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Abstract

We establish a Navier–Stokes–Fourier limit for solutions of the Boltzmann
equation considered over any periodic spatial domain of dimension two or more.
We do this for a broad class of collision kernels that relaxes the Grad small deflec-
tion cutoff condition for hard potentials and includes for the first time the case of
soft potentials. Appropriately scaled families of DiPerna–Lions renormalized solu-
tions are shown to have fluctuations that are compact. Every limit point is governed
by a weak solution of a Navier–Stokes–Fourier system for all time.

1. Introduction

We establish a Navier–Stokes–Fourier fluid dynamical limit for the classical
Boltzmann equation considered over any periodic spatial domain of dimension two
or more. Here the Navier–Stokes–Fourier system governs (ρ, u, θ), the fluctuations
of mass density, bulk velocity, and temperature about their spatially homogeneous
equilibrium values in a Boussinesq regime. Specifically, after a suitable choice of
units, these fluctuations satisfy the incompressibility and Boussinesq relations

∇x · u = 0, ρ + θ = 0; (1.1)

while their evolution is determined by the motion and heat equations

∂t u + u ·∇x u + ∇x p = ν�x u, u(x, 0) = uin(x),

D+2
2

(
∂tθ + u ·∇xθ

) = κ�xθ, θ(x, 0) = θ in(x), (1.2)

where ν > 0 and κ > 0 are the coefficients of kinematic viscosity and thermal
conductivity.
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This work advances the program laid out in [1–3]. One of the central goals
of that program is to connect the DiPerna–Lions theory of global renormalized
solutions of the Boltzmann equation to the Leray theory of global weak solutions
of the incompressible Navier–Stokes–Fourier system (1.1–1.2). The main result of
[3] for the Navier–Stokes limit is to recover the motion equation for a discrete-
time version of the Boltzmann equation assuming the DiPerna–Lions solutions
satisfy the local conservation of momentum and with the aid of a mild compactness
assumption. This result falls short of the goal in a number of respects. First, the
heat equation was not treated because the heat flux terms could not be controlled.
Second, local momentum conservation was assumed because DiPerna–Lions solu-
tions are not known to satisfy the local conservation law of momentum (or energy)
that one would formally expect. Third, the discrete-time case was treated in order
to avoid having to control the time regularity of the acoustic modes. Fourth, unnat-
ural technical assumptions were made on the Boltzmann collision kernel. Finally,
a weak compactness assumption was required to pass to the limit in certain nonlin-
ear terms. The present work removes all of these shortcomings. It builds upon the
recent advances found in [12,15–17,29].

In [29] Lions and Masmoudi recover the Navier–Stokes motion equation with
the aid of only the local conservation of momentum assumption and the nonlinear
weak compactness assumption that were made in [3]. However, they do not recover
the heat equation and they retain the same unnatural technical assumptions made in
[3] on the collision kernel. There were two key new ingredients in their work. First,
they were able to control the time regularity of the acoustic modes by adapting an
idea from [27]. Second, they were able to prove that the contribution of the acous-
tic modes to the limiting motion equation is just an extra gradient term that can be
incorporated into the pressure term. There are two reasons they do not recover the
heat equation. First, it is unknown whether or not DiPerna–Lions solutions satisfy
a local energy conservation law. Second, even if local energy conservation were
assumed, the techniques they used to control the momentum flux would fail to
control the heat flux.

In [12] Golse and Levermore recover the Stokes–Fourier system (the line-
arization of (1.1–1.2) about zero). There were two key new ingredients in their
work. First, they control the local momentum and energy conservation defects of
the DiPerna–Lions solutions with dissipation rate estimates that allowed them to
recover these local conservation laws in the limit. Second, they also control the heat
flux with dissipation rate estimates. Because they treat the linear Fourier-Stokes case
in [12], they did not need either to control the acoustic modes or a compactness
assumption, both of which are used to pass to the limit in the nonlinear terms in
[29].

At the same time as this work was being carried out, Golse and Saint-Raymond
[15,17] were able to recover the Navier–Stokes–Fourier system without making
any nonlinear weak compactness hypothesis. In addition to building on the ideas in
[29 and 12], their proof uses the entropy dissipation rate to decompose the collision
operator in a new way and uses a new L1 averaging theory [16] (which has its
origins in [33,34]) to prove the compactness assumption. Their result in [15,17] is
restricted to a narrow class of bounded Boltzmann kernels that only includes the
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special case of Maxwell molecules with a Grad small deflection cutoff from among
all kernels that are classically derived from an interparticle potential. They have
recently extended their result to the case of hard potentials [18].

In the present work we also recover the Navier–Stokes–Fourier system, but for
a much wider class of collision kernels than was treated in [15,17,18]. In particu-
lar, we are able to treat all classical collision kernels with a weak cutoff that arise
from inverse power-law potentials. It is the first treatment of soft potentials in this
program, and the first treatment small deflection cutoffs that are weaker than those
of Grad. It treats all classical collision kernels to which the DiPerna–Lions the-
ory applies. Our result goes beyond the results mentioned above by combining the
ingredients from [12,15–17,29] with some new nonlinear estimates. More specifi-
cally, here we adapt the control of the acoustic modes found in [29], the dissipation
rate controls of both the heat flux and the conservation defects found in [12], the
averaging theory found in [16], and the entropy cutoff technique found in [15,17],
which traces back to [33,35].

The next section contains preliminary material regarding the Boltzmann equa-
tion, including the formal scaling that leads from the Boltzmann equation to the Na-
vier–Stokes–Fourier system. Section 3 states all our technical assumptions regard-
ing the collision kernel. These assumptions are satisfied by all classical collision
kernels with a soft cutoff. Section 4 reviews the DiPerna–Lions theory of global
solutions for the Boltzmann equation [9] and the Leray theory of global solutions
for the Navier–Stokes–Fourier system. Section 5 presents precise statements of our
results. Section 6 gives the proofs of our results modulo five results: one that pro-
vides our nonlinear compactness, one that removes the local conservation defects,
two that control the fluxes, and one that controls the limits in the quadratic terms.
Sections 7 through 11 establish these results, thereby completing our proof.

2. Boltzmann equation preliminaries

Our starting point is the Boltzmann equation. In this section we collect the basic
facts we will need about it. These will include its nondimensionalization and its
formal conservation and dissipation laws.

2.1. The Boltzmann equation

Here we will introduce the Boltzmann equation only so far as to set our nota-
tion, which is essentially that of [3]. More complete introductions to the Boltzmann
equation can be found in [6,7,10,11]. The state of a fluid composed of identical
point particles confined to a spatial domain� ⊂ R

D is described at the kinetic level
by a mass density F over the single-particle phase space R

D × �. More specifi-
cally, F(v, x, t) dv dx gives the mass of the particles that occupy any infinitesimal
volume dv dx centered at the point (v, x) ∈ R

D × � at the instant of time t � 0.
To remove complications due to boundaries, we take � to be the periodic domain
T

D = R
D/LD , where L

D ⊂ R
D is any D-dimensional lattice. We refer to [22,32]

for treatments of bounded domains with a Maxwell reflection boundary condition.
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If the particles interact only through a repulsive conservative interparticle force
with finite range, then at low enough densities this range will be much smaller than
the interparticle spacing. In that regime all but binary collisions can be neglected
when D � 2, and the evolution of F = F(v, x, t) is governed by the classical
Boltzmann equation [7]:

∂t F + v ·∇x F = B(F, F), F(v, x, 0) = Fin(v, x) � 0. (2.1)

The Boltzmann collision operator B acts only on the v argument of F . It is formally
given by

B(F, F) =
∫∫

SD−1×RD
(F ′

1 F ′ − F1 F) b(ω, v1 − v) dω dv1, (2.2)

where v1 ranges over R
D endowed with its Lebesgue measure dv1 while ω ranges

over the unit sphere S
D−1 = {ω ∈ R

D : |ω| = 1} endowed with its rotationally
invariant measure dω. The F ′

1, F ′, F1, and F appearing in the integrand designate
F(·, x, t) evaluated at the velocities v′

1, v′, v1, and v respectively, where the primed
velocities are defined by

v′
1 = v1 − ωω·(v1 − v), v′ = v + ωω·(v1 − v), (2.3)

for any given (ω, v1, v) ∈ S
D−1× R

D × R
D . Quadratic operators likeB are extended

by polarization to be bilinear and symmetric.
The unprimed and primed velocities are possible velocities for a pair of par-

ticles either before and after, or after and before, they interact through an elastic
binary collision. Conservation of momentum and energy for particle pairs during
collisions is expressed as

v + v1 = v′ + v′
1, |v|2 + |v1|2 = |v′|2 + |v′

1|2. (2.4)

Equation (2.3) represents the general nontrivial solution of these D + 1 equa-
tions for the 4D unknowns v′

1, v′, v1, and v in terms of the 3D − 1 parameters
(ω, v1, v).

The collision kernel b is positive almost everywhere. The Galilean invariance
of the collisional physics implies that b has the classical form

b(ω, v1 − v) = |v1 − v|	(|ω·n|, |v1 − v|), (2.5)

where n = (v1 − v)/|v1 − v| and 	 is the specific differential cross-section. Tech-
nical conditions on b will be imposed in Section 3.

2.2. Nondimensionalized form

We will work with the nondimensionalized form of the Boltzmann equation
that was used in [3]. That form is motivated by the fact the Navier–Stokes–Fourier
system can be formally derived from the Boltzmann equation through a scaling in
which the density F is close to a spatially homogeneous Maxwellian M = M(v)
that has the same total mass, momentum, and energy as the initial data Fin . By an
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appropriate choice of a Galilean frame and of mass and velocity units, it can be
assumed that this so-called absolute Maxwellian M has the form

M(v) ≡ 1

(2π)D/2 exp(− 1
2 |v|2). (2.6)

This corresponds to the spatially homogeneous fluid state with its density and tem-
perature equal to 1 and bulk velocity equal to 0. This state is consistent with the
form of the Navier–Stokes–Fourier system given by (1.1–1.2).

It is natural to introduce the relative kinetic density, G = G(v, x, t), defined
by F = MG. Recasting the initial-value problem (2.1) for G yields

ε ∂t G + v ·∇x G = 1

ε
Q(G,G), G(v, x, 0) = Gin(v, x). (2.7)

The positive, nondimensional parameter ε is the Knudsen number, which is the
ratio of the mean-free-path to the macroscopic length scale determined by setting
the volume of T

D to unity [3]. The collision operator is now given by

Q(G,G) =
∫∫

SD−1×RD
(G ′

1G ′ − G1G) b(ω, v1 − v) dω M1dv1. (2.8)

Under the assumptions we will make in Section 3, the nondimensional collision
kernel b can be normalized so that

∫∫∫

SD−1×RD×RD
b(ω, v1 − v) dω M1dv1 Mdv = 1. (2.9)

Fluid dynamical regimes are those where the mean free path is small compared
to the macroscopic length scales—that is where the Knudsen number ε is small.
The long-time scaling in (2.7) is consistent with a formal derivation of either the
Stokes–Fourier or Navier–Stokes–Fourier systems [2].

This nondimensionalization has the normalizations
∫

RD
Mdv = 1,

∫

TD
dx = 1, (2.10)

associated with the domains R
D and T

D respectively, (2.9) associated with the
collision kernel b, and

∫∫

RD×TD
Gin Mdv dx = 1,

∫∫

RD×TD
v Gin Mdv dx = 0,

∫∫

RD×TD

1
2 |v|2Gin Mdv dx = D

2 . (2.11)

associated with the initial data Gin .
Because Mdv is a positive unit measure on R

D , we denote by 〈ξ 〉 the average
over this measure of any integrable function ξ = ξ(v):

〈ξ 〉 =
∫

RD
ξ(v)Mdv. (2.12)
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Because dµ= b(ω, v1 − v) dω M1dv1 Mdv is a positive unit measure on
S

D−1× R
D × R

D , we denote by
〈〈

〉〉

the average over this measure of any inte-
grable function  = (ω, v1, v):

〈〈

〉〉 =

∫∫∫

SD−1×RD×RD
(ω, v1, v) dµ. (2.13)

The collisional measure dµ is invariant under the transformations

(ω, v1, v) �→ (ω, v, v1), (ω, v1, v) �→ (ω, v′
1, v

′). (2.14)

These, and compositions of these, are called collisional symmetries.

2.3. Formal conservation and dissipation laws

We now list for later reference the basic conservation and entropy dissipation
laws that are formally satisfied by solutions the Boltzmann equation. Derivations
of these laws in this nondimensional setting are outlined in [3], and can essentially
be found in [6] (Sec. II.6-7), [10] (Sec. 1.4), or [11].

First, if G solves the Boltzmann equation (2.7) then G satisfies local conserva-
tion laws of mass, momentum, and energy:

ε ∂t 〈G〉 + ∇x · 〈v G〉 = 0,

ε ∂t 〈v G〉 + ∇x · 〈v ⊗ v G〉 = 0, (2.15)

ε ∂t 〈 1
2 |v|2G〉 + ∇x · 〈v 1

2 |v|2G〉 = 0.

Integrating these over space and time while recalling the normalizations (2.11) of
Gin yields the global conservation laws of mass, momentum, and energy:

∫

TD
〈G(t)〉 dx =

∫

TD
〈Gin〉 dx = 1,

∫

TD
〈v G(t)〉 dx =

∫

TD
〈v Gin〉 dx = 0, (2.16)

∫

TD
〈 1

2 |v|2G(t)〉 dx =
∫

TD
〈 1

2 |v|2Gin〉 dx = D
2 .

Second, if G solves the Boltzmann equation (2.7) then G satisfies the local
entropy dissipation law

ε ∂t 〈(G log(G)− G + 1)〉 + ∇x · 〈v (G log(G)− G + 1)〉
= −1

ε

〈〈
1

4
log

(
G ′

1G ′

G1G

)
(G ′

1G ′ − G1G)

〉〉
� 0. (2.17)

Integrating this over space and time gives the global entropy equality

H(G(t))+ 1

ε2

∫ t

0
R(G(s)) ds = H(Gin), (2.18)
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where H(G) is the relative entropy functional

H(G) =
∫

TD
〈(G log(G)− G + 1)〉 dx, (2.19)

and R(G) is the entropy dissipation rate functional

R(G) =
∫

TD

〈〈
1

4
log

(
G ′

1G ′

G1G

)
(G ′

1G ′ − G1G)

〉〉
dx . (2.20)

3. Technical assumptions on the collision kernel

In this section we give all of our additional assumptions regarding the collision
kernel b. These assumptions are satisfied by many classical collision kernels. For
example, they are satisfied by the collision kernel for hard spheres of mass m and
radius ro, which has the form

b(ω, v1 − v) = |ω·(v1 − v)| (2ro)
D−1

2m
. (3.1)

They are also satisfied by all the classical collision kernels with a small deflection
cutoff that derive from a repulsive intermolecular potential of the form c/rk with
k > 2 D−1

D+1 . Specifically, these kernels have the form

b(ω, v1 − v) = b̂(ω·n) |v1 − v|β with β = 1 − 2 D−1
k , (3.2)

where b̂(ω·n) is positive almost everywhere, has even symmetry in ω, and satisfies
the small deflection cutoff condition

∫

SD−1
b̂(ω·n) dω < ∞. (3.3)

The condition k > 2 D−1
D+1 is equivalent to β > −D, which insures that b(ω, v1 −v)

is locally integrable with respect to v1 − v. The cases β > 0, β = 0, and β < 0
correspond respectively to the so-called hard, Maxwell, and soft potential cases.

The works of Golse and Saint-Raymond cover the case of hard potentials with
a Grad small deflection cutoff [17,18]. The Grad small deflection cutoff is much
more restrictive than the cutoff (3.3) which merely guarantees the local integrabil-
ity of b. Our work therefore relaxes their small deflection cutoff condition for hard
potentials and treats for the first time the case of soft potentials. It thereby covers
all classical collision kernels to which the DiPerna–Lions theory applies.

We have already stated that the collision kernel b is positive almost everywhere
and has the form (2.5)—assumptions clearly met by the hard sphere and inverse
power kernels given by (3.1) and (3.2). Our additional five assumptions on b are
technical in nature—that is, they are required by our mathematical argument. We
therefore examine which of the commonly studied physical collision kernels satisfy
these assumptions. We also give some consequences of these assumptions that will
play an important role in what follows.
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3.1. DiPerna–Lions assumption

Our first assumption is that the collision kernel b satisfies the requirements of
the DiPerna–Lions theory. That theory requires that b be locally integrable with
respect to dω M1dv1 Mdv, and that it moreover satisfies

lim|v|→∞
1

1 + |v|2
∫

K
b̄(v1 − v) dv1 = 0, for every compact K ⊂ R

D, (3.4)

where b̄ is defined by

b̄(v1 − v) ≡
∫

SD−1
b(ω, v1 − v) dω. (3.5)

Galilean symmetry (2.5) implies that b̄ is a function of |v1 −v| only. This condition
is met by the hard sphere kernel (3.1) because in that case b̄(v1 −v) is proportional
to |v1 − v| and therefore grows like |v| as |v| → ∞. It is also met by the inverse
power kernels (3.2) with β > −D because in that case b̄(v1 − v) grows like |v|β
as |v| → ∞ and β � 1.

