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STOCHASTIC SUPERPARAMETERIZATION IN A

ONE-DIMENSIONAL MODEL FOR WAVE TURBULENCE

IAN G. GROOMS † AND ANDREW J. MAJDA ‡

Abstract. Superparameterization is a multiscale numerical method wherein solutions of prog-
nostic equations for small scale processes on local domains embedded within the computational grid
of a large scale model are computed and used to force the large scales. It was developed initially in
the atmospheric sciences, but stands on its own as a nascent numerical method for the simulation of
multiscale phenomena. Here we develop a stochastic version of superparameterization in a difficult
one dimensional test problem involving self-similarly collapsing solitons, dispersive waves, and a tur-
bulent inverse cascade of energy from small to large scales. We derive the nonlinear model equations
by imposing a formal scale separation between resolved large scales and unresolved small scales;
this allows the use of subdomains embedded within the large scale grid to describe the local small
scale processes. To decrease the computational cost, we make a systematic quasi-linear stochastic
approximation of the nonlinear small scale equations and use the statistical mean of the nonlinear
small scale forcing (the covariance) in the large scale equations. The stochastic approximation al-
lows the embedded domains to be formally infinite (unrealistically large scales are suppressed on the
embedded domains). Further simplifications allow us to precompute the small scale forcing terms
in the large scale equations as functions of the large scale variables only, which results in significant
computational savings. The results are positive. The method increases the energy in overdamped
simulations, decreases the energy in underdamped simulations, and improves the spatial distribution
and frequency of collapsing solitons.
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Complex interactions across a wide range of spatial and temporal scales represent
a major challenge for computational physics in a variety of settings. Direct resolution
of all relevant scales is often impossible even with the current generation of supercom-
puters; even if it were possible, it would in many cases generate more information than
desired. Lacking the ability to resolve all dynamically relevant scales, or interested
only in the largest ones, one is led to model the interaction of resolved and unresolved
scales.

Models of unresolved small, fast scales proceed by separating the dynamics into
‘mean’ and ‘fluctuation’ (or ‘eddy’) components, where the former is directly resolved
and the latter is not. Separation into mean and eddies can proceed in a variety of
ways, for example by low- and high-pass filtering or by ensemble averaging (although
the latter is not guaranteed to result in a ‘mean’ with resolvably large scales). The
equations governing the mean component generally involve contributions from the
eddy component, which must be modeled in such a way as to achieve a faithful
representation of the evolution of the mean.

This difficulty of parameterizing unresolved processes has been a particular con-
cern of the atmospheric modeling community. To illustrate the specific example of
unresolved cloud processes we quote [1],
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2 Stochastic Superparameterization in MMT

“The representation of cloud processes in global atmospheric models
has been recognized for decades (e.g.Arakawa 1975; Charney 1979;
Houghton et al. 2001) as the source of much uncertainty surrounding
predictions of climate variability. Despite the best efforts of our com-
munity, and notwithstanding the achievement of significant advances
. . . the problem remains largely unsolved. . . . A new and different
strategy is needed”

The “new and different strategy” referred to above was first proposed by [2].
They embedded high resolution simulations of the unresolved cloud processes within
each vertical column of grid cells in a low resolution, large scale atmospheric model.
These embedded high resolution simulations are horizontally periodic and not directly
connected to each other which allows them to be solved in parallel, making good use
of the massively parallel architecture of contemporary supercomputers. The strategy
of using local, embedded, high resolution simulations to model the interaction of large
and small scales is termed ‘superparameterization.’ It has been tested in a variety of
atmospheric and oceanic contexts, e.g. [2–8], with good results.

Despite the high degree of parallelism afforded by making the embedded high
resolution simulations horizontally periodic and disconnected from each other, the cost
of using fully three dimensional embedded domains was deemed excessive by [2], who
made use of two dimensional embedded domains instead; their use of two dimensional
embedded domains has been imitated by many subsequent authors [3–9]. Another way
to reduce the cost and potentially improve the efficiency of superparameterization is to
run the embedded simulations on domains that do not fill the spatial and/or temporal
grid of the large scale model [2, 6, 9]. The success of embedded models with reduced
dimensionality (2D versus 3D) and reduced spatial and temporal extent suggests that
in many cases the exact details of the eddies are not needed to correctly capture the
impact of the eddies on the mean. The process of simplifying the embedded eddy
model was taken in a new direction by [10], who proposed to use a linear stochastic
model of the eddy dynamics; their ideas were further expanded and generalized in [11].

In this article we expand upon the work of [10, 11] by implementing a stochastic
superparameterization in the idealized one dimensional model of wave turbulence. The
parameterization is spectacularly successful, resulting in a good approximation of the
mean dynamics in a difficult setting with breaking solitons and an inverse cascade of
energy from unresolved scales [12–17]. The parameterization is extremely efficient and
robust, retaining high performance even with embedded domains much smaller than
the large scale grid; it increases the energy of overdamped solutions, decreases the
energy of underdamped solutions, and improves the spatial and temporal distribution
of breaking solitons in low resolution simulations.

In section 1 we introduce the one dimensional test model, and we set up the
basis for a stochastic superparameterization in section 2. In section 3 we describe
numerical experiments testing the accuracy, efficiency, and robustness of our stochastic
superparameterization. We conclude in section 4.

