposefully introduced by adding a selective damping through a diffusive coefficient µ̃= 0.01 in the filter
forecast model (3.38) so that γ̃k =d+ µ̃k2 in the discrete-time forecast dynamics Fm = exp(−(γ̃k− P̂k)∆t).
The idea of modifying the perfect forward dynamics is motivated by the aforementioned fact that the
dynamics generated by Fm with weak selective damping in γ̃k leads to a filtering problem which is always
observable. However, as already shown in [37, 60] within the path-wise framework and confirmed below in
the superensemble framework, this strategy leads to large biases in the estimates for the mean dynamics and
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Fig. 4.11: Filtering the aliasing modes in A(17) in the turbulent advection-diffusion dynamics (3.33) with
equipartition energy spectrum, Ek = 1, non-zero mean, resonant forcing in (3.38) and uniform damping
(d= 0.01,µ= 0,c= 1) through sparse observations (P = 3,M = 20,N = 61); the reduced filters used for estimating the dy-
namics are described in §4.1. The three information measures discussed in §2.2.1 are shown as a function of the observation
noise, r̂o in cases when the dynamics (3.33) is observable (left column) and non-observable (right column); see (4.22) for the
observability condition. The top row shows results for correct forcing in the filters and the bottom row corresponds to incorrect
forcing with error ∆F given in (4.32); the relative entropy measure is projected on the primary mode for reasons discussed
in §4.2.2 and illustrated in figure 4.2. The black dotted lines correspond to least-squares estimates based on the raw sparse
observations and the dashed black lines corresponds to estimates from full observations with the same observation noise levels.
See figure 4.12 for the information criterion M in (2.50) corresponding to this example.

is generally not suitable for improving the performance of imperfect filters.

Performance of reduced filters in the presence of errors in the resonant forcing

Here, we consider filtering the sparsely observed turbulent dynamics of (3.33) with resonant forcing Fm, in
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Fig. 4.12: The filter skill according to the information criterion M in (2.50) for filtering the aliasing modes in
A(17) in the turbulent advection-diffusion dynamics (3.33) with equipartition energy spectrum, Ek = 1, non-zero
mean dynamics, resonant forcing (3.38) and uniform damping (d= 0.01,µ= 0,c= 1) through sparse observations
(P = 3,M = 20,N = 61); the reduced filters used for state estimation are described in §4.1. The cases of observable dynamics
(left column) and non-observable dynamics (right column) are shown for both correct forcing (top row) and incorrect forcing
(bottom row). The black dotted lines correspond to least-squares estimates based on the raw sparse observations and the
dashed black lines corresponds to estimates from full observations with the same observation noise levels. Figure 4.9 shows the
individual information measures combined in (2.50).

(3.38) with ω0(k) = ck using the reduced filters outlined in §4.1. The reduced filters are based on the perfect
dynamics but use either the correct resonant forcing or introduce time-dependent forcing errors ∆Fm via
(4.32), similar to the setup discussed in §4.2.1. The filter skill is assessed via the information measures
outlined in §2.2.1. Figures 4.11 and 4.12 illustrate the interplay between the non-observability (4.22) and
the errors in the resonant periodic forcing used by FDKF and the reduced filters. Figure 4.11 shows the
individual information measures for the filter estimates within the aliasing set A(17); the filter error entropy
and the mutual information are averaged over the aliasing modes while the relative entropy is projected
onto the primary mode for reasons discussed in §4.2.2. The effects of the mean biases in the filter estimates
of FDKF and RFDKF are evident in the relative entropy measure which, for non-observable assimilation
times ∆tobs (see (4.31)) and in the presence of the forcing errors (bottom right), is dominated by the signal
component sigP∞ (see §2.2.1 and (2.24) (2.25) for definitions of the signal and dispersion in the relative
entropy). Note that the deterioration of the skill of FDKF due to the mean biases leaves the error entropy
and mutual information for FDKF largely unaffected. While RFDKF has no skill for both the correct and
incorrect resonant forcing and non-observable times, the performance of FDKF is significantly reduced by
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Fig. 4.13: Viscosity-modified filtering of the aliasing modes in A(17) in the turbulent advection-diffusion dy-
namics (3.33) with equipartition energy spectrum, Ek = 1, non-zero mean, resonant forcing (3.38) and uniform
damping (d= 0.01,µ= 0,c= 1) through sparse observations (P = 3,M = 20,N = 61); the reduced filters used for state esti-
mation are described in §4.1. The three information measures discussed in §2.2.1 are shown as a function of the observation
noise, r̂o in cases when the dynamics (3.33) is observable (left column) and non-observable (right column); see (4.22) for the
observability condition. The top row shows results for correct forcing in the filters and the bottom row corresponds to incorrect
forcing with error ∆F given in (4.32); the relative entropy measure is projected on the primary mode for reasons discussed
in §4.2.2 and illustrated in figure 4.2. The black dotted lines correspond to least-squares estimates based on the raw sparse
observations and the dashed black lines corresponds to estimates from full observations with the same observation noise levels.
See figure 4.14 for the information criterion M in (2.50) corresponding to this example.