The DiPerna–Lions assumption implies that the measure b(ω, v1−v) dω M1dv1
Mdv is finite. The nondimensional kernel b can therefore be chosen to satisfy the
normalization (2.9).

3.2. Attenuation assumption

A major role will be played by the attenuation coefficient a, which is defined
by

a(v) ≡
∫

RD
b̄(v1 − v)M1dv1 =

∫∫

SD−1×RD
b(ω, v1 − v) dω M1dv1. (3.6)

A few facts about a are readily evident from what we have already assumed. First,
a must be positive and locally integrable. Because (3.4) holds, one can show that

lim|v|→∞
a(v)

1 + |v|2 = 0. (3.7)

Next, the normalization (2.9) implies that a satisfies
∫

RD
a Mdv = 1. (3.8)

Finally, Galilean symmetry (2.5) implies that a is a function of |v| only.
Our second assumption regarding the collision kernel b is that a is bounded

below as

Ca
(
1 + |v|)α � a(v), (3.9)

for some constants Ca > 0 and α ∈ R. This condition is met by the hard sphere
kernel (3.1), for which (3.9) is satisfied with α = 1, and by all the inverse power
kernels (3.2) with β > −D, for which (3.9) is satisfied with α = β.

An immediate consequence of the attenuation assumption (3.9) is that 1
a ξ ∈

L p(aMdv) for every p ∈ [1,∞) whenever |ξ(v)| is bounded above by a polyno-
mial in |v|.
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3.3. Loss operator assumption

Another major role in what follows will be played by the linearized collision
operator L, which is defined formally by

Lg̃ ≡ −2Q(1, g̃) =
∫∫

SD−1×RD

(
g̃ + g̃1 − g̃′ − g̃′

1

)
b(ω, v1 − v) dω M1dv1.

(3.10)

One has the decomposition

1

a
L = I + K− − 2K+, (3.11)

where the loss operator K− and gain operator K+ are formally defined by

K−g̃ ≡ 1

a

∫

RD
g̃1 b̄(v1 − v)M1dv1, (3.12)

K+g̃ ≡ 1

2a

∫∫

SD−1×RD

(
g̃′ + g̃′

1

)
b(ω, v1 − v) dω M1dv1. (3.13)

By using the Hölder inequality it can be easily shown that for every p ∈ [1,∞]
K± : L p(aMdv) → L p(aMdv) are bounded with ‖K±‖ � 1. (3.14)

If then follows from (3.11) that 1
a L : L p(aMdv) → L p(aMdv) is bounded with

‖ 1
a L‖ � 4 for every p ∈ [1,∞].

Our third assumption regarding b is that there exists s ∈ (1,∞] and
Cb ∈ (0,∞) such that

(∫

RD

∣∣
∣∣

b̄(v1 − v)

a(v1) a(v)

∣∣
∣∣

s

a(v1)M1dv1

) 1
s

� Cb. (3.15)

Because this bound is uniform in v, we may take Cb to be the supremum over
v of the left-hand side of (3.15). This condition is met by the hard sphere kernel
(3.1) and by the inverse power kernels (3.2) with β > −D. For hard and Maxwell
potentials (2(D −1) � k) condition (3.15) is satisfied with s = ∞, taking the form

b̄(v1 − v)

a(v1) a(v)
� Cb. (3.16)

This is very similar to the bound assumed in [12]. For soft potentials (2 D−1
D+1 <

k < 2(D − 1)) condition (3.15) is satisfied for every s in the interval 1 < s <
D/( 2(D−1)

k −1). The case s ∈ (1,∞) in (3.15) therefore allows these soft potentials
to be considered.

Our third assumption (3.15) has several immediate implications for the loss
operator K−, which we now express formally as

K−g̃ =
∫

RD
K −(v1, v) g̃1 a1 M1dv1, where K −(v1, v) = b̄(v1 − v)

a(v1) a(v)
.

(3.17)



762 C. David Levermore & Nader Masmoudi

It is clear that K − is symmetric (K −(v1, v) = K −(v, v1)) and positive almost
everywhere. An interpolation argument shows that whenever there exist p, q, r, t ∈
[1,∞] with r � t such that

1

p
+ 1

r
+ 1

t
= 1 + 1

q
,

1

p
+ 1

p∗ = 1, p∗, q ∈ [r, t], (3.18)

Crt ≡
(∫

RD

(∫

RD
|K −(v1, v)|r a1 M1dv1

) t
r

aMdv

) 1
t

< ∞, (3.19)

then

K− : L p(aMdv) → Lq(aMdv) is bounded with ‖K−‖ � Crt . (3.20)

Moreover, whenever r and t in (3.19) are both finite (that is—when [r, t] ⊂ [1,∞))
then

K− : L p(aMdv) → Lq(aMdv) is compact. (3.21)

Assertion (3.21) follows from assertion (3.20) because when [r, t] ⊂ [1,∞) then
the expression for Crt given in (3.19) defines the norm for a Banach space of kernels
in which finite-rank kernels are dense.

Because aMdv is a unit measure, the assumed bound (3.15) clearly implies that
(3.19) holds with Crt � Cb for every r ∈ [1, s] and t ∈ [1,∞]. Three immediate
consequences of this are

K− : L p(aMdv) → L p(aMdv) is compact for every p ∈ (1,∞), (3.22)

K− : L p(aMdv)→ L p∗
(aMdv) is bounded with ‖K−‖�Cb for every p∗∈[1, 2s],

(3.23)

K− : L p(aMdv) → L p∗
(aMdv) is compact for every p∗ ∈ [1, 2s). (3.24)

The first of these follows from (3.21) by setting q = p in (3.18) and choosing
r ∈ (1, s] such that p, p∗ ∈ [r, r∗] and then setting t = r∗. The second follows
from (3.20) by setting q = p∗ in (3.18) and observing that as r ranges over [1, s]
while t ranges over [1,∞] then p∗ given by 1

p∗ = 1
2 (

1
r + 1

t )will range over [1, 2s].
The last follows from (3.21) by excluding the cases r = ∞ and t = ∞ from the
preceding consideration.

3.4. Gain operator assumption

Our fourth assumption regarding b is that

K+ : L2(aMdv) → L2(aMdv) is compact. (3.25)

This condition is met by the hard sphere kernel (3.1) and by the cutoff inverse power
kernels (3.2) that derive from a repulsive intermolecular potential of the form c/rk .
For D = 3 this fact was demonstrated by Hilbert [20] for hard spheres, by Grad
[19] for hard potentials (k � 4) with a Grad small deflection cutoff, and by Golse
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and Poupaud [14] for soft potentials with k > 2 with a Grad small deflection
cutoff. For general D this fact has recently been demonstrated by Sun [25,36] for
kernels (3.2) that satisfy the small deflection cutoff (3.3). Even when D = 3 this
extends the result of Golse and Poupaud for soft potentials with Grad cutoffs to
k > 1.

An immediate consequence of our fourth assumption (3.25) on the gain operator
K+ is that

K+ : L p(aMdv) → L p(aMdv) is compact for every p ∈ (1,∞). (3.26)

This assertion follows from (3.14) and (3.25) by interpolation.
When our gain operator assumption (3.25) is combined with our loss operator

assumption (3.15), we conclude that

1

a
L : L p(aMdv) → L p(aMdv) is Fredholm for every p ∈ (1,∞). (3.27)

This assertion follows from the decomposition 1
a L = I + K− − 2K+ given by

(3.11) because the operators K− and K+ are compact by (3.22) and (3.26).

3.5. Saturated kernel assumption

Our fifth assumption regarding b is that for every δ > 0 there exists Cδ such
that b̄ satisfies

b̄(v1 − v)

1 + δ
b̄(v1 − v)

1 + |v1 − v|2
� Cδ

(
1 + a(v1)

)(
1 + a(v)

)
for every v1, v ∈ R

D . (3.28)

This condition is met by the hard sphere kernel (3.1) and by the inverse power
kernels (3.2). For hard and Maxwell potentials it follows from (3.16) that condition
(3.28) is satisfied with Cδ = Cb. For soft potentials one has b̄(v1−v) = Cβ |v1−v|β
for some β < 0. In that case the left-hand side of (3.28) is bounded above, whereby
(3.28) holds with Cδ equal to this bound.

3.6. Null spaces

Here we characterize the null space of the Fredholm operator 1
a L considered

over L p(aMdv) for every p ∈ (1,∞). One can use the collisional symmetries
(2.14) to show that 1

a L is formally symmetric and nonnegative definite with respect
to the L2(aMdv) inner product. In particular, for every g̃ ∈ L2(aMdv) one shows
that

〈g̃ Lg̃〉 = 1
4

〈〈(
g̃ + g̃1 − g̃′ − g̃′

1

)2〉〉 � 0. (3.29)

One can show (see [6], Chapter IV.1) that the null space of 1
a L : L2(aMdv) →

L2(aMdv) is Null(L) ≡ span{1, v1 , . . . , vD , |v|2}. Moreover, our first, third, and
fourth assumptions combine to show that for every p ∈ (1,∞)

the null space of
1

a
L : L p(aMdv) → L p(aMdv) is Null(L). (3.30)
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Indeed, because assumption (3.4) implies that Null(L) ⊂ L p(aMdv) for every
p ∈ [1,∞), it is clear that Null(L) is contained in the null space of 1

a L :
L p(aMdv) → L p(aMdv) for every p ∈ [1,∞). Because L p(aMdv) ⊂ L2(aMdv)
for every p ∈ [2,∞), and because the null space of 1

a L : L2(aMdv) → L2(aMdv)
is given by Null(L), it therefore follows that the null space of 1

a L : L p(aMdv) →
L p(aMdv) is also given by Null(L) for every p ∈ [2,∞). Now observe that
the adjoint of 1

a L over L p(aMdv) is 1
a L over L p∗

(aMdv). Because by (3.27)
these operators are Fredholm, their null spaces for must have the same dimen-
sion. In particular, when p ∈ (1, 2] the dimension of the null space must be
equal to the dimension of Null(L). It therefore follows that the null space of
1
a L : L p(aMdv) → L p(aMdv) is also given by Null(L) for every p ∈ (1, 2].

3.7. Coercivity

We will make use of some coercivity estimates the operator L satisfies. If we
let λ > 0 be the smallest nonzero eigenvalue of 1

a L considered over L2(aMdv)
then one has the coercivity estimate

λ
〈
a (P⊥

a g̃)2
〉
� 〈g̃Lg̃〉 for every g̃ ∈ L2(aMdv). (3.31)

Here P⊥
a = I − Pa and Pa is the orthogonal projection from L2(aMdv) onto

Null(L), which is given by

Pa g̃ = 〈a g̃〉 + 1
1
D 〈a |v|2〉 v ·〈a v g̃〉 + |v|2 − 〈a |v|2〉

〈a |v|4〉 − 〈a |v|2〉2

〈(|v|2 − 〈a |v|2〉) g̃
〉
.

(3.32)

This follows from the Fredholm property (3.27), the fact that 1
a L is symmetric in

L2(aMdv), and the characterization of Null(L) given by (3.30).
One can show that for some � > 0 the operator L satisfies the coercivity estimate

�
〈
a (P⊥g̃)2

〉
� 〈g̃Lg̃〉 for every g̃ ∈ L2(aMdv). (3.33)

Here P⊥ = I−P and P is the orthogonal projection from L2(Mdv) onto Null(L),
which is given by

P g̃ = 〈g̃〉 + v ·〈v g̃〉 + ( 1
2 |v|2 − D

2

) 〈
( 1

D |v|2 − 1) g̃
〉
. (3.34)

Indeed, assumption (3.9) ensures that P and P⊥ are bounded as linear opera-
tors from L2(aMdv) into itself. Because P⊥ = P⊥P⊥

a , we then have that every
g̃ ∈ L2(aMdv) satisfies

∥
∥P⊥g̃

∥
∥

L2(aMdv) = ∥
∥P⊥P⊥

a g̃
∥
∥

L2(aMdv) �
∥
∥P⊥∥∥

L2(aMdv)

∥
∥P⊥

a g̃
∥
∥

L2(aMdv),

where
∥∥P⊥∥∥

L2(aMdv) denotes the operator norm of P⊥. It therefore follows from

(3.31) that we may take � = λ/
∥
∥P⊥∥∥2

L2(aMdv) in (3.33).
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3.8. Psuedoinverse

We use a particular pseudoinverse of L defined as follows. The Fredholm prop-
erty (3.27) implies that for every p ∈ (1,∞)

L : L p(aMdv) → L p(a1−p Mdv) is bounded,

and that for every ξ ∈ L p(a1−p Mdv) there exists a unique ξ̂ ∈ L p(aMdv) such
that

Lξ̂ = P⊥ξ, P ξ̂ = 0. (3.35)

For every ξ ∈ L p(a1−p Mdv) we define L−1ξ = ξ̂ where ξ̂ is determined above.
This defines an operator L−1 such that

L−1 : L p(a1−p Mdv) → L p(aMdv) is bounded,

L−1L = P⊥ over L p(aMdv), LL−1 = P⊥ over L p(a1−p Mdv),

(3.36)

and Null(L−1) = Null(L). The operator L−1 is the unique pseudoinverse of L
with these properties.

4. Global solutions

In order to mathematically justify the Navier–Stokes–Fourier limit of the
Boltzmann equation, we must make precise: (1) the notion of solution for the
Boltzmann equation, and (2) the notion of solution for the Navier–Stokes–Fou-
rier system. Ideally, these solutions should be global while the bounds should be
physically natural. We therefore work in the setting of DiPerna–Lions renormal-
ized solutions for the Boltzmann equation, and in the setting of Leray solutions
for the Navier–Stokes–Fourier system. These theories have the virtues of consid-
ering physically natural classes of initial data, and consequently, of yielding global
solutions.

4.1. DiPerna–Lions solutions

DiPerna and Lions [9] proved the global existence of a type of weak solution
to the Boltzmann equation over the whole space R

D for any initial data satisfy-
ing natural physical bounds. As they pointed out, with only slight modifications
their theory can be extended to the periodic box T

D . Their original theory has
been strengthened, most notably in [26,30]. Here we give a version of their theory
relevant to this paper.

The DiPerna–Lions theory does not yield solutions that are known to solve the
Boltzmann in the usual weak sense. Rather, it gives the existence of a global weak
solution to a class of formally equivalent initial-value problems that are obtained by
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multiplying the Boltzmann equation in (2.7) by �′(G), where �′ is the derivative
of an admissible function �:

(
ε ∂t + v ·∇x

)
�(G) = 1

ε
�′(G)Q(G,G), G(v, x, 0) = Gin(v, x) � 0. (4.1)

A function � : [0,∞) → R is called admissible if it is continuously differentiable
and for some constant C� < ∞ its derivative satisfies

∣∣�′(Z)
∣∣ � C�√

1 + Z
for every Z � 0. (4.2)

The solutions lie in C([0,∞);w-L1(Mdv dx)), where the prefix “w-” on a space
indicates that the space is endowed with its weak topology. We say that G � 0 is a
weak solution of (4.1) provided that it is initially equal to Gin , and that it satisfies
(4.1) in the sense that for every Y ∈ L∞(dv; C1(TD)) and every [t1, t2] ⊂ [0,∞)

it satisfies

ε

∫

TD
〈�(G(t2)) Y 〉 dx − ε

∫

TD
〈�(G(t1)) Y 〉 dx −

∫ t2

t1

∫

TD
〈�(G) v ·∇x Y 〉 dx dt

= 1

ε

∫ t2

t1

∫

TD

〈
�′(G)Q(G,G) Y

〉
dx dt. (4.3)

If G is a weak solution of (4.1) for one such� with�′ > 0, and if G satisfies certain
bounds, then it is a weak solution of (4.1) for every admissible �. Such solutions
are called renormalized solutions of the Boltzmann equation (2.7).

Specifically, cast in our setting, the theory of renormalized solutions yields the
following.

Theorem 4.1 (DiPerna–Lions renormalized solutions). Let b satisfy

lim|v|→∞
1

1+|v|2
∫

SD−1×K
b(ω, v1−v) dω dv1 =0, for every compact K ⊂ R

D.

