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A new algorithm for low order predictive statistical modeling and
uncertainty quantification (UQ) in turbulent dynamical systems
is developed here. These new reduced order modified quasilin-
ear Gaussian (ROMQG) algorithms apply to turbulent dynamical
systems where there is significant linear instability or linear non-
normal dynamics in the unperturbed system and energy conserv-
ing nonlinear interactions which transfer energy from the unsta-
ble modes to the stable modes where dissipation occurs, result-
ing in a statistical steady state; such turbulent dynamical sys-
tems are ubiquitous in geophysical and engineering turbulence.
The ROMQG methods involve constructing a low order nonlinear
dynamical system for the mean and covariance statistics in the
reduced subspace which has the unperturbed statistics as a sta-
ble fixed point and optimally incorporates the indirect effect of
non-Gaussian third order statistics for the unperturbed system
in a systematic calibration stage. As shown here, this calibra-
tion procedure is achieved through information involving only the
mean and covariance statistics for the unperturbed equilibrium.
The performance of the ROMQG algorithms is assessed here on
two stringent test cases: the forty mode Lorenz 96 (L-96) model
mimicking midlatitude atmospheric turbulence and two layer baro-
clinic models for high-latitude ocean turbulence with over 125,000
degrees of freedom. In the L-96 models, ROMQG algorithms with
just a single (the most energetic) mode capture the transient UQ
response to random or deterministic forcing. For the baroclinic
ocean turbulent models, the inexpensive ROMQG algorithm with
252 modes, less than 0.2% of the total, is able to capture the
nonlinear response of the energy, the heat flux, and even the one-
dimensional energy and heat flux spectrum at each wavenumber.

Many instabilities | Nonlinear response and sensitivity | Reduced-Order
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Introduction

Turbulent dynamical systems are characterized by both a large di-
mensional phase space and a large dimension of instabilities i.e.

a large number of positive Lyapunov exponents on the attractor. Tur-
bulent dynamical systems are ubiquitous in many complex systems
with fluid flow such as for example, the atmosphere, ocean, and cou-
pled climate system, confined plasmas, and engineering turbulence
at high Reynolds numbers. In turbulent dynamical systems, these
linear instabilities are mitigated by energy conserving nonlinear in-
teractions which transfer energy to the linearly stable modes where it
is dissipated resulting in a statistical steady state. Uncertainty quan-
tification (UQ) in turbulent dynamical systems is a grand challenge
where the goal is to obtain statistical estimates such as the change
in mean and variance for key physical quantities in the nonlinear re-
sponse to changes in external forcing parameters or uncertain initial
data. These key physical quantities are often characterized by the de-
grees of freedom which carry the largest energy or variance and an
even more ambitious grand challenge is to develop truncated low or-
der models for UQ for a reduced set of important variables with the
largest variance. This is the topic of the present paper.

Low order truncation models for UQ include projection of the
dynamics on leading order Empirical Orthogonal Functions (EOF’s)

[1], truncated polynomial chaos (PC) expansions [2, 3, 4], and dy-
namically orthogonal (DO) truncations [5, 6]. Despite some suc-
cess for these methods in weakly chaotic dynamical regimes, concise
mathematical models and analysis reveal fundamental limitations in
truncated EOF expansions [7, 8], PC expansions [9, 10], and DO
truncations [11, 12], due to different manifestations of the fact that
in many turbulent dynamical systems, modes that carry small vari-
ance on average can have important, highly intermittent dynamical
effects on the large variance modes. Furthermore, the large dimen-
sion of the active variables in turbulent dynamical systems makes
direct UQ by large ensemble Monte-Carlo simulations impossible in
the foreseeable future while once again, concise mathematical mod-
els [10] point to the limitations of using moderately large yet statis-
tically too small ensemble sizes. Other important methods for UQ
involve the linear statistical response to change in external forcing
or initial data through the Fluctuation Dissipation Theorem (FDT)
which only requires the measurement of suitable time correlations in
the unperturbed system [13, 14, 15, 16, 17, 22]. Despite some sig-
nificant success with this approach for turbulent dynamical systems
[13, 14, 15, 16, 17, 22], the method is hampered by the need to mea-
sure suitable approximations to the exact correlations for long time
series as well as the fundamental limitation to parameter regimes with
a linear statistical response.

Here a systematic strategy is developed for building statistically
accurate low order models for UQ in turbulent dynamical systems.
First, exact dynamical equations for the mean and the covariance are
developed; the possibly intermittent effects of the third order statis-
tics on these low-order statistics are present in the exact equations.
Secondly, an approximate nonlinear dynamical system for the evo-
lution of the mean and covariance constrained by covariance forcing
from minimal damping and random forcing on the unperturbed at-
tractor is formulated; it is required that this dynamical system has
the unperturbed mean and covariance as a stable fixed point. In the
third calibration step, the effect of the third moments on the mean and
the covariance in the approximate dynamical system for the statistics
are calibrated efficiently at the unperturbed steady state using only
the measured first and second moments. The result at this stage is a
very recent algorithm for UQ called Modified Quasilinear Gaussian
(MQG) closure [18] which applies on the entire phase space of vari-
ables. In the fourth step, the MQG algorithm is projected on suitable
leading EOF patterns with further efficient calibration of the effect of
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the unresolved modes at the unperturbed statistical steady state. This
final step defines the reduced order MQG (ROMQG) method for UQ
in turbulent dynamical systems and is developed following the above
outline in the next section.