the mean biases, as shown in figure 4.12. Similar skill deterioration in FDKF is observed for the smoother
energy spectrum Ek∝k−5/3; we skip the illustration here for brevity. For correct resonant forcing the effects
of non-observability are much less pronounced and not shown.
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Fig. 4.14: The filter skill according to the information criterion M in (2.50) for viscosity-modified filtering of
the aliasing modes in A(17) in the turbulent advection-diffusion dynamics (3.33) with equipartition energy
spectrum, Ek = 1, non-zero mean, resonant forcing (3.38) and uniform damping (d= 0.01,µ= 0,c= 1) through
sparse observations (P = 3,M = 20,N = 61); the reduced filters used for state estimation are described in §4.1. The cases of
observable dynamics (left column) and non-observable dynamics (right column) are shown for both correct forcing (top row)
and incorrect forcing (bottom row). The black dotted lines correspond to least-squares estimates based on the raw sparse
observations and the dashed black lines corresponds to estimates from full observations with the same observation noise levels.
Figure 4.13 shows the individual information measures combined in M.

Performance of reduced filters with additional selective damping

Here, we consider the skill of FDKF and the reduced filters described in §4.1 with additional selective
damping in the forecast dynamics in order to filter the turbulent, uniformly damped and sparsely observed
advection-diffusion dynamics (3.33) with resonant forcing Fm, in (3.38) with ω0(k) = ck. In figures 4.13-
4.14, we illustrate the performance of FDKF and the reduced filters, SDAF, VSDAF, RFDKF, for filtering
the uniformly damped turbulent dynamics in (3.33) after modifying the filters by adding weak selective
damping 0<µ̃�1. Recall that while the reduced filters are designed to satisfy the observability condition
(4.22) on the primary modes, û`, |`|6M 6N , even in the uniformly damped case, FDKF satisfies the
observability condition only after adding the selective damping. In this configuration with trivial mean
dynamics in the truth signal the addition of the weak selective damping severely affects the estimates of
the mean dynamics, as can be seen in the relative entropy measure in figure 4.13. Similar results hold for
the smoother spectrum Ek∝k−5/3 which are not shown for the sake of brevity. When the mean signal is
either a decaying (no deterministic forcing in (3.33)) or arises due to a non-resonant periodic forcing, the
modified FDKF is comparable to the unmodified FDKF for equipartition energy spectrum and has a slight
but insignificant advantage over the unmodified FDKF for the Ek∝k−5/3. These superensemble results
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based on the information theoretic measures further reinforce the path-wise estimates of [37, 60].

In order to summarize the results illustrated in figures 4.11-4.14 for filtering turbulent signals with non-zero
mean dynamics, we make the following points regarding the skill of the modified reduced filtering algorithms:

• When filtering the turbulent advection-diffusion dynamics (3.33) with uniform damping (µ= 0,d 6= 0)
and resonant forcing, Fm, so that ω0(k) = ck in (3.38), the performance of FDKF depends largely
on the observability (4.22) of the truth dynamics; the following facts are important:

– For observable assimilation times ∆tobs, such that (4.22) is satisfied, the performance of FDKF
and the reduced filters is essentially the same as for filtering the dynamics with decaying mean
discussed in §4.3.1.