(4.4)

Given any initial data Gin in the entropy class

E(Mdv dx) = {
Gin � 0 : H(Gin) < ∞}

, (4.5)

there exists at least one G � 0 in C([0,∞);w-L1(Mdv dx)) that for every admis-
sible function � is a weak solution of (4.1). This solution satisfies a weak form of
the local conservation law of mass

ε ∂t 〈G〉 + ∇x · 〈v G〉 = 0. (4.6)

Moreover, there exists a matrix-valued distribution W such that W dx is nonneg-
ative definite measure and G and W satisfy a weak form of the local conservation
law of momentum

ε ∂t 〈v G〉 + ∇x · 〈v ⊗ v G〉 + ∇x · W = 0, (4.7)
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and for every t > 0, the global energy equality

∫

TD
〈 1

2 |v|2G(t)〉 dx +
∫

TD

1
2 tr(W (t)) dx =

∫

TD
〈 1

2 |v|2Gin〉 dx, (4.8)

and the global entropy inequality

H(G(t))+
∫

TD

1
2 tr(W (t)) dx + 1

ε2

∫ t

0
R(G(s)) ds � H(Gin). (4.9)

DiPerna–Lions renormalized solutions are not known to satisfy many proper-
ties that one would formally expect to be satisfied by solutions of the Boltzmann
equation. In particular, the theory does not assert either the local conservation of
momentum in (2.15), the global conservation of energy in (2.16), the global entropy
equality (2.18), or even a local entropy inequality; nor does it assert the uniqueness
of the solution. Nevertheless, as shown in [17], it provides enough control to estab-
lish a Navier–Stokes–Fourier limit theorem for bounded collision kernels and, as
shown here, to do so for a much larger class of collision kernels.

4.2. Leray solutions

The DiPerna–Lions theory has many similarities with the Leray theory of global
weak solutions of the initial-value problem for Navier–Stokes type systems [8,23].
For the Navier–Stokes–Fourier system (1.1–1.2) with mean zero initial data, the
Leray theory is set in the following Hilbert spaces of vector- and scalar-valued
functions:

Hv =
{
w ∈ L2(dx; R

D) : ∇x · w = 0,
∫

TD
w dx = 0

}
,

Hs =
{
χ ∈ L2(dx; R) :

∫

TD
χ dx = 0

}
,

Vv =
{
w ∈ Hv :

∫

TD
|∇xw|2 dx < ∞

}
,

Vs =
{
χ ∈ Hs :

∫

TD
|∇xχ |2 dx < ∞

}
.

Let H = Hv ⊕ Hs and V = Vv ⊕ Vs . Then in our setting the Leray theory yields the
following.

Theorem 4.2 (Leray Solutions). Given any initial data (uin, θ in) ∈ H, there exists
at least one (u, θ) ∈ C([0,∞);w-H) ∩ L2(dt; V) that is a weak solution of the
Navier–Stokes–Fourier system (1.1–1.2) in the sense that for every (w, χ) ∈ H ∩
C1(TD) and every [t1, t2] ⊂ [0,∞) it satisfies
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∫

TD
w ·u(t2) dx −

∫

TD
w ·u(t1) dx −

∫ t2

t1

∫

TD
∇xw :(u ⊗ u) dx dt

= −ν
∫ t2

t1

∫

TD
∇xw :∇x u dx dt, (4.10)

∫

TD
χ θ(t2) dx −

∫

TD
χ θ(t1) dx −

∫ t2

t1

∫

TD
∇xχ ·(u θ) dx dt

= − 2
D+2 κ

∫ t2

t1

∫

TD
∇xχ ·∇xθ dx dt. (4.11)

Moreover, for every t > 0, (u, θ) satisfies the dissipation inequalities
∫

TD

1
2 |u(t)|2 dx +

∫ t

0

∫

TD
ν|∇x u|2 dx ds �

∫

TD

1
2 |uin|2 dx, (4.12)

∫

TD

D+2
4 |θ(t)|2 dx +

∫ t

0

∫

TD
κ|∇xθ |2 dx ds �

∫

TD

D+2
4 |θ in|2 dx . (4.13)

By arguing formally from the Navier–Stokes–Fourier system (1.1–1.2), one
would expect these inequalities to be equalities. However, that is not asserted by
the Leray theory. Also, as was the case for the DiPerna–Lions theory, the Leray
theory does not assert uniqueness of the solution.

Because the role of the dissipation inequalities (4.12) and (4.13) is to provide a
priori estimates, the existence theory also works if they are replaced by the single
dissipation inequality

∫

TD

1
2 |u(t)|2 + D+2

4 |θ(t)|2 dx +
∫ t

0

∫

TD
ν|∇x u|2 + κ|∇xθ |2 dx ds

�
∫

TD

1
2 |uin|2 + D+2

4 |θ in|2 dx . (4.14)

It is this version of the Leray theory that we will obtain in the limit.

5. Main results

5.1. Formal derivation

The Navier–Stokes–Fourier system (1.1–1.2) can be formally derived from the
Boltzmann equation through a scaling in which the fluctuations of the kinetic den-
sity F about the absolute Maxwellian M are scaled to be on the order of ε. More
precisely, we consider families of initial data Gin

ε for and families of solutions Gε

to the scaled Boltzmann initial-value problem (2.7) that are parameterized by the
Knudsen number ε and have the form

Gin
ε = 1 + ε gin

ε , Gε = 1 + ε gε, (5.1)

One sees from the Boltzmann equation (2.7) satisfied by Gε that the fluctuations
gε satisfy



Boltzmann Equation to Incompressible Navier–Stokes–Fourier 769

ε ∂t gε + v ·∇x gε + 1

ε
Lgε = Q(gε, gε), (5.2)

where L is the linearized collision operator defined by (3.10).
A formal derivation in the style of [2] can be carried out by assuming that

gε → g with g ∈ L∞(dt; L2(Mdv dx)), and that all formally small terms vanish.
One finds that g has the infinitesimal Maxwellian form

g = v ·u + ( 1
2 |v|2 − D+2

2

)
θ, (5.3)

where (u, θ) solves the Navier–Stokes–Fourier system (1.1–1.2) with the coeffi-
cients of kinematic viscosity and thermal conductivity given in terms of the linear-
ized collision operator L, and the matrix-valued function A and the vector-valued
function B defined by

A(v) = v ⊗ v − 1
D |v|2 I, B(v) = 1

2 |v|2v − D+2
2 v. (5.4)

Because each entry of A and B is in L2(a−1 Mdv), we can define the matrix-valued
function Â ∈ L2(aMdv; R

D×D) and the vector-valued function B̂ ∈ L2(aMdv;
R

D) by

Â = L−1 A, and B̂ = L−1 B, (5.5)

where L−1 is the unique pseudoinverse of L that satisfies (3.36). Because P A = 0
and P B = 0, it follows from (3.35) that Â and B̂ are respectively the unique
solutions of

L Â = A, P Â = 0, and LB̂ = B, P B̂ = 0. (5.6)

Because each entry of A and B is in L p(a1−p Mdv) for every p ∈ (1,∞), each
entry of Â and B̂ is therefore in L p(aMdv) for every p ∈ (1,∞). The coefficients
of kinematic viscosity ν and thermal conductivity κ are given by

ν = 1
(D−1)(D+2)

〈
Â :L Â

〉
, κ = 1

D

〈
B̂ ·LB̂

〉
. (5.7)

In this section we state our main results, which proves this formal relationship.

5.2. Statement of the main theorem

Our main theorem is the following.

Theorem 5.1. Let the collision kernel b satisfy the assumptions of Sect. 3.
Let Gin

ε be a family in the entropy class E(Mdv dx) given by (4.5) that satisfies
the normalizations (2.11) and the bound

H(Gin
ε ) � Cinε2, (5.8)

for some positive constant Cin. Let gin
ε be the associated family of fluctuations

given by (5.1). Assume that for some (uin, θ in) ∈ H the family gin
ε satisfies

lim
ε→0

(
�
〈
v gin

ε

〉
,
〈
( 1

D+2 |v|2−1) gin
ε

〉)=(uin, θ in) in the sense of distributions.

(5.9)
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Let Gε be any family of DiPerna–Lions renormalized solutions of the Boltzmann
equation (2.7) that have Gin

ε as initial values. Let gε be the family of fluctuations
given by (5.1).

Then the family gε is relatively compact inw-L1
loc(dt;w-L1(σMdv dx)), where

σ = 1 + |v|2. Every limit point g of gε in w-L1
loc(dt;w-L1(σMdv dx)) has the

infinitesimal Maxwellian form (5.3) where (u, θ) ∈ C([0,∞);w-H) ∩ L2(dt; V)

is a Leray solution with initial data (uin, θ in) of the Navier–Stokes–Fourier system
(1.1–1.2) with ν and κ given by (5.7). More specifically, (u, θ) satisfies the weak
form of the Navier–Stokes–Fourier system given by (4.10–4.11) and the dissipation
inequality

∫

TD

1
2 |u(t)|2 + D+2

4 |θ(t)|2 dx +
∫ t

0

∫

TD
ν|∇x u|2 + κ|∇xθ |2 dx ds

� lim inf
ε→0

1

ε2 H(Gin
ε ) � Cin . (5.10)

Moreover, every subsequence gεk of gε that converges to g as εk → 0 also satisfies

�〈v gεk 〉 → u in C([0,∞);D′(TD; R
D)), (5.11)

〈( 1
D+2 |v|2 − 1) gεk 〉 → θ in C([0,∞);w-L1(dx; R)). (5.12)

where� is the orthogonal projection from L2(dx; R
D) onto divergence-free vector

fields.

In the next section we will reduce the proof of our theorem to a sequence of
propositions, the proofs of which will be given in subsequent sections.

Remark. The dissipation inequality (5.10) is just (4.14) with the right-hand side
replaced by the lim inf. We can recover (4.14) in the limit by replacing (5.8) and
(5.9) with the hypothesis

gin
ε → v ·uin + ( 1

2 |v|2 − D+2
2

)
θ in entropically at order ε as ε → 0. (5.13)

The notion of entropic convergence, was introduced in [3] and is defined as follows.

Definition 5.1. Let Gε be a family in the entropy class E(Mdv dx) given by (4.5)
and let gε be the associated family of fluctuations given by (5.1). The family gε is
said to converge entropically at order ε to some g ∈ L2(Mdv dx) if and only if

gε → g in w-L1(Mdv dx), and lim
ε→0

1

ε2 H(Gε) =
∫

TD

1
2 〈g2〉 dx . (5.14)

Proposition 4.11 of [3] showed that entropic convergence is stronger than norm
convergence in L1(σMdv dx)). It is therefore a natural tool for obtaining strong
convergence results for fluctuations about an absolute Maxwellian [4,5,11,12,17,
24,27,28]. With the addition of hypothesis (5.13), it is clear from (5.10) and (5.14)
that (4.14) is recovered. Moreover, one can prove in the style of Theorem 6.2 of
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[12] that if (4.14) is an equality for every t ∈ [0, T ] then as ε → 0 one obtains the
strong convergences

gε(t)→v ·u(t)+( 1
2 |v|2− D+2

2

)
θ(t) entropically at order ε for every t ∈ [0, T ],

G ′
ε1G ′

ε − Gε1Gε

ε2(1 + 1
3ε gε)

1
2

→ � :∇x u +� ·∇xθ in L1([0, T ]; L1((σ + σ1)dµ dx)),

where � = A + A1 − A′ + A′
1 and � = B + B1 − B ′ + B ′

1. In particular, one
obtains these strong convergences for so long as (u, θ) is a classical solution of the
Navier–Stokes–Fourier system.

Remark. The Stokes–Fourier and acoustic limit results of [12] can be extended to
the class of collision kernels considered here. Moreover, their scaling hypotheses

can be weakened to Gε = 1+ δεgε where δε = o(ε) as ε → 0, and δε = O
(
ε

1
2
)

as
ε → 0 respectively, which is formally optimal in the first case but not in the second
[21].

6. Proof of main theorem

In order to clarify the structure of the proof, we defer the proofs of many tech-
nical details to later sections.

6.1. Fluctuations

Because the family Gε satisfies the entropy inequality

H
(
Gε(t)

) + 1

ε2

∫ t

0
R
(
Gε(s)

)
ds � H

(
Gin
ε

)
� Cinε2, (6.1)

Proposition 3.1 (1) of [3] implies that the family

σgε is relatively compact in w-L1
loc(dt;w-L1(Mdv dx)), (6.2)

where σ = 1+|v|2. We will show that every limit point of the family gε is governed
by a Leray solution of the Navier–Stokes–Fourier system.

We will also consider the associated family of scaled collision integrands
defined by

qε = G ′
ε1G ′

ε − Gε1Gε

ε2 . (6.3)

The entropy inequality (6.1) and Proposition 3.4 (1) of [3] imply that the family

σ
qε√
nε

is relatively compact in w-L1
loc(dt;w-L1(dµ dx)), (6.4)

where nε = 1 + 1
3ε gε , and dµ = b(ω, v1 − v) dω M1dv1 Mdv is a positive unit

measure.
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Consider any convergent subsequence of the family gε , still abusively denoted
gε , such that the sequence qε/

√
nε also converges. Let g be the w-L1

loc(dt;w-L1

(σMdv dx)) limit point of the sequence gε , and q be thew-L1
loc(dt;w-L1(σdµ dx))

limit point of the sequence qε/
√

nε . Then the entropy inequality (6.1) and Propo-
sition 3.8 of [3] imply that g is an infinitesimal Maxwellian given by

g = ρ + v ·u + ( 1
2 |v|2 − D

2 )θ, (6.5)

for some (ρ, u, θ) ∈ L∞(dt; L2(dx; R× R
D × R)) that for every t � 0 satisfies

∫

TD

1
2 |ρ(t)|2+ 1

2 |u(t)|2+ D
4 |θ(t)|2 dx

�
∫

TD

1
2

〈|g(t)|2〉 dx � lim inf
ε→0

1

ε2 H
(
Gε(t)

)
, (6.6)

while Proposition 3.4 (2) of [3] implies that q ∈ L2(dµ dx dt). We will show that
(ρ, u, θ) is a Leray solution of the Navier–Stokes–Fourier system (1.1–1.2) with
initial data (uin, θ in).

6.2. Nonlinear compactness by averaging

Key to our proof is the fact the sequence

a
g 2
ε

nε
is relatively compact in w-L1

loc(dt;w-L1(Mdv dx)), (6.7)

where nε = 1 + 1
3ε gε . We establish this fact in Sect. 7 by employing the entropy

inequality (6.1) and the L1 velocity averaging theory of Golse and Saint-Raymond
[16]. They used this averaging theory to prove analogous compactness results while
establishing Navier–Stokes–Fourier limits for collision kernels with a Grad cutoff
that derive from hard potentials [17,18].

6.3. Approximate conservation laws

In order to prove our main theorem we have to pass to the limit in approximate
local and global conservation laws built from the renormalized Boltzmann equation
(4.1). We choose to use the normalization of that equation given by

�(Z) = Z − 1

1 + (Z − 1)2
. (6.8)

After dividing by ε, Eq. (4.1) becomes

ε ∂t g̃ε + v ·∇x g̃ε = 1

ε2 �
′(Gε)Q(Gε,Gε), (6.9)

where g̃ε = �(Gε)/ε. By introducing Nε = 1 + ε2g 2
ε , we can write

g̃ε = gε
Nε
, �′(Gε) = 2

N 2
ε

− 1

Nε
. (6.10)
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When the moment of the renormalized Boltzmann equation (6.9) is formally
taken with respect to any ζ ∈ span{1, v1 , . . . , vD , |v|2}, one obtains

∂t 〈ζ g̃ε〉 + 1

ε
∇x · 〈v ζ g̃ε〉 = 1

ε

〈〈
ζ �′(Gε) qε

〉〉
. (6.11)

This fails to be a local conservation law because the so-called conservation defect
on the right-hand side is generally nonzero.

It can be shown from (4.3) that every DiPerna–Lions solution satisfies (6.11)
in the sense that for every χ ∈ C1(TD) and every [t1, t2] ⊂ [0,∞) it satisfies

∫

TD
χ 〈ζ g̃ε(t2)〉 dx −

∫

TD
χ 〈ζ g̃ε(t1)〉 dx =

∫ t2

t1

∫

TD

1

ε
∇xχ ·〈v ζ g̃ε〉 dx dt

+
∫ t2

t1

∫

TD
χ

1

ε

〈〈
ζ �′(Gε) qε

〉〉
dx dt. (6.12)

This is the sense in which we understand (6.11) is satisfied. Approximate global
conservation laws are obtained by setting χ = 1 above.

The fact that the conservation defect term on the right-hand side of (6.12) van-
ishes as ε → 0 follows from the fact χ is bounded, the fact ζ is a collision invariant,
and the compactness result (6.7). Specifically, we show that

1

ε

〈〈
ζ �′(Gε) qε

〉〉 → 0 in L1
loc(dt; L1(dx)) as ε → 0. (6.13)

This fact is established by Theorem 8.1, which is stated and proved in Sect. 8 using
the compactness result (6.7).

