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Abstract. We study catastrophic filter divergence in data as-excaberrated by large observational noise. In (spatially)
similation procedures whereby the forecast model developsparse observational networks finite size effects may lead
severe numerical instabilities leading to a blow up of the so to spurious overestimating correlations between otherwis
lution. Catastrophic filter divergence occurs in sparsephs uncorrelated variables (Hamit al., 2001; Whitakeret al.,
vational grids with small observational noise for interna¢el ~ 2004; Liuet al., 2008; Sacher and Bartello, 2008; Whitaker
observation intervals and finite ensemble sizes. Using a minet al., 2009), spoiling the overall analysis skill.
imal five dimensional model we establish that catastrophic
filter divergence is caused by the filtering procedure preduc Harlim and Majda (2010) and Gottwaéd al. (2011) docu-
ing analyses which are not consistent with the true dyngmicsmented a new type of filter divergence which is characterized
and stiffness caused by the fast attraction of the incasdist by the forecast model diverging to machine infinity. It was
analyses towards the attractor during the forecast step. shown that this catastrophic filter divergence occurs imsspa
observational networks with small observational noise for
Keywords. Data assimilation; Ensemble Kalman filter; Fil- moderate observation intervals., in contrast to the aaksi
ter divergence s filter divergence described in the previous paragraph.
We will establish here the mechanism leading to this
) instability in a minimal low dimensional model: In a sparse
1 Introduction observational grid, finite ensemble sizes cause the ensembl
o . ... to align, and in the case of small observational noise
Data assimilation is the procedure to f|_nd the best estimatio yoherate analyses which are not consistent with the actual
Of_ the sta_te of a dynamical syst_em given a forecast .mOdegynamics and are located in phase space off the attractor.
with pos§|ble.model error and noisy obseryatmns at d|ec_ret If the attraction towards the attractor is sufficiently sigo
observation intervals (Kalnay, 2002; Majda and Harlim, the subsequent forecast step attempts to integrate a stiff

2012)I- The pr(T.sence of the often cf;laotlc k:\ature of theyy namical system which may cause the integrator to develop
underlying nonlinear dynamics as well as the sparseness: o ol instabilities.

of the observational network significantly complicate this
process. In the setting of ensemble based filters (Evenszrf

g ) . e n Section 2 we introduce the minimal model for which catas-
1994, 2006) finite ensemble sizes may introduce addition

¢ ; le Ehrendorfer (2007 rophic filter divergence is studied. We briefly describe en-
sources of error (see for example rendorfer ( ))'semble Kalman filters in Section 3. Numerical results are

Insufficient ensemble size typically causes an undereStégnapresented in Section 4 and the mechanism for catastrophic

tion Of. the error covariances which may ultimately lead 10 g0, divergence is established. We conclude with a discus-
filter divergence when the filter trusts its own forecast andsion in Section 5

ignores the information provided by the observations. This
filter divergence is caused by ensemble members aligning
with the most unstable directions (Ng al., 2011) and is
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2 A minimal model

105

We study the (Lorenz, 1996) Lorenz-96 model

i=1,---,D 1)
with z=(z1,---,zp) and periodicz;.p =2z; in a five
dimensional setting. We use negative forcing here
which allows strong mixing with small dimensioriD.110
We consider hereD =5 with F=-16 which was
coined the5-mode Anti-Lorenz system by Abramov and
Majda (2006). For these parameters we find as Lya-
punov exponents A = (2.72,0.09,—0.09,—1.83,—5.89)

for an integration lasting250 time units. Note that
S0 N =limyoo L [Tr(M(t))dt where M is the lin-
earized vectorfield of (1), and hend€”_, \; = —5. Using”
the Kaplan-Yorke dimension (see for example Schuster an
Just (2005)) this suggests that the attractor has a fract
dimension ofD,, = 4.15 and trajectories are on average
attracted to this manifold with the fast raXe = —5.89. The
climatic mean and variance is estimated from a long time
trajectory asz = —2.47 ando?;,, = 33.7, respectively. The
decay rate of the autocorrelation is estimated.gs = 0.14

and the first zero-crossing of the autocorrelation funcison
aroundrg = 0.75.