– For non-observable assimilation times ∆tobs such that (4.22) is not satisfied, FDKF has no skill
in the presence of forcing errors in the forecast model (right column in figure 4.11); the lack of
skill is due to large biases in the estimates for the mean dynamics of the signal (figures 4.11,
4.12).

– High skill in terms of the mutual information and filter error entropy is possible despite very
large relative entropy due to large biases in the estimated mean dynamics (see figures 4.11,
4.13).

• When filtering the turbulent advection-diffusion dynamics (3.33) with non-resonant forcing, Fm,
so that ω0(k) 6= ck in (3.38), the performance of FDKF and the reduced filters is similar to that
discussed in §4.3.1.

• When filtering the turbulent dynamics in (3.33) with uniform damping (µ= 0,d 6= 0), the introduction
of model error via the addition of weak selective damping, 0<µ̃�1, to the forecast dynamics
reinstates the observability of filtering with FDKF but the utility of this approach depends on the
signal-to-noise ratio of the true mean signal; the following facts are important here:

– For small signal-to-noise ratio (e.g., dynamics with decaying mean or with non-resonant periodic
forcing) the use of modified FDKF with additional weak selective damping leads to some
improvements over the reduced filters in estimating the dynamics although the improvement is
not significant.

– For large signal-to-noise ratio (e.g., dynamics with resonant periodic forcing) and uniform
damping in the truth dynamics the following hold:
∗ Unmodified SDAF has the best skill, since it satisfies the observability condition on the

primary/observed modes and does not introduce model errors into the dynamics of the
primary modes (figures 4.12, 4.14).

∗ The unmodified FDKF algorithm fails in this configuration for non-observable assimilation
times ∆tobs in the presence of errors in the forcing in the forecast model (bottom right in
figure 4.11).

∗ The modified FDKF filter with the additional selective damping term γ̃k fails even when the
observability condition (4.22) is reinstalled (figures 4.13, 4.14); this is because the model
errors introduced through the additional selective damping are too large in the presence
of large amplitude coherent events in the truth dynamics which occur due to the resonant
forcing.

∗ Unmodified RFDKF has acceptable skill only in terms of the error entropy/RMS error (fig-
ures 4.11). The skill of modified RFDKF is substantially improved in terms of the mutual
information/pattern correlation and error entropy/ RMS error; however, the additional
selective damping introduces large biases in the mean, similar to the other filters.

• The superensemble estimates of performance of FDKF and the reduced filters based on the infor-
mation theoretic measures further reinforce the path-wise estimates of [37, 60].

4.4. Measures of filter error on aliased modes for sparsely observed systems
Throughout the preceding sections the performance of the imperfect, reduced-order filters (cf. §4.1) for

recovering the statistics of the truth signal was assessed through the relative entropy, P(π,πf) in (2.18), which
measures the lack of information in the statistics of filter estimates, πf, relative to the truth statistics π.
When filtering the sparsely observed turbulent dynamics in §4, this approach to quantifying the statistical
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filter skill required restricting the relative entropy measure to the marginal densities on the modes resolved
by the sparse (2M+1)-node observation grid, i.e., we considered P(π(P`uuu{`}m),πf(P` ūuu{`}m|m)) where P`
denotes a projection onto the primary/resolved modes, |`|6M 6N , in each aliasing set A(`) in (4.2) of
the truth signal with N Fourier modes; this projection was necessary (see §4.2.2) due to the presence of
correlations in the reduced filter estimates for modes within the same aliasing set which lead to singular
densities πf(ūuu{`}m|m) and singularities in P(π,πf). While the correlations in the reduced filter estimates
for the unresolved modes are to be expected due to the order-reduction approximations for the filtered
dynamics, it is nevertheless desirable to investigate the reduced filter skill for recovering the statistics of all
the unresolved modes; such assessments are important in developing reduced-order techniques for stochastic
superresolution of sparsely observed turbulent systems [12]. An alternative strategy that allows for assessing
the filter skill for recovering the statistics of the aliasing modes is to use skill measures which remain well-
defined in such cases, e.g., the Hellinger distance (2.40) or the RMS error (2.30); However, the drawback of
using these measures, in contrast to the relative entropy (2.18), is that neither the Hellinger distance (2.40)
not the RMS error have a suitable information-theoretic interpretation.

