
Generated using version 3.2 of the official AMS LATEX template

Stochastic behavior of tropical convection in observations and a1

multicloud model2

Karsten Peters, ∗ Christian Jakob,

ARC Centre of Excellence for Climate System Science,

School of Mathematical Sciences, Monash University, Clayton, VIC 3800, Australia

Laura Davies

School of Mathematical Sciences, Monash University, Clayton, VIC 3800, Australia

Boualem Khouider

Department of Mathematics and Statistics,

University of Victoria, PO BOX 3045 STN CSC, B.C. Victoria, Canada V8W 3P4

3

Andrew J. Majda

Centre for Atmosphere Ocean Science and Courant Institute of Mathematical Sciences,

New York University, 251 Mercer Street, Room 902, New York, NY 10012

4

∗Corresponding author address: ARC Centre of Excellence for Climate System Science, School of Math-

ematical Sciences, Monash University, Clayton, VIC 3800, Australia.

E-mail: karsten.peters@monash.edu

1



ABSTRACT5

The aim for a more accurate representation of tropical convection in global circulation models6

is a long-standing issue. Here, we investigate the relationships between large- and convective7

scales in observations and a Stochastic Multicloud Model (SMCM) to ultimately support8

the design of a novel convection parametrization with stochastic elements. Observations of9

tropical convection obtained at Darwin and Kwajalein are used here. We find that the vari-10

ability of observed tropical convection generally decreases with increasing large-scale forcing,11

implying a transition from stochastic to more deterministic behaviour with increasing forc-12

ing. Convection shows to yield a more systematic relationship with measures related to13

large-scale convergence compared to measures related to energetics, e.g. CAPE. Using the14

observations, we adjust the parameters in the SMCM, force it with the time series of the15

observed large scale state and compare the simulated convective behaviour to that observed.16

We find that the SMCM-modelled cloud fields compare better with observations when using17

predictors related to convergence rather than energetics. Furthermore, the underlying frame-18

work of the SMCM is able to reproduce the observed functional dependencies of convective19

variability on the imposed large-scale state – an encouraging result on the road towards a20

novel convection parametrization approach. However, establishing sound cause-and-effect re-21

lationships between tropical convection and the large-scale environment remains problematic22

and warrants further research.23
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1. Introduction24

Climate projections using general circulation models (GCMs) are the tool of choice when25

it comes to quantifying the anthropogenic influence on Earth’s climate, ultimately answering26

the question to what degree humanity has an influence on global mean surface temperature.27

Although GCMs have undergone considerable development, mainly manifested in an ever-28

more increase in complexity, uncertainty in climate sensitivity has not been substantially29

reduced since its ad hoc introduction by Charney et al. (1979) and major atmospheric pro-30

cesses are still subject to considerable uncertainties. Of these, atmospheric convection and31

the clouds and feedbacks associated with it are most probably the most uncertain in the32

latest generation of GCMs (Randall et al. 2007). This is not only true for the multi-model33

ensemble of the CMIP3 (Coupled Model Intercomparison Project phase 3, Meehl et al. 2007),34

but model parameters associated with convection are often the most sensitive in perturbed35

parameter ensembles (Murphy et al. 2004; Klocke et al. 2011).36

Uncertainties in the representation of convection in current generation GCMs not only37

lead to uncertainties in estimates of climate sensitivity, but also manifest themselves in an38

erroneous simulation of precipitation. Generally, GCMs are capable of capturing the over-39

all amount of precipitation well, but the spatial distribution and variance often compare40

poorly to observations (e.g. Dai 2006; Pincus et al. 2008). Due to the limited spatial res-41

olution of a GCM, atmospheric convection is of subgrid-scale nature and can thus not be42

explicitly resolved and must be parameterised. Since the emergence of the first convection43

parametrization techniques some four decades ago, the response of convective elements to44

a given large-scale atmospheric state has mostly been formulated as purely deterministic45

(see Arakawa (2004) for a review) which implicitly prevents a particular model integration46

from developing convective variability beyond that given by the atmospheric state at the47

grid-point level.48

It is just in the last decade that a possible solution to this lack of variability in pa-49

rameterised subgrid-scale processes has emerged. This solution is based on representing50
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the variability in the response of unresolved processes to the large-scale environment in a51

dynamically-stochastic rather than in a purely deterministic manner (Palmer 2001), and has52

been shown to increase predictive skill of numerical weather prediction (i.e. Buizza et al.53

1999).54

Specifically targeted towards improving the representation of convection, Lin and Neelin55

(2000, 2003) introduced random perturbations to convective available potential energy (CAPE)56

or the heating profile of the host convective scheme and found that even such a simple ap-57

proach significantly enhanced precipitation variance towards that of observations. Randomly58

perturbing the trigger function of the Kain-Fritsch convection scheme also proved to yield an59

increase in predictive skill (Bright and Mullen 2002). Teixeira and Reynolds (2008) randomly60

sampled convective-parametrization relevant variables from a subgrid-scale distribution and61

found an increase in the spread of an ensemble prediction system and in particular a better62

representation of tropical convection. A similarly simple approach was taken by Tompkins63

and Berner (2008) who randomly sampled a subgrid-scale relative humidity distribution to64

perturb a convective parcel’s initial humidity and/or the humidity of the entrained air dur-65

ing ascent. Although promising results were obtained for mid-latitudes, the methodology66

employed did not yield improvements in tropical convection. In all the studies mentioned67

above, the randomly sampled deviations were assumed proportional to the mean of the per-68

turbed variable – an assumption shown to be valid when using cloud resolving model data69

as surrogate for observations (Shutts and Palmer 2007) .70

Taking a step further from just modifying the input parameters for existing convective71

parametrization closures and cloud models, several recent studies focused on formulating72

more advanced stochastic schemes. Majda and Khouider (2002) introduced a stochastic73

parameterization of convective inhibition (CIN) based on the Ising model of statistical me-74

chanics. It is further coarse grained to obtain a Markov birth-death process, which is two-way75

coupled to the large-scale dynamics and which can be integrated with very little computa-76

tional overhead (Khouider et al. 2003). The stochastic CIN model is used in Khouider77
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et al. (2003) and in Majda et al. (2008) to improve the wave variability and climate in78

an otherwise deficient mass-flux like parameterization in the context of a simple one and79

half layer toy GCM. Plant and Craig (2008) calculated a distribution of convective plumes80

and then randomly sampled this distribution to obtain a plume-ensemble which matches81

a required grid-box mean mass-flux given by a CAPE closure. Testing in a single-column82

model environment yielded high variability for small grid-boxes, approaching the determin-83

istic limit with increasing grid-box size. Recently, this scheme was tested in a limited area84

model-ensemble over central Europe and results showed a promising increase in precipitation85

variance (Groenemeijer and Craig 2012). Although not concentrating on deep convection,86

the study of Dorrestijn et al. (2012) represents a notable approach to stochastic parametriza-87

tion of shallow cumulus convection. They applied a Markov chain method to sample pairs of88

turbulent heat and moisture fluxes obtained form Large-Eddy Simulations (LES) and found89

a good agreement in the calculated ensemble spread compared to the LES data. Following90

the coarse graining ideas used in Khouider et al. (2003), Khouider et al. (2010) designed the91