Z2i = 2i—1(%ig1 — zim2) =2 + F

125

We assume that observations of the variables are given
equally spaced discrete observation timgsvith observa-
tion interval At,,s. We observe only one variablg. It is
well known that the Kalman filter is suboptimal for dynam-

al

and its ensemble deviation matrix

—ZeT,

7 =7
wheree =[1,...,1]" € R*. The ensemble deviation matrix
Z' is used to provide a Monte-Carlo estimate of the forecast
covariance matrix

1
= —7Z'()Z'(t)T e RP*P.

Ps(t)=1—

Note thatP(¢) is rank-deficient if the ensemble sizeis
smaller than the rank of the covariance matrix. The rank
is generically not known in atmospheric models withof
the order of10?, but is believed to be orders of magnitudes
smaller thanD and orders of magnitude larger thab0, the

éypical ensemble size in numerical weather prediction.

6H;iven the forecast ensembly = Z(t; — ¢) and the associ-

ated forecast error covariance matrix (or fiweor) P ¢ (¢; —

¢), the actual Kalman analysis (Kalnay, 2002; Evensen,
2006; Simon, 2006) updates a forecast into a so-called anal-
ysis (or theposterior). Variables at timeg = ¢, — ¢ are eval-
uated before taking observatiops into account in the anal-
ysis step, and variables at times: ¢; + ¢ are evaluated after

the analysis step when the observations have been taken into
z%ccount. In the first step of the analysis the forecast agan

ical systems which are nonlinear and involve non-Gaussiarwhere the Kalman gain matrix is defined as

statistics. It is pertinent to mention that although the-five
dimensional Lorenz system (1) is highly nonlinear its praba
bility density function is near-Gaussian. The Lorenz syste
(1) is assimilated using an Ensemble Transform Kalman fil-
ter (ETKF) (Tippettet al., 2003; Wanget al., 2004) which is
briefly described in the following section.

3 Ensemble Kalman filter

135

IS updated to the analysis mean

7, =7y — Ko [Hzy —yol , 3)
K,=P/H" (HP/H" +R,) . (4)
The analysis covariand®, is given by
P,=(1-K,H)P;. (5)

To calculate an ensemble, which is consistent with the er-
ror covariance after the observatiby, and which therefore
needs to satisfy

In an ensemble Kalman filter (EnKF) (Evensen, 2006) an en- 1

semble with memberz;, € RP
Z = [z1,22,...,2;) € RP*F

is propagated by the full nonlinear dynamics

140

f(Z) = [f(zl)af(ZQ)a"' a.f(zk)] € RDXk .
)

Z=1£(2),

The ensemble is split into its mean

k
D>
i=1

145

NI
I

> =

T
P,= = 7.7, ,
we use the method of ensemble square root filters (Simon,
2006) which expresses the analysis ensemble as a linear com-
bination of the forecast ensemble. In particular we use the
method proposed in (Tippegt al., 2003; Wanget al., 2004),
the so called ensemble transform Kalman filter (ETKF). Al-
ternatively one could have chosen the ensemble adjustment
filter (Anderson, 2001) or the continuous Kalman-Bucy fil-
ter which does not require the inversion of matrix inverses
(Bergemanmet al., 2009). A new forecas(t;4+1 — ¢) is then
obtained by propagating, with the full nonlinear dynamics
to the next time of observation. The numerical results pre-
sented in the next section are obtained with this method.
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4 The genesis of catastrophic filter divergence

We observe only one of the five variablegwlog we usez;)
and generate observatiops from the truth by adding Gaus- 125¢
sian observational noise with small observational errer co |
varianceR,, = 0.01 after equal observation intervalst . 100r
We have used two methods as numerical integration scheme
to integrate forward in time the system (1) during the fore-
casting step; a first order in time backward Euler step and a NG
second-order in time implicit midpoint rule which is uncon- 50!
ditionally stable for the system (1) (Stuart and Humphries,
1996). 25|
Although the implicit midpoint scheme is unconditionally
stable if runin free forecast mode, it appears that the aisly ‘ ‘
step is able to push the radius of convergence further and 0 5 10 15
further out. In the following we employ the implicit midpdin ti
solver where we limit the number of iterations 1600 in
each integration time step; in the regimes when there is no
catastrophic filter divergence typically less tHarnterations

—o
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o]
<
=
=

751

—n 5
. . .