Here, we are primarily concerned with the suitability and ‘equivalence’ of various measures of the statis-
tical fidelity of filter estimates and not with the details of performance of the particular reduced filters. To
this end, we compare the information measure proposed in (2.50) with various other measures of statistical
filter skill. First, we consider the following generalization of the information criterion in (2.50)

MPkP :=

(
exp

(
S
(
uuu{`}∞−ūuu{`}∞|∞

))
+P

(
π(Pkuuu{`}∞),πf(Pkūuu{`}∞|∞)

))
M (uuu{`}∞,ūuu{`}∞|∞)

, (4.35)

where the three information measures, S, P, M, of different aspects of the statistical filter skill are defined,
respectively, in (4.10), (4.11) and (4.9); the operator Pk is a projection onto the k-th mode in the aliasing
set A(`) ={`≡k1,k2,. ..,kM} in (4.2). In particular, the criterion in (4.35) reduces to that defined in (2.50)
when Pk≡P` is a projection onto the primary mode; we will denote this criterion as MP`P to avoid confusion
with the other criteria. For Pk≡ I in (4.35) the relative entropy is based on the joint densities for all the
aliasing modes in each aliasing set; we will denote this criterion as MP . Note that, in contrast to the
information criterion MP`P , the relative entropy term in MP is singular when the filter estimates for the
aliasing modes are correlated (see, e.g., (2.23) for detC(22) = 0), as in the case of reduced-order filtering with
sparse observations (§4.2.2).

The measure MdH incorporating the Hellinger distance instead of the relative entropy is defined in a
similar fashion to the information criterion in (2.50), and it is given by

MdH :=

(
exp

(
S
(
uuu{`}∞−ūuu{`}∞|∞

))
+dH

(
π(uuu{`}∞),πf(ūuu{`}∞|∞)

))
M (uuu{`}∞,ūuu{`}∞|∞)

, (4.36)

where the Hellinger distance dH(π,πf) in (2.40) measures the discrepancy between the statistics of the true
signal density, π(uuum), and the statistics of its filter estimates, πf(ūuum|m). Similar to the relative entropy

P(π,πf) in (2.18), the Hellinger distance dH(π,πf) does not account for correlations between the truth and
the filter estimates; however, unlike the relative entropy, dH remains well-defined for singular densities of
the filter estimates πf.

Another potential choice of skill measure in the filter estimates of the truth signal statistics is to use the
asymptotic RMS error (2.30) on the attractor of the Kalman filter system (4.4) together with the relationship
established in (2.34); the corresponding skill measure can be defined as

Mrmse :=

(
exp

(
S
(
uuu{`}∞−ūuu{`}∞|∞

))
+

√
tr
[
RMSE2

(
uuu{`}∞−ūuu{`}∞|∞

)])
M (uuu{`}∞,ūuu{`}∞|∞)

, (4.37)

where the ensemble RMS error matrix, RMSE2
(
uuu{`}∞−ūuu{`}∞|∞

)
in (2.30), is computed through the sta-

tistical ensemble averages on the attractor due to the relation in (2.36). Note that the RMSE term in (4.37)
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Fig. 4.15: Error in the estimated statistics of individual aliasing modes in set A(17) of sparsely observed truth
signal from the advection-diffusion dynamics (3.33) with equipartition energy spectrum, Ek = 1, non-zero mean,
resonant forcing in (3.38) and uniform damping (d= 0.01,µ= 0,c= 1), P = 3,M = 20,N = 61; the reduced filters used for
estimating the dynamics are described in §4.1. Three different error measures are are shown as a function of the observation
noise, r̂o in case when the dynamics (3.33) is observable (4.22) and with correct forcing in the filters. The black dotted lines
correspond to least-squares estimates based on the raw sparse observations and the dashed black lines correspond to estimates
from full observations with the same observation noise levels. Figures 4.16, 4.17 show the reduced filter skill based on the
estimates of all the aliasing modes.