The subsequent sections include two highly nontrivial applica-
tions of the ROMQG method to UQ. The first application involves
the Lorenz 96 (L-96) model [19, 20] which is a non-trivial forty di-
mensional turbulent dynamical system which mimics mid-latitude
atmospheric turbulence and is a popular model for testing methods
for statistical prediction [20], data assimilation or filtering [21], FDT
[22], and UQ [11, 12, 18]. The advantage of the forty mode L-96
with many features of turbulent dynamical systems is that very large
ensemble Monte-Carlo simulations can be utilized for validation in
transient regimes. Here the ROMQG algorithm has remarkably ro-
bust skill for UQ in the transient response to general random external
forcing for truncations as low as one, two or three leading Fourier
(EOF) modes. The second application involves a prototype exam-
ple of two-layer ocean baroclinic turbulence [23, 24, 25]. Here the
turbulent system has over 125,000 degrees of freedom so validation
through transient Monte-Carlo simulations is impossible and only the
nonlinear statistical steady state response to the change in shear can
tested for various perturbed shear strengths. Here the ROMQG al-
gorithms for UQ utilizing 252 EOF modes (less than 0.2% of the
total modes) are able to capture the nonlinear response of both the
one-dimensional energy spectrum and heat flux spectrum at each
wavenumber with remarkable skill for a wide range of shear varia-
tions. The paper concludes with a brief summary discussion.

Abstract formulation
We consider large dimensional turbulent dynamical systems with
conservative quadratic nonlinearities with the abstract structural form
typically satisfied in applications to geophysical [23, 24, 25, 26] or
engineering turbulence given by

du
dt

= [L+D]u+B (u,u) + F (t) + Ẇk (t;ω)σk (t) [1]

acting on u ∈ R
N . In the above equation and for what follows re-

peated indices will indicate summation. In some cases the limits of
summation will be given explicitly to emphasize the range of the in-
dex. In the above equation we have L is a skew-symmetric linear
operator, which in geophysics represents rotation, the β−effect of
Earth’s curvature, topography etc. and satisfies L∗ = −L. D is a
negative definite symmetric operator (D∗ = D) representing dissi-
pative processes such as surface drag, radiative damping, viscosity,
etc. The quadratic operator B (u,u) conserves the energy by itself
so that it satisfies

B (u,u) · u = 0 [2]

in a suitable inner product. Finally, F (t) + Ẇk (t;ω)σk (t) repre-
sents the effect of external forcing i.e. solar forcing, which we will
assume that it can be split into a mean componentF (t) and a stochas-
tic component with white noise characteristics. In the applications
below, the stochastic component of the forcing is zero although there
can be random initial data. We represent the stochastic field through
a fixed orthonormal basis vi, 1 ≤ i ≤ N,

u (t)= ū (t)+
N
∑

i=1

Zi (t;ω)vi.

where ū (t) represent the ensemble average of the response, i.e. the
mean field, and the Zi (t;ω) are random processes. The exact mean
field equation is given by

dū
dt

= [L+D] ū+B(ū, ū)+RijB (vi,vj)+F, [3]

with the covariance matrix given by Rij = 〈ZiZj〉 and 〈·〉 denotes
averaging over the ensemble members ω. The random component of
the solution, u′ = Zi (t;ω)vi satisfies

du′

dt
= [L+D]u′+B

(

ū,u′
)

+B
(

u
′, ū

)

+B
(

u
′,u′

)

−RjkB (vj ,vk) + Ẇk (t;ω)σk (t)

By projecting the above equation to each basis element vi we obtain
the exact evolution of the covariance matrix R= 〈ZZ∗〉

dR
dt

= LvR +RL∗
v +QF +Qσ, [4]

where we have:
i) the linear dynamics operator expressing energy transfers be-

tween the mean field and the stochastic modes (effect due to B), as
well as energy dissipation (effect due to D) and non-normal dynam-
ics (effect due to L, D, ū)

{Lv}ij =
(

[L+D]vj+B
(

ū,vj

)

+B (vj , ū)
)

.vi [5]

ii) the positive definite operator expressing energy transfer due to
external stochastic forcing

{Qσ}ij = (vi.σk) (σk.vj) . [6]

iii) the energy flux between different modes due to non-Gaussian
statistics (or nonlinear terms) given exactly through third-order mo-
ments

QF = 〈ZmZnZj〉B (vm,vn) .vi + 〈ZmZnZi〉B (vm,vn) .vj

[7]
From the conservation of energy property in (2) it follows that the
symmetric matrix QF satisfies Tr [QF ] = 0. These last equations
with third order moments are a potential source of intermittency in
the solution of the low order statistics and need to be modeled care-
fully in any UQ scheme. This is done next in a minimal, efficient
fashion by the MQG method [18].

Modified quasilinear Gaussian (MQG) models
In typical applications, the unperturbed turbulent dynamical sys-
tem is defined by constant forcing and there is a statistical steady
state solution with mean ū∞ and covariance R∞ satisfying the
steady state statistical equations in (3) and (4) with vanishing time-
derivatives. Furthermore, the linear operator in (5) typically has un-
stable directions as well as stable subspaces with non-normal dynam-
ics [13, 14, 15, 22, 23, 24, 25, 26, 27]. The statistical steady state
exists through a balance driven by the transfer of energy by the non-
linear terms B (u,u) in (3) and non-normal linear dynamics from
the unstable directions to the stable ones; the nonlinear steady state
covariance R∞ exists because the term QF∞ involving this nonlin-
earity and the third statistical moments in the statistical steady state
precisely balances the effect of the unstable directions in (4). The
MQG dynamical equation for UQ calibrates this essential effect in
an efficient, minimal fashion [18]. First note that at the statistical
steady state of calibration,QF∞, is known as a function of the mean
ū∞ and covariance R∞ through (4) at the statistical steady state. In
the MQG dynamics we split the nonlinear fluxes into a positive semi-
definite part Q+

F and a negative semi-definite part Q
−
F :

QF = Q−
F +Q+

F . [8]

The positive fluxes Q+
F indicate the energy being ‘fed’ to the stable

modes in the form of external chaotic or stochastic noise. On the
other hand the negative fluxes Q−

F should act directly on the linearly
unstable modes of the spectrum, effectively stabilizing the unstable
modes. In particular in MQG we represent the negative definite part
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of the fluxes as additional damping in order to modify the eigenval-
ues associated with the Lyapunov equation (4) so that these have non-
positive real part for the correct steady state statistics. To achieve this
we represent the negative fluxes as