= °©

125 .

.. . 1

are sufficient for convergence; we note that if we do not ‘f “

restrict the number of iterations, the integrator does not ~ 1007 ©® W‘ .

converge but instead reaches a periodic orbit at amplitudes o6 f‘ }4

of 10°. 75 o4 ) | =
0.2 ,g%i@ﬁ j} Tr‘ejt &Wﬁ X h

In Figure 1 we show an instant of a catastrophic filter di- 50+ o T
vergence fordt = 0.025 and At,p,s = 0.05 where we used 0 2 t, 4

k = 6 ensemble members (so the forecast error covariance 251
matrix is not necessarily rank deficient). Besides the makim

amplitude of the analysis ensemble, we show the norm-error 0

& of the analysis 0 5 ‘
?

E(ti) =1za(ts) — 2 (t:) (6)

Fig. 1. (Top): Maximal absolute valu& of the analysis ensem-
evaluated at each analysis cy¢lebetween the truth; and ble over allD = 5 components fotlt = 0.025 and At,,s = 0.05.
the ensemble meas,. After ¢t; = 14.5 the norm-error be-  (Bottom): The error norn€ as a function of analyses cycles. The
comes machine infinity, due to the forecast model deve|0p_continuous line (online blue) in the inset shows the obg&mal
ing a numerical instability. The genesis of the blow-up is errorv/R.
clearly seen from Figure 1: Until; ~ 10 the filter is sta-
ble and the analysis is tracking where the norm error may be
even smaller than the observational error. This is followed machine infinity within a few more time steps of the fore-
a non-tracking episode lasting tp=: 13 in which the norm  cast model. In Figure 2 we sho$ as a function of the ob-
error evolves around a mean value of approximatély ~ servation intervalAt,,s for several values of the integration
20.5 ~ \/(€2) — Var[€] = \/2Dc?,  — Var[€], suggestings time stepdt. It is seen that blow up occurs for moderate ob-
that the analysis is uncorrelated from the truth and not conservation time intervals. No blow-up occurs for sufficigntl
trolled by the observations anymore. This episode precedesmall or sufficiently large values akt,s. Furthermore, in
the actual blow-up episode of the forecast integrator ircvhi  line with the stability of the implicit midpoint rule, the pe
the norm-error grows to machine infinity. centage of blow-ups as well as the range\sf,,; for which

20 blow-up occurs is reduced by reducing the integration time

In order to get meaningful statistics on the occurrence ofstep.

blow-ups we count the numba¥, of blow-ups that occur be-
fore a total o500 simulations have terminated without blow- To understand the mechanism by which catastrophic filter di-
up. The proportions of blow-ups for the respective filters is vergence is initiated in an ensemble Kalman filter, we first
then given byS;, = N,/(N, + 500). We define blow-up ass focus on the non-tracking episode preceding the actual-blow
instances where the maximal value of either an analysis oup episode (i.e. the periagd < (10,13) in Figure 1). We pro-
forecast exceed9)0o.;;m =~ 580. We have checked that once pose that catastrophic filter divergence is caused by insuffi
this threshold is crossed the numerical instability depglo cient ensemble sizes paired with small observational noise
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Fig. 2. PercentageS;, of blow-ups as a function of the observation Fig. 3. Ensemble dimensio®.,s as a function of analyses cycles.
interval At,ps for several values of the integration time stép Parameters as in Figure 1
We plot results fordt = 0.001 (crosses, online red)it = 0.0025
(open circles, online blue)t = 0.005 (dots, online green) anét =
0.0075 (open circles with dashed line, online magenta).
error-correcting observations (Houtekamer and Mitchell,
] . ] - 1998; Hamill et al., 2001; Sacher and Bartello, 2008;
We have checked that by increasing the ensemble size 10 imyq et al., 2011). Finite ensemble sizes cause the forecast
practically high values of = 400 we were able to avoid  error covariancd; to exhibit on one hand small diagonal
catastrophic blow-up. To monitor the ensemble spread W& yariances and on the other hand off-diagonal entrieggalu
consider the ensemble dimensiéh,; as defined in (Patil o ynrealistically large absolute value (Hargtlal., 2001).
etal, 2001; Paz&t al., 2011) This leads to unrealistic innovations of the unobserved
x5 variables towards the observation of the observed distant