contains cross-correlations between the truth modes and their filter estimates within the same aliasing set;
thus, the the drawback of the criterion Mrmse in (4.37) is that it does not contain a term which accounts
solely for biases in the statistics of the estimated signal.

In the numerical examples shown in figures 4.15-4.12 we use the same tough dynamical regime as the
one considered in figures 4.11-4.12 of §4.3.2; i.e., we consider filtering the sparsely observed, stochastically
forced advection-diffusion dynamics (3.33) with equipartition energy spectrum Ek = 1, uniform damping
(µ= 0,d= 0.01) and non-trivial mean dynamics induced by a time-periodic, resonant forcing (3.38); here, the
filter error is induced by the order reduction in the filter forecast models (see 4.1) and the incorrect forcing
in the filters when Am 6=A in (3.38). Similar to §4.2.2, considering this tough dynamical regime helps reveal
differences between the different measures of filter skill for recovering the statistics of the unresolved modes.
However, it is important to stress again that the use of the reduced filters from §4.1 for filtering the dynamics
in (3.33) with equipartition energy spectrum is technically unjustified since the conditions (4.12) allowing
for derivation of the reduced filters are violated. Consequently, the discussion below aims at elucidating
differences and similarities between the different measures of filter skill rather than the performance of the
reduced filters.

In figure 4.15 we show the superensemble error in the filter estimates for the individual aliasing modes in
the aliasing setA(17) based on the relative entropy (2.23), Hellinger distance (2.40) and RMS error (2.30); the
example shown corresponds to filtering in the tough regime with equipartition energy spectrum and uniform
damping but with correct resonant forcing and observable assimilation time ∆tobs satisfying (4.22). Figure



M. Branicki & A.J. Majda 59

4.16 shows a comparison between the different measures of the the filter skill for recovering the statistics of
the truth signal as a function of the observation noise variance r̂o. Four different cases are considered: the
left column filtering with assimilation times, ∆tobs, satisfying the observability condition (4.22), while the
right column corresponds to filtering with ∆tobs violating the observability condition; the case of filtering
with correct forcing is shown in the top row, while the incorrect forcing case is shown in the bottom row.
Figure 4.17 shows the skill measures defined in (2.50) and (4.35)-(4.37) in the regimes corresponding to those
considered in figure 4.16. Figures 4.16 and 4.17 illustrate the main differences between the skill measures
MP`P , MP , MdH , Mrmse, defined above.

We summarize the results illustrated in figures 4.16 and 4.17 by pointing out the following:
• Despite the lack of information-theoretic interpretation, the skill measure MdH in (4.36) incorpo-

rating the Hellinger distance (2.40), yields qualitatively similar results to those obtained using the
information criterion MP`P in (2.50) except in the cases with large biases in the filter-estimated statis-
tics (e.g., bottom right panel in figure 4.17). Analogous conclusions hold (but are not shown) for
filtering in other dynamical regimes, including the dynamics with steep energy spectrum Ek∝k−5/3

for which the reduced filters in §4.1 were designed.
• The information criterion MP in (4.35) is very sensitive to the filter-induced correlations in the

estimates for the aliasing modes (see also §4.2.2); thus, this criterion is not suitable for estimating
the overall filter skill in sparsely observed turbulent systems. The effects of these spurious correlations
are particularly pronounced in the tough regime with equipartition energy spectrum illustrated in
figures 4.16 and 4.17 where FDKF is the only filter with skill according to the information criterion
MP .

• The use of RMS error can be misleading as a measure of filter skill for recovery of the statistics of
the aliasing modes (figures 4.15 and 4.16); this is because RMSE accounts not only for the statistics
of the filter estimates but also for the cross-correlations between the truth and the estimates.