1. MMT: A one-dimensional test model The test model used in this paper
is a member of the family of dynamical equations introduced in [12]

i∂tψ= |∂x|
αψ+λ|∂x|

−β/4
(
||∂x|

−β/4ψ|2|∂x|
−β/4ψ

)
, λ=±1, (1.1)

where ψ(x,t) is a complex scalar. In a periodic or infinite domain, the fractional

derivative may be simply defined by ̂|∂x|αψ= |k|αψ̂k where (̂·) denotes the Fourier
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transform and k is a wavenumber. The system is referred to as ‘focusing’ for λ=−1
and ‘defocusing’ for λ=1. The motivation for the introduction of the MMT1 equation
in [12] was to provide a setting simple enough to test thoroughly the predictions of
weak turbulence theory; for our purposes, the model provides a chaotic, turbulent
dynamical system with coherent structures, waves, and forward and inverse energy
cascades over a very broad range of scales while remaining accessible to high resolution
simulation [12–17].

The inviscid, unforced MMT equation is Hamiltonian with

H=HL+HNL=

∫ ∣∣∣|∂x|α/2ψ
∣∣∣
2

dx+
λ

2

∫ ∣∣∣|∂x|−β/4ψ
∣∣∣
4

dx. (1.2)

In addition to the Hamiltonian, it also conserves wave action N and momentum P

N =

∫
|ψ̂k|

2dk=

∫
|ψ|2dx and P =

∫
(ψ(∂xψ)

∗−(∂xψ)ψ
∗)dx (1.3)

where ∗ denotes the complex conjugate. We refer to nk= |ψ̂k|
2 as the ‘energy spec-

trum.’ The ratioHL/HNL is a useful measure of the nonlinearity of the system [16,17].
The focusing equation has unstable, non-translating soliton solutions and self-

similar focusing events, ‘collapses’ which can rapidly transport wave action to a large
saturation wavenumber ks [13–17]. Previous investigations [14, 15] reported simula-
tions where resonant wave interactions carry the wave action transferred to ks by
focusing events partly upscale in an inverse cascade with the spectrum predicted
by weak turbulence theory nk∝k

−5/6, and partly downscale in a forward cascade
with the spectrum predicted by weak turbulence theory nk∝k

−1; remarkably, the
inverse cascade proceeds even when ks lies within the high wavenumber dissipation
range [14, 15]. The defocusing equation does not admit soliton solutions, but admits
quasisolitons, or ‘envelope solitons,’ which are semi-localized structures with a finite
lifetime [16, 17].

The test cases considered here use α=1/2, β=0, and λ=−1 (focusing) with addi-
tional forcing at large scales and damping at both large and small scales. Specifically,
we solve

i∂tψ= |∂x|
1/2ψ−|ψ|2ψ+ iF + iDψ (1.4)

in a periodic domain of length L=400 where F =F0 sin(4πx/L) is a steady, large scale
forcing and the damping Dψ is defined by

D̂ψk =





−ψ̂k for |k|=2π/L,

−ψ̂k(|k|−2600(2π/L))2 for |k|> 2600(2π/L),
0 otherwise.

(1.5)

From an initial condition (which is largely irrelevant to our results and included here
only for completeness)

ψ(x,t=0)= e2iπx/Lsech(100(x/L−0.5)) (1.6)

the high resolution reference solutions are integrated to at least t=2×105, by which
point the total wave action has saturated; statistics, including the time averaged
spectrum, are calculated over the last 1000 time units of each simulation. We compute
the reference solutions using a standard Fourier pseudospectral spatial discretization
with 213=8192 points in tandem with the fourth order Runge-Kutta exponential
integrator of [18] with step size ∆t=0.005.

1MMT stands for Majda-McLaughlin-Tabak, after the authors of [12].
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Fig. 1.1. Spectral bifurcation in focusing MMT The energy spectra nk= |ψ̂k|
2 averaged

over the last 1000 time units of the reference simulations of equation (1.4) with (a) F0=0.0163 and
(b) F0=0.01625. Lines proportional to k−5/6 and k−1 are included for reference. The abscissa
has been normalized by 2π/L. The level of nonlinearity in solution (a) is |HNL/HL|=0.09 and in
solution (b) is |HNL/HL|=0.06, averaged over the last 1000 time units of simulation (see (1.2).

Figure 1.1 shows the time averaged spectrum of two reference solutions in the
focusing case using F0=0.01625 and 0.0163. A clear bifurcation is evident in the
spectra (spectra at F =0.0162 and 0.0164, not shown, are indistinguishable from
those at 0.01625 and 0.0163); although the energy in both solutions is similar at the
forcing wavenumber k=4π/L, there is a gap of approximately two orders of magnitude
between the spectra at higher k. Previous investigations [13,15] found that the spectra
of solutions could exhibit significant changes as the solutions relaxed slowly towards
a statistically steady state. To rule out the possibility that our spectra were not
saturated we extended the simulations at F0=0.01625 and 0.0163 to t=4×105 and
no change was evident in the spectra; this does not contradict the results of [13, 15]
because the details of the forcing and dissipation are different.

