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Abstract. We study catastrophic filter divergence in data as-
similation procedures whereby the forecast model develops
severe numerical instabilities leading to a blow up of the so-
lution. Catastrophic filter divergence occurs in sparse obser-
vational grids with small observational noise for intermediate5

observation intervals and finite ensemble sizes. Using a min-
imal five dimensional model we establish that catastrophic
filter divergence is caused by the filtering procedure produc-
ing analyses which are not consistent with the true dynamics,
and stiffness caused by the fast attraction of the inconsistent10

analyses towards the attractor during the forecast step.
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1 Introduction15

Data assimilation is the procedure to find the best estimation
of the state of a dynamical system given a forecast model
with possible model error and noisy observations at discrete
observation intervals (Kalnay, 2002; Majda and Harlim,
2012). The presence of the often chaotic nature of the20

underlying nonlinear dynamics as well as the sparseness
of the observational network significantly complicate this
process. In the setting of ensemble based filters (Evensen,
1994, 2006) finite ensemble sizes may introduce additional
sources of error (see for example Ehrendorfer (2007)).25

Insufficient ensemble size typically causes an underestima-
tion of the error covariances which may ultimately lead to
filter divergence when the filter trusts its own forecast and
ignores the information provided by the observations. This
filter divergence is caused by ensemble members aligning30

with the most unstable directions (Nget al., 2011) and is

excaberrated by large observational noise. In (spatially)
sparse observational networks finite size effects may lead
to spurious overestimating correlations between otherwise
uncorrelated variables (Hamillet al., 2001; Whitakeret al.,35

2004; Liuet al., 2008; Sacher and Bartello, 2008; Whitaker
et al., 2009), spoiling the overall analysis skill.

Harlim and Majda (2010) and Gottwaldet al. (2011) docu-
mented a new type of filter divergence which is characterized40

by the forecast model diverging to machine infinity. It was
shown that this catastrophic filter divergence occurs in sparse
observational networks with small observational noise for
moderate observation intervals., in contrast to the classical
filter divergence described in the previous paragraph.45

We will establish here the mechanism leading to this
instability in a minimal low dimensional model: In a sparse
observational grid, finite ensemble sizes cause the ensemble
to align, and in the case of small observational noise
generate analyses which are not consistent with the actual50

dynamics and are located in phase space off the attractor.
If the attraction towards the attractor is sufficiently strong,
the subsequent forecast step attempts to integrate a stiff
dynamical system which may cause the integrator to develop
numerical instabilities.55

In Section 2 we introduce the minimal model for which catas-
trophic filter divergence is studied. We briefly describe en-
semble Kalman filters in Section 3. Numerical results are
presented in Section 4 and the mechanism for catastrophic60

filter divergence is established. We conclude with a discus-
sion in Section 5.
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2 A minimal model

We study the (Lorenz, 1996) Lorenz-96 model

żi = zi−1(zi+1 − zi−2)− zi + F i = 1, · · · ,D (1)65

with z = (z1, · · · ,zD) and periodiczi+D = zi in a five
dimensional setting. We use negative forcing here
which allows strong mixing with small dimensionD.
We consider hereD = 5 with F = −16 which was
coined the5-mode Anti-Lorenz system by Abramov and70

Majda (2006). For these parameters we find as Lya-
punov exponents λ = (2.72,0.09,−0.09,−1.83,−5.89)
for an integration lasting250 time units. Note that
∑5

i=1
λi = limt→∞

1

t

∫

Tr(M(t))dt where M is the lin-

earized vectorfield of (1), and hence
∑5

i=1
λi = −5. Using75

the Kaplan-Yorke dimension (see for example Schuster and
Just (2005)) this suggests that the attractor has a fractal
dimension ofDattr = 4.15 and trajectories are on average
attracted to this manifold with the fast rateλ5 = −5.89. The
climatic mean and variance is estimated from a long time80

trajectory as̄z = −2.47 andσ2
clim

= 33.7, respectively. The
decay rate of the autocorrelation is estimated asτcorr = 0.14
and the first zero-crossing of the autocorrelation functionis
aroundτ0 = 0.75.

85

We assume that observations of the variables are given at
equally spaced discrete observation timesti with observa-
tion interval∆tobs. We observe only one variablez1. It is
well known that the Kalman filter is suboptimal for dynam-
ical systems which are nonlinear and involve non-Gaussian90

statistics. It is pertinent to mention that although the five-
dimensional Lorenz system (1) is highly nonlinear its proba-
bility density function is near-Gaussian. The Lorenz system
(1) is assimilated using an Ensemble Transform Kalman fil-
ter (ETKF) (Tippettet al., 2003; Wanget al., 2004) which is95

briefly described in the following section.