• Unsurprisingly, reduced-order filters which aim to recover the primary modes resolved by the ob-
servations do not contain relevant information on the aliasing modes; this is evident in terms of
MPkP ,k 6= ` or MP in the tough dynamical regime with equipartition energy spectrum and in the
presence of non-trivial mean (see figure 4.15 and MP in figure 4.17). Statistically reliable recovery
of the aliasing modes has to be carried out using more sophisticated stochastic superresolution tech-
niques [12]. However, the skill measures MP`P and MdH are relatively insensitive to these filtering
artifacts even in the equipartition energy regime for which the tested reduced filters were not even
designed (figure 4.17).
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Fig. 4.16: Error in the estimated joint statistics of all aliasing modes in the aliasing set A(17) of sparsely observed
truth signal from the advection-diffusion dynamics (3.33) with equipartition energy spectrum, Ek = 1, non-zero
mean, resonant forcing in (3.38) and uniform damping (d= 0.01,µ= 0,c= 1), P = 3,M = 20,N = 61; the reduced filters
used for estimating the dynamics are described in §4.1. The three information measures discussed in §2.2.1 are shown as a
function of the observation noise, r̂o in cases when the dynamics (3.33) is observable (left column) and non-observable (right
column); see (4.22) for the observability condition. The top row shows results for correct forcing in the filters and the bottom
row corresponds to incorrect forcing with error ∆F given in (4.32); the relative entropy measure is projected on the primary
mode for reasons discussed in §4.2.2 and illustrated in figure 4.2. The black dotted lines correspond to least-squares estimates
based on the raw sparse observations and the dashed black lines corresponds to estimates from full observations with the same
observation noise levels. See figure 4.12 for the information criterion M in (2.50) corresponding to this example.
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the individual information measures combined in (2.50).
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5. Conclusions In this paper an information-theoretic approach was developed to quantify the statis-
tical accuracy of Kalman filters with model error for the discretized dynamics of spatially extended, partially
observed turbulent systems. The significance of information theory in filtering problems has been established
and systematic information criteria for filter design have been developed. The use of methods from infor-
mation theory in the context of stochastic filtering was shown to be particularly useful in the assessment
of imperfect filter performance for high-dimensional problems associated with state estimation in spatially
extended turbulent systems. In the present framework appropriate measures of information content in the
filter estimates were used to naturally extend the common path-wise measures of filter accuracy, like the
mean-square error or pattern correlation, to the superensemble setting involving all possible initial condi-
tions and observations of the true dynamics. In contrast to the path-wise approach, the information-theoretic
framework allows for establishing lower bounds on the imperfect filter performance; these bounds are useful
when assessing the information barriers in imperfect filters. The information-theoretic approach proposed
here is complementary to the standard path-wise approach to assessing the filter error. The statistical su-
perensemble framework incorporates the ensemble-averaged effects of intermittent interactions between the
mean state and fluctuations which is important in accurate assessment of filter error in high-dimensional
turbulent systems. On the other hand the path-wise approach is more suitable for studying the filter skill in
the presence of ‘rare event’-type phenomena in the turbulent dynamics which are marginalized in the ensem-
ble averaged skill measures. The framework presented here has natural generalizations to Kalman filtering
with non-Gaussian but statistically exactly solvable forecast models such as the stochastic parameterized
extended Kalman filters (SPEKF) used for filtering [31, 30, 61, 34] and dynamic stochastic superresolution
[12].

An important theme present throughout this paper was that of optimality of the imperfect Kalman filters
in terms of entropy of the filter error, the mutual information, and the relative entropy between the truth
and the filter estimate. We showed that, for a given class of imperfect filters the practically achievable filter
skill requires trade-offs between the relevant information measures of filter accuracy. In contrast to filtering
with the perfect forecast model, imperfect Kalman filters tuned to minimize the RMS error of the filter
estimates do not necessarily extremize the mutual information/pattern correlation and the relative entropy
between the truth and the filter estimates. The key issue here, similar in spirit to [28], is that finding the best
imperfect filter can be formulated as a constrained optimization problem with the constraints given by the
desired bounds on the three information measures to account for the statistics of the filter error, including
the mean biases, and the correlations between the truth and the filter estimates.