6.4. Establishing the global conservation laws

By (6.13) the right-hand side of (6.12) vanishes with ε uniformly over all [t1, t2]
contained in any bounded interval of time. By setting χ = 1 it follows that the
sequence

∫

TD
〈ζ g̃ε(t)〉 dx is equicontinuous in C([0,∞); R). (6.14)

The fact g̃ε = �(Gε)/ε with � given by (6.8) and the entropy bound (6.1) imply
that

∫

TD

〈
g̃ε(t)

2〉 dx � 3Cin for every t � 0. (6.15)

It then follows from the Cauchy–Schwarz inequality that for every t � 0 the
sequence in (6.14) is also equibounded in C([0,∞); R). The Arzela–Ascoli theo-
rem then implies that the sequence

∫

TD
〈ζ g̃ε(t)〉 dx is relatively compact in C([0,∞); R).
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Now setting t1 = 0 and χ = 1 in (6.12), letting ε → 0, and using the normalization
(2.16) shows that for every t � 0 we have the limiting global conservation law

∫

TD
〈ζ g(t)〉 dx =

∫

TD
〈ζ g(0)〉 dx = 0. (6.16)

The infinitesimal Maxwellian form (6.5) then implies that, as stated by the Main
Theorem 5.1,

∫

TD
ρ dx = 0,

∫

TD
u dx = 0,

∫

TD
θ dx = 0. (6.17)

6.5. Establishing the incompressibility and Boussinesq relations

We know that g is a infinitesimal Maxwellian of the form (6.5) parameterized
by its associated (fluctuation of) velocity field u, mass density ρ, and temperature
θ . By proceeding as in the proof of Proposition 4.2 of [3], multiply (6.12) by ε,
pass to the limit, and use the infinitesimal Maxwellian of the form to see that these
functions satisfy

∇x · u = 0, ∇x (ρ + θ) = 0. (6.18)

The first of these is the incompressibility relation while the second is a weak form
of the Boussinesq relation. By (6.17) we see that

∫

TD
ρ + θ dx = 0.

In other words, for every t � 0 the function (ρ + θ)( ·, t) is an element of L2(dx)
that is orthogonal to the constants. Because (6.18) states that ∇x (ρ + θ) = 0, a
classical argument based on Fourier series shows that

ρ + θ = 0 for almost every (x, t) ∈ T
D × [0,∞). (6.19)

By (6.5), this implies that both the incompressibility and Boussinesq relations (1.1)
hold, and that g is of the form (5.3) as stated by the Main Theorem 5.1.

6.6. Establishing the dissipation inequality

By passing to the limit in the weak form of (6.9) while using the facts that
�′(Gε) qε → q inw-L1

loc(dt;w-L1(σdµ dx)) and that gε → g inw-L1
loc(dt;w-L1

(σMdv dx)) as ε → 0, we find that

v ·∇x g =
∫∫

SD−1×RD
q b(ω, v1 − v) dω M1dv1. (6.20)

It then follows from (6.5) and (6.18) that for every ξ̂ ∈ L2(aMdv) we have
〈〈
ξ̂ q

〉〉 = 〈
ξ̂ A

〉 :∇x u + 〈
ξ̂ B

〉·∇xθ. (6.21)
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Then by arguing as in the proof of Proposition 4.6 of [3] we obtain
∫ t

0

∫

TD
ν|∇x u|2 + κ|∇xθ |2 dx ds �

∫ t

0

∫

TD

1
4

〈〈
q2〉〉 dx ds

� lim inf
ε→0

1

ε4

∫ t

0
R
(
Gε(s)

)
ds, (6.22)

where ν and κ are given by (5.7). The dissipation inequality (5.10) asserted by the
Main Theorem 5.1 follows by combining (6.1), (6.6), and (6.22).

6.7. Approximate dynamical equations

The difficulty in passing to the limit in (6.11) is that the fluxes are order 1/ε.
This difficulty is overcome by using the same strategy as in the formal deriva-
tions [1,2]. First, we pass to the limit when ζ = vi for i = 1, . . . , D or when
ζ = ( 1

2 |v|2 − D+2
2 ). In other words, we pass to the limit is the approximate motion

and heat equations

∂t 〈v g̃ε〉 + 1
ε
∇x · 〈A g̃ε〉 + 1

ε
∇x 〈 1

D |v|2 g̃ε〉 = 1
ε

〈〈
v �′(Gε) qε

〉〉
, (6.23)

∂t 〈( 1
2 |v|2 − D+2

2 ) g̃ε〉 + 1
ε
∇x · 〈B g̃ε〉 = 1

ε

〈〈
( 1

2 |v|2 − D+2
2 ) �′(Gε) qε

〉〉
. (6.24)

Second, the approximate momentum equation (6.23) will be integrated against
divergence-free test functions. The last term in its flux will thereby be eliminated,
and we only have to pass to the limit in the flux terms above that involve A and
B—namely, in the terms

1

ε
〈A g̃ε〉, 1

ε
〈B g̃ε〉. (6.25)

Recall that A = L Â and B = LB̂ where Â and B̂ are defined by (5.5) and that
each entry of Â and B̂ is in L p(aMdv) for every p ∈ [1,∞).

6.8. Compactness of the flux terms

Let s ∈ (1,∞] be from the assumed bound (3.15) on b. Let p = 2 + 1
s−1 , so

that p = 2 when s = ∞. Let ξ̂ ∈ L p(aMdv) and set ξ = Lξ̂ . We claim that the
sequence of moments

1

ε
〈ξ g̃ε〉 is relatively compact in w-L1

loc(dt;w-L1(dx)). (6.26)

Because each entry of the flux terms (6.25) has this form, it follows that

the entries of
1

ε
〈A g̃ε〉 and

1

ε
〈B g̃ε〉 are

relatively compact in w-L1
loc(dt;w-L1(dx)). (6.27)

Claim (6.26) will follow from the observation that

〈ξ g̃ε〉 = 〈(Lξ̂) g̃ε
〉 = 〈

ξ̂ Lg̃ε
〉 = 〈〈

ξ̂
(
g̃ε + g̃ε1 − g̃′

ε − g̃′
ε1

)〉〉
, (6.28)
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once we establish the fact that the sequence

1

ε
ξ̂
(
g̃ε + g̃ε1 − g̃′

ε − g̃′
ε1

)
is relatively compact in w-L1

loc(dt;w-L1(dµ dx)).

(6.29)

To establish assertion (6.29), define the symmetrically normalized collision
integrand q̃ε by

q̃ε = qε
N ′
ε1 N ′

εNε1 Nε
= 1

ε2

G ′
ε1G ′

ε − Gε1Gε

N ′
ε1 N ′

εNε1 Nε
, (6.30)

and define Tε by

1

ε

(
g̃ε + g̃ε1 − g̃′

ε − g̃′
ε1

) = g̃′
ε1g̃′

ε − g̃ε1g̃ε − q̃ε + Tε . (6.31)

The compactness result (6.7) and Lemma 9.2 imply that the sequences

ξ̂ g̃′
ε1g̃′

ε and ξ̂ g̃ε1g̃ε are relatively compact in w-L1
loc(dt;w-L1(dµ dx)).

The compactness result (6.7), Lemma 9.2, and Proposition 10.1 imply that

ξ̂ Tε → 0 in L1
loc(dt; L1(dµ dx)) as ε → 0. (6.32)

Finally, Lemma 10.2 of [12] implies the sequence q̃ε is bounded in L2(dµ dx dt).
It follows that the sequence

ξ̂ q̃ε is relatively compact in w-L1
loc(dt;w-L1(dµ dx)). (6.33)

We have thereby established assertion (6.29).

6.9. Convergence of the density terms

The densities term corresponding to (6.23) and (6.24) are

�〈v g̃ε〉 and 〈( 1
2 |v|2 − D+2

2 ) g̃ε〉. (6.34)

Here � is the Leray projection onto divergence-free vector fields in L2(dx; R
D).

The sequences (6.34) are convergent in w-L2
loc(dt;w-L2(dx)).

We use the Arzela–Ascoli theorem to establish that these sequences are conver-
gent in C([0,∞);w-L2(dx)). Indeed, it follows from the L2 bound (6.15) and the
Cauchy–Schwarz inequality that for every t � 0 the sequences (6.34) are pointwise
relatively compact in w-L2(dx). That they are also equicontinuous follows from
the weak forms (6.12) of the approximate motion and heat equations upon noting
that the flux terms are relatively compact inw-L1

loc(dt;w-L1(dx)) by (6.27) while
the conservation defects vanish by (6.13). It then follows from the Arzela–Ascoli
theorem that the sequences (6.34) are relatively compact in C([0,∞);w-L2(dx)).
Because they are convergent in the weaker w-L2

loc(dt;w-L2(dx)) topology, they
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must be convergent in C([0,∞);w-L2(dx)). We thereby conclude that as ε → 0
one has

�〈v g̃ε〉 → u in C([0,∞);w-L2(dx; R
D)),

〈( 1
2 |v|2 − D+2

2 ) g̃ε〉 → D+2
2 θ in C([0,∞);w-L2(dx)). (6.35)

The limits asserted in (5.11) and (5.12) of Theorem 5.1 then follow. Moreover, by
combining these results with (6.1), (6.6), and (6.22), we conclude that (u, θ) ∈
C([0,∞);w-H) ∩ L2(dt; V), as asserted by Theorem 5.1. By hypothesis (5.9) of
Theorem 5.1 we also can argue that

u(x, 0) = uin(x), θ(x, 0) = θ in(x), for almost every x, (6.36)

as asserted by Theorem 5.1.

6.10. Convergence of the flux terms

Upon placing (6.31) into the right-hand side of (6.28), the moments (6.26)
decompose as

1

ε
〈ξ g̃ε〉 = 〈〈

ξ̂
(
g̃′
ε1g̃′

ε − g̃ε1g̃ε
)〉〉 − 〈〈

ξ̂ q̃ε
〉〉 + 〈〈

ξ̂ Tε
〉〉
. (6.37)

The first term in this decomposition is quadratic in g̃ε , the second is linear in q̃ε ,
while the last is a remainder that vanishes as ε → 0 by (6.32).

Because the sequence q̃ε is bounded in L2(dµ dx dt), we conclude from (6.4)
and (6.30) that q̃ε → q in w-L2(dµ dx dt). This fact allows us to pass to the limit
in the linear term in the decomposition (6.37). Indeed, by using (6.21) we see that
as ε → 0 one has

〈〈
ξ̂ q̃ε

〉〉 → 〈〈
ξ̂ q

〉〉 = 〈ξ̂ A〉 :∇x u + 〈ξ̂ B〉·∇xθ in w-L2
loc(dt;w-L2(dx)). (6.38)

In particular, we see that as ε → 0 one has

〈〈
Â q̃ε

〉〉 → ν
[∇x u + (∇x u)T

]
in w-L2

loc(dt;w-L2(dx; R
D×D)),

〈〈
B̂ q̃ε

〉〉 → κ ∇xθ in w-L2
loc(dt;w-L2(dx; R

D)),

where ν and κ are given by (5.7).
We now focus on the passage to the limit in the quadratic term in the decom-

position (6.37). This term has the equivalent form

〈〈
ξ̂
(
g̃′
ε1g̃′

ε − g̃ε1g̃ε
)〉〉 = 〈

ξ̂ Q(g̃ε, g̃ε)
〉
. (6.39)

This passage to the limit is the most difficult part of establishing the limit of the
flux.
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6.10.1. Approximation by infinitesimal Maxwellians

We decompose g̃ε into its infinitesimal Maxwellian P g̃ε and its deviation P⊥g̃ε
as

g̃ε = P g̃ε + P⊥g̃ε, (6.40)

where P is the orthogonal projection from L2(Mdv) onto Null(L) given by (3.34)
and P⊥ is its complement given by P⊥ = I − P . We claim that

P⊥g̃ε → 0 in L2
loc(dt; L2(aMdvdx)). (6.41)

Indeed, consider the identity

〈g̃ε Lg̃ε〉 =
〈〈
ε g̃ε

(
g̃ε + g̃ε1 − g̃′

ε − g̃′
ε1

ε

)〉〉
.

The term inside the parentheses above is relatively compact in w-L1
loc(dt;w-L1

(dµ dx)) by (6.29). Because ε g̃ε is bounded and vanishes almost everywhere as
ε → 0, we see that

lim
ε→0

〈g̃ε Lg̃ε〉 = 0 in L1
loc(dt; L1(dx)).

The coercivity bound (3.33) then immediately implies that

lim
ε→0

〈
a
(P⊥g̃ε

)2〉 = 0 in L1
loc(dt; L1(dx)),

which establishes claim (6.41).

6.10.2. Quadratic approximation by infinitesimal Maxwellians

When decomposition (6.40) is placed into the quadratic term (6.39), it yields
〈
ξ̂ Q(g̃ε, g̃ε)

〉= 〈
ξ̂ Q(P g̃ε,P g̃ε)

〉+2
〈
ξ̂ Q(P g̃ε,P⊥g̃ε)

〉+〈
ξ̂ Q(P⊥g̃ε,P⊥g̃ε)

〉
.

(6.42)

Here we show the last two terms above vanish as ε → 0. Recall that the colli-
sion kernel b satisfies assumption (3.15) for some Cb < ∞ and s ∈ (1,∞]. Let
p = 2 + 1

s−1 , so p = 2 when s = ∞. Lemma 9.1 of Sect. 9 then combines with
(6.39) to yield the basic quadratic estimate

∣∣〈ξ̂ Q(g̃, h̃)
〉∣∣ � 2 C

1
p∗

b 〈a |ξ̂ |p〉 1
p 〈a g̃2〉 1

2 〈a h̃2〉 1
2 , (6.43)

where 1
p + 1

p∗ = 1 and g̃, h̃ ∈ L2(aMdv). It follows from (6.41) and the basic

estimate (6.43) that

〈
ξ̂ Q(P g̃ε,P⊥g̃ε)

〉 → 0〈
ξ̂ Q(P⊥g̃ε,P⊥g̃ε)

〉 → 0

}
in L1

loc(dt; L1(dx)).

So all that remains to be done is to pass to the limit in the first term on the right-hand
side of (6.42)—the one that is quadratic in P g̃ε .
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6.10.3. Passing to the limit

The infinitesimal Maxwellian P g̃ε has the form

P g̃ε = ρ̃ε + v ·ũε + ( 1
2 |v|2 − D

2 )θ̃ε, (6.44)

where ρ̃ε , ũε , and θ̃ε are defined by

ρ̃ε = 〈g̃ε〉, ũε = 〈v g̃ε〉, θ̃ε = 〈( 1
D |v|2 − 1) g̃ε〉. (6.45)

One can show [2] that if g̃ is an infinitesimal Maxwellian then it satisfies the identity

〈ξ̂ Q(g̃, g̃)〉 = 1
2 〈ξ̂ L(g̃2)〉 = 1

2 〈Lξ̂ P⊥(g̃2)〉. (6.46)

Because P g̃ε is an infinitesimal Maxwellian, we can use the identity (6.46) to
express the first term on the right-hand side of (6.42) as

〈
ξ̂ Q(P g̃ε,P g̃ε)

〉 = 1
2

〈
ξ P⊥(P g̃ε

)2〉

= 1
2 〈ξ A〉 :(ũε ⊗ ũε)+ 〈ξ B〉·ũε θ̃ε + 1

2 〈ξ C〉 θ̃ 2
ε , (6.47)

where C(v) = 1
4 |v|4− D+2

2 |v|2+ D(D+2)
4 . It is easily checked that C is in Null(L)⊥.

We thereby have reduced the problem to passing to the limit in the terms

ũε ⊗ ũε, ũε θ̃ε, θ̃ 2
ε . (6.48)

We are unable to pass to the limit in the above terms in full generality. However,
Proposition 11.1 of Sect. 11 yields that

limε→0�∇x · (ũε ⊗ ũε
) = �∇x · (u ⊗ u)

limε→0 ∇x · (θ̃ε ũε
) = ∇x · (θ u)

}
in w-L1

loc(dt;D′(TD)),

where� is the Leray projection onto divergence-free vector fields in L2(dx; R
D).

It follows that

limε→0�∇x ·
〈
Â Q(P g̃ε,P g̃ε)

〉
= �∇x · (u ⊗ u)

limε→0 ∇x ·
〈
B̂ Q(P g̃ε,P g̃ε)

〉
= D+2

2 ∇x · (θ u)

⎫
⎬

⎭
in w-L1

loc(dt;D′(TD)).

We thereby obtain the limiting fluxes for the Navier–Stokes–Fourier motion and
heat equations, thereby completing the proof of the Main Theorem 5.1. ��

7. Compactness from averaging

Here we establish the compactness assertion (6.7) with the following proposi-
tion.

Proposition 7.1. Under the hypotheses of Theorem 5.1, the sequence

a
g 2
ε

nε
is relatively compact in w-L1

loc(dt;w-L1(Mdv dx)). (7.1)
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Proof. Let γε be defined by
√

Gε = 1 + ε γε . Then gε = 2γε + ε γ 2
ε and

g 2
ε

nε
= γ 2

ε

4 + 4ε γε + ε2γ 2
ε

1 + 2
3ε γε + 1

3ε
2γ 2
ε

.