Stochastic Multi-Cloud Model (SMCM) based on a birth-death process to represent tropical92

convection. The SMCM calculates the evolution of a cloud population consisting of three93

cloud types associated with tropical convection (congestus, deep convection, stratiform) con-94

strained by the large-scale atmospheric state. The state of the cloud ensemble at any given95

time and large-scale forcing is represented by area fractions per cloud type on a subgrid-scale96

lattice. The SMCM was shown to reasonably simulate tropical convection and associated97

wave-features when coupled to a simple two-layer atmospheric model (Khouider et al. 2010;98

Frenkel et al. 2012, 2013).99

As the vast majority of today’s GCM convection schemes are mass flux schemes, the cloud100

area fractions simulated by the SMCM could prove valuable for introducing a stochastic101

component to such schemes. Then at least one part (area) of the cloud base mass flux would102

yield a stochastic component, leaving the other part (updraft velocity) to be assigned in103

another suitable fashion.104
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It is the aim of this study to provide an assessment of whether the underlying framework105

of the SMCM is suitable to reproduce observed convective behavior. In doing so, we analyse106

observed convective behavior and subsequently adjust the model parameters, which have107

so far been based on sensible empirical assumptions (Khouider et al. 2010), to match the108

observed mean response of convection to the large-scale state. We then use the resulting,109

adjusted model to test whether its underlying framework is suitable to reproduce the statis-110

tical mean behavior of observed convection, the positive outcome of which would render the111

SMCM a useful tool for convection parametrization.112

The observational dataset we use in this study is described in Jakob et al. (2011) and113

represents a long-term, large scale dataset for three consecutive wet seasons over Darwin,114

Australia, complemented by an identically derived, but shorter dataset representative for115

Kwajalein. The Darwin-dataset has been shown to contain valuable information for char-116

acterising relationships between atmospheric convection and the large-scale state, with one117

of the most notable findings being that the relationships between convection and CAPE or118

vertical velocity show to be entirely stochastic or quasi-deterministic, respectively (Jakob119

et al. 2011).120

We introduce the basics of the SMCM, the observational dataset as well as the observation121

derived forcing for the SMCM in Section 2 and present the statistical relationships of observed122

convection to large-scale variables in Section 3. We then adjust the parameters of the123

SMCM, force it with the observed large-scale state and analyse the statistics of the modeled124

convection as well as the stochasticity of the model solution in Section 4. Section 5 gives a125

summary, conclusions and short outlook.126

2. Prerequisites: the model and the observations127

In this study, we utilise the recently introduced stochastic multicloud model (SMCM,128

Khouider et al. 2010) in conjunction with a large scale observational dataset representative129
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of a tropical location. In a nutshell, we investigate the degree to which the mathematical130

framework of the SMCM is suitable to reproduce the behavior of observed tropical convection131

– a necessary step towards a possible future usage in GCMs. In the following, we shortly132

introduce the SMCM (Sec. a) and the observational dataset (Sec. b)133

a. The SMCM: a short introduction134

Given the temporal evolution of a large scale atmospheric state representative of a tropical135

location, the SMCM simulates the evolution of an ensemble of three cloud types associated136

with tropical convection on a lattice containing n × n sites. The considered cloud types137

are congestus and deep convective as well as stratiform clouds (shallow convection is not138

considered) and the large scale atmospheric state is given by two variables: one representing a139

proxy for convective activity and the other representing a proxy for mid-tropospheric dryness140

(cf. Sec. c). In the SMCM, the evolution of the cloud ensemble is represented by a coarse141

grained birth-death process. This process is evolved in time by means of an acceptance-142

rejection Markov chain Monte Carlo method based on Gillespie’s exact algorithm (Gillespie143

(1975), see Khouider et al. (2010) for details on the implementation). Each individual144

lattice site can take either one of four states: clear sky, congestus cloud, deep convective145

cloud, or stratiform cloud. The total size of this lattice, say 20×20 sites, is assumed as146

being representative of a GCM grid-box, but there is no explicit spatial scale associated147

with neither the individual lattice sites nor with the total lattice. There is also no spatial148

coherence between individual lattice sites, i.e. the temporal evolution at one site is completely149

independent of that of its neighbors. However, local interactions between lattice sites can be150

easily incorporated, provided the strength and nature of these interactions are understood.151

The evolution of this birth-death process is determined by a set of equations which define152

transition rates from one of the four states (see above) to another. Individual transition153

rates can, but need not, be dependent on the given large scale state and their formulation is154

mainly inspired by physical intuition and based on specific rules, e.g. a deep convective cloud155
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is not allowed to form from a stratiform cloud (see Khouider et al. 2010, for detail). The156

individual transition rates are associated with timescales assumed of being representative157

for a specific transition. These transition timescales have been chosen in an ad-hoc, but158

physically meaningful manner and represent the only parameters that can be used to tune159

the SMCM in its current formulation. Khouider et al. (2010) presented two sets of transition160

timescales, both of which should be considered as rough estimates. Recently, Frenkel et al.161

(2012) found a third set of transition rates more useful. In this study, we use observations162

to take a closer look at these previously made choices of transition timescales.163

So far, the SMCM has not been used in combination with observations, but was cou-164

pled to a simple two-layer atmospheric model capable of capturing the main characteristics165

of tropical convection and associated wave features (Khouider and Majda 2006, 2008b,a;166

Khouider et al. 2010). There, simple formulations of precipitation formation and the asso-167

ciated heating profiles accounted for the feedback to the dynamics. Recently, Frenkel et al.168

(2012) used the SMCM to explore its capabilities in the context of improving GCM con-169

vection parametrizations by using the above mentioned two-layer model to flows about an170

equatorial ring. They found that using the SMCM increases the variability of tropical con-171

vection compared to a deterministic convection parametrization and that the SMCM is able172

to produce a realistic Walker cell circulation when forced with a longitudinal SST gradient.173

One may argue that the capability of the SMCM to produce sensible results is given by its174

design principles, e.g. prescribing certain transition timescales, assuming tropical convection175

to be dependent on two predictors only or coupling it to a simple two-layer atmospheric176

model. In fact, a comparison of the SMCM simulated cloud area fractions to observational177

data is still outstanding. It is the aim of this study to use the SMCM in a diagnostic fashion178

by forcing it with an observed large-scale state to investigate the feasibility of using its179

underlying stochastic concept for convective parametrizations in full GCMs.180
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b. Two datasets of observed large-scale atmospheric state over tropical areas181

We utilise two datasets comprising various quantities describing the large-scale atmo-182

spheric state over a tropical location for the purpose of this study. One dataset covers a183