The information-theoretic approach was illustrated for a suite of imperfect reduced-order filters in Fourier
domain to filter the turbulent advection-diffusion dynamics; these filters derived and analyzed in the path-
wise framework in [37, 38] in order to avoid the ‘curse of ensemble size’ and improve the filter stability and
observability. The developed information criteria where used to analyze the filter stability and accuracy in the
presence of model error on arising from various spatio-temporal discretization schemes in approximations to
the stochastically forced advection-diffusion equation. As already indicated in [37, 38, 60], many subtle issues
associated with violation of the classical observability and controllability criteria occur in Kalman filtering
with model error even in the relatively simple setting with imperfect linear Gaussian forecast models. Based
on the developed information criteria we further strengthened the path-wise results of [37, 38] and showed
that the reduced-order filters for turbulent systems with steep energy spectra have high skill and improved
stability despite being computationally much cheaper to implement. Another important aspect concerned the
quantification of filter error due to biases in the mean filter estimates arising from errors in the filter forcing;
these biases are naturally captured in the present framework through the relative entropy between the truth
and the filter estimates. Moreover, the present information-theoretic framework allowed for identification
of potential correlations in the reduced filter estimates for sparsely observed turbulent systems. While
these artificial correlations are not relevant in filtering of the primary Fourier modes associated with the
scales resolved by the observation grid [37, 38, 60], their mitigation is important in the Dynamic Stochastic
Superresolution [12] and superparameterization algorithms [39]; these effects are particularly difficult to
capture in the traditional path-wise framework commonly used in applications.

This work only we begins the information-theoretic analysis of the performance and stability of Kalman
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filters; appropriate generalizations of the present framework to analyze Bayesian filtering with non-Gaussian
but statistically exactly solvable forecast models such as the Stochastically Parameterized Extended Kalman
filters (SPEKF) [31, 30, 61, 34] will be soon reported elsewhere.
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Appendix A. Quantifying filter error with time-correlations through lag-embedded state
analysis.

Here, we provide additional details on computation of the covariances for the lag embedded state of the
augmented system for the Kalman filter in (2.6). Recall that the lag-embedded state with L lags for the
time and space discretized evolution of the truth (3.3) and the filter estimate (??) in Fourier domain are
denoted as

uuuLm= (uuum,uuum−1,. ..,uuum−L)T , ūuuLm|m= (ūuum|m,ūuum−1|m−1,. ..,ūuum−L|m−L)T . (1.1)

The covariance of the augmented state YL= (uuuLm,ūuu
L
m|m)T can be written in the block form as

Cov(YL,YL) =

 C(L)
11 C(L)

12

C(L)∗
12 C(L)

22

 :=

 Cov(uuuLm,uuu
L
m) Cov(uuuLm,ūuu

L
m|m)

Cov(ūuuLm|m,uuu
L
m) Cov(ūuuLm|m,ūuu

L
m|m)

. (1.2)

The structure of the covariance matrix in (1.2) is simplified by the fact that the Fourier modes in different

aliasing sets A(`) of the primary wavenumbers ` are uncorrelated (see §??) so that C(L)
11 , C(L)

11 , and C(L)
11 in

(1.2) have a block diagonal structure with respect to the Fourier modes grouped in the disjoint aliasing sets,
namely

C(L)
ij =diag

[
C(L)

(ij){`1},. ..,C
(L)
(ij){`2M+1}

]
, |`|6M, i,j= 1,2, (1.3)

where the covariances of the lag-embedded state within each disjoint aliasing set A(`) are given by

CL(11){`}=R(11){`}Q
(
F(11){`}

)
, CL(22){`}=R(22){`}Q

(
F(22){`}

)
, CL(12){`}=R(12){`}Q

(
F(12){`}

)
, (1.4)

with F{`} the forward dynamics operator (2.8), and R{`} is the covariance (2.9) in the augmented Kalman
system (2.6) within each disjoint aliasing set; the L×L matrix Q is given by

Q
(
q
)

=



1 q q2 .. . qL−1

q∗ 1 q ... qL−2

(q∗)2 q∗ 1 .. . qL−3

...
...