2
(Zi—;l Mi) variable. Gottwaldet al. (2011) showed that catastrophic
Dens = ——— filter divergencies are suppressed by a variance limiting
lim1 b Kalman filter (VLKF) which controls overestimation of the
wherey; denotes théth eigenvalue of thé x k covariance analysis error covariance. To further check that an unreal-
matrix 20 istic overestimation of off-diagonal entries of the forsica
covariance matrixP s is responsible for the catastrophic
C:X]?Xf. filter divergence, we have checked that blow-ups can be
avoided by employing covariance localisation into the data
Note that D.,s takes values betweeh and min(k,D), assimilation procedure. Houtekamer and Mitchell (2001)

depending on whether the ensemble members are all aligneahd Hamill et al. (2001) achieved covariance localisation
or are orthogonal to each other. In Figure 3 we show theby Schur-multiplication of the forecast error covariance
ensemble dimension as a function of time for an ensemble? ; with a localisation matrixC,.. We used the compactly
with £ = 6 members corresponding to the blow-up presentedsupported localisation function introduced by Gaspari and
in Figure 1. Itis seen thdb.,,s ~ 2 during the stable tracking Cohn (1999), and found that catastrophic filter divergence i
episode, indicating that the ensemble is not spanning. alsuppressed. We remark that the actual truth, however, does
directions on the attractor (we recall the fractal attracto indeed exhibit nontrivial correlations between all vahésh
dimension to beD,, = 4.15) but instead is aligning with  for our parameters in this low-dimensional with= 5.
the first two Lyapunov vectors (cf. (Ng al., 2011)). Onthe  Furthermore, we have employed for all our numerical sim-
other hand, for ensemble sizes lof= 400 we observe that ulations a5% multiplicative covariance inflation, a standard
mostly D.,s > 4. Aroundt; = 12.5 the ensemble dimensiea remedy to control underestimation of covariances (Anderso
increases before falling below values®findicating ensem-  and Anderson, 1999). However, multiplicative inflation doe
ble collapse. not alter the subspace spanned by the ensemble and therefore
does not prevented catastrophic filter divergence.
Finite ensemble sizes and the associated loss of ensemble
spread are known to cause non-catastrophic filter divemgencThe destructive interplay of sparse accurate observations
in which the filter trusts the wrong forecasts ignoring and finite size ensembles can be illustrated as follows. The
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Kalman filter produces innovations according to (3) which

read for our case as o5

_ _ Pf i1 _

Zai =Zfi— S [Zfi — Yol 9
Pfll + RO 2 (PT 1“ “()