≈ 190× 190km2 pentagon-shaped area centered over Darwin, Australia (Jakob et al. 2011),184

investigated during the TWP-ICE campaign (Tropical Warm Pool - International Cloud Ex-185

periment, May et al. 2008). The size of the area is chosen to approximately represent that of186

a typical GCM grid-box and the grid-box mean values of atmospheric variables are computed187

using a variational analysis after Zhang and Lin (1997). This variational analysis is applied188

to a large part of three consecutive wet seasons (2004/2005, 2005/2006, 2006/2007). Over189

northern Australia, the wet season is defined as the time period between September of one190

year and April of the following year. The dataset and its documentation can be obtained191

via the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s website192

(http://www.arm.gov/data/pi/46) and we use all available data for the analysis presented193

here. Atmospheric variables are available every 6 hours. Information on clouds and pre-194

cipitation is retrieved from radar observations by the C-band polarimetric (CPOL) research195

radar (Keenan et al. 1998) located at Gunn Point and operated by the Australian Bureau196

of Meteorology. From those data, rain area fractions attributable to either stratiform or197

convective precipitation are determined after Steiner et al. (1995) and used as a proxy for198

stratiform and convective cloud fractions (Kumar et al. 2012). Convective clouds are sepa-199

rated into congestus and deep convection according to cloud top height (CTH): convective200

clouds having CTHs of less than 7 km are classified as congestus whereas clouds having201

higher CTHs are classified as deep convective clouds (V.V. Kumar, personal communica-202

tion, 2012). The dataset encompasses the period of the TWP-ICE campaign (May et al.203

2008) which took place in the same area during January and February 2006. The collected204

data of meteorological regimes encountered during TWP-ICE have already proven to be very205

valuable for the evaluation of GCM convective parametrizations (e.g. Lin et al. 2012).206

The second dataset represents the large-scale atmospheric state over Kwajalein and is207
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obtained by applying the same variational analysis as is used for the Darwin dataset. Con-208

vective and stratiform precipitation area fractions are also calculated according to Steiner209

et al. (1995), congestus area fractions are however not available because the radar data avail-210

able to us only consists of horizontal 2D-scans. The Kwajalein dataset covers a shorter time211

period (May 2008 – Jan 2009) and was produced to match the observation intensive period212

of the YOTC (Year Of Tropical Convection, Waliser and Moncrieff 2007) project. For better213

comparability, the Kwajalein data is derived for an area identical to the pentagon-shaped214

one over Darwin.215

We use both datasets in this study to show that the functional dependency of tropical216

convection on a given large-scale atmospheric state is similar for both locations although217

they are subject to distinctly different boundary conditions, e.g. land-sea distribution or218

monsoonal forcing.219

To illustrate the multitude of meteorological regimes found in the datasets, we show the220

time series of selected atmospheric parameters for the time period of 10 Nov 2005 – 18 April221

2006 over Darwin in Fig. 1. It is evident that apart from the variability during the TWP-222

ICE period (19 Jan 2006 – 28 Feb 2006, May et al. 2008), the snapshot shown in Fig. 1223

alone contains a number of evident meteorological-regime changes which result in distinctly224

different cloud populations. Characterising the middle-troposphere level, the time series of225

relative humidity qualitatively exemplifies “wet” periods around 20 January 2006 or 1 April226

2006 (among others) and “dry” periods around 25 November 2005 or 1 March 2006 (among227

others) of the time series. As shown in the plot of derived convective and stratiform cloud228

fractions, the above mentioned wet and dry periods are each associated with specific cloud229

regimes: the wet periods are generally associated with higher cloud fractions compared to the230

dry periods. Stratiform clouds exhibit the highest cloud area fractions, with deep convective231

cloud fraction being about an order of magnitude less and congestus cloud fraction being232

again an order of magnitude less than the latter. It must be noted that the derived cloud area233

fractions are representative for precipitating clouds only. However, this does not present a234

9



serious issue, i.e. fractions of tropical congestus, deep convective or stratiform clouds derived235

from the scanning rain radar compare very well to those derived from a vertically pointing236

cloud radar (V. Kumar, pers. communication, 2012).237

It should be mentioned at this point that the observational data we are comparing the238

SMCM-simulated cloud fractions to are also subject to uncertainties and give room for239

interpretation. The most prominent uncertainty is of course the estimation of rain rates from240

radar echoes, which is not all too straight forward itself, and the subsequent assumption241

that the area of a particular type of rainfall (derived after Steiner et al. 1995) is equal242

to the cloud fraction of that particular cloud type. Therefore, this analysis is limited to243

precipitating clouds only. Also, land surface characteristics of the geographical area covered244

by the large-scale observational dataset used in this study are far from homogeneous. The245

CPOL radar at Gunn Point covers both water and land surfaces, with some of the land246

surface areas being subject to a pronounced convective diurnal cycle which results in some247

of the deepest convection on the planet (Keenan et al. 1990; Crook 2001). As these events248

are locally driven, environmental conditions leading to their initiation cannot be represented249

in the observational dataset. This uncertainty in environmental conditions obviously does250

not apply to the Kwajalein data.251

c. Deriving model forcing parameters from the observations252

The evolution of the cloud ensemble as simulated by the SMCM with respect to the253

large scale atmospheric state is designed to be dependent on two predictors. One parameter254

is used as a proxy for the environment’s potential to develop and sustain convection (C255

in the following) and the other one is used as a proxy for mid-tropospheric dryness (D in256

the following). Here, the underlying assumption is that convection is initiated/sustained257

and hindered/depleted by high values of C and D, respectively. Because we aim to use the258

SMCM in a diagnostic manner by forcing it with an observed large scale atmospheric state,259

we have to derive C and D from the available observational data. This requires to adapt the260
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formulas for calculation C and D as given in Khouider et al. (2010) as these are defined to261

be used for a large scale state given by the simple two-layer model (Majda and Shefter 2001;262

Khouider and Majda 2006).263

As mentioned above, C and D are used as proxies for the convective potential of the264

tropospheric column and mid-tropospheric dryness, respectively. In the original SMCM265

these quantities are scaled to vary roughly between 0 and 2. For the evaluation of the266

SMCM, we derive a total of six (instead of just two) forcing predictors. We proceed in this267

way because there may exist a multitude of possible predictor constellations for adequately268

describing the dependency of tropical convection on the large scale atmospheric state.269

1) C – a proxy value for convective activity270

In the original formulation given in Khouider et al. (2010), C is given by the scaled271

convective available potential energy (CAPE) (CC in the following). CAPE corresponding272

to the time series shown in Fig. 1 yields values in the range from 0 – 1700 [J/kg]; we therefore273

scale the CAPE values by 1000 [J/kg] to achieve the desired range of CC ∈[0;2].274