The spectrum of the high energy simulation in figure 1.1 is proportional to k−5/6

over a wide range of scales, which is consistent with the inverse cascade spectrum of
weak turbulence theory. Following previous work [14, 15] we interpret this spectrum
to be the signature of an energetic loop where collapsing singularities rapidly trans-
port energy (wave action) to a saturation wavenumber ks that lies in the dissipation
range, and weak turbulence transports energy upscale from the dissipation range in
an inverse cascade. The spectra from the low energy simulation is very shallow at
large scales except for the prominent peak at the forcing wavenumber k=4π/L; at
higher wavenumbers the spectra are proportional to k−1, which is consistent with the
weak turbulence prediction of a downscale energy cascade [12].

Figure 1.2 compares grayscale renderings of |ψ(x,t)| over the last 1000 time units
of the simulations at F0=0.01625 and F0=0.0163. The low energy solution is clearly
dominated by the pattern of the large scale forcing, with weak dispersive wave tur-
bulence superposed; in contrast, the high energy solution shows almost no sign of the
forcing pattern, displaying instead a sea of dispersive wave turbulence punctuated by
localized collapsing singularities.
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Fig. 1.2. Low and high energy solutions in focusing MMT Grayscale images of |ψ(x,t)|
over the last 1000 time units of reference simulations of equation (1.4) with F0 =0.01625 (left) and
F0=0.0163 (right); darker colors indicate higher values. The grayscale is different, reflecting the
much higher energy level of the solution on the right; time increases downwards along the vertical
axis of each figure.

The high energy solution is a difficult test case for superparameterization, with
large-scale structures evolving self-similarly toward small scales and energy cascading
upscale from the dissipation range. In the following sections we formulate and test a
stochastic superparameterization for this difficult test problem.
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2. Stochastic superparameterization in MMT: Theory The mean equa-
tion

i∂tψ= |∂x|
1/2ψ+λ|ψ|2ψ+λ

[
2|ψ′|2 ψ+(ψ′)2 ψ

∗
+ |ψ′|2ψ′

]
+ i(Dψ+F ). (2.1)

is derived by applying a statistical average and low-pass filter (which can conveniently
be defined as a Fourier truncation to low wavenumbers) to the MMT equation (1.4).
The use of a statistical average in addition to the low-pass filter allows immediate
cancellation of terms which are linear in eddy variables.

The nonlinear eddy equation

i∂tψ
′= |∂x|

1/2ψ′+λ
[
2|ψ|2ψ′+ψ

2
ψ

′∗+2λ(|ψ′|2)′ψ+λ((ψ′)2)′ψ
∗
+λ(|ψ′|2ψ′)′

]

+ i(Dψ′+F ′) (2.2)

is derived by subtracting the mean equation from the full equation (1.4). We
next make the quasi-linear gaussian closure approximation [11] of the eddy equa-
tion wherein F ′ and all terms which are nonlinear in the eddy variables are replaced
by stochastic forcing iσẆ , which is spatially correlated and white in time, and deter-
ministic dissipation iΓψ′

i∂tψ
′= |∂x|

1/2ψ′+λ
[
2|ψ|2ψ′+ψ

2
ψ

′∗
]
+ i
[
(Γ+D)ψ′+σẆ

]
. (2.3)

Note that we have not yet required the use of embedded domains. The gaussian
closure approximation implies |ψ′|2ψ′=0, so the mean equation becomes

i∂tψ= |∂x|
1/2ψ+λ|ψ|2ψ+λ

[
2|ψ′|2 ψ+(ψ′)2 ψ

∗
]
+ i(Dψ+F ). (2.4)

In order to signify the superparameterization approximation, wherein the eddy
equation is interpreted to apply on local domains embedded in the large scale do-
main, we introduce a new spatial coordinate y; the use of embedded domains imposes
an artificial spatial scale separation between the mean and eddies regardless of the
size of the embedded domains. We additionally approximate the mean variables as
being time-independent in the eddy equation, which imposes a temporal scale sepa-
ration; this is signified by the introduction of a new temporal coordinate τ for the
embedded domains. With these changes the eddy equation on an embedded domain,
parameterized by the local value value of ψ, is

i∂τψ
′= |∂y|

1/2ψ′+λ
[
2|ψ|2ψ′+ψ

2
ψ

′∗
]
+ i
[
(Γ+D)ψ′+σẆ

]
, (2.5)

and the mean equation (2.4) remains unchanged.
The introduction of embedded domains requires re-interpretation of the low-pass

filter and statistical average denoted by the overbar. In addition to the statistical
average, the overbar is now interpreted an average over the new coordinates of the
embedded domains, which is consistent with standard practice in conventional super-
parameterization. This interpretation applies regardless of the details of the low-pass
filter used to separate the full dynamics into a low-pass mean and a high-pass eddy
component.

Because it involves ψ
′∗, equation (2.5) is not linear in ψ′, strictly speaking. We

write it as a linear system for the real and imaginary parts of ψ′=ψ′
r+ iψ

′
i

∂tu=Lu+σẆ (2.6)
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where u=(ψ′
r,ψ

′
i)

T and the meaning of σẆ has changed (but not the notation), and

L=

(
λI{ψ

2
}+D+Γ |∂y|

1/2+2λ|ψ|2−λR{ψ
2
}

−|∂y|
1/2−2λ|ψ|2−λR{ψ

2
} −λI{ψ

2
}+D+Γ

)
. (2.7)

Here R{·} and I{·} denote the real and imaginary parts of a complex number.
As in [10] we let the embedded domains be of infinite extent, and represent u′ as

a homogeneous random function (see also [19])

u(x,t,y,τ)=

∫
ûk(x,t,τ)e

ikydWk . (2.8)

The Fourier coefficients satisfy the autonomous Itō stochastic differential equation

dûk=Lkûkdτ+σkdWk (2.9)

where σk is a complex 2×2 matrix andWk is a 2-vector of independent complex white
noise. Also

Lk =

(
λI{ψ

2
}−dk−γk |k|1/2+2λ|ψ|2−λR{ψ

2
}

−|k|1/2−2λ|ψ|2−λR{ψ
2
} −λI{ψ

2
}−dk−γk

)
(2.10)

where the dk and γk are nonnegative real numbers; specifying these specifies the form
of the damping.