Because ε γε � −1, it follows from the above that

3
2γ

2
ε � g 2

ε

nε
� 9

2γ
2
ε . (7.2)

Assertion (7.1) is therefore equivalent to the assertion that the sequence

aγ 2
ε is relatively compact in w-L1

loc(dt;w-L1(Mdv dx)). (7.3)

We will prove these equivalent assertions in two steps.
We begin by showing that the sequence aγ 2

ε lies in L1
loc(dt; L1(Mdv dx) and

is equi-integrable in v. Specifically, we show that the sequence

aγ 2
ε is bounded in L1

loc(dt; L1(Mdv dx)), (7.4)

and that for every [0, T ] ⊂ [0,∞)

lim
η→0

∫ T

0

∫

TD
sup

〈1S〉<η
〈1S aγ 2

ε 〉 dx dt = 0 uniformly in ε, (7.5)

where the supremum is taken over all measurable S ⊂ R
D ×T

D × [0, T ]. These
assertions are established below by Proposition 7.2.

It follows from (7.2) and (7.5) that

lim
R→∞ 1{|v|>R} a

g 2
ε

nε
= 0 in L1

loc(dt; L1(Mdv dx)) uniformly in ε. (7.6)

Because a is bounded above and below by positive constants over every set of
the form {|v| � R} for some R > 0, the relative compactness assertion (7.1) will
follow once we prove that for every R > 0 the sequence

1{|v|�R}
g 2
ε

nε
is relatively compact in w-L1

loc(dt;w-L1(Mdv dx)). (7.7)

This fact is established below by Proposition 7.3, thereby proving Proposition 7.1.
��

The proof of Proposition 7.2 rests solely on the entropy bound (6.1). A key tool is
the relative entropy cutoff that was first introduced by Saint-Raymond in her study
of the incompressible Euler limit [35]. The proof of Proposition 7.3 will also rest
on the L1 velocity averaging theory of Golse and Saint-Raymond [16].
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7.1. Equi-integrability proposition

The equi-integrability in v of the family aγ 2
ε asserted in (7.4) and (7.5) is

established by the following proposition.

Proposition 7.2. Under the hypotheses of Theorem 5.1, the sequence

aγ 2
ε is bounded in L1

loc(dt; L1(Mdv dx)), (7.8)

and that for every [0, T ] ⊂ [0,∞)

lim
η→0

∫ T

0

∫

TD
sup

〈1S〉<η
〈1S aγ 2

ε 〉 dx dt = 0 uniformly in ε, (7.9)

where the supremum is taken over all measurable S ⊂ R
D ×T

D × [0, T ].
Proof. Let [0, T ] ⊂ [0,∞). We employ the decomposition γε = Pγε + P⊥γε
in order to exploit the facts that Pγε is well-behaved in v and that P⊥γε is small.
Then for every measurable S ⊂ R

D ×T
D × [0, T ] this decomposition yields

〈
1S aγ 2

ε

〉 = 〈
1S aγεPγε

〉 + 〈
1S aγεP⊥γε

〉
. (7.10)

The first term on the right-hand side above can be bounded as

〈
1S a|γεPγε |

〉
�
〈
γ 2
ε

〉 1
2
〈
1S a2(Pγε)2

〉 1
2 .

Now let {ζi }D+1
i=0 be the orthonormal basis for Null(L) = span{1, v1 , . . . , vD , |v|2}

in L2(Mdv)given by ζ0 = 1, ζi = vi for i = 1, . . . , D, and ζD+1 = 1√
2D
(|v|2−D).

Then

(Pγε)2 =
( D+1∑

i=0

ζi 〈ζiγε〉
)2

�
( D+1∑

i=0

ζ 2
i

)( D+1∑

i=0

〈ζiγε〉2
)

� D(1 + |v|4)〈γ 2
ε

〉
.

Upon placing this estimate into the previous estimate, we bound the first term on
the right-hand side of (7.10) as

〈
1S a|γεPγε |

〉
�
〈
D1S a2(1 + |v|4)〉 1

2
〈
γ 2
ε

〉
. (7.11)

Now let us consider how we might control the second term on the right-hand side
of (7.10). An application of Cauchy–Schwarz gives

〈
1S a|γεP⊥γε |

〉
�
〈
1S aγ 2

ε

〉 1
2
〈
a(P⊥γε)2

〉 1
2 . (7.12)

At first glance, this estimate might look unproductive because the first factor on
the right-hand side is exactly the object that we are trying to control. However, the
idea is that because the second factor is small, we can employ a rough control of
the first factor.
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We begin by bounding the second factor on the right-hand side of (7.12). We
do this with a coercivity bound. For every δ > 0 we introduce a saturated collision
kernel bδ(ω, v1 − v) by

bδ(ω, v1 − v) = b(ω, v1 − v)

1 + δ
b̄(v1 − v)

1 + |v1 − v|2
. (7.13)

We let Qδ and Lδ denote the associated operators given by

Qδ(G,G) =
∫∫

SD−1×RD

(
G ′

1G ′ − G1G
)

bδ(ω, v1 − v) dω M1dv1,

Lδg =
∫∫

SD−1×RD

(
g + g1 − g′ − g′

1

)
bδ(ω, v1 − v) dω M1dv1. (7.14)

Because bδ(ω, v1 − v) has the form (7.13), the operators Qδ and Lδ share most of
the formal properties satisfied by Q and L. In particular, we show in Lemma 7.1
that for every sufficiently small δ there exists a �δ > 0 such that Lδ satisfies the
coercivity bound

�δ〈a(P⊥g̃)2〉 � 〈g̃Lδ g̃〉 for every g̃ ∈ L2(aMdv). (7.15)

We now fix δ small enough that this bound holds for some �δ > 0.
When the bound (7.15) is combined with the fact

√
Gε = 1 + ε γε and the

identity

1

ε
Lδγε = Qδ(γε, γε)− 1

ε2 Qδ

(√
Gε,

√
Gε

)
,

we obtain
�δ

ε

〈
a(P⊥γε)2

〉
�
∣∣〈(P⊥γε)Qδ(γε, γε)

〉∣∣

+ 1

ε2

∣∣
∣
〈
(P⊥γε)Qδ

(√
Gε,

√
Gε

)〉∣∣
∣. (7.16)

To bound the first term on the right-hand side of (7.16), we use saturated kernel
assumption (3.28) to see

b̄δ(v1 − v) =
∫

SD−1
bδ(ω, v1 − v) dω

= b̄(v1 − v)

1 + δ
b̄(v1 − v)

1 + |v1 − v|2
� Cδ

(
1 + a(v1)

)(
1 + a(v)

)
.

We thereby obtain the bound

∣
∣〈(P⊥γε)Qδ(γε, γε)

〉∣∣ =
∣∣
∣∣

〈〈
b̄δ
b̄
(P⊥γε)

(
γ ′
ε1γ

′
ε − γε1γε

) 〉〉
∣∣
∣∣

� 2
〈〈
(P⊥γε)2

〉〉 1
2

〈〈
b̄δ
b̄
γ 2
ε1γ

2
ε

〉〉 1
2

� 2Cδ
〈
a(P⊥γε)2

〉 1
2
〈
(1 + a)γ 2

ε

〉
.
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We bound the second term on the right-hand side of (7.16) as

∣∣∣
〈
(P⊥γε)Qδ

(√
Gε,

√
Gε

)〉∣∣∣ =
∣∣∣∣

〈〈
b̄δ
b̄
(P⊥γε)

(√
G ′
ε1G ′

ε − √
Gε1Gε

) 〉〉∣∣∣∣

�
〈〈
(P⊥γε)2

〉〉 1
2

〈〈
b̄δ
b̄

(√
G ′
ε1G ′

ε − √
Gε1Gε

)2
〉〉 1

2

�
〈
a(P⊥γε)2

〉 1
2

〈〈(√
G ′
ε1G ′

ε − √
Gε1Gε

)2
〉〉 1

2

.

Upon collecting the above estimates, we obtain the bound

�δ

ε

〈
a(P⊥γε)2

〉 1
2 � 2Cδ

(〈
γ 2
ε

〉 + 〈
aγ 2
ε

〉) + 1

ε2

〈〈(√
G ′
ε1G ′

ε − √
Gε1Gε

)2
〉〉 1

2

.

(7.17)

Because
(√

Y −√
X
)2 � 1

4 (Y − X) log(Y/X) for every X , Y > 0, it follows from
the entropy bound (6.1) that the sequence

1

ε4

(√
G ′
ε1G ′

ε − √
Gε1Gε

)2

is bounded in L1(dµ dx dt). (7.18)

Because the sequence 〈γ 2
ε 〉 is bounded in L1

loc(dt; L1(dx)), it follows from the
bound (7.17) that the second factor on the right-hand side of (7.12) is ε times a
sequence that is at best bounded in L1

loc(dt; L1(dx)).
We now bound the first factor on the right-hand side of (7.12). First, because

z2 � |2z + z2| for z � −1, and because gε = 2γε + ε γ 2
ε , we have the bound

ε γ 2
ε � |gε |.

Second, for every α > 0 Young’s inequality yields

a|gε | � α

ε

[
h∗
(

a

α

)
+ h(ε gε)

]
. (7.19)

By combining the above bounds we obtain the rough bound

〈
1S aγ 2

ε

〉
� α

ε2

[〈
1S h∗

(
a

α

)〉
+ 〈

h(ε gε)
〉
]
. (7.20)

Hence, the first factor on the right-hand side of (7.12) times ε is bounded in
L∞(dt; L2(dx)).

Given the bound (7.17) on the second factor of the right-hand side of (7.12), the
rough bound (7.20) on the first factor is not enough to bound the right-hand side
of (7.12) in L1

loc(dt; L1(dx)). This problem can be overcome by using a relative
entropy cutoff. Let T > 0. For every λ > 0 define the sets

�λε = {
(x, t) ∈ T

D × [0, T ] : 〈h(εgε)〉 � λ2},
(7.21)

�̃λε = {
(x, t) ∈ T

D × [0, T ] : 〈h(εgε)〉 > λ2},



784 C. David Levermore & Nader Masmoudi

and introduce the decomposition
〈
1S aγ 2

ε

〉 = 1�̃λε
〈
1S aγ 2

ε

〉 + 1�λε
〈
1S aγ 2

ε

〉
. (7.22)

We use the rough bound (7.20) to bound the first term on the right-hand side of
(7.22) as

1�̃λε
〈
1S aγ 2

ε

〉
� α

ε2

[
1�̃λε

〈
1S h∗

(
a

α

)〉
+ 〈

h(ε gε)
〉]
. (7.23)

The Chebychev inequality and the entropy bound (6.1) shows that

meas
(
�̃λε

)
=
∫ T

0

∫

TD
1�̃λε dx dt �

∫ T

0

∫

TD

〈h(εgε)〉
λ2 dx dt � ε2CinT

λ2 . (7.24)

By combining (7.23) with α = 1, (7.24), and the entropy bound (6.1) we see that

∫ T

0

∫

TD
1�̃λε

〈
aγ 2
ε

〉
dx dt � 1

ε2

[
meas

(
�̃λε

)〈
h∗(a)

〉 +
∫ T

0

∫

TD

〈
h(ε gε)

〉
dx dt

]

� CinT

λ2

〈
h∗(a)

〉 + CinT .

It follows that for every λ the sequence

1�̃λε aγ 2
ε is bounded in L1

loc(dt; L1(Mdv dx)). (7.25)

We use (7.10), (7.11), and (7.12) to bound the second term on the right-hand side
of (7.22) as

1�λε
〈
1S aγ 2

ε

〉
� 1�λε

〈
D1S a2(1 + |v|4)〉 1

2
〈
γ 2
ε

〉 + 1�λε
〈
1S aγ 2

ε

〉 1
2
〈
a(P⊥γε)2

〉 1
2 . (7.26)

For every λ � 1 we can use the rough bound (7.20) with α = 1/λ and the
superquadratic property of h∗ to bound the first two factors of the last term on
the right-hand side above as

1�λε
〈
1S aγ 2

ε

〉
� 1�λε

1

λε2

[〈1S h∗(λa)〉 + λ2] � 1�λε
λ

ε2

[〈1S h∗(a)〉 + 1
]
.

The last factor of the last term on the right-hand side of (7.26) satisfies the inequality
(7.17). We thereby obtain the bound

1�λε
〈
1S aγ 2

ε

〉
� 1�λε

〈
D1S a2(1 + |v|4)〉 1

2
〈
γ 2
ε

〉

+1�λε
λ

1
2

�δ

[〈1S h∗(a)〉 + 1
] 1

2

×
[

2Cδ
(〈
γ 2
ε

〉 + 〈
aγ 2
ε

〉) + 1

ε2

〈〈(√
G ′
ε1G ′

ε − √
Gε1Gε

)2
〉〉 1

2
]
.

(7.27)
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This implies that for every λ that satisfies

λ
1
2

2Cδ
�δ

[〈h∗(a)〉 + 1
] 1

2 � 1

2
, λ � 1, (7.28)

we obtain the bound

1�λε
〈
aγ 2
ε

〉
�
[
2
〈
D a2(1 + |v|4)〉 + 1

] 1
2
〈
γ 2
ε

〉

+ 1

2Cδ

1

ε2

〈〈(√
G ′
ε1G ′

ε − √
Gε1Gε

)2
〉〉 1

2

. (7.29)

This bound shows that for every λ that satisfies the bounds (7.28) the sequence

1�λε aγ 2
ε is bounded in L1

loc(dt; L1(Mdv dx)). (7.30)

This result combined with (7.25) implies that assertion (7.8) of the Proposition
holds.

Now let η > 0 and let S ⊂ R
D ×T

D × [0, T ] be any measurable set such that
〈1S〉 < η. Because h∗(a/α) and a2(1+|v|4) are in L2(Mdv), the Cauchy-Schwarz
inequality yields

〈
1S h∗

(
a

α

)〉
�
〈
1S
〉 1

2

〈
h∗
(

a

α

)2〉 1
2

,
〈
1S Da2(1+|v|4)〉� 〈

1S
〉 1

2
〈
D2a4(1+|v|4)2〉 1

2 .

Upon combining these inequalities, the bounds (7.22) (7.23), (7.27), (7.29), and
the fact that 〈1S〉 < η, for some positive constant C we obtain the bound

〈
1S aγ 2

ε

〉
� 1�̃λε η

1
2
α

ε2

〈
h∗
(

a

α

)2〉 1
2 + α

ε2

〈
h(ε gε)

〉 + η
1
4
〈
D2a4(1 + |v|4)2〉 1

4

+ λ 1
2 C

[〈
γ 2
ε

〉 + 1

ε2

〈〈(√
G ′
ε1G ′

ε − √
Gε1Gε

)2
〉〉 1

2
]
.

It follows from the bounds (7.24) and (6.1) that

∫ T

0

∫

TD
sup

〈1S〉<η
〈
1S aγ 2

ε

〉
dx dt �

[
η

1
2

λ2

〈
h∗
(

a

α

)2〉 1
2 + 1

]
αCinT

+ η 1
4
〈
D2a4(1 + |v|4)2〉 1

4 T + λ
1
2 C

[ 4
3 CinT + CinT

1
2
]
,

where the supremum is taken over all measurable S ⊂ R
D ×T

D × [0, T ]. By
exploiting the arbitrariness of α and λ one can deduce assertion (7.9) of the Prop-
osition from this inequality, thereby completing the proof. ��
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7.2. Coercivity bound lemma

We now establish the coercivity bound (7.15).