...
. . .

...

(q∗)L−1 (q∗)L−2 (q∗)L−3 .. . 1


(1.5)

Note that the first P rows of Q
(
F(11){`}

)
represent the autocorrelation of the truth modes in the respective

aliasing set at a sequence of discrete time lags τn=n∆t; similarly the first P rows of Q
(
F(22){`}

)
yield the

autocorrelation of the filter estimates of the aliasing Fourier modes.

When computing the entropy S, the relative entropy P and the mutual information M between the
truth and the filter estimate in §2.2.1, the following facts are useful:
Proposition A.1. For two matrices A=Q

[
q
]

and B=Q
[
qm
]

of the size L×L with the structure as in (1.5)
the following relationships hold:
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• det[A] =
(

1−|q|2
)L−1

,

• tr[AB−1] =
(
L+(L−2)|qm|2−(L−1)(qm∗q+qmq∗)

)(
1−|qm|2

)−1
,

• A−1 is a banded tri-diagonal matrix given by

A−1 =
1

1−|q|2



1 −q 0 .. . 0

−q∗ 1+ |q|2 −q ... 0

0 −q∗ 1+ |q|2 .. . 0

...
...

...
. . .

...

0 0 .. . 1+ |q|2 −q
0 0 .. . −q∗ 1


. (1.6)

The proofs of the above facts are straightforward and follow by direct computation based on the formulas
in (1.5).

Appendix B. The augmented system for the Reduced Fourier Domain Kalman Filter
(RFDKF). Here, we present the explicit form of the augmented system for the Reduced Fourier Kalman
Domain Filter (RFDKF) discussed in §4.1. The dynamical system combining the evolution of the truth and
its RFDKF estimates is given by[

uuu{`}m+1

ūuu{`}m+1|m+1

]
=

 F{`} 0

K̃KK
m

{`}m+1GGGPF{`}
(

(I−K̃KKm

{`}m+1GGGP )−K̃KKm

{`}m+1G̃GGP

)
Fm
{`}

[ uuu{`}m

ūuu{`}m|m

]

+

 F{`}m+1(
(I−K̃KKm

{`}m+1GGGP )−K̃KKm

{`}m+1G̃GGP

)
Fm
{`}m+1 +K̃KK

m

{`}m+1GGGPF{`}m+1

,

+

 σσσ{`}m+1

K̃KK
m

{`}m+1

(
GGGP σσσ{`}m+1 +σσσo{`}m+1

)
−K̃KKm

{`}m+1G̃GGP σσσ
m
{`}m+1

, (2.1)

where the modified Kalman gain is given by

K̃m
{`}m+1 =

(
Km
k1,m+1,0,. ..,0

)T
, Km

k1,m+1∈C, (2.2)

and G̃P is a P ×P matrix given by

G̃P =


0 G ... G
0 0 .. . 0
...

...
...

0 0 .. . 0

. (2.3)

Due to the fact that the modes Fourier modes in different aliasing sets A(`) are uncorrelated, the full
covariance matrix is block-diagonal with P×P blocks evolving independently according to

C{`}m+1 =F{`}mC{`}mF∗{`}m+R{`}m, (2.4)
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where

F{`}m=

 F{`} 0

K̃KK
m

{`}m+1GGGPF{`}
(

(I−K̃KKm

{`}m+1GGGP )−K̃KKm

{`}m+1G̃GGP

)
Fm
{`}

, (2.5)

R{`}m=

 r{`} r{`}GGG∗PK̃KK
m∗
{`},m+1

K̃KK
m

{`}m+1GGGP r{`} K̃KK
m

{`}m+1(ro{`}+GGGP r{`}GGG∗P )K̃KK
m∗
{`}m+1

. (2.6)
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