We define the 2×2 Fourier covariance matrix

Ck =E[ûkû
∗
k] (2.11)

where ∗ is both a complex conjugate and transpose. Note that the eddy terms in the
mean equation (2.4)

|ψ′|2=(ψ′
r)

2+(ψ′
i)

2 ; (ψ′)2=(ψ′
r)

2−(ψ′
i)

2+2iψ′
rψ

′
i (2.12)

may be written in terms of the Fourier covariance matrix using

uu
T =



(ψ′

r)
2 ψ′

rψ
′
i

ψ′
rψ

′
i (ψ′

i)
2


= ǫ

∫ ǫ−1

0

∫ ∞

−∞

Ckdkdτ, (2.13)

where we have introduced a scale ǫ−1 for fast-time averaging. The Fourier covariance
matrix is Hermitian by definition, Ck =C

∗
k ; because u is real valued (û∗

k= û−k) we
also have C−k =C

∗
k which implies Ck =C−k. The integral above can therefore be

carried out over only half of k.

uu
T =



(ψ′

r)
2 ψ′

rψ
′
i

ψ′
rψ

′
i (ψ′

i)
2


=2ǫ

∫ ǫ−1

0

∫ ∞

0

Ckdkdτ. (2.14)

The Fourier covariance obeys the ordinary differential equation

d

dτ
Ck=LkCk+CkL

T
k +σkσ

∗
k (2.15)



8 Stochastic Superparameterization in MMT

where the superscript T denotes a simple transpose to emphasize the fact that Lk is a
real matrix (the derivation of (2.15) amounts to a simple application of Itō’s lemma,
see also [10,11]). This differential equation can be written as a 4×4 real system where
the real and imaginary parts of the off-diagonal element of Ck are treated separately.

The system for the Fourier covariances is

d

dt
ck=Mkck+Σk (2.16)

where

Mk=

[
M̃k 0
0 0

]
−2(γk+dk)I, (2.17)

M̃k=




2λI{ψ
2
} 2

(
mk−λR{ψ

2
}
)

0

−
(
mk+λR{ψ

2
}
)

0 mk−λR{ψ
2
}

0 −2
(
mk+λR{ψ

2
}
)

−2λI{ψ
2
}


, (2.18)

and

mk = |k|1/2+2λ|ψ|2, (2.19)

ck=({Ck}1,1,R{{Ck}1,2},{Ck}2,2,I{{Ck}1,2})
T , (2.20)

Σk=({σkσ
∗
k}1,1,R{{σkσ

∗
k}1,2},{σkσ

∗
k}2,2,I{{σkσ

∗
k}1,2})

T . (2.21)

Some interesting and useful facts about this system:
• The imaginary part of the off-diagonal element of Ck (the fourth element of
ck) decouples from the rest of the system. The remaining comments refer to
the reduced subsystem which excludes the imaginary part of the off-diagonal
element of Ck.

• It is non-normal for most parameters (exceptions noted below). Nevertheless,
it has distinct eigenvalues and is therefore diagonalizable for most parameters.
The eigenvalues are

−2(γk+dk),−2(γk+dk)±2[−(|k|1/2+λ|ψ|2)(|k|1/2+3λ|ψ|2)]1/2 (2.22)

• For λ=1 (defocusing) it is uniformly stable, i.e. its eigenvalues have purely
negative real parts equal to −2(γk+dk). Nevertheless, due to the non-
orthogonality of its eigenvalues solutions may exhibit short-time growth.
With λ=1 the system is non-normal but diagonalizable for all k.

• For λ=−1 (focusing) interaction with the mean can lead to exponential
growth of modes in the range |ψ|4< |k|< 9|ψ|4; the exact range of unstable
modes is smaller than this and depends on the damping γk+dk. The system
is diagonalizable for all k except |k|= |ψ|4,9|ψ|4, where it degenerates.

Provided Mk is nonsingular, the solution to (2.16) for the elements of the Fourier
covariance matrix Ck is

ck(τ)= e
Mkτ

ck,0+M−1
k

[
eMkτ −I

]
Σk (2.23)

where

ck,0=ck(τ =0). (2.24)
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The coefficient matrix Mk can only be singular in the focusing case. The solution for
ck at any values of k for which Mk is singular needs to be treated specially, or one
can prevent Mk from being singular by adjusting the value of γk.