Q−
F (R) = NR +RN∗ [9]

with N∞ calibrated by solving the equation

Q−
F∞ = Q−

F (R∞) = N∞R∞ +R∞N∗
∞ [10]

where Q−
F (R∞) is the negative semi-definite part of the steady-

state fluxes obtained by the equilibrium equation QF∞ =
−Lv (ū∞)R∞ −R∞L∗

v (ū∞) . Equation (10) essentially connects
the negative-definite part of the nonlinear energy fluxes (which is a
functional of the third-order statistical moments) with the second-
order statistical properties that express energy properties of the sys-
tem. One can easily verify that N∞ in equation (10) is given explic-
itly by

N∞ =
1
2
Q−

F (R∞)R−1
∞ . [11]

In the MQG dynamics [18], the evolving damping N is given by
N = f(R)

f(R∞)N∞ with f an appropriate nonlinear function. On the
other hand the positive fluxes Q+

F are computed according to steady
state information, i.e. based on the positive semi-definite fluxes
Q+

F∞ = Q+
F (R∞) . The form of this matrix defines the amount

of energy that the linearly stable modes should receive in the form
of additive noise. The conservative property of the nonlinear energy
transfer operator B requires that for all times the zero-trace conser-
vation property is satisfied. This is achieved by choosing the positive
fluxes as

Q+
F = −

Tr
[

Q−
F

]

Tr
[

Q+
F∞

]Q+
F∞. [12]

These nonlinear fluxes are time-dependent (since Tr
[

Q−
F

]

depends
on time through R) and the last formulation guarantees the zero-trace
conservation property at every instant of time. These relations sub-
stituted into the equations for the mean and covariance in (3) and
(4) define the minimal MQG dynamics; by construction (ū∞, R∞)
is a fixed point of this dynamics but is only neutrally stable due to
the minimal character of the decomposition of QF∞ in (8). We
introduce the small factor qs > 0 with the flux decomposition
QF =

[

Q−
F − qsI

]

+
[

Q+
F + qsI

]

in order to render (ū∞, R∞) a
stable fixed point of the MQG dynamical system [18]. In this fashion
we obtain the MQG dynamics for the mean and covariance,

dū
dt

= [L+D] ū+B(ū, ū)+RijB (vi,vj)+F [13]

dR
dt

= LvR +RL∗
v +NR +RN∗ +Q+

F +Qσ [14]

where

N =
f (R)
f (R∞)

N∞ with N∞ =
1
2

(

Q−
F∞ − qsI

)

R−1
∞ , [15]

Q+
F = −

Tr
[

Q−
F

]

Tr
[

Q+
F∞

]

(

Q+
F∞ + qsI

)

; Q−
F = NR +RN∗, [16]

with qs and f (R) parameters in the MQG dynamics. These MQG
dynamics define the first three steps from the introduction of the UQ
strategy developed in this paper. As shown in [12, 18], the MQG al-
gorithm, with a specific, well motivated choice of qs and f (R) yields
excellent performance as a UQ algorithm when tested comprehen-
sively on the forty mode L-96 model. However, the MQG algorithm
is impractical for large dimensional turbulent dynamical systems with
N > O

(

103
)

because the covariance matrices of order N2 are too
expensive to evolve directly. This leads to the need for truncated, low
order MQG algorithms which are developed next.

Reduced order MQG (ROMQG)
For the truncation of the dynamics we use s orthogonal eigenvec-
tors of the covariance matrix R∞ given by {vi}

s
i=1. These can

be chosen as EOF modes. We denote these modes with the matrix
P = [v1,v2, ...., vs] ∈ R

N×s. In this case the reduced covariance
which we resolve is connected with the full N−dimensional covari-
ance by the relation

Rs = P ∗RP ∈ R
s×s.

Since, the reduced order covariance Rs contains only a part of the to-
tal stochastic energy the influence of the quadratic terms in the mean
field equations will be only partially modeled. To represent this ef-
fect in the calibration stage, we include additional forcing G∞ that
will balance this contribution, which is otherwise ignored due to the
truncation. Thus, we have the mean field equation

dū
dt

= [L+D] ū+B(ū, ū)+
s

∑

i,j=1

Rs,ijB (vi,vj)+F+G∞.

[17]
The value of the additional forcing G∞ is determined using statis-
tical steady state information for the covariance and the mean. In
particular we have the equilibrium equation

G∞ = − [L+D] ū∞−B(ū∞, ū∞)−
s

∑

i,j=1

Rs∞,ijB (vi,vj)−F

where Rs∞ = P ∗R∞P ; this guarantees that ū∞ is a steady state of
the truncated equation in (17). For the covariance equation governing
Rs we use the exact (but reduced-order) equation for the covariance
given by

dRs

dt
= Lv,sRs +RsL

∗
v,s +QF,s [18]

where Lv,s = {Lv}ij for i, j = 1, ..., s and QF,s contain both the
non-linear dynamics due to triad interactions between all modes but
also the ignored linear dynamics due to the truncation. BecauseQF,s

contains truncated nonlinear interactions but also non-normal linear
effects we do not expect to satisfy the conservation property beceause
Tr [QF,s] &= 0.Nevertheless we can still use steady state information
to model QF,s.We have

QF,s∞ = −Lv,sRs∞ −Rs∞L∗
v,s.

Nowwe repeat the ideas used in theMQG algorithm described above.
By splittingQF,s∞ into a positive definite partQ+

F,s∞ and into a neg-
ative definite part Q−

F,s∞ we have the noise, damping pair

Q+
F,s∞ and Ns∞ =

1
2

(

Q−
F,s∞

)

R−1
s∞.