As it has been argued before that CAPE alone may not be a good proxy for characterising275

the occurrence of tropical convection (e.g. Sherwood 1999), we also define additional versions276

of C, represented by scaled values of either the ratio of low-level CAPE (LCAPE), i.e. CAPE277

integrated only to the freezing level, to total CAPE (CrC), or large scale vertical velocity at278

500 hPa ω500 (Cω):279

CrC = 2

(

LCAPE

CAPE

)

Cω = −

(

1

10
hPa−1 hr

)

ω500, ω500 < 0
(1)

The choice to investigate the proxies CC and Cω is relatively intuitive and straight forward,280

whereas the choice of CrC warrants explanation. Khouider et al. (2010) found that assuming281

congestus activity being positively related to LCAPE (derived from a two-layer atmospheric282

model) rather than total CAPE improves the SMCM-modelled variability. However, our283
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observations show that LCAPE alone is roughly constant throughout the whole observational284

period and it is only the ratio to total CAPE resembling some relationship with observed285

convection. For illustrative purposes, we show the time series of C for the subset of the data286

shown in Fig. 1 in the top two panels of Fig. 2.287

Recalling the preceding short analysis of “wet” and “dry” periods (Sec. b), the pattern of288

CC (2, top panel) reveals no evident correlation to these periods. The relatively high values289

of CC during the first 40 days of the time series should yield intense convective activity,290

however, the observed cloud fractions do not support this. Furthermore, the wetter periods291

are characterised by low CC values throughout. However, especially stratiform cloud fraction,292

most probably originating from deep convection, is high during these periods. This supports293

a separate analysis of the present dataset which indeed suggests that in the area of interest,294

convective precipitation shows no significant correlation with CAPE (Jakob et al. 2011). In295

fact, CAPE has been shown to be approximately anti-correlated with precipitation for a296

region in relatively close proximity to the area covered by our dataset (McBride and Frank297

1999).298

CrC exhibits large values when convective activity is high (cf. Figs. 1 and 2), implying299

that in situations of intense convection, total CAPE is dominated by the contribution coming300

from below the freezing level. Because low-level CAPE itself does not vary very much, it is301

the lack of contributions to total CAPE coming from above the freezing level which make302

up for high values of CrC, consistent with the findings of McBride and Frank (1999) who303

concluded that high values of CAPE are dominated by contributions from above 600 hPa.304

High values of CrC thus imply that during periods of intense convection, such as those305

shown in Fig. 1, the specific heating profile of stratiform precipitation, i.e. latent heating of306

the upper troposphere and evaporative cooling of the lower troposphere (e.g. Houze 1997),307

serves to adjust the lapse-rate towards the moist adiabat. However, it is the occurrence308

of convection itself which may enforce high values of CrC, resulting in possible ambiguities309

when attempting to use it as a predictor for convection.310
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From a dynamical perspective, it is well known that large-scale vertical ascent, and thus311

moisture convergence, is associated with and facilitates the development of deep convection312

(cf. the recent study of Hohenegger and Stevens 2012). Like the convective area fractions313

shown in Fig. 1, the time series of Cω also appears highly intermittent and seems to very314

closely follow the former. This is especially true for the first ≈40 days of the time series315

in which the observed stratiform and convective cloud fractions are relatively low. During316

that particular period, Cω shows relatively small values with higher ones occurring sparsely,317

indicating a weakly but somewhat constantly forced convective regime. However, ambiguities318

in establishing sound cause-and-effect relationships between C and convection are apparent319

for Cω, which is directly related to large-scale convergence which can in turn be considered as320

both a cause and consequence of convective heating. In fact, discussion of these ambiguities321

is one of the most persistent issues in the meteorological community. Ambiguities may also322

arise from the method to derive Cω itself. Vertical pressure velocity ω is the key parameter323

obtained from the variational analysis used to derive the large scale atmospheric state we324

use here. The variational analysis itself is constrained by total areal rainfall itself, thus ω is325

somewhat tuned to match observed rain rates. However, because we use area fractions, and326

not rain rates, of convective and stratiform rain in our analysis, the causal link to the data327

processing in the variational analysis is weak.328

2) D – a proxy for mid-tropospheric dryness329

In the original formulation of the SMCM, the proxy for mid-tropospheric dryness Dθe is330

given by331

332

Dθe =
θe,BL − θe,m

15K
, (2)

with θe,BL being the equivalent potential temperature in the boundary layer, θe,m the equiv-333

alent potential temperature in the mid-troposphere and 15 K a climatological mean scaling334
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factor (Khouider and Majda 2006). Here, the underlying assumption is that the difference335

between the equivalent temperatures as given in Eq. 2 is large when the middle troposphere336

is dry compared to the boundary layer. For the calculation of Dθe from the observed large337

scale state, we define θe,BL and θe,m as the equivalent potential temperatures at 1000 hPa338

and 500 hPa, respectively. To yield the desired range of Dθe ∈ [0;2], we use a scaling factor339

of 10 K instead of 15 K.340

Additional to the original formulation of D, we introduce a simpler proxy for representing341

the mid-tropospheric dryness by use of the relative humidity at 500 hPa. Then, DRH is given342

by343

DRH = 2 · (1− RH500), (3)

with RH500 ∈ [0;1]. The resulting time series of D calculated with both methods are shown344

in Fig. 2 (bottom).345

Unlike the time series of C, the ones for D show a very high level of agreement. It is just346

for two short time periods where the values of Dθe and DRH disagree significantly, namely347

around 5 February 2005 and 10 April 2006 of the time series displayed in Fig. 1. These348

periods are relatively dry compared to the rest of the time series, with low values of relative349

humidity reaching down into the boundary layer. For these two cases, relatively high values350

of DRH indicate a “dry” case, whereas the low (or even negative) values of Dθe indicate a351

rather “wet” case. This is because low values of θe occur throughout the tropospheric column352

down to the surface, thereby not yielding the anticipated large difference between θe at 1000353

and 500 hPa. Defining Dθe by Eq. 2 therefore poses a limitation for running the SMCM354

when using observational data. As DRH agrees very well with Dθe throughout the rest of the355

time series, we will use DRH for all further analyses presented in this study. Also, Khouider356

et al. (2010) used Dθe simply because it is more convenient in the context of the two-layer357

model.358
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3. The observed mean convective state at Darwin and359

Kwajalein360

Before assessing whether the mathematical framework of the SMCM is suitable for repro-361

ducing observed convective behavior of tropical convection, we first analyse the observations362

laid out in Sec. b in a manner suitable for direct comparison with SMCM output. Given the363

specific values of the forcing parameters C and D (cf. Sec. c), the birth-death process used364

in the SMCM yields stationary cloud fraction distributions of every cloud type. Hence, it365

is possible to calculate a 2-d histogram of the stationary cloud fraction as a function of C366

and D. Examples of such equilibrium cloud fraction distributions for a given set of transition367

timescales are given in Khouider et al. (2010). Here, we therefore calculate joint histograms368

of observed convective and stratiform cloud fractions in the parameter space of observed369

values of C and D to enable a straightforward comparison between observed and modelled370

convective behavior.371

We show such joint histograms of mean observed cloud fractions for three sets of forcing372

parameters, as well as their standard deviations and number of measurements, in Figs. 3 -373