To calculate the eddy terms in the mean equation (2.4), one needs to compute
the time integral of the above exact solution, and then the integral over k. The time
average can be easily calculated by integrating the original ODE (2.16) for ck:

ǫ

∫ ǫ−1

0

ck(τ)dτ = ǫM
−1
k

[
ck(ǫ

−1)−ck,0−ǫ
−1Σk

]

= ǫM−1
k

[
eMk/ǫ−I

](
ck,0+M−1

k Σk

)
−M−1

k Σk. (2.25)

3. Stochastic superparameterization in MMT: Tests

3.1. Implementation details The stochastic superparameterization com-
putes the eddy terms in the mean equation (2.4) at each time step using the covariance
integral (2.14) and the analytical form of the integrand (2.25). To do this one must
choose a forcing Σk and damping γk, an initial condition ck,0 for (2.25), a length of
averaging ǫ−1, and a quadrature rule for (2.14). In principle, each of these choices
could vary across the large scale spatio-temporal domain. In the following we detail
our choices for each of these tunable parameters.

Because the eigenvalues of Mk have negative definite real part when ψ=0, (see
(2.22)) the system relaxes to a steady balance between forcing and dissipation given
by (see (2.23))

lim
τ→∞

ck=− [Mk,0]
−1

Σk, Mk,0=Mk(ψ=0). (3.1)

We choose the stochastic forcing matrix Σk and total damping γk+dk so that
the eddy spectrum coincides with observations when ψ=0. Analysis of the reference
simulation at F =0.0163 indicates that |ψ̂r,k|

2∼|ψ̂i,k|
2∼|k|−5/6. We therefore choose

Σk=−nkMk,0(1,0,1,0)
T (3.2)

where

nk=

{
0, |k|<k0

A
|k|5/6+e|k|−2600(2π/L) , k0≤|k|≤ 4096(2π/L).

(3.3)

The cutoff k0 is equal to the largest resolved wavenumber on the large scale grid
used for the solution of the mean equation, and the ‘eddy amplitude’ A is a tunable
parameter. The forcing is still dependent on the damping, which we set to

γk+dk=

{
10−5, |k|< 2600(2π/L)

10−5+(|k|−2600(2π/L))2, 2600(2π/L)≤|k|≤ 4096(2π/L).
(3.4)

Recall that the largest resolved wavenumber in our reference simulations is k=
4096(2π/L) and its dynamics are undamped for 1<Lk/(2π)< 2600.

In a conventional superparameterization with periodic embedded domains the
initial condition for each eddy simulation is finite-dimensional, consisting of the value
of the eddy variables at gridpoints in the embedded domain. In contrast, the initial
condition ck,0 is a function of k; to avoid keeping track of finite dimensional approxi-
mations of the initial condition at each grid point of the large scale domain we simply
set the initial condition to the ‘equilibrium’ value

ck,0=nk(1,0,1,0)
T . (3.5)
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Fig. 3.1. Precomputed eddy terms as functions of the mean The eddy terms in the mean
equation (2.4) are precomputed as functions of ψ using a time interval ǫ−1=1/10 and a large-scale

cutoff k0=8π/25. (a) The value of |ψ′|2, (b) the real part of (ψ′)2, and (c) the imaginary part of

(ψ′)2. Higher values are darker, and the exact magnitudes are dependent on the eddy amplitude A.

If the state of the eddies were tracked from one time step of the mean equations
to the next, it would be natural to set the length of the eddy simulations, ǫ−1, equal
to the time step of the mean equations. Because our initial condition for the eddies
contains no information about their previous state, we leave ǫ as a free parameter to
allow the eddies a little more time to respond to the local values of the mean variables.

The integral over k in (2.14) is approximated by a quadrature which is truncated
at k=4096(2π/L), the largest wavenumber resolved in the reference simulation. Con-
ventional superparameterization using periodic embedded domains is analogous to
using the trapezoid rule to calculate the integral over k in (2.14). Following [10] we
compare adaptive Simpson’s quadrature and trapezoid rule calculations; the details
of the trapezoid rule integrations are discussed further below. The matrix function

ǫM−1
k

[
eMk/ǫ−I

]
(3.6)

in equation (2.25) can be difficult to evaluate numerically; we evaluate it using a [7,7]
Padé approximant [20].

There are values of k for which Mk is singular and (2.25) is incorrect. In principle
these can be dealt with by perturbing the damping γk+dk slightly at those k for which
Mk is singular; this makes the damping a function of the mean γk=γk(ψ). This is not
necessary in practice since the quadrature rules almost never evaluate the integrand
at those k for which Mk is singular. Following [10], if any entry of the integrand
(2.25) of the covariance integral (2.14) becomes larger than 1000, the integrand is
scaled back to a maximum of 1000, which improves the stability of the quadrature.
This is only necessary for long averaging times (small ǫ) and has minimal impact on
the results.

Because our choices of forcing Σk and damping γk, length of averaging ǫ−1,
quadrature rule, and in particular of initial condition ck,0 are independent of the
large scale and long time variables x and t, the eddy terms in the mean equation
depends only on ψ. This allows us to precompute the values of the eddy terms over a
range of ψ, which significantly increases the efficiency of the code. Figure 3.1 shows
the eddy terms in the mean equations (|ψ′|2 and the real and imaginary parts of
(ψ′)2) as precomputed functions of ψ using ǫ=10, k0=8π/25 (the same as using a
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large scale grid with 128 points).

3.2. Stochastic superparameterization in infinite embedded domains

To test the stochastic superparameterization, we solve the mean equation (2.4) using
the same numerical algorithm as the reference simulations and identical large scale
forcing (F0=0.0163) and damping but fewer gridpoints, either 128 or 512. In all
simulations we precompute the terms |ψ′|2 and (ψ′)2 as functions of ψ on a grid of
101×101 points with R{ψ},I{ψ}∈ [−5,5] which is sufficient to cover the range of
ψ encountered in the simulations. Once the eddy terms are precomputed, they are
evaluated at each time step by querying a linear interpolant.