The next step is to scale the above energy fluxes. For the additional
damping we use the standard scaling from MQG together with small
additional damping for stability,

Ns =
1
2

f (Rs)
f (Rs∞)

(

Q−
F,s∞ − qsI

)

R−1
s∞ [19]

For the positive fluxes, in MQG described earlier we were scaling
with the total nonlinear flux of energy. Here we do not have such
information since we are modeling the energy (covariance) partially
due to the truncation. To this end we will scale with the nonlinear en-
ergy fluxes based on the information provided by the reduced-order
covariance. The total positive nonlinear energy flux in the statistical
steady state is given by q+∞ = 2Tr [N∞R∞] and with the standard
MQG approximation in general, the energy flux is

q+ = 2
f (R)
f (R∞)

Tr [N∞R] .
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Since we do not have information for the full covariance R we will
scale with f (Rs) . Moreover, we modify Tr [N∞R∞] only along
the elements of the full covariance that evolve, i.e. according to Rs.
These approximations give

Q+
F,s =

(

Q+
F,s∞ + qsI

) f (Rs)
f (Rs∞)

×

(

1 +
Tr [P ∗N∞PRs − P ∗N∞PP ∗R∞P ]

Tr (N∞R∞)

)

. [20]

Note that for the full space with P = I the above expressions reduce
exactly to the standard MQG formula. In summary the ROMQG dy-
namics are the modified mean equation in (17) coupled to the reduced
covariance equation

dRs

dt
= Lv,sRs +RsL

∗
v,s +NsRs +RsN

∗
s +Q+

F,s +Qσ,s

with Ns, Q
+
F,s defined in (19) and (20) respectively.

Application of ROMQG to UQ for the L-96 model
The L-96 model is a discrete periodic model given by

dui

dt
= ui−1 (ui+1 − ui−2)− ui + F, i = 0, ..., J − 1 [21]

with J = 40 and with F the deterministic forcing parameter. With
the standard discrete Euclidian inner product, one can easily verify
that the energy conservation property for the quadratic part is sat-
isfied (i.e. B(u,u) · u = 0) and the negative definite part has the
diagonal form D = −I. The model is designed to mimic baroclinic
turbulence in the midlatitude atmosphere with the effects of energy
conserving nonlinear advection and dissipation represented by the
first two terms in (21). For sufficiently strong constant forcing values
such as F = 6, 8 or 16, L-96 is a prototype turbulent dynamical sys-
tem which exhibits features of weakly chaotic turbulence (F = 6),
strong chaotic turbulence (F = 8), and strong turbulence (F = 16)
[20, 21, 26]. Since the L-96 system is invariant under translations
we will use the Fourier modes as a fixed basis to describe its dynam-
ics. Because of the translation invariance property the statistics in the
steady state will be spatially homogeneous, i.e. the mean field will
be spatially constant, the covariance operator will have a Fourier di-
agonal form, and the Fourier modes are an EOF basis. In addition if
the initial conditions are spatially homogeneous the above properties
will hold over the whole duration of the response and we assume this
here. In the L-96 system the external noise is zero, and therefore we
have no contribution from external noise in eq. (4), i.e. Qσ = 0.
Thus uncertainty can only build-up from the unstable modes of the
linearized dynamics. The time averaged turbulent spectrum of en-
ergy that occurs for the constant value, F = 8, is given in Figure
1. Here we demonstrate the capability of the ROMQG algorithm to
quantify uncertainty with only a few modes. We calibrate ROMQG
at the standard forcing value F = 8 and perturb this constant forcing
resulting in the forcing F (t) shown in Figure 1 with random fluc-
tations of order 15%. We consider highly truncated ROMQG with
f (Rs) = (Tr [Rs])

1

2 , qs = 0.1 and with a single complex Fourier
mode out of the total twenty active Fourier modes. In Figure 1 we
use the most energetic Fourier (EOF) mode in the ROMQG algorithm
and compare the mean and variance in this low-dimensional subspace
with those from a large ensemble Monte Carlo simulation of the full
L-96 model with 104 members. As seen in Figure 1, the ROMQG
algorithm for only a single (the most energetic) Fourier (EOF) mode
tracks the low order statistics of the expensive full Monte Carlo sim-
ulation with high fidelity. The ROMQG algorithm with three Fourier
modes track the full Monte Carlo simulation in all the reduced modes
with comparable, very high skill. More tests of the ROMQG algo-
rithm with comparable high fidelity for UQ with deterministic pe-
riodic or stochastic forcing for F = 6, 8, 16 are presented in the
supplementary material. In Figure 2 we show the performance of the

ROMQG algorithm for similar low order truncations using the much
less energetic 10th-13-th Fourier modes ranked by energy. It is no
surprise that the ROMQG algorithm performs poorly here with this
truncation. However, MQG on the whole forty mode phase space can
capture the UQ properties on these modes [18].
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Fig. 1. Time dependent force and time-averaged energy spectrum (first row);
Comparison of the single mode reduction with the most energetic mode using
ROMQG algorithm with direct Monte Carlo simulation in the L-96 system (sec-
ond row); Comparison of the three mode reduction (with the three most energetic
modes) ROMQG with direct Monte Carlo (lower rows).
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Fig. 2. Comparison of the four mode reduction ROMQG using the much less
energetic modes 10th-13th (ranked by energy) with direct Monte Carlo.

Application of ROMQG to quasigeostrophic turbulence
Here we study a huge dimensional turbulent dynamical system (N >
125, 000) with a wide range of instabilities on small and large scales
involving baroclinic turbulence in regimes appropriate for the the
high latitude ocean. We consider the Phillips model in a barotropic-
baroclinic mode formulation [23, 24, 25] with periodic boundary con-
ditions given by

∂q
∂t

= L (q) +B (q,q)

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author



with linear operator L =(Lψ, Lτ )
T

Lψ (q) = − (1− δ) r∇2 (ψ − a−1τ
)

− U
∂
∂x

∇2τ − β
∂ψ
∂x

,

Lτ (q) =
√

δ (1− δ)r∇2 (ψ − a−1τ
)

− β
∂τ
∂x

− U
∂
∂x

(

∇2ψ + λ2ψ + ξ∇2τ
)

,

and quadratic operator

B (q1,q2) = −

(

J (ψ1, q2,ψ) + J (τ1, q2,τ )
J (ψ1, q2,τ ) + J (τ1, q2,ψ + ξq2,τ )

)

,

where q =(qψ, qτ )
T and qψ = ∇2ψ and qτ = ∇2τ − λ2τ are the

barotropic and baroclinic potential vorticity anomalies, respectively,
and ψ, τ the corresponding streamfunctions. Moreover, δ is the frac-
tional thickness of the upper layer, U =