5, for Darwin and Kwajalein. In the three sets of forcing parameters, the mid-tropospheric374

dryness parameter is represented by DRH and the convection parameter C is represent by375

either CC, CrC or Cω. Because of the observational limitations mentioned above, we only376

analyse deep convective and stratiform cloud fractions and neglect congestus clouds in the377

context of this study.378

We only discuss the results for Darwin in detail. Generally, the data for Kwajalein show379

the same relationships as for Darwin, but with less frequent high values of the C parameter380

and generally smaller stratiform cloud fractions. The important finding to keep in mind381

is that convective and stratiform cloud area fractions show very similar behavior at both382

locations given a particular large scale atmospheric state, justifying using the observations383

from both locations together to investigate cloud fractions simulated by the SMCM.384
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When we stratify the observational data using CC as indicator for convective activity385

(cf. Fig. 3), we obtain maximum area fractions for both cloud types for some of the smallest386

values of CC and DRH, indicating relatively high convective activity for small values of CAPE387

and a moist middle troposphere. Most observations fall into a range spanning the lower388

half of both parameter ranges, also resulting in the lowest cloud area fraction variability,389

i.e. relative standard deviation, in that range. Similar results are presented in McBride390

and Frank (1999) who found an inverse relationship between CAPE and precipitation when391

analysing data obtained during active and break monsoon periods for a location in the Gulf392

of Carpentaria.393

When stratifying the observations according to either one of the other two choices for C394

(cf. Figs. 4 and 5), we obtain a completely different functional dependency of convective and395

stratiform cloud fractions on C and D. Using CrC and Cω as choices for C lead to396

i) maximum values for both cloud area fractions for highest values of C,397

ii) high and low cloud area fraction variability for low and high values of C, respectively,398

iii) a sharp increase in cloud area fractions above a certain value of C399

iv) most observations for low values of C spanning a wide range of DRH-values.400

The results give valuable insight into tropical convective behavior. For weak forcing of401

convective activity, i.e. small values of C, average cloud area fractions are small but exhibit402

large variability, indicating a somewhat stochastic behavior. This is particularly interesting403

because a large part of the observations yield such weak forcing which would normally act404

to reduce sample variability. The stronger the forcing of convective activity gets, the less405

observations are registered per bin, suggestive of an expected increase in sample variability.406

However, cloud area fraction variability is lowest for strong forcing of convection, suggesting407

a more and more deterministic behavior of convection with increasing forcing, in line with408

other results derived from the same dataset (Jakob et al. 2011). Physically, this implies409
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that as forcing is weak, convection occurs more randomly in the domain, inducing large-410

scale convergence itself which then enables stronger convective features to form. These411

results however do not support the idea that the stochastic component of unresolved subgrid-412

scale processes scales linearly with their mean response as put forward in earlier studies413

(e.g. Buizza et al. 1999; Shutts and Palmer 2007). The sharp increase in cloud area fraction414

above a certain value of C is consistent with the “threshold-behavior” of convection as laid415

out in e.g. Peters and Neelin (2006). Furthermore, the histograms we show in Figs. 4 and416

5 indicate that at least for these two choices of C, deep convective as well as stratiform417

area fractions are anti-correlated with dryness at mid-levels, broadly consistent with earlier418

findings from observational studies (Redelsperger et al. 2002; Derbyshire et al. 2004; Takemi419

et al. 2004; Takayabu et al. 2010).420

The increase in cloud area fractions also appears to occur rapidly above a certain value421

of C, supporting earlier findings of critical behavior in tropical convection (e.g. Peters and422

Neelin 2006). We also note that regimes exhibiting both a strong forcing of convection and a423

dry middle troposphere basically do not exist at the locations considered in this study. This424

may be obvious, but such a result is not apparent from Fig. 3 where there still exist a quite425

large number of measurements yielding a combination of a dry middle troposphere and high426

values of CC.427

4. Reproducing observed convective behavior using the428

SMCM429

a. Adjusting the model parameters430

The equilibrium cloud fractions of the multistate Markov chain used in the SMCM are431

calculated by analytically determining its stationary equilibrium distribution (cf. Khouider432

et al. (2010) for details). In this case, the equilibrium distribution is represented by area433
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fractions for each of the four allowed states of the Markov chain, i.e. either clear sky,434

congestus, deep convection or stratiform clouds. The sum of all four area fractions for435

each pair of discrete C and D values is 1 and the distribution of area fractions among the436

four states can be adjusted by manipulating the transition timescales associated with the437

transition from one state to another.438

In previous publications, the transition timescales used in the SMCM were chosen in439

an either ad-hoc, but physically meaningful manner (Khouider et al. 2010, KBM10) or to440

improve the intermittency of the simulated convection in idealised experiments (Frenkel441

et al. 2012, FMK12). Here we use observations to gauge the applicability of the chosen442

timescales to represent observed convective behavior. For reference purposes, we show the443

joint histograms of the analytically derived equilibrium deep convective area fractions for the444

transition timescales introduced in KBM10 and FMK12 (cf. Tab. 1) in Fig. 6. These joint445

histograms clearly indicate that the previously used transition timescales are not suited for446

reproducing the statistics of observed convection laid out in Sec. 3 for several reasons. First,447

the transitions used in case 1 of KBM10 and in FMK12 yield equilibrium deep convective448

area fractions about an order of magnitude larger than those observed. Second, the transition449

timescales used in case 2 of KBM10 result in a deep convective area distribution unsuitable450

for reproducing observed behavior.451

To obtain a model which is most suitable for reproducing the observed convective be-452

havior, we systematically adjust the transition timescales until we arrive at a close visual453

match between the analytical equilibrium solution of the SMCM and the observed mean454

deep convective cloud fractions for each convective proxy (CC, CrC, Cω) for Darwin shown455

in Figs. 3 - 5 (we only use data for Darwin here to test the robustness of the adjusted456

transition timescales by applying it to the Kwajalein data in the next section). This close457

match should ideally agree to the general cloud fraction distribution in C-D-space in both458

magnitude and shape. Additionally, the equilibrium area fraction calculated for the mean459

observed C and D values (black dots in Figs. 3 – 5) should also match closely. The second460
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requirement achieves a tuning of the model to the “mean observed climate”, thus yielding461

an optimal representation of observed tropical convective cloud distribution – given that462

the cloud-type relationships imposed in the SMCM correspond to those in nature. We find463

that it proves difficult to adequately satisfy both conditions, leading to a trade-off of getting464

either the mean climate or the maxima right. In general, we focus on arriving at the correct465

mean climate cloud fractions as this is of higher relevance regarding a possible future imple-466

mentation into GCMs. The final “best-fit” transition timescales for each convective proxy467