Lemma 7.1. Let b satisfy the assumptions of Sect. 3. Let bδ and Lδ be defined by
(7.13) and (7.14) respectively. Then for sufficiently small δ there exists �δ > 0 such
that Lδ satisfies the coercivity bound

�δ〈a(P⊥g̃)2〉 � 〈g̃Lδ g̃〉 for every g̃ ∈ L2(aMdv). (7.31)

Proof. We have

1

a
L = I + K− − 2K+, 1

a
Lδ = aδ

a
I + K−

δ − 2K+
δ , (7.32)

where the integral operators K− and K+ are defined by (3.12) and (3.13), while
the integral operators K−

δ and K+
δ are defined for every h̃ ∈ L2(aMdv) by

K−
δ h̃ = 1

a

∫

RD
h̃1 b̄δ(v1 − v)M1dv1, (7.33)

K+
δ h̃ = 1

2a

∫∫

SD−1×RD

(
h̃′ + h̃′

1

)
bδ(ω, v1 − v) dω M1dv1, (7.34)

and the attenuation coefficient aδ(v) is defined by

aδ(v) =
∫

RD
b̄δ(v1 − v)M1dv1. (7.35)

One can show for every g̃, h̃ ∈ L2(aMdv) that

∣∣〈g̃ a
(K− − K−

δ

)
h̃
〉∣∣ =

∣∣∣∣

〈〈
b̄ − b̄δ

b̄
g̃ h̃1

〉〉∣∣∣∣ � Nδ
〈
ag̃2〉 1

2
〈
ah̃2〉 1

2 ,

∣∣〈g̃ a
(K+ − K+

δ

)
h̃
〉∣∣ =

∣∣∣∣
1

2

〈〈
b̄ − b̄δ

b̄
g̃
(
h̃′

1 + h̃′)
〉〉∣∣∣∣ � Nδ

〈
ag̃2〉 1

2
〈
ah̃2〉 1

2 ,

where

Nδ = sup

{
a(v)− aδ(v)

a(v)
: v ∈ R

D
}

� 1. (7.36)

It follows that ‖K− − K−
δ ‖ � Nδ and ‖K+ − K+

δ ‖ � Nδ , whereby (7.32) implies
‖ 1

a L − 1
a Lδ‖ � 4Nδ . Whenever Nδ <

1
4� one can derive the coercivity bound

(7.31) for Lδ with �δ = �− 4Nδ from the coercivity bound (3.33) for L. The result
will follow upon showing that Nδ → 0 as δ → 0.
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Let r(v1 − v) = b̄(v1 − v)/(1 + |v1 − v|2). We then use the bound (3.15) to
obtain the pointwise bound

a(v)− aδ(v)

a(v)
=
∫

RD

δ r(v1 − v)

1 + δ r(v1 − v)

b̄(v1 − v)

a(v) a(v1)
a1 M1dv1

�
(∫

RD

∣∣∣∣
δ r(v1 − v)

1 + δ r(v1 − v)

∣∣∣∣

s∗

a1 M1dv1

) 1
s∗

×
(∫

RD

∣∣∣
∣

b̄(v1 − v)

a(v) a(v1)

∣∣∣
∣

s

a1 M1dv1

) 1
s

�
(∫

RD
δ r(v1 − v) a1 M1dv1

) 1
s∗

Cb. (7.37)

By again using the bound (3.15), we see that

∫

RD
r(v1 − v) a1 M1dv1 =

∫

RD

a(v) a(v1)

1 + |v1 − v|2
b̄(v1 − v)

a(v) a(v1)
a1 M1dv1

�
(∫

RD

∣∣∣
∣

a(v) a(v1)

1 + |v1 − v|2
∣∣∣
∣

s∗

a1 M1dv1

) 1
s∗

×
(∫

RD

∣∣
∣∣

b̄(v1 − v)

a(v) a(v1)

∣∣
∣∣

s

a1 M1dv1

) 1
s

� a(v)

(∫

RD

∣∣∣∣
a(v1)

1 + |v1 − v|2
∣∣∣∣

s∗

a1 M1dv1

) 1
s∗

Cb.

It follows from (3.7) that right-hand side above is uniformly bounded. It then fol-
lows from the bound (7.37) and definition (7.36) that Nδ → 0 as δ → 0, thereby
completing the proof. ��

7.3. Relative compactness proposition

The relative compactness of the sequence g 2
ε /nε for bounded velocities asserted

by (7.7) is established by the following proposition.

Proposition 7.3. Under the hypotheses of Theorem 5.1, for every R > 0 the
sequence

1{|v|�R}
g 2
ε

nε
is relatively compact in L1

loc(dt; L1(Mdv dx)). (7.38)

Proof. Let R > 0. Let χ be a C∞([0,∞)) cutoff function that satisfies 0 �
χ(s) � 1 for s � 0, χ(s) = 1 for 0 � s � 1, and χ(s) = 0 for s � 2. Let
h(z) = (1 + z) log(1 + z)− z. For every λ > 3

2 one can show that

z2

1 + 1
3 z

� λ

h( 1
3λ)

h(z), for every z such that
z2

1 + 1
3 z

� λ.
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It then follows from the entropy bound (6.1) that for every λ > 3
2 we have

∫

TD

〈
g 2
ε

nε
− g 2

ε

nε
χ

(
ε2g 2

ε

λ nε

)〉
dx �

∫

TD

〈
1{ ε2g 2

ε
nε

�λ
} g 2

ε

nε

〉
dx

� λ

h( 1
3λ)

1

ε2

∫

TD

〈
h(ε gε)

〉
dx

= λ

h( 1
3λ)

1

ε2 H(Gε) � λ

h( 1
3λ)

Cin .

We therefore see that

∥∥∥
∥

g 2
ε

nε
− g 2

ε

nε
χ

(
ε2g 2

ε

λ nε

)∥∥∥
∥

L∞(dt;L1(Mdv dx))
� C

log(λ)
as λ → ∞.

The relative compactness result will therefore follow if for every λ > 3
2 we can

show that

1{|v|�R}
g 2
ε

nε
χ

(
ε2g 2

ε

λ nε

)
is relatively compact in L1

loc(dt; L1(Mdv dx)). (7.39)

Because for every λ > 3
2 we have

ε ∂tφ
λ
ε + v ·∇xφ

λ
ε = ψλε , (7.40)

where

φλε = g 2
ε

nε
χ

(
ε2g 2

ε

λ nε

)
,

ψλε = 1

ε2 Q(Gε,Gε)
gε
nε

1 + nε
nε

[
χ

(
ε2g 2

ε

λ nε

)
+ ε

2g 2
ε

λ nε
χ ′
(
ε2g 2

ε

λ nε

)]
, (7.41)

the relative compactness (7.39) will follow from the L1 velocity averaging theory
(see [16]) once we show that 1{|v|�R}φλε is equi-integrable in v and that ψλε is

bounded in L1
loc(dt; L1(Mdv dx)).

Because a is bounded below by a positive constant over {|v| � R}, the fact that
1{|v|�R}γ 2

ε is equi-integrable in v follows directly from Proposition 7.2. Because

(7.41) implies that φλε is bounded by g 2
ε /nε while (7.2) implies that g 2

ε /nε is
bounded by γ 2

ε , it thereby follows that 1{|v|�R}φλε is equi-integrable in v.

To show that the sequence ψλε is bounded in L1
loc(dt; L1(Mdv dx)), we use the

fact that

G ′
ε1G ′

ε−Gε1Gε=
(√

G ′
ε1G ′

ε−
√

Gε1Gε

)2

+ 2

(√
G ′
ε1G ′

ε−
√

Gε1Gε

)√
Gε1Gε,



Boltzmann Equation to Incompressible Navier–Stokes–Fourier 789

and the fact that
√

Gε1 = 1 + ε γε1 to deduce that

ψλε = 1

ε2

∫∫

SD−1×RD

(√
G ′
ε1G ′

ε − √
Gε1Gε

)2

b dω M1dv1
gε
nε
χλε

+ 2

ε2

∫∫

SD−1×RD

(√
G ′
ε1G ′

ε − √
Gε1Gε

)
b dω M1dv1

√
Gε√
nε

gε√
nε
χλε

+ 2

ε2

∫∫

SD−1×RD

(√
G ′
ε1G ′

ε − √
Gε1Gε

)
γε1 b dω M1dv1

√
Gε√
nε

ε gε√
nε
χλε ,

(7.42)

where χλε is defined by

χλε = 1 + nε
nε

[
χ

(
ε2g 2

ε

λ nε

)
+ ε2g 2

ε

λ nε
χ ′
(
ε2g 2

ε

λ nε

)]
.

To bound the three terms on the right-hand side of (7.42) we use the fact that the
sequences

ε gε
nε
,

√
Gε√
nε
, χλε ,

ε gε√
nε
χλε are bound in L∞(Mdv dx dt),

where the last bound above follows because χλε is supported within the set where
ε2g 2

ε /nε � 2λ. We also use the fact that, by Proposition 7.2 and bound (7.2), the
sequences

a
g 2
ε

nε
, aγ 2

ε are bound in L1
loc(dt; L1(Mdv dx)).

Finally, we use the fact (7.18) that the sequence

1

ε2

(√
G ′
ε1G ′

ε − √
Gε1Gε

)
is bound in L2(dµ dx dt).

The first term on the right-hand side of (7.42) is bounded in L1
loc(dt; L1(Mdv dx))

by the above bounds on
(√

G ′
ε1G ′

ε − √
Gε1Gε

)
, ε gε/nε , and χλε . The second

term on the right-hand side of (7.42) is bounded in L1
loc(dt; L1(Mdv dx)) by the

above bounds on
(√

G ′
ε1G ′

ε − √
Gε1Gε

)
, ag 2

ε /nε ,
√

Gε/
√

nε , and χλε . The third

term on the right-hand side of (7.42) is bounded in L1
loc(dt; L1(Mdv dx)) by the

above bounds on
(√

G ′
ε1G ′

ε − √
Gε1Gε

)
, aγ 2

ε ,
√

Gε/
√

nε , and
(
ε gε/

√
nε
)
χλε .

Therefore, for every λ > 0 the sequence ψλε is bounded in L1
loc(dt; L1(Mdv dx)),

thereby completing the proof. ��
Remark. The fact that the L1 velocity averaging theory of [16] applies to the torus
T

D was pointed out in section 7 of that paper. This is the setting in which we apply
it above.
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8. Removal of the conservation defects

8.1. Conservation defect theorem

The conservation defects have the form

1

ε

〈〈
ζ �′

ε(Gε) qε
〉〉 = 1

ε

〈〈
ζ

(
2

N 2
ε

− 1

Nε

)
qε

〉〉
,

where ζ ∈ span{1, v1 , . . . , vD , |v|2} and Nε = 1 + ε2g 2
ε . In order to establish

momentum and energy conservation laws from the scaled Boltzmann equation we
must show that these defects vanish as ε → 0. This is done with the following
proposition.

Proposition 8.1. Let b be a collision kernel that satisfies the assumptions of Sect. 3.
Let Gε � 0 be a family of functions in C([0,∞);w-L1(Mdv dx)) that satisfies the
entropy bound (6.1). Let gε and qε be given by (5.1) and (6.3). Let Nε = 1 + ε2g 2

ε .
Assume that the family gε satisfies

g 2
ε√
Nε

is relatively compact in w-L1
loc(dt;w-L1(aMdv dx)). (8.1)

Then for n = 1 and n = 2 and for every ζ ∈ span{1, v1 , . . . , vD , |v|2} one has

1

ε

〈〈
ζ

qε
N n
ε

〉〉
→ 0 in w-L1

loc(dt;w-L1(dx)) as ε → 0. (8.2)

Proof. The case n = 1 is treated first. The proof simply exploits the collisional
symmetries (2.14) and the fact ζ is a collision invariant to decompose the defect
into three parts, each of which is dominated by a function that is then shown to
vanish as ε → 0. The case n = 2 proceeds similarly, with each part being dom-
inated by the same function that dominates the corresponding part for the n = 1
case. The estimates on these dominating functions are obtained from the entropy
inequality (6.1) through the bound on the dissipation rate and from the compactness
hypothesis (8.1). For the case n = 1, begin with the elementary decomposition

〈〈
ζ

qε
Nε

〉〉
=
〈〈
ζ
ε2g 2

ε1qε
Nε1 Nε

〉〉
+
〈〈
ζ

qε
Nε1 Nε

〉〉
. (8.3)

Because ζ is a collision invariant, the collisional symmetries (2.14) can be used to
rewrite the second term on the right-hand side of (8.3) as

〈〈
ζ

qε
Nε1 Nε

〉〉
= 1

2

〈〈
(ζ + ζ1)

qε
Nε1 Nε

〉〉
= 1

4

〈〈
(ζ + ζ1)

N ′
ε1 N ′

ε − Nε1 Nε
N ′
ε1 N ′

εNε1 Nε
qε

〉〉
. (8.4)

We now observe that

N ′
ε1 N ′

ε − Nε1 Nε = ε2(g′ 2
ε1 + g′ 2

ε − g 2
ε1 − g 2

ε

) + ε4(g′ 2
ε1g′ 2

ε − g 2
ε1g 2

ε

)

= ε2((g′
ε1 + g′

ε)
2 − (gε1 + gε)

2)

− 2ε2(g′
ε1g′

ε − gε1gε
) + ε4(g′ 2

ε1g′ 2
ε − g 2

ε1g 2
ε

)

= ε3qε
(
g′
ε1 + g′

ε + gε1 + gε
) − ε2(g′

ε1g′
ε − gε1gε

)
Jε, (8.5)
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where Jε is given by

Jε = 2 + ε (g′
ε1 + g′

ε + gε1 + gε)− ε2(g′
ε1g′

ε + gε1gε). (8.6)

Upon placing (8.5) into (8.4), using collisional symmetries and the fact ζ is a
collision invariant, and placing the result into (8.3), we obtain the decomposition

1

ε

〈〈
ζ

qε
Nε

〉〉
=
〈〈
ζ
ε g 2

ε1qε
Nε1 Nε

〉〉
+
〈〈
ζ
ε2(gε1 + gε) q 2

ε

N ′
ε1 N ′

εNε1 Nε

〉〉
−
〈〈
ζ ′ ε g′

ε1g′
ε qε

N ′
ε1 N ′

εNε1 Nε
Jε

〉〉
. (8.7)

This decomposition is derived in the same spirit as was decomposition (9.12) in
[12]. The difference in the two arises because the role played by Nε = 1 + ε2g 2

ε

here was played by nε = 1 + 1
3ε gε there.

We now dominate the integrands of the three terms on the right-hand side
of (8.7). Because for every ζ ∈ span{1, v1 , . . . , vD , |v|2} there exists a constant
C < ∞ such that |ζ | � Cσ where σ(v) ≡ 1 + |v|2, the integrand of the first term
is dominated by

σ
ε g 2

ε1|qε |
Nε1 Nε

. (8.8)

Because

ε |gε1 + gε |√
N ′
ε1 N ′

εNε1 Nε
� 2,

the integrand of the second term is dominated by

σ
ε q 2

ε√
N ′
ε1 N ′

εNε1 Nε
. (8.9)

Finally, because

|Jε |√
N ′
ε1 N ′

εNε1 Nε
� 8,

the integrand of the third term is dominated by

σ ′ ε |g′
ε1g′

ε | |qε |√
N ′
ε1 N ′

εNε1 Nε
. (8.10)

Hence, the result (8.2) for the case n = 1 will follow once we establish that the
terms (8.8), (8.9), and (8.10) vanish as ε → 0.

The term (8.9) can be treated easily. Lemma 9.3 of [12] implies that

σ
ε q 2

ε

n′
ε1n′

εnε1nε
= O

(
ε | log(ε)|) in L1

loc(dt; L1(dµ dx)) as ε → 0.
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By the elementary inequality n′
ε1n′

εnε1nε � 2
√

N ′
ε1 N ′

εNε1 Nε , the above estimate
implies that

σ
ε q 2

ε√
N ′
ε1 N ′

εNε1 Nε
= O

(
ε | log(ε)|) in L1

loc(dt; L1(dµ dx)) as ε → 0.

The terms (8.8) and (8.10) require much more work. Lemmas 8.2 and 8.3 respec-
tively will yield the limits

σ
ε g 2

ε1qε
Nε1 Nε

→ 0 in L1
loc(dt; L1(dµ dx)) as ε → 0, (8.11)

σ ′ ε g′
ε1g′

ε qε√
N ′
ε1 N ′

εNε1 Nε
→ 0 in L1

loc(dt; L1(dµ dx)) as ε → 0, (8.12)

These lemmas are stated and proved in the next subsection, thereby establishing
the result (8.2) for the case n = 1.

The case n = 2 follows similarly. Begin with the elementary decomposition

〈〈
ζ

qε
N 2
ε

〉〉
=
〈〈
ζ
ε2g 2

ε1qε
Nε1 Nε

(
1 + 1

Nε1

)〉〉
+
〈〈
ζ

qε
N 2
ε1 N 2

ε

〉〉
. (8.13)

Because ζ is a collision invariant, the collisional symmetries (2.14) can be used to
rewrite the second term on the right-hand side of (8.13) as

〈〈
ζ

qε
N 2
ε1 N 2

ε

〉〉
= 1

2

〈〈
(ζ + ζ1)

qε
N 2
ε1 N 2

ε

〉〉

= 1
4

〈〈
(ζ + ζ1)

N ′
ε1 N ′

ε − Nε1 Nε
N ′
ε1 N ′

εNε1 Nε

N ′
ε1 N ′

ε + Nε1 Nε
N ′
ε1 N ′

εNε1 Nε
qε

〉〉
.

Upon placing (8.5) into the above, using collisional symmetries and the fact ζ is a
collision invariant, and placing the result into (8.13), we obtain the decomposition

1

ε

〈〈
ζ

qε
N 2
ε

〉〉
=
〈〈
ζ
ε g 2

ε1qε
Nε1 Nε

(
1 + 1

Nε1

)〉〉
+
〈〈
ζ
ε2(gε1 + gε) q 2

ε

N ′
ε1 N ′

εNε1 Nε

(
1

N ′
ε1 N ′

ε

+ 1

Nε1 Nε

)〉〉

−
〈〈
ζ ′ ε g′

ε1g′
ε qε

N ′
ε1 N ′

εNε1 Nε
Jε

(
1

N ′
ε1 N ′

ε

+ 1

Nε1 Nε

)〉〉
, (8.14)

where Jε is given by (8.6). Because the factors in parentheses above are each
bounded by 2, by arguing as was done for the case n = 1, the result for the case
n = 2 will also follow upon establishing (8.11) and (8.12). The proof of Proposi-
tion 8.1 will therefore be complete upon proving Lemmas 8.2 and 8.3. ��
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8.2. Conservation defect lemmas

The proofs of Lemmas 8.2 and 8.3 use the compactness hypothesis (8.1) of
Proposition 8.1 through the following lemma.