√

δ (1− δ) (U1 − U2)
expresses the difference of velocities between the two layers, λ is
the baroclinic deformation wavenumber, a =

√

(1− δ) δ−1 and
ξ = (1− 2δ) /

√

δ (1− δ) express the thickness ratio between the
two layers and the triple interaction coefficient, respectively, while
r is the bottom drag in the vorticity in the lower layer. Here we set
δ = 0.2, r = 9, β = 10, and λ = 10; this set of parameters corre-
sponds to the high latitude ocean case [25]. The critical parameters
here are the large baroclinic deformation wavenumber, λ, typical of
the high latitude ocean, the strength of the shear U, and the bottom
drag coefficient, r. The natural inner product which guarantees the
energy conservation property, B (q,q) .q =0, is defined through the
sum of the barotropic and baroclinic energies and is given by,

[q1,q2]E =

∫

∇ψ1.∇ψ∗
2 +∇τ1.∇τ∗

2 + λ2τ1τ
∗
2 [22]

There is linear baroclinic instability [23, 24, 25] at a wide range of
wavenumbers smaller than the deformation wavenumber so this is a
challenging problem for UQ due to both the large phase space and
large number of instabilities. A numerical resolution of 2562 Fourier
modes in a standard pseudospectral code [25] is utilized to study the
statistical dynamics of this turbulent dynamical system so the dimen-
sion of the subspace N exceeds 125,000 and large ensemble member
Monte Carlo simulations of the perfect model are impossible in the
foreseeable future; instead, for a given shear strength, U , statistics
are calculated from a long time average [24, 25, 26]. The standard
value of U0 ≡ 1 in nondimensional units yields the unperturbed sys-
tem where we calibrate ROMQG in a fashion described earlier. In
the experiments reported below, we study the nonlinear response to
changes in the jet strength Uδ = U0 + δU where δU can have both
negative and positive values with |δU | ≤ 0.05U0 so these are 5% per-
turbations on the shear strength; as shown below, these are powerful
enough to cause 50% changes in the energy or heat flux spectrum. To
compute the perfect nonlinear response, we run the numerical code
for the perfect model with perturbed shear, Uδ, and gather the per-
turbed statistics from a long time average. The UQ challenge for the
ROMQG methods here is to predict the nonlinear response to these
changes in shear through a low order statistical model. While the
above problem is a difficult challenge for ROMQG, it has a sim-
plified structure which can be exploited. For a given jet strength
U , the statistics on the attractor are homogeneous so Fourier series
can be utilized to simplify the ROMQG algorithm with the result
the linear operator, L, decouples into a block diagonal 2 × 2 sys-
tem for each Fourier mode and all EOF’s are Fourier modes with two
complex EOF’s per Fourier mode. Furthermore, for two layer baro-
clinic turbulence, no mean field is generated and ∂q̄ψ

∂t = ∂q̄τ
∂t = 0

for all the above homogeneous perturbations, unlike the L-96 model
studied earlier (see [24] and the supplementary material). Thus, we
can study the statistics of two-layer baroclinic turbulence through

the Fourier series representation, q =
∑

k,l q̂kle
i(kx+ly) and develop

ROMQG algorithms merely by applying ROMQG to the truncated
band of wavenumbers, 1 ≤

(

k2 + l2
)1/2

≤ |k0| . With these com-
ments the ROMQG algorithm for this model is straightforward to
generate and is presented in detail in the supplementary material;
crucial to the discussion here is the choice of the structure function
f (Rs) = (Tr [Rs])

2 with qs = 0.055 for 1 ≤ |k| < 9 so that
ROMQG has only 252 modes, 0.2% of the total number of modes in
the original system. The key statistical quantities of practical interest
for UQ which we attempt to predict by the above ROMQG algorithm
are the radially averaged one-dimensional energy spectrum E (|k|)
and heat flux spectrum, Hf (|k|) defined for the energy by

2Ē =
∑

k

|k|2
∣

∣

∣
ψ̂
∣

∣

∣

2
+

(

|k|2 + λ2) |τ̂ |2 = 2π

∫ ∞

0

|k|E (|k|) d |k|

[23]
and for the heat flux, H̄f = λ

U2 ψxτ, by

H̄f =
λ
U2

∑

k

ikq̂kl,ψ q̂
∗
kl,τ

(

|k|2 + λ2
)

|k|2
=

2πλ
U2

∫ ∞

0

|k|Hf (|k|) d |k|

[24]
In both (23) and (24), the continuous integrals have only symbolic
meaning and actually represent a discrete radial average. In Figure
3 we compute the nonlinear response of the perfect system and the
ROMQG prediction for Ē, H̄f and E (|k|), Hf (|k|) for a family of
perturbations up to 5% of the mean shear U0. The first thing to note
from the upper panels of Figure 3 is that the perfect response of Ē
and H̄f is nonlinear over the parameter regime and the ROMQG al-
gorithm with less than 0.2% of the modes and calibrated only at U0

closely tracks the nonlinear changes in bulk statistics. The most non-
linear departures occur at shear perturbations Uδ = (1± 0.05)U0

and the second panels show the high skill of the ROMQG algorithm
in capturing the nonlinear sensitivity of the energy density E (|k|) ,
while the lower panels show similar high skill for the ROMQG for
the heat flux spectrumHf (|k|) . Incidentally, these panels also show
clear nonlinear response for both E (|k|) and Hf (|k|) since the left
panel deviations from the unperturbed state are very far from equal
and opposite compared with the right panel perturbations; this means
that in the present context, systematically calibrated ROMQG al-
gorithms are both vastly cheaper and outperform FDT algorithms
[13, 14, 15, 16, 17, 22] which can only estimate linear statistical re-
sponse and often lose some skill [14, 15, 16, 17, 22] in estimating
quadratic functionals like E (|k|),Hf (|k|) .