At both low resolutions we test three different values of ǫ=2,10,50. At each
resolution for each value of ǫ we add three different forms of additional damping to
the mean equation to remove energy carried to high wavenumbers by aliasing rather
than by intrinsic dynamics; thus, in (2.4) we interpret

D̂ψk
=





−ψ̂k for |k|=2π/L,

−ψ̂k(|k|−kd(2π/L))
2 for |k|>kd(2π/L),

0 otherwise

(3.7)

for selective Laplacian damping,

D̂ψk
=





−ψ̂k for |k|=2π/L,

−0.5ψ̂k for |k|>kd(2π/L),
0 otherwise

(3.8)

for ‘strong’ damping, or

D̂ψk
=





−ψ̂k for |k|=2π/L,

−0.1ψ̂k for |k|>kd(2π/L),
0 otherwise

(3.9)

for ‘weak’ damping. In simulations with 128 points kd=42 and in simulations with
512 points kd=170. In each simulation we test a range of eddy amplitudes, as defined
by A in equation (3.3). All simulations are run to t=105 since they equilibrate faster
than the reference simulations, using a time step of ∆t=0.02.

Figure 3.2 shows prototypical spectra from the stochastic superparameterization
simulations, compared to the reference simulation and to simulations of the mean
equation (2.4) in the absence of eddy forcing. The spectra from simulations with 128
points shown in the upper panel of figure 3.2 use strong damping; without the eddy
terms the solution has low energy similar to the low energy reference simulation with
F0=0.01625 in figure 1.1. The addition of the eddy terms increases the energy in
the high wavenumber components of the solution, making it a close approximation of
the reference solution. This demonstrates the ability of the eddy terms to correctly
represent the effects of an upscale cascade from unresolved small wavenumbers, which
is even more striking considering the fact that the eddy terms in the mean equation are
nonlinear deterministic functions of the mean variables rather than additive stochastic
forcing terms. This example is typical of all simulations with strong damping: the
addition of eddy terms lifts the overdamped high wavenumber energy spectrum by
nearly two orders of magnitude, making it comparable to the reference simulation
even though the coarse grids, 128 and 512 points, radically under-resolve the reference
solution with 8192 points.
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Fig. 3.2. Low resolution spectra with and without eddy terms The energy spectrum
nk = |ψ̂k|

2 from the reference solution to equation (1.4) with F0=0.0163 is marked ‘a’ in both panels.
The upper panel shows the spectra from solutions of the mean equation (2.4) with 128 points and
strong damping at k>42(2π/L) with the eddy terms (marked ‘c’ and with open circles) and without
the eddy terms (marked ‘b’ and with plus signs). The lower panel shows the spectra from solutions
of the mean equation (2.4) with 512 points and selective Laplacian damping at k>170(2π/L) with
the eddy terms (marked ‘c’ and with open circles) and without the eddy terms (marked ‘b’ and with
plus signs). The eddy terms in both sets of simulations are calculated for ǫ=10. The abscissae have
been normalized by 2π/L.

The spectra from simulations with 512 points shown in the lower panel of figure
3.2 use selective Laplacian damping; without the eddy terms the spectrum is already
similar to that of the reference simulation with F0=0.0163 in figure 1.1, although it
has slightly too much energy at all scales outside the dissipation range. The addi-
tion of the eddy terms decreases the energy of the solution and makes the spectrum
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slightly steeper at high wavenumbers. The eddy terms effect only a slight improve-
ment in the low resolution spectrum, mainly by decreasing the total energy; this
demonstrates that the stochastic superparameterization can both increase the energy
of an overly-damped solution and decrease the energy of an overly energetic solution.
This example is typical of all simulations with weak or selective Laplacian damping:
the addition of eddy terms lowers the overly energetic energy spectrum, primarily at
high wavenumbers, making it comparable to the reference solution.

Figure 3.3 shows grayscale images of |ψ(x,t)| over the last 1000 time units of sim-
ulations with 512 points and weak damping (compare to the high energy solution in
figure 1.2). The collapsing singularities without eddies (upper panel) are much more
clustered around the peaks of the large scale forcing than in the reference solution
shown in figure 1.2; there are also too many collapses, reflecting an excess of energy
similar to that displayed in the spectrum shown in figure 3.2. By contrast, the sim-
ulation with eddy terms (lower panel) is much more similar to the reference solution
both in terms of the number of collapses and their spatio-temporal distribution.

A more quantitative measure of this improvement is given by the fraction of the
domain occupied by collapsing solitons, averaged over time. The time averaged root-
mean-square |ψ| for the reference solution is 0.39, and it attains a maximum of 3.5;
we consider any location with |ψ|> 1 to be occupied by a collapsing soliton. The time
averaged area occupied by collapsing solitons in the reference solution is 0.0056; the
time averaged area occupied by collapsing solitons in the solution without eddy terms
(upper panel of figure 3.3) is 0.0188 and in the solution with eddy terms (lower panel)
is 0.0063. If we consider collapsing solitons to be defined by |ψ|> 1.25 the results are
similar: 0.0016 for the reference solution, 0.0095 for the simulation without the eddy
terms and 0.0027 for the simulation with the eddy terms. This example is typical of
all simulations with weak or selective Laplacian damping: the addition of eddy terms
improves the physical character of the solutions by improving the spatial distribution
and reducing the frequency of collapsing singularities.