C are listed in Tab. 1 and a comparison of modeled equilibrium- and observed mean deep468

convective area fractions as f(C,D) is displayed in Fig. 7.469

As expected from the observed mean cloud fractions as f(C,D), we find that matching the470

SMCM-modelled equilibrium cloud fractions to the mean CAPE-stratified observed cloud471

fractions results in starkly different timescales compared to the other three convection proxies472

(Tab. 1). However, all three sets of best-fit transition timescales preserve an important473

constraint laid out in KBM10, namely that cloud decay acts on identical or longer timescales474

than cloud formation. It must be kept in mind that these best-fit timescales were found by475

visually matching the joint histograms of modeled and observed area fractions, though.476

The joint histograms displayed in Fig. 7 indicate that each of the three analytical equilib-477

rium deep convective area distributions corresponding to the “best-fit” transition timescales478

in Tab. 1 has some difficulty in reproducing certain aspects of the corresponding observations479

at Darwin. For every version of C, the model overestimates deep convective area fraction480

for almost the entire range of considered combinations of C and D.481

This overestimation is highest when using CrC to stratify the observations, however the482

overall functional relationship is captured (cf. Fig. 4). Using observations stratified by CC to483

adjust the transition timescales yields higher modeled area fractions at nearly every consid-484

ered C,D pair, with the degree of overestimation showing no functional dependence on C and485

D. Using Cω, the SMCM’s equilibrium distribution resembles the functional dependency of486

the observations well. Furthermore, the relative difference of modeled versus observed area487
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fractions shows an evident dependency on C and D. The model over- and underestimates488

deep convective area fractions for low and high values of C, respectively. This transition489

from over- to underestimating the area fractions appears systematic and gradual – a promis-490

ing result in terms of possible future model adjustments (see below). The modeled joint491

histograms in Fig. 7 however do not show the capability of the SMCM concept to reproduce492

observed temporally resolved tropical convection; they are merely analytical solutions of the493

SMCM’s internal birth-death process.494

We conjecture that the main reason why the SMCM over- and underestimates deep495

convective area fraction for low and high values of Cω (and CrC), respectively, is not a496

matter of finding the correct transition timescales or of ill-formulated “transition rules”, but497

due to the functional dependency of transition rates on C and D. Khouider et al. (2010)498

formulate this dependency as499

Γ(x) = 1− e−x, x ∈ [0; 2] (4)

with x being either C or D and Eq. 4 being directly linked to transition rates R, e.g.500

Rab ∝ Γ(C)Γ(D), (5)

being the transition rate R from cloud state a to b. This formulation leads pronounced501

changes in transition rates for small values of C or D with the response becoming less strong502

with increasing values of C and D. Therefore, the SMCM in its original formulation is not503

designed to reproduce the sharp increase in observed cloud fractions shown in Figs. 4 and504

5 for higher values of C. Alternative formulations of Γ(x) could be sought to improve the505

SMCM’s capability to reproduce observed cloud are fraction distributions. This will be506

investigated in future research.507

b. Applying the SMCM to observations508

In this section, we use the three sets of observation-derived parameters discussed in509

Secs. c and 3 in combination with the “best-fit” transition timescales shown in Tab. 1 to510

20



perform simulations with the SMCM. We first quantitatively discuss the temporally resolved511

reproduction of cloud area fractions compared to observations in Sec. 1 and then carry out512

a more thorough statistical analysis in Sec. 2.513

1) SMCM-modeled temporally resolved tropical convection514

We use the subsets of the data from the Darwin and Kwajalein locations introduced in515

Sec. b to compare the time series of observed cloud area fractions to those modelled by the516

SMCM for illustrative purposes. As we obtained the “best-fit” transition timescales shown517

in Tab. 1 from analysing just Darwin data, application of these timescales to Kwajalein518

provides a strong test for our method. We force the SMCM with each of the three combina-519

tions of CC, CrC and Cω with DRH. The internal model time step is set to 5 minutes. The520

6-hourly observations were linearly interpolated to match the model time step. The subgrid-521

scale lattice of the SMCM is set up to have 20×20 sites. As the whole domain covers an522

area of ≈ 190× 190 km2, each lattice site thus has an edge length of about 10 km. There is523

currently no fixed spatial scale for an individual lattice point considered in the formulation524

of the SMCM. Preliminary analysis shows that an increase in lattice sites, and the reduction525

of lattice size going with it, reduces the simulated temporal variability compared to obser-526

vations but has no effect on correlations. From a GCM parameterization perspective, a high527

number of lattice points with fixed spatial scale per GCM grid box would lead to increasing528

convective variability with increasing resolution, thus yielding a more realistic representation529

of convection compared to current deterministic schemes.530

The resulting modelled time series of deep convective cloud area fractions for Darwin and531

Kwajalein are shown in Figs. 8 and 9, with the observed time series included for reference532

purposes. We show neither observed and modelled congestus nor stratiform cloud fractions533

because our main interest lies in assessing the representation of deep convection as this is534

our current target for GCM convection parametrizations.535

We first consider the observed and modeled deep convective area fractions over Darwin536
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shown in Fig. 8 as we have adjusted the model parameters of the SMCM specifically for537

this location. Forcing the SMCM with CC results in more or less constant convective cloud538

area fractions showing no resemblance of the different regimes found in the observations.539

Due to the non-negative and mostly non-zero values of the CC timeseries (cf. Fig. 2), the540

SMCM cannot reproduce the intermittency of cloud area fractions found in the observations.541

The same issue is apparent when forcing the SMCM with CrC. However, periods of higher542

modelled deep convective cloud fraction seem to loosely correspond to periods of higher543

observed fractions, giving slightly more confidence in using CrC over CC.544

The results from using Cω to force the SMCM show substantially more agreement with545

the observations, with Cω leading to more variability during periods of low convective ac-546

tivity, especially during the first month or so of the considered time period. Despite these547

encouraging results, the issues raised towards the end of Sec. 4 are apparent. For periods548

of weak forcing, the SMCM produces too high a deep convective cloud fraction whereas549

cloud fractions during strongly forced periods are substantially underestimated compared to550

observations. This is exactly what is to be expected from the modelled equilibrium cloud551

fractions shown in Fig. 7.552

The observed and modeled time series of deep convective area fraction for the Kwajalein553

area (Fig. 9) generally show the same behavior as the ones for the Darwin area (Fig. 8).554

Especially the over- and underestimation of deep convective area fractions for small and555

large values of Cω, respectively, is evident. Nevertheless, Cω proves to be the parameter of556

choice for reproducing deep convective features over Kwajalein with the SMCM. Considering557

that we did not use the Kwajalein data to adjust the transition timescales in the SMCM,558

this result confirms the findings presented in Sec. 3, namely that convection over Kwajalein559

shows similar functional dependencies to the large scale environment as convection over560