Discussion and conclusions
We have developed a new ROMQG algorithm for low order predic-
tive statistical modeling of UQ in turbulent dynamical systems. The
low order algorithms apply to turbulent dynamical systems where
there is significant linear instability or linear non-normal dynamics
in the unperturbed system and energy conserving nonlinear interac-
tions which transfer energy from the unstable modes to the stable
modes where dissipation occurs, resulting in statistical steady state;
such turbulent systems are ubiquitous in geophysical and engineering
turbulence. The ROMQG methods involve constructing a low order
nonlinear dynamical system for the mean and the covariance statis-
tics in the reduced subspace which has the unperturbed steady state
statistics as a stable fixed point and optimally incorporates the indi-
rect effect of non-Gaussian third order statistics for the unperturbed
system in a systematic calibration stage. As shown here, this calibra-
tion procedures is achieved through information involving only the
mean and covariance statistics for the unperturbed equilibrium. The
performance of the ROMQG algorithm is assessed here on two strin-
gent test cases: the forty mode L-96 model mimicking midlatitiude
atmospheric turbulence and two layer baroclinic models for high lat-
itude ocean turbulence with over 125,000 degrees of freedom. In the
L-96 models, ROMQG algorithms with just a single mode (the most

Footline Author PNAS Issue Date Volume Issue Number 5



energetic) capture the transient UQ response to random or determin-
istic forcing. For the baroclinic turbulence models, the inexpensive
ROMQG algorithms with 252 modes (0.2% of the total modes) are
able to capture the nonlinear response of the energy, the heat flux,
and even the one-dimensional, energy and heat flux spectrum at each
wavenumber. The results reported here point to the potential use of
the ROMQG algorithm for UQ in realistic turbulent dynamical sys-

tems with additional anisotropy due to topography, land sea contrast,
etc.

ACKNOWLEDGMENTS. The authors thank Shane Keating, Shafer Smith, and
Xiao Xiao for their help in setting up the numerical code for baroclinic turbulence.
AJM is partially supported by Office of Naval Research grants, ONR-MURI 25-
74200-F7112, ONR N00014-11-1-0306, and ONR-DRI N0014-10-1-0554. TPS
is supported on the last grant.

0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05
0.7

0.8

0.9

1

1.1

1.2

1.3

En
er

gy
 ( 

%
 E

0)

Mean velocity  ( % U0)
 

 

0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05
0.9

0.95

1

1.05

1.1

1.15

H
ea

t F
lu

x 
(%

 H
0)

Mean velocity  ( % U0)
 

 

100 101

0.05

0.1

0.15

0.2

0.25
U = 0.95 U0

Wavenumber

En
er

gy
 s

pe
ct

ru
m

 

 

100 101
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10−3

U = 0.95 U0

Wavenumber

H
ea

t f
lu

x 
sp

ec
tru

m

 

 

100 101

0.05

0.1

0.15

0.2

0.25
U = 1.05 U0

Wavenumber

En
er

gy
 s

pe
ct

ru
m

100 101−3.5
−3

−2.5
−2

−1.5
−1

−0.5
0 x 10−3

U = 1.05 U0

Wavenumber

H
ea

t F
lu

x

Spectral Code
Reduced MQG |k|<9 (252 modes)
Unperturbed case (U = U0)

Fig. 3. Percentage comparison of the average energy and heat flux for different shear stresses (left panel); Energy and heat flux spectum for the most perturbed
cases Uδ = (1± 0.05)U0.

1. P. Holmes, J.L. Lumley, and G. Berkooz Turbulence, Coherent Structures, Dynami-
cal Systems and Symmetry, Cambridge University Press (1996).

2. H.N. Najm, Uncertainty quantification and polynomial chaos techniques in compu-
tational fluid dynamics, Annu. Rev. Fluid Mech., 41 (2009), pp. 35-52.

3. T. Hou , W. Luo, B. Rozovskii, H-M. Zhou, Wiener Chaos expansions and numerical
solutions of randomly forced equations of fluid mechanics, J. Comp. Phys., 216
(2006), pp. 687–706.

4. O. Le Maitre, O. Knio, H. Nahm, R. Ghanem, A stochastic projection method for fluid
flow I. Basic formulation, J. Comp. Phys., 173 (2001), pp. 481–511.

5. T.P. Sapsis and P.F.J. Lermusiaux Dynamically orthogonal field equations for con-
tinuous stochastic dynamical systems, Physica D, 238 (2009), pp. 2347–2360.

6. T.P. SapsisAttractor local dimensionality, nonlinear energy transfers and finite-time
instabilities in unstable dynamical systems with applications to two-dimensional
fluid flows, Proc. Roy. Soc. A, 469 (2013), pp. 20120550.

7. N. Aubry, W.-Y. Lian, E.S. Titi Preserving symmetries in the proper orthogonal de-
composition, SIAM J. Sci. Comp., 14 (1993), pp. 483–505.

8. D.T. Crommelin and A.J. Majda Strategies for model reduction: Comparing different
optimal bases, J. Atm. Sci., 61 (2004) pp. 2206–2217.

9. M. Branicki and A.J. Majda, Fundemantal limitations of polynomical chaos for un-
certainty quantification in systems with intermmitent instabilities, Comm. Math.
Sci., 11 (2013), pp. 55–103.

10. A.J. Majda and M. Branicki Lessons in uncertainty quantification for turbulent dy-
namical systems, Dis. Con. Dyn. Sys., 32 (2012), pp. 3133–3221.

11. T.P. Sapsis and A.J. Majda Blended reduced subspace algorithms for uncertainty
quantification of quadratic systems with a stable mean state, Physica D, (2013) In
Press.

12. T.P. Sapsis and A.J. Majda Blending modified Gaussian closure and non-Gaussian
reduced subspace methods for turbulent dynamical systems, J. Nonlin. Sc., (2013)
In Press.

13. A. Gritsun and G. Branstator Climate response using a three-dimensional operator
based on the fluctuation-dissipation theorem, J. Atm. Sci., 64 (2007) pp 2558–2575.