N . i

for i=1,...,5. The combination of small ensemble sizes %“H \L“

causing small values dP;,, and large absolute values of =19 N‘J ‘ 11

P;,, for i >1 with small observational noisR,, leads to E [ ﬂ‘\

analyses which are significantly influenced by the observa- 1t 7 Q“ LY

tion y, at sitei = 1, irrespective of the actual physical cor- {@‘L ‘J“f“

relations present in the dynamics. The resulting analgsis i o5k bre b [

therefore not dynamically consistent but lies in phase spac ' H“‘ o " i

off the attractor. This is confirmed in Figure 4 where we show il % | L%

that (_jurlng the non-tracking periag > 10 the anglyses are 05 5 10 1 12 13 12

not situated on the attractor. We measure the distance of the t;

analyses to the attractor by propagating the analysis fafwa
in time and estimating the time,., taken for the trajec- Fig. 4. Distance betw.een. analysis and the attractor as measured by
tory to reach an Euclidean distangérom the attractor. We ~ Tettr- Parameters as in Figure 1

created an approximation of the attractor by storing 0°
data points sampled &@t005 time units. We choosé = 1.

It is clearly seen that in the non-tracking episode the analy
ses tend to lie off the attractor. The forecast model, ilisea
with an analysis lying off the attractor, then tries to fellthe
stable manifold towards the globally attracting set witlamsr35

which is in our case very fast on average with a Lyapunov,pqenations of variables exhibiting strong spatial geatt
exponer_lt Off5'89'_Th'_S rend_e_r_s the dyna_m_lcal syste_m Stiff such as jets can cause numerical instabilities to occur (An-
developing numerical instabilities for sufficiently lartime derson, 2012)

stepsd causing the filter to catastrophically diverge to ma- o yyork established a dynamical genesis of catastrophic fil

chine '”f'r?"y- . . ) ) wo . ter divergence. To avoid this type of filter divergence it was
As seen in Figure 2 there is no filter divergence for suf- 5 4,64 that multiplicative covariance inflation was not suf
ficiently small and sufficiently large observation intes/al gisien: Besides an impractical reduction of the integratio
Atobs. Th's can now be understood as fOIIO\,NS: For too Sma,”time step (or an increase of the limit of iterations required
observation intervals the forecast model will not have suffi implicit method), to control the stiffness of the dynaatic
plgntly lpropagrz]ated th? anal%/.S{S avlvaly from (1Iynam|cally-r34e5al system, or an impractical increase of the number of ensem-
istic values, whereas for sufficiently large values\ahis > pjas 16 eliminate finite size sampling errors, covariancalio

Teor the ensemble will have acquired sufficient spread withjgation was found to be effective in mitigating catastraphi

D?“S = 4_explor|ng the_whole of the a_ttractor. ) filter divergence. Our study shows that choosing too small

It is pertinent to mention that the existence of alignment of <o ation covariances can lead to dilter blow ups as ob-

the ensemble and. the occurrence of pff—_attrac_tor analysesayed in climate models (Shlyaeva, 2012).

does not necessarily cause catastrophic filter divergesice ( tnege results point towards the necessity of using methods

Figures 3 and 4 & = 11.5). with judicious model error to avoid such divergences infilte
ing turbulent systems (Harlim and Majda, 2010; Majda and
Harlim, 2012; Keatinget al., 2012) or using variance limit-

a5 ing strategies as proposed in Gottwaldl. (2011); Mitchell

We have numerically established that catastrophic filter di and Gottwald (2012).

vergence is caused by the interplay of finite size effects and

sparse observations with small observational noise pinduc

analyses which may be situated in phase space far away from

the actual attractor. The subsequent attraction back ttsvar Acknowledgements. We are grateful to Jeff Anderson, Heikki Jarvi-
the attractor by the forecast model may develop numerieal in nen, Balu Nadiga and Anna Shlyaeva for sharing their expeeie
stabilities if the attraction rate is sufficiently large.iSBug-  with catastrophic filter divergences in their numerical siations.
gests that blow-up is to be expected in sparse observation&AG acknowledges support from the Australian Research €hun
networks involving observables which exhibit a large degre and AJM by ONR grants N0014-11-1-0306, DRI grant, NO0014-
of variance. If those high variance fields are measured accul0-1-0554, and MURI grant, N0O0014-12-1-0912.

rately, catastrophic filter divergence is possible. Thifas
example, the case in data assimilation of small scale inter-
mittent turbulent fields or in situations where sparse aateur

5 Discussion
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