3 Ensemble Kalman filter

In an ensemble Kalman filter (EnKF) (Evensen, 2006) an en-
semble withk memberszk ∈ RD

Z = [z1,z2, . . . ,zk] ∈ R
D×k

100

is propagated by the full nonlinear dynamics

Ż = f(Z) , f(Z) = [f(z1),f(z2), . . . ,f(zk)] ∈ R
D×k .

(2)

The ensemble is split into its mean

z̄ =
1

k

k
∑

i=1

zi

and its ensemble deviation matrix105

Z′ = Z− z̄eT ,

wheree = [1, . . . ,1]
T ∈ R

k. The ensemble deviation matrix
Z′ is used to provide a Monte-Carlo estimate of the forecast
covariance matrix

Pf (t) =
1

k− 1
Z′(t)Z′(t)T ∈ R

D×D .110

Note thatPf (t) is rank-deficient if the ensemble sizek is
smaller than the rank of the covariance matrix. The rank
is generically not known in atmospheric models withD of
the order of109, but is believed to be orders of magnitudes
smaller thanD and orders of magnitude larger than100, the115

typical ensemble size in numerical weather prediction.

Given the forecast ensembleZf = Z(ti − ǫ) and the associ-
ated forecast error covariance matrix (or theprior) Pf (ti −
ǫ), the actual Kalman analysis (Kalnay, 2002; Evensen,120

2006; Simon, 2006) updates a forecast into a so-called anal-
ysis (or theposterior). Variables at timest = ti − ǫ are eval-
uated before taking observationsyo into account in the anal-
ysis step, and variables at timest = ti + ǫ are evaluated after
the analysis step when the observations have been taken into125

account. In the first step of the analysis the forecast meanz̄f

is updated to the analysis mean

z̄a = z̄f −Ko [Hz̄f −yo] , (3)

where the Kalman gain matrix is defined as

Ko = PfH
T

(

HPfH
T +Ro

)−1
. (4)130

The analysis covariancePa is given by

Pa = (I−KoH)Pf . (5)

To calculate an ensembleZa which is consistent with the er-
ror covariance after the observationPa, and which therefore
needs to satisfy135

Pa =
1

k− 1
Za ZT

a ,

we use the method of ensemble square root filters (Simon,
2006) which expresses the analysis ensemble as a linear com-
bination of the forecast ensemble. In particular we use the
method proposed in (Tippettet al., 2003; Wanget al., 2004),140

the so called ensemble transform Kalman filter (ETKF). Al-
ternatively one could have chosen the ensemble adjustment
filter (Anderson, 2001) or the continuous Kalman-Bucy fil-
ter which does not require the inversion of matrix inverses
(Bergemannet al., 2009). A new forecastZ(ti+1 − ǫ) is then145

obtained by propagatingZa with the full nonlinear dynamics
to the next time of observation. The numerical results pre-
sented in the next section are obtained with this method.
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4 The genesis of catastrophic filter divergence

We observe only one of the five variableszi (wlog we usez1)150

and generate observationsyo from the truth by adding Gaus-
sian observational noise with small observational error co-
varianceRo = 0.01 after equal observation intervals∆tobs.
We have used two methods as numerical integration schemes
to integrate forward in time the system (1) during the fore-155

casting step; a first order in time backward Euler step and a
second-order in time implicit midpoint rule which is uncon-
ditionally stable for the system (1) (Stuart and Humphries,
1996).

Although the implicit midpoint scheme is unconditionally160

stable if run in free forecast mode, it appears that the analysis
step is able to push the radius of convergence further and
further out. In the following we employ the implicit midpoint
solver where we limit the number of iterations to1000 in
each integration time step; in the regimes when there is no165

catastrophic filter divergence typically less than10 iterations
are sufficient for convergence; we note that if we do not
restrict the number of iterations, the integrator does not
converge but instead reaches a periodic orbit at amplitudes
of 105.170

In Figure 1 we show an instant of a catastrophic filter di-
vergence fordt = 0.025 and ∆tobs = 0.05 where we used
k = 6 ensemble members (so the forecast error covariance
matrix is not necessarily rank deficient). Besides the maximal175

amplitude of the analysis ensemble, we show the norm-error
E of the analysis

E(ti) = ‖z̄a(ti)− zt(ti)‖ (6)

evaluated at each analysis cycleti between the truthzt and
the ensemble mean̄za. After ti = 14.5 the norm-error be-180

comes machine infinity, due to the forecast model develop-
ing a numerical instability. The genesis of the blow-up is
clearly seen from Figure 1: Untilt1 ≈ 10 the filter is sta-
ble and the analysis is tracking where the norm error may be
even smaller than the observational error. This is followedby185

a non-tracking episode lasting toti ≈ 13 in which the norm
error evolves around a mean value of approximately〈E〉2 ≈
20.5 ≈

√

〈E2〉−Var[E ] =
√

2Dσ2
clim

−Var[E ], suggesting
that the analysis is uncorrelated from the truth and not con-
trolled by the observations anymore. This episode precedes190

the actual blow-up episode of the forecast integrator in which
the norm-error grows to machine infinity.