14. A. Gritsun, G. Branstator, A.J. Majda Climate response of linear and quadratic func-
tionals using the fluctuation-dissipation theorem, J. Atm. Sci., 65 (2008) pp 2824–
2841.

15. R. Abramov and A.J. Majda A new algorithm for low-frequency climate response, J.
Atm. Sci., 66 (2009) pp 286–309.

16. A.J. Majda, B. Gershgorin, Y. Yuan Low frequency climate response and fluctuation-
dissipation theorems: theory and practice, J. Atm. Sci., 67 (2010) pp 1186–1201.

17. M. Hairer and A.J. Majda A simple framework to justify linear response theory,
Nonlinearity, 23 (2010) pp 909-922.

18. T.P. Sapsis and A.J. Majda A statistically accurate modified quasilinear Gaussian
closure for uncertainty quantification in turbulent dynamical systems, Physica D,
252 (2013) pp 34–45.

19. E.N. Lorenz Predictability - a problem partly solved, Proc. of Predictability, ECMWF
(1996) pp 1–18.

20. E.N. Lorenz and K.A.Emanuel Optimal sites for supplementary weather observa-
tions: Simulations with a small model, J. Atm. Sci., 55 (1998) pp 399–414.

21. A.J. Majda and J. Harlim Filtering complex turbulent systems, Cambridge University
Press (2013).

22. R. Abramov and A.J. Majda Blended response algorithms for linear fluctuation-
dissipation for complex nonlinear dynamical systems, Nonlinearity, 20 (2007)
pp 2793–2821.

23. R. Salmon Lectures on Geophysical Fluid Dynamics, Oxford University Press
(1998).

24. A.F. Thompson and W.R. Young Scaling baroclinic eddy fluxes: vortices and energy
balance, J. Phys. Oceanogr., 36 (2006) pp 720–738.

25. S. Keating, A.J. Majda, K.S. Smith New methods for estimating poleward eddy heat
transport using satellite altimetry, Monthly Weather Review., 140 (2012), pp. 1703–
1722.

26. A.J. Majda and X. Wang Nonlinear dynamics and statistical theories for basic geo-
physical flows, Cambridge University Press (2013).

27. T. DelSoleStochasticmodels of quasigeostrophic turbulence, Surveys in Geophys.,
25 (2004), pp. 107–149.

6 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author



Statistically Accurate Low Order Models for Uncertainty
Quantification in Turbulent Dynamical Systems -

Supplementary material

Themistoklis P. Sapsis and Andrew J. Majda
Courant Institute of Mathematical Sciences, New York University,

251 Mercer St., New York, 10012 NY

June 13, 2013

1 Forty mode L-96 system

Here we present additional results of the ROMQG algorithm for the L-96 system using deterministic
periodic or stochastic forcing. We are studying the the case of F = 6 (weakly chaotic), F = 8
(strongly chaotic), and F = 16 (turbulent) regime. A typical snapahot of the field for each case is
presented in Figure 1.

Figure 1: Numerical solutions and corresponding spectra of L-96 model in space-time for weakly
chaotic (F = 6), strongly chaotic (F = 8), and fully turbulent (F = 16) regime.
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Figure 2: Reduced order MQG for random forcing fluctuating aroung F = 6. Results are presented
using 1 leading wavenumber (2 real modes), 2 leading wavenumbers (4 real modes), and 4 leading
wavenumbers (8 real modes).
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Figure 3: Reduced order MQG for periodic forcing fluctuating aroung F = 16. Results are presented
using 1 leading wavenumber (2 real modes), 2 leading wavenumbers (4 real modes), and 4 leading
wavenumbers (8 real modes).
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Figure 4: Reduced order MQG for random forcing fluctuating aroung F = 16. Results are presented
using 1 leading wavenumber (2 real modes), 2 leading wavenumbers (4 real modes), and 4 leading
wavenumbers (8 real modes).
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2 Two-layer baroclinic model

We consider the Phillips model in a barotropic-baroclinc mode formulation with periodic boundary
conditions given by

@q 
@t

+ J ( , q ) + J (, q ) + 
@ 

@x
+ U

@

@x
r2 =  (1 ) rr2


  a1



@q
@t

+ J ( , q ) + J (, q ) + J (, q ) + 
@

@x
+ U

@

@x


r2 + 2 + r2


=
p
 (1 )rr2


  a1



where q = r2 and q = r2  2 and
For what follows we will use the quadratic operator associated with the above system

B (q1,q2) = 


J ( 1, q2, ) + J (1, q2, )
J ( 1, q2, ) + J (1, q2, ) + J (1, q2, )



as well as the linear operator

L (q) =


 (1 ) rr2


  a1


 U @

@xr
2   @ @xp

 (1 )rr2

  a1


  @@x  U

@
@x


r2 + 2 + r2



.

Using the above notation the original system can be written as

dq

dt
= L (q) +B (q,q) .

The parameters values are given in the paper and they correspond to baroclinic ocean turbulence
at high latitudes. A typical snapshot of the vorticity fields q , q is given in Figure 5.

Figure 5: Typical snapshots (vorticity fields) of the barotropic and baroclinic mode for baroclinic
ocean turbulence at high latitudes.
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2.1 An overview of the stability and energy fluxes properties for the
two-layer baroclinic model

Here we provide an overiview of the stability and energy fluxes properties for the two-layer baroclinic
model under the parameters given in the paper.

2.1.1 Setup and basic properties

The inner product that corresponds to the total energy is given by the following bilinear form

[q1,q2]E =

Z
r 1r 2 +r1r


2 + 

21

2

= 
Z
q 1 


2 + q1


2

=

Z 
k2 + l2

 
 ̂1 ̂


2


+

k2 + l2 + 2


(̂1̂


2 )

where the hats denote the spatial Fourier transforms.
We will now prove that the quadratic operator is conservative with respect to this inner product.