Darwin. Furthermore, this result indicates that at least in the framework of the SMCM,561

tropical convection acts on similar timescales for both tropical locations considered here. It562

is however important to keep in mind the possible ambiguities when attempting to establish563
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cause-and-effect relationships between the large-scale state and convection when using Cω (cf.564

Sec. 3).565

2) Statistics of SMCM-modeled versus observed tropical convection566

We now analyse the SMCM-modeled tropical convection to quantify the capability of the567

SMCM framework to reproduce the observed statistical properties of deep convective and568

stratiform area fractions laid out in Sec. 3 as well as the actual stochasticity of the modeled569

convection. For the sake of brevity, we limit this analysis to experiments in which convection570

in the SMCM is determined by Cω. We choose to do so because the SMCM-versions using571

the two other parameters CC and CrC were shown unsuitable for reproducing basic temporal572

behavior of convection (cf. Sec. 1).573

Similar to the analysis of observed convection presented in Sec. 3, we stratify the modeled574

time series of deep convective and stratiform area fractions by the values of Cω and DRH used575

for forcing the model. To ensure comparability with the observations, we average the modeled576

area fractions over 6-hour periods centered over each time step of the observed large scale577

atmospheric state. Similar to the histograms shown in Figs. 3 – 5, we show the results578

obtained for Darwin and Kwajalein separately in Fig. 10, again providing a test for the579

validity of the chosen transition time scales for both locations.580

As expected, the joint histogram of SMCM-modeled deep convective area fractions ob-581

tained from the modeled time series of the Darwin location very much resemble that of582

the analytically derived equilibrium area fraction for the same set of transition time scales583

(Fig. 7, bottom). These statistics of the modeled time series more clearly reveal the short-584

comings of the SMCM framework in reproducing observed convection already mentioned in585

Secs. a and 1. The order of magnitude of deep convective area fraction is generally well586

captured, with the SMCM over- and underestimating area fractions for weak- and strong587

convective forcing, respectively. The same also holds for the simulated stratiform cloud frac-588

tions for the Darwin area, which we show here for illustrative purposes, mainly to highlight589
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that the transition time scales we determined in Sec. a also yield sensible values for that590

cloud type. More importantly, the sample standard deviations of deep convective and strat-591

iform area fractions of the modeled time series show similar behavior compared to those592

of the observations, i.e. area fractions show higher and lower variability for weaker and593

stronger convective forcing, respectively. The modeled time series underestimate the degree594

of variability throughout, though. So for the Darwin area, the SMCM framework is suitable595

for reproducing observed behavior of tropical convection, both in terms of deep convective596

and stratiform cloud area fractions and variability, as a function of the observed large scale597

environment.598

For the Kwajalein area, the joint histograms in Fig. 10 lead us to similar conclusions,599

thereby supporting the applicability of the SMCM framework to both tropical locations600

considered here. However, due to the sparse sampling of strong convective forcing over601

Kwajalein, the overestimation of cloud area fractions for weak convective forcing dominates602

the statistics. As mentioned in Sec. a, the sometimes substantial overestimation of cloud603

area fractions could be mediated by using alternative formulations of Eq. 4, which will be a604

topic of future research.605

5. Summary and Conclusions606

This study was driven by the need for alternatives to the mostly deterministic convection607

parametrizations used in general circulation models (GCMs). For this, we first determined608

statistics of observed tropical convection over Darwin and Kwajalein stratified by environ-609

mental conditions. Then, we used these observed statistics to investigate whether the un-610

derlying framework of the Stochastic MultiCloud Model (SMCM Khouider et al. 2010) is611

suitable for reproducing observed tropical convection – a prerequisite to using the underlying612

stochastic framework of the SMCM in a GCM convection parametrization.613

We investigated the dependency of tropical convection, given by the fractional area cover-614
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age with deep convective or stratiform clouds, on a set of two proxy values obtained from the615

observed large-scale atmospheric state (derived by means of variational analysis (Jakob et al.616

2011)). One proxy (C) represents the ability of the atmospheric column to initiate/sustain617

convection whereas the second proxy (D) represents mid-tropospheric dryness. As there618

exists no generally accepted theory of which environmental conditions actually lead to trop-619

ical convection, we used three different formulations for C: CAPE, the ratio of low-level620

CAPE (CAPE integrated up to the freezing level, LCAPE) to CAPE and vertical velocity621

at 500 hPa. D is obtained from relative humidity at 500 hPa.622

We found that the relationship of observed cloud area fractions with CAPE is very dif-623

ferent compared to the other two C-proxies. We find highest deep convective and stratiform624

cloud area fractions for low values of CAPE, supporting earlier findings that CAPE is ap-625

proximately anti-correlated with tropical precipitation (McBride and Frank 1999). On the626

other hand, deep convective and stratiform cloud area fractions are positively correlated with627

the other two C-proxies. The cloud area fraction distributions as function of C and D also628

revealed that for those two C-proxies,629

i) high and low cloud area fraction variability occurs for low and high values of C, respec-630

tively, implying that convection appears more random under weakly forced conditions631

and gets more and more deterministic with increasing forcing (consistent with earlier632

findings from the same dataset, Jakob et al. 2011), thus contradicting the idea that the633

stochastic component of unresolved subgrid-scale processes scales linearly with their634

mean response (e.g. Buizza et al. 1999; Shutts and Palmer 2007),635

ii) cloud area fractions increase sharply above a certain value of C, consistent with earlier636

reports on critical behavior of tropical convection (e.g. Peters and Neelin 2006),637

iii) cloud area fractions show identical relationships to environmental conditions for both638

locations (Darwin and Kwajalein), albeit starkly different boundary conditions (e.g. land-639

sea distribution, monsoonal forcing),640
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iv) deep convective and stratiform cloud area fractions are anti-correlated with mid-tropospheric641

dryness (consistent with Redelsperger et al. 2002; Derbyshire et al. 2004; Takemi et al.642