In order to get meaningful statistics on the occurrence of
blow-ups we count the numberNb of blow-ups that occur be-195

fore a total of500 simulations have terminated without blow-
up. The proportions of blow-ups for the respective filters is
then given bySb = Nb/(Nb + 500). We define blow-up as
instances where the maximal value of either an analysis or
forecast exceeds100σclim ≈ 580. We have checked that once200

this threshold is crossed the numerical instability develops
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Fig. 1. (Top): Maximal absolute valueZ
amax

of the analysis ensem-
ble over allD = 5 components fordt = 0.025 and∆tobs = 0.05.
(Bottom): The error normE as a function of analyses cycles. The
continuous line (online blue) in the inset shows the observational
error

√
R.

machine infinity within a few more time steps of the fore-
cast model. In Figure 2 we showSb as a function of the ob-
servation interval∆tobs for several values of the integration
time stepdt. It is seen that blow up occurs for moderate ob-205

servation time intervals. No blow-up occurs for sufficiently
small or sufficiently large values of∆tobs. Furthermore, in
line with the stability of the implicit midpoint rule, the per-
centage of blow-ups as well as the range of∆tobs for which
blow-up occurs is reduced by reducing the integration time210

step.

To understand the mechanism by which catastrophic filter di-
vergence is initiated in an ensemble Kalman filter, we first
focus on the non-tracking episode preceding the actual blow-215

up episode (i.e. the periodti ∈ (10,13) in Figure 1). We pro-
pose that catastrophic filter divergence is caused by insuffi-
cient ensemble sizes paired with small observational noise.
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Fig. 2. PercentageSb of blow-ups as a function of the observation
interval ∆tobs for several values of the integration time stepdt.
We plot results fordt = 0.001 (crosses, online red),dt = 0.0025

(open circles, online blue),dt = 0.005 (dots, online green) anddt =

0.0075 (open circles with dashed line, online magenta).

We have checked that by increasing the ensemble size to im-
practically high values ofk = 400 we were able to avoid220

catastrophic blow-up. To monitor the ensemble spread we
consider the ensemble dimensionDens as defined in (Patil
et al., 2001; Pazóet al., 2011)

Dens =

(

∑k

i=1

√
µi

)2

∑k

i=1
µi

,
225

whereµi denotes theith eigenvalue of thek× k covariance
matrix

C = XT
f Xf .

Note that Dens takes values between1 and min(k,D),230

depending on whether the ensemble members are all aligned
or are orthogonal to each other. In Figure 3 we show the
ensemble dimension as a function of time for an ensemble
with k = 6 members corresponding to the blow-up presented
in Figure 1. It is seen thatDens ≈ 2 during the stable tracking235

episode, indicating that the ensemble is not spanning all
directions on the attractor (we recall the fractal attractor
dimension to beDattr = 4.15) but instead is aligning with
the first two Lyapunov vectors (cf. (Nget al., 2011)). On the
other hand, for ensemble sizes ofk = 400 we observe that240

mostlyDens > 4. Aroundti = 12.5 the ensemble dimension
increases before falling below values of2, indicating ensem-
ble collapse.

Finite ensemble sizes and the associated loss of ensemble245

spread are known to cause non-catastrophic filter divergence
in which the filter trusts the wrong forecasts ignoring

10 11 12 13 14
1

1.5

2

2.5

3

ti

D
e
n
s

Fig. 3. Ensemble dimensionDens as a function of analyses cycles.
Parameters as in Figure 1

.

error-correcting observations (Houtekamer and Mitchell,
1998; Hamill et al., 2001; Sacher and Bartello, 2008;
Ng et al., 2011). Finite ensemble sizes cause the forecast250

error covariancePf to exhibit on one hand small diagonal
covariances and on the other hand off-diagonal entries values
of unrealistically large absolute value (Hamillet al., 2001).
This leads to unrealistic innovations of the unobserved
variables towards the observation of the observed distant255

variable. Gottwaldet al. (2011) showed that catastrophic
filter divergencies are suppressed by a variance limiting
Kalman filter (VLKF) which controls overestimation of the
analysis error covariance. To further check that an unreal-
istic overestimation of off-diagonal entries of the forecast260

covariance matrixPf is responsible for the catastrophic
filter divergence, we have checked that blow-ups can be
avoided by employing covariance localisation into the data
assimilation procedure. Houtekamer and Mitchell (2001)
and Hamill et al. (2001) achieved covariance localisation265