In particular we have (using the second expression for the energy inner product)

[B (q,q) ,q]E =

Z
(J ( , q ) + J (, q ) + J ( , q )  + J (, q )  + J (, q ) )

We have
Z
J ( , q ) =

Z
 r? .rq =

1

2

Z
r? 2.rq =

1

2

Z
q divr? 2 = 0.

where we used Greens identity and took into account the periodic boundary conditions. Similarly
we can obtain

R
J (, q )  =

R
J (, q )  = 0. In addition,

Z
J (, q ) +J ( , q )  =

Z
 r?.rq +r? .rq =

Z
r? ( ) .rq =

Z
q divr? ( ) = 0

Therefore, the quadratic terms conserve energy

[B (q,q) ,q]E =0.

2.2 Mean field dynamics

We obtain the equation for the mean vorticity by expanding the solution in terms of Fourier modes
which is the natural basis since the problem is defined on a periodic domain. In particular we
represent the solution as

q (t,x;!)= q̄ (t,x)+
X

k,l

qkl (t,x;!)

where qkl (t,x;!) have the form qkl (t,x;!) = q̂kle
i(kx+ly)and for the steady state we have

dq̄1
dt

= 0 = L (q̄1) +B (q̄1, q̄1) +
X

k,l,m,n

B (qkl,qmn) +B
 (qkl,qmn)

2
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Note that because di§erent wavenumbers will be uncorrelated in steady state, we will have

X

k,l,m,n

B (qkl,qmn) +B
 (qkl,qmn)

2
=
X

k,l

B (qkl,qkl) +B
 (qkl,qkl)

2

Moreover, we can easily observe that B (qkl,qkl) = 0, therefore the equation for the mean decouples
from the second order statistics and we obtain:

L (q̄1) +B (q̄1, q̄1) = 0

From which we have
q̄1 = 0 (1)

Thus the mean will not be included in the analysis that follows.

2.2.1 Dynamics in spectral space

The solution can be represented as

q =
X

k,l


q̂kl, 
q̂kl,


ei(kx+ly)
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Figure 8: Energy spectrum; Heat flux; magnitude of the non-normal part of the operator:L̂p p  L̂pp 
 ; Total nonlinear energy flux: Q,kl + Q  ,kl. The black dashed line is the

10%max
k

hHf ikl
 contour of the heat flux field.
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Figure 9: BT and BC energy spectrum; BT and BC nonlinear energy fluxes: Q  ,kl, Q,kl; Real
part of vertical eigenvalues of the linear operator L̂p. The black dashed line is the 10%max

k

hHf ikl


contour of the heat flux field and the black solid curve to corresponding positive one.
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Figure 10: Third order moments having intensity more than 10% of the maximum value. These
are shown with respect to EOF modes arranged in descending energy order.
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From the above representation we easily obtain an expression for the corresponding streamfunctions

q = r2 )  = 
X

k,l

q̂kl, 
k2 + l2

ei(kx+ly) (2a)

q = r2  2 )  = 
X

k,l

q̂kl,
k2 + l2 + 2

ei(kx+ly) (2b)

We saw that the quadratic operator conserves energy and therefore the energy inner product is
sutiable for formulating an MQG UQ scheme. We use the following spectral variables for which the
energy inner product is expressed as Euclidian inner product

p̂kl, 
p
k2 + l2 ̂kl = 

q̂kl, p
k2 + l2

,

p̂kl, 
p
k2 + l2 + 2̂kl = 

q̂kl,p
k2 + l2 + 2

With this choice we have

[q1,q2]E =

Z
(p̂kl, 1 p̂kl, 2 + p̂kl,1 p̂kl,2)

And the original system will take the form

dp̂kl, 
dt

= L̂p p p̂kl, + L̂p p p̂kl, 
1

p
k2 + l2

B (q,q) .q̃kl, (3a)

dp̂kl,
dt

= L̂pp p̂kl, + L̂pp p̂kl, 
1

p
k2 + l2 + 2

B (q,q) .q̃kl, (3b)

where,

L̂p p =


 (1 ) r +

ik

k2 + l2



L̂p p = (1 ) ra
1

r
k2 + l2

k2 + l2 + 2
 iUk

r
k2 + l2

k2 + l2 + 2

L̂pp =

r
k2 + l2

k2 + l2 + 2

p
 (1 )r  ikU


1

2

k2 + l2



L̂pp = 
1

k2 + l2 + 2

hp
 (1 )ra1


k2 + l2


 ik + ikU


k2 + l2

i

2.2.2 MQG formulation

We observe that coupling between di§erent wavenumber is introduced only through the conservative,
quadratic operator. In particular the covariance for each wavenumber

Rp,kl =

 
|p̂kl, |

2
p̂kl, p̂kl,

p̂kl, p̂kl, |p̂kl, |
2

!
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will be governed by the equation

dRp,kl
dt

= L̂p,klRp,kl +Rp,klL̂

p,kl +Qp,kl

where

L̂p,kl =


L̂p p (k, l) L̂p p (k, l)

L̂pp (k, l) L̂pp (k, l)



Where Qp,kl expresses the nonlinear energy fluxes due to the quadratic operator - this is modeled
through the ROMQG approach. Note that the total energy of the system (kinetic and available
potential) is given by tr (Rp,kl) .

2.3 Eddy heat flux

The eddy heat flux is proportional to the quantity

Hf =


U2
 x

Based on the employed formulation (enstrophy or energy) we will have the following expressions
for the eddy heat flux:

Hf =


U2
 x

=


U2

X

k,l

X

r,s

ik ̂kl̂rse
i([k+r]x+[l+s]y)

=


U2

X

k,l

X

r,s

i
k

p
k2 + l2

1
p
r2 + s2 + 2

p̂kl, p̂rs,e
i([k+r]x+[l+s]y)

= 


U2

X

k,l

X

r,s

i
k

(k2 + l2)

1

(r2 + s2 + 2)
q̂kl, q̂rs,e

i([k+r]x+[l+s]y)

The spatially averaged heat flux will be given by

hHf i =


U2

X

k,l

i
k

p
k2 + l2

1
p
k2 + l2 + 2

p̂kl, p̂

kl,

=


U2

X

k,l

i
k

(k2 + l2)

1

(k2 + l2 + 2)
q̂kl, q̂


kl,
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