Lemma 8.1. Let b, gε , and Nε be as in Proposition 8.1. Let s∗ ∈ [1,∞) be given
by 1

s + 1
s∗ = 1 where s ∈ (1,∞] is from the assumed bound (3.15) on b. Then for

every w ∈ Ls∗
(aMdv) one has that

w(v1) g 2
ε√

Nε
is relatively compact in w-L1

loc(dt;w-L1(dµ dx)). (8.15)

Proof. By hypothesis (8.1) we can pass to a subsequence such that

g 2
ε√
Nε

is convergent in w-L1
loc(dt;w-L1(aMdv dx)).

It is then straightforward to show that the corresponding subsequence

w(v1) g 2
ε√

Nε
is convergent in w-L1

loc(dt;w-L1(dµ dx)).

Indeed, one simply uses the fact that for every Y ∈ L∞
loc(dt; L∞(dµ dx))

∫∫∫

SD−1×RD×RD
Y
w1 g 2

ε√
Nε

dµ dx =
∫

RD
y

g 2
ε√
Nε

aMdv,

where y ∈ L∞
loc(dt; L∞(aMdv dx)) is given almost everywhere by

y(v, x, t) = 1

a(v)

∫∫

SD−1×RD
Y (ω, v1, v, x, t) w(v1) b(ω, v1 − v) dω M1dv1.

The L∞ bound on y follows because for almost every (v, x, t) one sees from the
Hölder inequality and from the bound (3.15) on b that

|y(v, x, t)| � ‖Y‖∞
∫

RD
w(v1)

b̄(v1 − v)

a(v1)a(v)
a(v1)M1dv1

� ‖Y‖∞
(∫

RD
|w(v1)|s∗

a(v1)M1dv1

) 1
s∗

×
(∫

RD

∣
∣∣∣
b̄(v1 − v)

a(v1)a(v)

∣
∣∣∣

s

a(v1)M1dv1

) 1
s

� ‖Y‖∞
∥∥w

∥∥
Ls∗ (aMdv)Cb.

The compactness assertion (8.15) then follows. ��



794 C. David Levermore & Nader Masmoudi

The proofs of Lemmas 8.2 and 8.3 also crucially use the fact that the entropy
inequality (6.1) implies that the dissipation rate R satisfies the bound

1

ε4

∫ ∞

0
R(Gε) dt � Cin .

More specifically, following [3], these proofs use the definitions of R and qε , given
by (2.20) and (6.3) respectively, to re-express this bound as

1

ε4

∫ ∞

0

∫

TD

〈〈
1

4
r

(
ε2qε

Gε1Gε

)
Gε1Gε

〉〉
dx dt � Cin, (8.16)

where the function r is defined over z > −1 by r(z) = z log(1 + z) and is strictly
convex.

The proofs of Lemmas 8.2 and 8.3 are each based on a delicate use of the
classical Young inequality satisfied by r and its Legendre dual, r∗—namely, the
inequality

pz � r∗(p)+ r(z), for every p ∈ R and z > −1.

Upon setting p = ε2 y/α and z = ε2|qε |/(Gε1Gε) above, and noticing that r(|z|) �
r(z) for every z > −1, for every positive α and y one obtains

y|qε | � α

ε4 r∗
(
ε2 y

α

)
Gε1Gε + α

ε4 r

(
ε2qε

Gε1Gε

)
Gε1Gε . (8.17)

This inequality is the starting point for the proofs of Lemmas 8.2 and 8.3. These
proofs also use the facts, recalled from [3], that r∗ is superquadratic in the sense

r∗(λp) � λ2r∗(p), for every p > 0 and λ ∈ [0, 1], (8.18)

and that r∗ has the exponential asymptotics r∗(p) ∼ exp(p) as p → ∞.

Lemma 8.2. Let b, gε , qε , and Nε be as in Proposition 8.1. Then

σ
ε g 2

ε1 qε
Nε1 Nε

−→ 0 in L1
loc(dt; L1(dµ dx)) as ε → 0.

Proof. For the proof of this lemma we use inequality (8.17) with

y = σ

4s∗
ε g 2

ε1

Nε1 Nε
.

where s∗ ∈ [1,∞) is as in Lemma 8.1. We then use the superquadratic property
(8.18) with

λ = ε3g 2
ε1

α Nε1 Nε
and p = σ

4s∗ ,

where we note that λ � 1 whenever ε � α. This leads to

σ

4s∗
ε g 2

ε1 |qε |
Nε1 Nε

� 1

α

ε2g 4
ε1

N 2
ε1 N 2

ε

r∗( σ

4s∗
)

Gε1Gε + α

ε4 r

(
ε2qε

Gε1Gε

)
Gε1Gε . (8.19)
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Because Gε1Gε � 2
√

Nε1 Nε , we can bound the first term on the right-hand side
above by

2 ε2g 2
ε1

α Nε1

g 2
ε1√
Nε1

r∗( σ

4s∗
)
.

The first factor above is bounded by 2/α and tends to zero almost everywhere
as ε → 0. Because r∗(p) ∼ exp(p) as p → ∞ one sees that r∗(σ/4s∗) ∈
Ls∗
(aMdv). Hence, we can thereby apply Lemma 8.1 with w = r∗(σ/4s∗) to see

that the remaining factors satisfy

g 2
ε1√
Nε1

r∗( σ

4s∗
)

is relatively compact in w-L1
loc(dt;w-L1(dµ dx)).

The first term on the right-hand side of (8.19) thereby converges to zero in L1
loc(dt;

L1(dµ dx)) as ε → 0 by the Product Limit Theorem of [3]. On the other hand,
the dissipation bound (8.16) implies that the integral of the second term on the
right-hand side of (8.19) is bounded by 4α Cin . The Lemma therefore follows from
the arbitrariness of α. ��
Lemma 8.3. Let b, gε , qε , and Nε be as in Proposition 8.1. Then

σ
ε gε1gε qε√
N ′
ε1 N ′

εNε1 Nε
−→ 0 in L1

loc(dt; L1(dµ dx)) as ε → 0.

Proof. For the proof of this lemma we use inequality (8.17) with

y = σ ′

4s∗
ε |g′

ε1g′
ε |√

N ′
ε1 N ′

εNε1 Nε
.

where s∗ ∈ [1,∞) is as in Lemma 8.1. We then use the superquadratic property
(8.18) with

λ = ε3|g′
ε1g′

ε |
α

√
N ′
ε1 N ′

εNε1 Nε
, and p = σ ′

4s∗ .

where we note that λ � 1 whenever ε � α. This leads to

σ ′

4s∗
ε |g′

ε1g′
ε | |qε |√

N ′
ε1 N ′

εNε1 Nε
� 1

α

ε2g′ 2
ε1g′ 2

ε

N ′
ε1 N ′

εNε1 Nε
r∗
(
σ ′

4s∗

)
Gε1Gε

+ α

ε4 r

(
ε2qε

Gε1Gε

)
Gε1Gε . (8.20)

Because Gε1Gε � 2
√

Nε1 Nε , we can bound the first term on the right-hand side
above by

2 ε2g′ 2
ε

α N ′
ε

g′ 2
ε1

N ′
ε1

r∗
(
σ ′

4s∗

)
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The first factor above is bounded by 2/α and tends to zero almost everywhere
as ε → 0. We can again apply Lemma 8.1 with w = r∗(σ/4s∗) to see that the
remaining factors satisfy

g′ 2
ε1√
N ′
ε1

r∗
(
σ ′

4s∗

)
is relatively compact in w-L1

loc(dt;w-L1(dµ dx)).

The first term on the right-hand side of (8.20) thereby converges to zero in L1
loc(dt;

L1(dµ dx)) as ε → 0 by the Product Limit Theorem of [3]. On the other hand,
the dissipation bound (8.16) implies that the integral of the second term on the
right-hand side of (8.20) is bounded by 4α Cin . The Lemma therefore follows from
the arbitrariness of α. ��

9. Bilinear estimates

Key tools in our work are the following two lemmas dedicated to controlling
terms that are quadratic in g̃ε . The first lemma provides a direct L1 bound on such
terms.

Lemma 9.1. Let the collision kernel b satisfy assumption (3.15) for some Cb < ∞
and s ∈ (1,∞]. Let p = 2 + 1

s−1 , so p = 2 when s = ∞.

Let  = (ω, v1, v) be in L p(dµ) and let g̃ and h̃ be in L2(aMdv). Then
 g̃1 h̃ is in L1(dµ) and satisfies the L1 bound

〈〈| g̃1 h̃|〉〉 � C
1

p∗
b

〈〈||p〉〉 1
p 〈a g̃2〉 1

2 〈a h̃2〉 1
2 , (9.1)

where 1
p + 1

p∗ = 1 and g̃1 denotes g̃(v1).

Proof. The Hölder inequality yields

〈〈∣∣ g̃1 h̃
∣∣〉〉 �

〈〈||p〉〉 1
p
〈〈∣∣g̃1 h̃

∣∣p∗ 〉〉 1
p∗ . (9.2)

In order to bound the last factor on the left-hand side above, we first observe that

〈〈∣∣g̃1 h̃
∣∣p∗ 〉〉 =

∫∫

RD×RD

∣∣g̃1 h̃
∣∣p∗

b̄(v1 − v)M1dv1 Mdv

=
∫∫

RD×RD
K −(v1, v) |g̃1|p∗ |h̃|p∗

a1 M1dv1 aMdv

= 〈
a
(K−|g̃|p∗) |h̃|p∗ 〉

, (9.3)

where the integral operator K− and its kernel K − are given by (3.17).
Next, let r = 2

p∗ ∈ (1, 2) and 1
r + 1

r∗ = 1. Observe that because 1
r + 1

s =
1 + 1

r∗ , by (3.23) the operator K− : Lr (aMdv) → Lr∗
(aMdv) is bounded with

‖K−‖ � Cb. Use this fact after another application of the Hölder inequality to find
〈
a
(K−|g̃|p∗) |h̃|p∗ 〉 = 〈

a
(K−|g̃| 2

r
) |h̃| 2

r
〉
�
∥
∥K−|g̃| 2

r
∥
∥

Lr∗
(aMdv)

∥
∥ |h̃| 2

r
∥
∥

Lr (aMdv)

� Cb〈a g̃2〉 1
r 〈a h̃2〉 1

r .
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When the above bound is combined with (9.3) we obtain the key bound

〈〈∣∣g̃1 h̃
∣∣p∗ 〉〉

� Cb〈a g̃2〉 p∗
2 〈a h̃2〉 p∗

2 . (9.4)

The L1 bound (9.1) then follows when the above inequality is applied to the last
factor on the left-hand side of (9.2). ��

The next lemma providesw-L1 compactness of certain terms quadratic in fluc-
tuations, provided those fluctuations satisfy a weaker compactness hypothesis.

Lemma 9.2. Let the collision kernel b satisfy assumption (3.15) for some Cb < ∞
and s ∈ (1,∞]. Let p = 2 + 1

s−1 , so p = 2 when s = ∞.

Let = (ω, v1, v)be in L p(dµ)and let g̃ε = g̃ε(v, x, t)and h̃ε = h̃ε(v, x, t)
be families that are bounded in L2

loc(dt; L2(aMdv dx)). If the family

〈ag̃ 2
ε 〉 is relatively compact in w-L1

loc(dt;w-L1(dx)), (9.5)

then the family

 g̃ε1 h̃ε is relatively compact in w-L1
loc(dt;w-L1(dµ dx)). (9.6)

Here g̃ε1 denotes g̃ε(v1, x, t).

Proof. To establish the w-L1 compactness assertion (9.6) we must show that the
family  g̃ε1 h̃ε is equi-integrable. Begin with the classical Young’s inequality,
which for every η > 0 yields

∣∣ g̃ε1 h̃ε
∣∣ � ηp

p
||p + 1

p∗ ηp∗
∣∣g̃ε1h̃ε

∣∣p∗
.

Now let α > 0 be arbitrary and set η = 〈g̃ 2
ε 〉 1

p /α above to obtain

∣∣ g̃ε1 h̃ε
∣∣ � 1

p α p
||p 〈a g̃ 2

ε 〉 + α p∗

p∗

∣∣g̃ε1h̃ε
∣∣p∗

〈g̃ 2
ε 〉 p∗

p

. (9.7)

The last term on the right-hand side above is a bounded family in L1
loc(dt;

L1(dµ dx)) because by the key bound (9.4) of Lemma 9.1 one has

〈〈∣∣g̃ε1h̃ε
∣∣p∗ 〉〉

〈g̃ 2
ε 〉 p∗

p

� Cb〈a g̃ 2
ε 〉 p∗

2 − p∗
p 〈a h̃ 2

ε 〉 p∗
2

= Cb〈a g̃ 2
ε 〉 1

r∗ 〈a h̃ 2
ε 〉 1

r � Cb

[
1

r∗ 〈a g̃ 2
ε 〉 + 1

r
〈a h̃ 2

ε 〉
]
. (9.8)

Because g̃ε and h̃ε are bounded families in L2
loc(dt; L2(aMdv dx)), the last expres-

sion above is clearly bounded in L1
loc(dt; L1(dx)).
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Next, we integrate inequality (9.7) over an arbitrary measurable set � ⊂
S

D−1× R
D × R

D ×T
D ×[0, T ] and use (9.8) to obtain

∫∫∫

�

∣
∣ g̃ε1g̃ε

∣
∣ dµ dx dt � 1

p α p

∫∫∫

�

||p 〈a g̃ 2
ε 〉 dµ dx dt

+ α p∗

p∗ Cb

∫ T

0

∫

TD

[
1

r∗ 〈a g̃ 2
ε 〉 + 1

r
〈a h̃ 2

ε 〉
]

dx dt.

We now use this inequality to argue that the left-hand side above can be made
arbitrarily small uniformly in ε by picking the measure of � sufficiently small. To
begin, because g̃ε and h̃ε are bounded families in L2

loc(dt; L2(aMdv dx)), the terms
on the second line above can be made arbitrarily small uniformly in ε by a suitable
choice of α. Next, by hypothesis (9.5), 〈a g̃ 2

ε 〉 is equi-integrable with respect to
dx dt over T

D×[0, T ] while, because ∈ L p(dµ), ||p is integrable with respect
to dµ over S

D−1× R
D × R

D , one thereby sees that ||p〈a g̃ 2
ε 〉 is equi-integrable

with respect to dµ dx dt over S
D−1× R

D × R
D × T

D ×[0, T ]. The first term on
the right-hand side above can therefore be made arbitrarily small uniformly in ε by
picking the measure of� sufficiently small. We conclude that the family g̃ε1 h̃ε is
equi-integrable with respect to dµ dx dt , whereby thew-L1 compactness assertion
(9.6) is established. ��

10. Removal of the flux remainders

The flux remainders have the form
〈〈
ξ̂ Tε

〉〉
,

where ξ̂ is an entry of either Â or B̂ and where Tε is defined by

Tε = qε
N ′
ε1 N ′

εNε1 Nε
− 1

ε

(
g̃′
ε1 + g̃′

ε − g̃ε1 − g̃ε
) − (

g̃′
ε1g̃′

ε − g̃ε1g̃ε
)
. (10.1)

In order to establish momentum and energy conservation laws from the scaled
Boltzmann equation we must show that these remainders vanish as ε → 0. This is
done with the following proposition.

Proposition 10.1. Let b be a collision kernel that satisfies the assumptions of
Sect. 3. Let s ∈ (1,∞] be as in the assumed bound (3.15) on b. Let p = 2+1/(s−1),
so that p = 2 when s = ∞.

Let Gε � 0 be a family of functions in C([0,∞);w-L1(Mdv dx)) that satisfies
the entropy bound (6.1). Let gε and qε be given by (5.1) and (6.3). Let Nε = 1+ε2g 2

ε ,
g̃ε = gε/Nε , and Tε be given by (10.1). Assume that the family gε satisfies

〈
a

g 2
ε

Nε

〉
is relatively compact in w-L1

loc(dt;w-L1(dx)). (10.2)

Then for every  ∈ L p(dµ) one has that Tε given by (10.1) satisfies

 Tε −→ 0 in L1
loc(dt; L1(dµ dx)) as ε → 0. (10.3)
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Proof. The key to the argument is to find a decomposition of Tε for which each
component can be bounded by one of the sequences

|gε1gε |√
Nε1 Nε

,
|g′
ε1g′

ε |√
N ′
ε1 N ′

ε

,
|qε |√

N ′
ε1 N ′

εNε1 Nε
, (10.4)

times a bounded sequence that vanishes almost everywhere as ε → 0. Assertion
(10.3) will then follow from the Product Limit Theorem of [3] upon showing that ||
times each of the sequences in (10.4) is relatively compact inw-L1

loc(dt;w-L1(dx)).
For the first two sequences in (10.4) this relative compactness follows from assertion
(9.6) of Lemma 9.2 and the compactness hypothesis (10.2). For the last sequence
in (10.4) this relative compactness follows directly from the fact that it is bounded

in L2(dµ dx dt) by the elementary inequality n′
ε1n′

εnε1nε � 2
√

N ′
ε1 N ′

εNε1 Nε and
the fact that Lemma 10.1 of [12] implies that the sequence

qε
n′
ε1n′

εnε1nε
is bounded in L2(dµ dx dt).