The effects of the eddy terms shown in figures 3.2 and 3.3 are generic across all
of the simulations in our suite of tests. The strong damping simulations with 128
and 512 points both have far too little energy at high wavenumbers; yet at every ǫ
there is a range of eddy amplitudes A (see equation (3.3)) for which the addition
of eddy terms brings the spectrum of the solution back into close approximation of
the reference solution. The physical characteristics of the field, i.e. the number and
locations of collapses, are also improved by the addition of the eddy terms in the
strong damping simulations. The weak damping simulations with 128 and 512 points
produce spectra that are overly energetic at all scales, and the solutions have too
many collapses which are clustered at the peaks of the large scale forcing function.
The addition of the eddy terms slightly decreases the total energy and improves
the physical characteristics of the field. Furthermore, for a given resolution and ǫ,
any eddy amplitude A that improves an overdamped solution will also improve an
underdamped solution. In general, as the value of A (the magnitude of the eddy
terms) is increased from zero, the approximation improves; for values of A greater
than some threshold which depends on ǫ and the resolution, the eddy terms heavily
damp the mean solution producing a poor approximation.

3.3. Stochastic superparameterization in periodic embedded domains

As noted above and developed in [10], use of the trapezoid rule to approximate
the Fourier covariance integral (2.14) is analogous to the use of periodic embedded
domains in conventional superparameterization. In conventional superparameteriza-
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Fig. 3.3. Improvement in the pattern of low resolution simulations with eddy terms

Grayscale images of |ψ(x,t)| over the last 1000 time units of 512-point solutions to the mean equation
(2.4) with weak damping. In the solution without the eddy terms (upper) the collapses are clustered
on the peaks of the large scale forcing; the eddy terms improve the solution by decreasing the number
of collapses and spreading them more evenly over the domain. Compare to figure 1.2. Time increases
downwards along the vertical axis of each figure, and darker colors indicate higher values.

tions, where individual solutions of nonlinear eddy equations are computed on the
embedded domains, one may attempt to decrease computational cost by reducing the
size and/or spatial discretization of the embedded domains [2,6,9]. Such a reduction
limits the range of wavenumbers accessible on the embedded domains, which can ex-
clude important unstable dynamics if these occur on a range of scales not captured
on the reduced, discretized periodic embedded domains. Because we precompute the
eddy terms the cost savings afforded by using periodic embedded domains is negli-
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Fig. 3.4. Superparameterization spectra using periodic embedded domains The en-
ergy spectrum nk = |ψ̂k|

2 from solutions of the mean equation (2.4) with 128 points and strong
damping at k>42(2π/L). The eddy terms are computed using adaptive quadrature (solid with no
markers), corresponding to a homogeneous random function in an infinite domain, and using the
trapezoid rule, corresponding to periodic embedded domains (i) twice the size of the large scale grid
and with 130 points (marked with plus signs), and (ii) one eighth the size of the large scale grid with
10 points (marked with open circles). All simulations use the same eddy amplitude A=0.0044 (see
equation (3.3)). The abscissa has been normalized by 2π/L.

gible; as in [10] we test stochastic superparameterization using periodic embedded
domains to assess the impact of reducing the set of wavenumbers accessible to the
modeled eddies.

The size of the embedded domains is 2π/k1 where k1 is the smallest nonzero
wavenumber used in the trapezoid rule calculation. Taking k1 equal to the largest
resolved wavenumber on the large scale grid makes the embedded domain equal to
two large scale grid cells; conventional superparameterizations use embedded domains
equal to or smaller than the large scale grid in order to save computational cost [2,6,9].
We repeat the tests discussed above using strong damping, 128 points, and ǫ=2,10,50,
but using the trapezoid rule to calculate the eddy terms instead of adaptive Simpson’s
quadrature. At each value of ǫ we tested six discretizations of the trapezoid rule
corresponding to embedded domains (i) twice the size of the large scale grid with
130 gridpoints, (ii) 66 gridpoints, and (iii) 34 gridpoints, and (iv) equal to the large
scale grid with 66 gridpoints and (v) 34 gridpoints, and (vi) half the large scale
grid with 34 gridpoints. Neither decreasing the size of the embedded domains nor
coarsening their grid had significant detrimental impact on the ability of the method
to correctly reproduce the spectrum and physical characteristics of the large scale field,
though we found that the eddy amplitude A (see equation (3.3)) which produces the
best agreement with the reference solution differs between the calculations with the
trapezoid rule and those with adaptive Simpson’s quadrature.

Figure 3.4 compares the spectra of solutions to the mean equation (2.4) with 128
points and strong damping where the eddy terms are computed using (i) adaptive
quadrature, and discretizations of the trapezoid rule corresponding to (ii) an embed-
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ded domain one eighth the size of the large scale grid with 10 points per embedded
domain, and (iii) an embedded domain twice the size of the large scale grid with 130
points per embedded domain. All three solutions use the same eddy amplitude A.
The results exhibit the typical variations displayed by solutions using different embed-
ded domains; the solution with the small, low resolution embedded domains has too
much energy at all scales, while the solution with the large, high resolution embedded
domain has slightly too little energy at all scales. These energetic disparities can be
corrected by changing the eddy amplitude A, which is true of all our results with
embedded domains, but the direction in which A must be changed to improve a given
solution does not appear to have any obvious dependence on the size or resolution of
the embedded domains.