2004; Takayabu et al. 2010).643

By design, the SMCM has a stationary equilibrium cloud area fraction distribution. By644

adjusting this distribution to the mean observed cloud area fractions, we tuned the SMCM645

for it to potentially reproduce the observed convection most closely. It proved difficult to646

exactly match the mean observed cloud area fraction distribution as f(C,D), especially for647

the data stratified by CAPE. Generally, the SMCM yields too high and too low a cloud648

fraction for weak and strong large-scale forcing, respectively. We found that the values of649

the tuning parameters leading to a sensible match to the observed convection also respect650

the general rules for cloud transition probabilities laid out in Khouider et al. (2010) – an651

overall very encouraging result.652

Using the parameter-adjusted SMCM, we simulated convective area fractions using the653

time series of the observed large-scale state. We thus applied the SMCM in a diagnostic654

fashion and found that the modelled area fractions of deep convective and stratiform clouds655

compare better to observations when using the convection proxies related to convergence,656

i.e. vertical velocity at 500 hPa, rather than those related to stability, i.e. total CAPE and657

the ratio of low-level to total CAPE. This is most probably related to the non-intermittent658

and positive-definite nature of the latter proxies which does not allow for simulation of the659

intermittent cloud features found in the observations.660

When using the convergence-based convection proxy to force the SMCM to generate661

time series of tropical convection, we found that the framework of the SMCM is capable of662

reproducing the overall functional relationships as well as the statistics of observed tropical663

convection well. In particular, the SMCM-modeled tropical convection also shows higher664

variability in weakly forced conditions compared to stronger forced conditions. The degree665

of variability is underestimated compared to observations, though. We conjecture that the666

variability of the modeled convection would be higher if the SMCM were used in a prognostic667
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framework rather than the diagnostic framework we applied it to in this study. Furthermore,668

the 6-hourly time step of the observed large-scale state that we employ here may smear out669

part of the convective-scale variability, thus possibly constraining the stochastic process670

employed in the SMCM too strongly.671

We acknowledge that there do exist ambiguities in establishing sound cause-and-effect672

relationships when attempting to relate tropical convection to large-scale convergence. We673

will investigate whether convergence serves as adequate predictor in a prognostic framework,674

rather than a diagnostic one as applied in this study, in upcoming work. Furthermore, future675

work will investigate the sensitivity of modeled cloud fractions to the number of sub-grid676

lattice sites, i.e. attaching spatial and temporal scales to the simulated processes.677

This study has shown that the stochastic concept behind the SMCM has potential to678

underpin novel convection parametrizations in GCMs. As mass-flux convection parametriza-679

tions need to predict the vertical mass-flux at cloud base, the concept of the SMCM would680

yield the area and the updraft velocity could be given by another adequate formulation,681

e.g. such as that introduced in Jakob and Siebesma (2003). Ultimately, future efforts will682

converge towards implementing a prototype version of such a parametrization into a full683

GCM.684
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Table 1. Transition timescales in [hours] as used in the SMCM. The three leftmost columns
contain the transition timescales introduced in previous studies (KBM10,FMK12), yielding
the equilibrium deep convective area fraction distributions in Fig. 6. The three rightmost
columns contain the visually derived “best fitting” transition timescales for each of the three
convection proxies leading to the modeled equilibrium cloud fractions in Fig. 7.

KBM10 FMK12 this study
Process case 1 case 2 CC CrC Cω

formation of congestus (τ01) 1 3 1 1 1 1
decay of congestus (τ10) 5 2 1 1 1.2 1.2

conversion of congestus to deep (τ12) 1 2 1 3 1.2 1.2
formation of deep (τ02) 2 5 3 4 2.2 2.2

conversion of deep to stratiform (τ23) 3 0.5 3 0.13 0.16 0.16
decay of deep (τ20) 5 5 3 5 2.2 2.4

decay of stratiform (τ30) 5 24 5 5 4 4
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are the same as shown in Fig. 5. 48883

38



Fig. 1. Subset of the dataset comprising the atmospheric large scale state over Darwin
as used in this study. Time series covering the time period from 10 Nov 2005 – 15 Apr
2006 showing vertically resolved relative humidity (top) as well as convective (middle) and
stratiform (bottom) cloud fractions obtained from a scanning rain radar situated at Darwin,
Australia (bottom). See text for details.
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Fig. 2. Time series of model forcing predictors obtained from the large scale state shown
in Fig. 1. The top two panels show values for C, i.e. the proxy for convective activity. The
bottom panel shows values for D, i.e. the proxy for mid-tropospheric dryness. See text for
calculation of the predictors.
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Fig. 3. Joint histogram of observed cloud area fractions and relative standard deviations
as function of large scale variables CC and DRH at the Darwin (left two columns) and the
Kwajalein (right two columns) sites. Only pixels having more than 5 observations are shown.
Top: deep convective clouds, middle: stratiform clouds, bottom: sample size per bin. The
black markers denote the mean values of CC and DRH.
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Fig. 4. Joint histogram of observed cloud area fractions and relative standard deviations
as function of large scale variables CrC and DRH at the Darwin (left two columns) and the
Kwajalein (right two columns) sites. Only pixels having more than 5 observations are shown.
Top: deep convective clouds, middle: stratiform clouds, bottom: sample size per bin. The
black markers denote the mean values of CrC and DRH.
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Fig. 5. Joint histogram of observed cloud area fractions and relative standard deviations
as function of large scale variables Cω and DRH at the Darwin (left two columns) and the
Kwajalein (right two columns) sites. Only pixels having more than 5 observations are shown.
Top: deep convective clouds, middle: stratiform clouds, bottom: sample size per bin. The
black markers denote the mean values of Cω and DRH.
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Fig. 6. Analytical equilibrium deep convective area fraction of the SMCM’s birth-death
process given the two sets of transition timescales introduced in KBM10 and FMK12 (Tab. 1).
Left and middle: case 1 and 2 timescales of KBM10, respectively. Right: timescales used
in FMK12. For the two cases of KBM10, the transition from deep convective to stratiform
area depends on C. See text and Khouider et al. (2010) for details regarding the calculation
of equilibrium area fractions.
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Fig. 7. Joint histograms of analytically computed equilibrium deep convective area fractions
of the SMCM (left column) and the relative difference to observed mean deep convective area
fractions at Darwin (right column) as function of large scale variables CC (top), CrC (middle)
and Cω (bottom) and DRH. SMCM-modeled cloud fractions for each version of C correspond
to the transition timescales shown in Tab. 1. Only histogram boxes having more than 5
observations are shown. The markers denote the mean observed values of CC, CrC and
Cω and DRH at Darwin, respectively.
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Fig. 8. Observed and SMCM-modeled time series of deep convective area fraction over
Darwin during the time period of 10 Nov 2005 – 18 April 2006. SMCM-modelled time series
are obtained by forcing the SMCM with the observed C and D parameters introduced in
Sec. c and the transition timescales shown in Tab. 1. Results indicate one possible solution
of the stochastic modelling approach.
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Fig. 9. Observed and SMCM-modeled time series of deep convective area fraction over
Kwajalein during the time period of 2 May 2008 - 31 January 2009. SMCM-modelled time
series are obtained by forcing the SMCM with the observed C and D parameters introduced
in Sec. c and the transition timescales shown in Tab. 1. Results indicate one possible solution
of the stochastic modelling approach.
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Fig. 10. Joint histogram of modeled cloud area fractions and relative standard deviations
as function of large scale variables Cω and DRH at the Darwin (left two columns) and the
Kwajalein (right two columns) sites derived from sampling the modeled cloud area fraction
time series using all the available forcing data from observations (cf. Sec. b) and the transition
time scales from Tab. 1. Only pixels having more than 5 observations are shown. Top row:
deep convective clouds, middle row: stratiform clouds. Sample size per bin and color scales
are the same as shown in Fig. 5.
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