by Schur-multiplication of the forecast error covariance
Pf with a localisation matrixCloc. We used the compactly
supported localisation function introduced by Gaspari and
Cohn (1999), and found that catastrophic filter divergence is
suppressed. We remark that the actual truth, however, does270

indeed exhibit nontrivial correlations between all variables
for our parameters in this low-dimensional withD = 5.
Furthermore, we have employed for all our numerical sim-
ulations a5% multiplicative covariance inflation, a standard
remedy to control underestimation of covariances (Anderson275

and Anderson, 1999). However, multiplicative inflation does
not alter the subspace spanned by the ensemble and therefore
does not prevented catastrophic filter divergence.

The destructive interplay of sparse accurate observations280

and finite size ensembles can be illustrated as follows. The
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Kalman filter produces innovations according to (3) which
read for our case as

z̄ai = z̄f i −
Pf i1

Pf 11
+Ro

[z̄f i −yo] ,
285

for i = 1, . . . ,5. The combination of small ensemble sizes
causing small values ofPf 11

and large absolute values of
Pf i1

for i > 1 with small observational noiseRo leads to
analyses which are significantly influenced by the observa-
tion yo at sitei = 1, irrespective of the actual physical cor-290

relations present in the dynamics. The resulting analysis is
therefore not dynamically consistent but lies in phase space
off the attractor. This is confirmed in Figure 4 where we show
that during the non-tracking periodti > 10 the analyses are
not situated on the attractor. We measure the distance of the295

analyses to the attractor by propagating the analysis forward
in time and estimating the timeτattr taken for the trajec-
tory to reach an Euclidean distanceθ from the attractor. We
created an approximation of the attractor by storing2 · 106

data points sampled at0.005 time units. We chooseθ = 1.300

It is clearly seen that in the non-tracking episode the analy-
ses tend to lie off the attractor. The forecast model, initialised
with an analysis lying off the attractor, then tries to follow the
stable manifold towards the globally attracting set with a rate
which is in our case very fast on average with a Lyapunov305

exponent of−5.89. This renders the dynamical system stiff
developing numerical instabilities for sufficiently largetime
stepsdt causing the filter to catastrophically diverge to ma-
chine infinity.
As seen in Figure 2 there is no filter divergence for suf-310

ficiently small and sufficiently large observation intervals
∆tobs. This can now be understood as follows: For too small
observation intervals the forecast model will not have suffi-
ciently propagated the analysis away from dynamically real-
istic values, whereas for sufficiently large values of∆tobs ≫315

τcorr the ensemble will have acquired sufficient spread with
Dens ≥ 4 exploring the whole of the attractor.
It is pertinent to mention that the existence of alignment of
the ensemble and the occurrence of off-attractor analyses
does not necessarily cause catastrophic filter divergence (cf320

Figures 3 and 4 atti = 11.5).

5 Discussion

We have numerically established that catastrophic filter di-
vergence is caused by the interplay of finite size effects and
sparse observations with small observational noise producing325

analyses which may be situated in phase space far away from
the actual attractor. The subsequent attraction back towards
the attractor by the forecast model may develop numerical in-
stabilities if the attraction rate is sufficiently large. This sug-
gests that blow-up is to be expected in sparse observational330

networks involving observables which exhibit a large degree
of variance. If those high variance fields are measured accu-
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Fig. 4. Distance between analysis and the attractor as measured by
τattr. Parameters as in Figure 1

.

rately, catastrophic filter divergence is possible. This is, for
example, the case in data assimilation of small scale inter-
mittent turbulent fields or in situations where sparse accurate335

observations of variables exhibiting strong spatial gradients
such as jets can cause numerical instabilities to occur (An-
derson, 2012).
Our work established a dynamical genesis of catastrophic fil-
ter divergence. To avoid this type of filter divergence it was340

argued that multiplicative covariance inflation was not suf-
ficient. Besides an impractical reduction of the integration
time step (or an increase of the limit of iterations requiredin
an implicit method), to control the stiffness of the dynamical
system, or an impractical increase of the number of ensem-345

bles to eliminate finite size sampling errors, covariance local-
isation was found to be effective in mitigating catastrophic
filter divergence. Our study shows that choosing too small
observation covariances can lead to dilter blow ups as ob-
served in climate models (Shlyaeva, 2012).350

These results point towards the necessity of using methods
with judicious model error to avoid such divergences in filter-
ing turbulent systems (Harlim and Majda, 2010; Majda and
Harlim, 2012; Keatinget al., 2012) or using variance limit-
ing strategies as proposed in Gottwaldet al. (2011); Mitchell355

and Gottwald (2012).
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