The success of stochastic superparameterization in periodic embedded domains
can be related to the typical range of unstable wavenumbers in the eddy domains.
For an embedded domain where the local mean has amplitude |ψ|=1, the range of
unstable eddy wavenumbers is very nearly 1≤|k|≤ 9, as given by (2.22) with γk+dk=
10−5. Every test performed includes at least one wavenumber in this range, except
the test using an embedded domain one eighth the size of the large scale grid, which
includes unstable modes for |ψ|& 4/3. Furthermore, even for simulations that lack
unstable modes the transient response of the eddies can include non-normal growth of
linearly stable modes. Clearly, for this problem the use of periodic embedded domains
that are smaller than the large scale grid and have low spatial resolution is warranted.

4. Concluding discussion and future directions Superparameterization,
which was initially developed in the context of atmospheric dynamics [2–4], is a
promising method of capturing the impact of unresolved small scale processes on
resolved large scales in simulations of multiscale phenomena. In superparameteri-
zation, solutions of prognostic equations for small scale processes on local, periodic
domains embedded within the computational grid of a large scale model are computed
and used to feed back onto the large scales. The computational cost of a superparam-
eterization with periodic embedded domains is less than the cost of a high resolution
simulation because simulations on the embedded domains can be run in parallel with
fewer points than a fully resolved simulation (see, e.g. [6, 8, 9]).

It is often useful and sometimes necessary to further decrease the computational
cost; this is done by using embedded domains with lower dimensionality (e.g. using
2D embedded domains in a 3D large scale grid as in [3–9]), by making the embedded
domains smaller than the size of the large scale grid cells, and/or by integrating the
embedded simulations over less time than the large scale model time steps [3, 6, 9].
The success of these approximations of the small scale dynamics suggests that even
more radical approximations may produce comparably accurate large scale solutions.
This line of reasoning led [10] to propose the use of quasi-linear stochastic models of
the small scale processes; a systematic theory of self-consistent quasi-linear Gaussian
stochastic models was introduced by [11].

We extend the work of [10] and [11] by implementing and testing a stochastic su-
perparameterization in a nonlinear one-dimensional model of wave turbulence. This
idealized model, introduced in [12] to test the validity of weak turbulence theory, in-
cludes many realistic features including unstable solitons which collapse self-similarly
from large to small scales and a turbulent inverse energy cascade from small to large
scales [12, 14–17]. In short, the test case for stochastic superparameterization is ex-
tremely difficult.

In contrast to many superparameterizations [2–6, 8, 9], where the equations gov-
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erning the large and small scale processes are posited directly based on knowledge of
the relevant physics, we derive our model equations from a single equation governing
the dynamics at all scales. The small scale dynamics are radically simplified by im-
posing an artificial scale separation through the use of embedded domains and by a
quasi-linear stochastic approximation, the ‘Gaussian closure’ of [11], but no stochas-
ticity is retained in the equations governing the large scale: only the expected value of
the eddy forcing, defined by the eddy covariance, is used in the large scale equations.

Additionally, we make a ‘memoryless’ approximation of the small scale dynamics,
where the transient response of the small scales to the local large scale variables is
calculated at every time step of the large scale equations from an initial state given
by a prescribed ‘climatological’ equilibrium rather than from the state of the small
scale variables at the end of the previous time step of the large scale equations.
This transient response need not equilibrate (and generally does not equilibrate), but
is rather truncated after a specified time interval comparable to the length of the
large scale time step. The ‘memoryless’ approximation allows us to precompute the
response of the small scales to a range of large scale conditions, and the small scale
forcing terms in the large scale equations are evaluated by querying the precomputed
interpolant in a look-up table.

The stochastic approximation allows us to treat the embedded domains as be-
ing formally infinite, the small scale variables being spatially homogeneous random
functions on the embedded domains. Linear instabilities in the small scale dynamics
sometimes occur over a limited range of wavenumbers (not just in the test model, but
generally). The use of periodic embedded domains restricts the allowable small scale
wavenumbers to a finite set which can miss the most important modes in the small
scale response to the large scale conditions [10]. Our use of infinite domains alleviates
this problem by allowing a continuum of wavenumbers in the small scale dynamics.
Our particular test problem does not offer clear evidence of the superiority of infi-
nite embedded domains since the range of unstable wavenumbers in the small scale
equations is wide enough to be captured by even extremely small or coarsely grained
periodic embedded domains: we do not find the use of periodic embedded domains to
be clearly inferior or superior to the use of infinite domains in this particular problem.

Despite the many and severe approximations of the small scales, the resulting
stochastic superparameterization performs admirably. It increases the energy in over-
damped simulations and decreases the energy in underdamped simulations (figure
3.2), and improves the spatial distribution and frequency of collapsing singularities
(figures 1.2 and 3.3). Because of the ability to precompute the small scale forcing
terms in the mean equations the computational cost is similar to the cost of not using
any parameterization at all.

The resounding success of stochastic superparameterization in the current test
problem warrants further investigation of the method in more physically relevant set-
tings. In particular, the use of stochastic superparameterization for filtering turbulent
signals from sparse observations in order to overcome the curse of ensemble size is an
enticing future topic [21, 22].
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