We begin by decomposing Tε given by (10.1) as

Tε = 1

ε2

G ′
ε1G ′

ε − Gε1Gε

N ′
ε1 N ′

εNε1 Nε
− 1

ε

(
g′
ε1

N ′
ε1

+ g′
ε

N ′
ε

− gε1

Nε1
− gε

Nε

)

−
(

g′
ε1

N ′
ε1

g′
ε

N ′
ε

− gε1

Nε1

gε
Nε

)

= T1ε − T ′
1ε + T2ε − T ′

2ε + T3ε − T ′
3ε, (10.5)

where T1ε , T2ε , and T3ε are defined by

T1ε = 1

ε

(
gε1

Nε1
+ gε

Nε
− gε1 + gε

Nε1 Nε

)
,

T2ε = 1

ε

(
gε1 + gε
Nε1 Nε

− gε1 + gε
N ′
ε1 N ′

εNε1 Nε

)
,

T3ε =
(

gε1gε
Nε1 Nε

− gε1gε
N ′
ε1 N ′

εNε1 Nε

)
,

and where T ′
1ε , T ′

2ε , and T ′
3ε are defined by simply exchanging the roles of the

primed and unprimed quantities in the respective definitions of T1ε , T2ε , and T3ε .
It is easy to obtain the desired bounds for T1ε , T ′

1ε , T3ε , and T ′
3ε . For T1ε we

have

|T1ε | = ε |gε1 + gε | |gε1gε |
Nε1 Nε

= |gε1gε |√
Nε1 Nε

ε |gε1 + gε |√
Nε1 Nε

.

The last factor above is a sequence that is bounded by 2 and that vanishes almost
everywhere as ε → 0. For T3ε we have

|T3ε | = |gε1gε |
Nε1 Nε

(
1 − 1

N ′
ε1 N ′

ε

)
.
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The last factor above is a sequence that is bounded by 1 and that vanishes almost
everywhere as ε → 0. The bounds for T ′

1ε and T ′
3ε are obtained by simply exchang-

ing the roles of the primed and unprimed quantities in the respective bounds of T1ε
and T3ε .

To treat T2ε and T ′
2ε we need the further decompositions

T2ε = ε (gε1 + gε)
(
g′ 2
ε1 + g′ 2

ε + ε2(g′
ε1g′

ε)
2
)

N ′
ε1 N ′

εNε1 Nε
= T4ε − T5ε + T6ε, (10.6)

T ′
2ε = ε (g′

ε1 + g′
ε)
(
g 2
ε1 + g 2

ε + ε2(gε1gε)2
)

N ′
ε1 N ′

εNε1 Nε
= T ′

4ε − T ′
5ε + T ′

6ε,

where T4ε , T5ε , and T6ε are defined by

T4ε = ε (gε1 + gε) (g′
ε1 + g′

ε)
2

N ′
ε1 N ′

εNε1 Nε
, T5ε = ε (gε1 + gε) (2g′

ε1g′
ε)

N ′
ε1 N ′

εNε1 Nε
,

T6ε = ε3(gε1 + gε) (g′
ε1g′

ε)
2

N ′
ε1 N ′

εNε1 Nε
,

and where T ′
4ε , T ′

5ε , and T ′
6ε are defined by simply exchanging the roles of the

primed and unprimed quantities in the respective definitions of T4ε , T5ε , and T6ε .
It is easy to obtain the desired bounds for T5ε , T ′

5ε , T6ε , and T ′
6ε . For T5ε we

have

|T5ε | = ε |gε1 + gε | |2g′
ε1g′

ε |
N ′
ε1 N ′

εNε1 Nε
= |g′

ε1g′
ε |

N ′
ε1 N ′

ε

ε 2 |gε1 + gε |
Nε1 Nε

.

The last factor above is a sequence that is bounded by 2 and that vanishes almost
everywhere as ε → 0. For T6ε we have

|T6ε | = |g′
ε1g′

ε |√
N ′
ε1 N ′

ε

( |g′
ε1g′

ε |√
N ′
ε1 N ′

ε

ε |gε1 + gε |
Nε1 Nε

)
.

The factor in parenthesis above is a sequence that is bounded by 1 and that vanishes
almost everywhere as ε → 0. The bounds for T ′

5ε and T ′
6ε are obtained by sim-

ply exchanging the roles of the primed and unprimed quantities in the respective
bounds of T5ε and T6ε .

The trick now is to not treat T4ε and T ′
4ε separately. Rather, we use the decom-

position

T4ε − T ′
4ε = ε (gε1 + gε) (g′

ε1 + g′
ε) (g

′
ε1 + g′

ε − gε1 − gε)

N ′
ε1 N ′

εNε1 Nε
= T7ε + T8ε − T ′

8ε,

(10.7)

where T7ε , and T8ε are defined by

T7ε = ε2(gε1 + gε) (g′
ε1 + g′

ε) qε
N ′
ε1 N ′

εNε1 Nε
, T8ε = ε2(gε1 + gε) (g′

ε1 + g′
ε) gε1gε

N ′
ε1 N ′

εNε1 Nε
,
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and where T ′
8ε is defined by simply exchanging the roles of the primed and unprimed

quantities in the definition of T8ε .
Finally, it is easy to obtain the desired bounds for T7ε , T8ε , and T ′

8ε . For T7ε we
have

|T7ε | = |qε |√
N ′
ε1 N ′

εNε1 Nε

ε2|gε1 + gε | |g′
ε1 + g′

ε |√
N ′
ε1 N ′

εNε1 Nε
.

The last factor above is a sequence that is bounded by 4 and that vanishes almost
everywhere as ε → 0. For T8ε we have

|T8ε | = |gε1gε |√
Nε1 Nε

(
ε |gε1 + gε |√

Nε1 Nε

ε |g′
ε1 + g′

ε |
N ′
ε1 N ′

ε

)
.

The factor in parenthesis above is a sequence that is bounded by 2 and that vanishes
almost everywhere as ε → 0. The bound for T ′

8ε is obtained by simply exchanging
the roles of the primed and unprimed quantities in the bound of T8ε .

We therefore obtain from (10.5), (10.6), and (10.7) the decomposition

Tε = T1ε − T ′
1ε + T3ε − T ′

3ε − T5ε + T ′
5ε + T6ε − T ′

6ε + T7ε + T8ε − T ′
8ε,

with the desired bounds on each component. This proves the Proposition. ��

11. Quadratic limits

In order to establish our main result, Theorem 5.1, we need to pass to the limit
in certain of quadratic terms containing ũε ⊗ ũε and ũε θ̃ε . Recall that we have the
weak limits

ũε → u
θ̃ε → θ

}
in w-L2

loc(dt;w-L2(dx)) as ε → 0. (11.1)

These limits have to be strengthened in order to pass to the limit in any quadratic term
containing either ũε⊗ ũε or ũε θ̃ε . We follow [29], which adapted to the kinetic set-
ting an idea introduced in [27] to pass to an incompressible Navier–Stokes–Fourier
limit from the compressible Navier–Stokes–Fourier system. The main result of this
section is the following.

Proposition 11.1. Under the hypotheses of Theorem 5.1, we have the limits

limε→0�∇x · (ũε ⊗ ũε
) = �∇x · (u ⊗ u)

limε→0 ∇x · (θ̃ε ũε
) = ∇x · (θ u)

}
in w-L1

loc(dt;D′(TD)), (11.2)

where � is the Leray projection onto divergence-free vector fields in L2(dx; R
D).
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Proof. We employ a mollifier over the periodic space variable. Recall that T
D =

R
D/LD , where L

D ⊂ R
D is some D-dimensional lattice. Let j ∈ C∞(RD) be

such that j � 0,
∫
RD j (x) dx = 1, and j (x) = 0 for |x | > 1. We then define

jδ ∈ C∞(TD) by

jδ(x) = 1

δD

∑

l∈LD

j

(
x + l

δ

)
.

In this section all convolutions are taken only in the x variable.
Define ũδε = jδ ∗ ũε and θ̃ δε = jδ ∗ θ̃ε . It will follow from Proposition 11.2 that

limδ→0 ũδε = ũε
limδ→0 θ̃

δ
ε = θ̃ε

}
in L2

loc(dt; L2(dx)) uniformly in ε. (11.3)

It will follow from Proposition 11.3 that for every δ > 0

limε→0�∇x · (ũδε ⊗ ũδε
) = �∇x · (uδ ⊗ uδ

)

limε→0 ∇x · (θ̃ δε ũδε
) = ∇x · (θδ uδ

)
}

in w-L1
loc(dt;D′(TD)), (11.4)

where uδ = jδ ∗ u and θδ = jδ ∗ θ .
By first using the uniformity of the L2 limits in (11.3) to commute limits and

then using the limits (11.4), we obtain

lim
ε→0

�∇x · (ũε ⊗ ũε
) = lim

ε→0
lim
δ→0

�∇x · (ũδε ⊗ ũδε
) = lim

δ→0
lim
ε→0

�∇x · (ũδε ⊗ ũδε
)

= lim
δ→0

�∇x · (uδ ⊗ uδ
) = �∇x · (u ⊗ u) in w-L1

loc(dt;D′(TD)),

and

lim
ε→0

∇x · (θ̃ε ũε
) = lim

ε→0
lim
δ→0

∇x · (θ̃ δε ũδε
) = lim

δ→0
lim
ε→0

∇x · (θ̃ δε ũδε
)

= lim
δ→0

∇x · (θδ uδ
) = ∇x · (θ u) in w-L1

loc(dt;D′(TD)).

This proves assertion (11.2) and thereby establishes the proposition modulo the
proofs of Propositions 11.2 and 11.3, which are given in the subsequent subsec-
tions. ��

11.1. Uniformity of mollification limits

Now define g̃δε = jδ ∗ g̃ε and gδ = jδ ∗ g. By basic properties of mollifiers we
know that for every ξ ∈ L2(Mdv) one has the L2 limits

limδ→0〈ξ g̃δε 〉 = 〈ξ g̃ε〉
limδ→0〈ξ gδ〉 = 〈ξ g〉

}
in L2

loc(dt; L2(dx)). (11.5)

The main result of this subsection is the following assertion that for certain ξ the
top limit above is uniform in ε.
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Proposition 11.2. For every ζ ∈ span{1, v1 , . . . , vD , |v|2} one has

lim
δ→0

〈ζ g̃δε 〉 = 〈ζ g̃ε〉 in L2
loc(dt; L2(dx)) uniformly in ε. (11.6)

Proof. We see from (6.2) and (6.4) that the sequences ζ g̃ε and ζ �′(Gε)Q(Gε,Gε)

are relatively compact in w-L1
loc(dt;w-L1(Mdv dx)). An application of the

L1-velocity averaging result of [13] to the renormalized Boltzmann equation (6.9)
then implies that for every T ∈ (0,∞) one has

lim
y→0

∫∫

TD×[0,T ]
∣∣〈ζ g̃ε〉(x − y, t)− 〈ζ g̃ε〉(x, t)

∣∣ dx dt = 0 uniformly in ε.

Because
∫∫

TD×[0,T ]
∣
∣〈ζ g̃δε 〉 − 〈ζ g̃ε〉

∣
∣ dx dt

�
∫∫∫

TD×TD×[0,T ]
∣∣〈ζ g̃ε〉(x − y, t)− 〈ζ g̃ε〉(x, t)

∣∣ jδ(y) dy dx dt,

it therefore follows that

lim
δ→0

〈ζ g̃δε 〉 = 〈ζ g̃ε〉 in L1
loc(dt; L1(dx)) uniformly in ε. (11.7)

This is the L1 analog of assertion (11.6).
In order to replace L1 by L2 in (11.7) we now use the fact that 〈a g̃ 2

ε 〉 is relatively
compact in w-L1

loc(dt;w-L1(dx)) to establish the fact that

〈ζ g̃δε 〉2 is relatively compact in w-L1
loc(dt;w-L1(dx)). (11.8)

Indeed, for almost every (x, t) one has the pointwise bound

〈ζ g̃δε 〉2(x, t) =
∫∫

TD×TD
〈ζ g̃ε〉(y1, t) 〈ζ g̃ε〉(y2, t) jδ(x − y1) jδ(x − y2) dy1 dy2

�
∫∫

TD×TD

1
2 〈ζ g̃ε〉2(y1, t) jδ(x − y1) jδ(x − y2) dy1 dy2

+
∫∫

TD×TD

1
2 〈ζ g̃ε〉2(y2, t) jδ(x − y1) jδ(x − y2) dy1 dy2

= jδ ∗ (〈ζ g̃ε〉2)(x, t) �
〈

1

a
ζ 2
〉

jδ ∗ 〈a g̃ 2
ε 〉(x, t).

Because the family 〈a g̃ 2
ε 〉 is relatively compact in w-L1

loc(dt;w-L1(dx)), if fol-
lows easily that the doubly indexed family jδ ∗〈a g̃ 2

ε 〉 is as well, whereby the above
inequality implies that (11.8) holds.

Assertion (11.6) follows from (11.7) and (11.8) upon applying the following
lemma to the doubly indexed family 〈ζ g̃δε 〉 − 〈ζ g̃ε〉. ��

The above proof of Proposition 11.2 required the following lemma.
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Lemma 11.1. Let ψδε be a family in L2
loc(dt; C∞(TD)) doubly indexed by ε > 0

and δ > 0 such that

(ψδε )
2 is relatively compact in w-L1

loc(dt;w-L1(dx)), (11.9)

lim
δ→0

ψδε = 0 in L1
loc(dt; L1(dx)) uniformly in ε. (11.10)

Then

lim
δ→0

ψδε = 0 in L2
loc(dt; L2(dx)) uniformly in ε. (11.11)

Proof. Let T ∈ (0,∞). Because the family (ψδε )
2 is relatively compact in

w-L1
loc(dt;w-L1(dx)) one has that

M = sup

{(∫∫

TD×[0,T ]
∣∣ψδε

∣∣2 dx dt

) 1
2
}

< ∞.

For every λ > 0 define

�δε(λ) = {
(x, t) ∈ T

D × [0, T ] : |ψδε (x, t)| > λ
}
.

The Chebychev inequality then yields

meas
{
�δε(λ)

}
� M2

λ2 .

Now let η > 0 be arbitrary. Because (ψδε )
2 is relatively compact in w-L1

loc(dt;
w-L1(dx)), by the above inequality we may pick λ large enough to insure that

∫∫

�δε(λ)

∣∣ψδε
∣∣2dx dt <

η

2
for every ε and δ.

The assumed uniform L1-limit (11.10) implies we may pick δo > 0 small enough
to insure that δ < δo implies

∫∫

TD×[0,T ]
∣∣ψδε

∣∣ dx dt <
η

2λ
for every ε.

The above two inequalities show that δ < δo implies

∫∫

TD×[0,T ]
∣∣ψδε

∣∣2dx dt �
∫∫

�δε(λ)

∣∣ψδε
∣∣2dx dt + λ

∫∫

TD×[0,T ]
∣∣ψδε

∣∣ dx dt

� η

2
+ λ

η

2λ
= η for every ε.

Because η was arbitrary while δo was independent of ε, the assertion (11.11)
follows. ��
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11.2. Mollified quadratic limits

The main result of this section is the following proposition, which is adapted
from [29] (also see [28,30]).

Proposition 11.3. For every δ > 0 one has

limε→0�∇x · (ũδε ⊗ ũδε
) = �∇x · (uδ ⊗ uδ

)

limε→0 ∇x · (θ̃ δε ũδε
) = ∇x · (θδ uδ

)
}

in w-L1
loc(dt;D′(TD)). (11.12)

Proof. Introduce the new fluid variables

w̃δε = �ũδε, ṽδε = �⊥ũδε,

σ̃ δε = D
2 θ̃

δ
ε − ρ̃δε , π̃ δε = ρ̃δε + θ̃ δε , (11.13)

where� is the Leray projection onto divergence-free vector-fields in L2(dx; R
D).

Here w̃δε and ṽδε are respectively the divergence-free and gradient components of ũδε ,
while σ̃ δε and π̃ δε are the infinitesimal entropy and pressure fluctuations associated
with g̃δε .

Because for every ζ ∈ span{1, v1 , . . . , vD , |v|2} one has 〈ζ g̃ε〉 → 〈ζ g〉 in
w-L2

loc(dt;w-L2(dx)) as ε → 0, it can be easily shown that for every s � 0 and
δ > 0 one has

lim
ε→0

〈ζ g̃δε 〉 = 〈ζ gδ〉 in w-L2
loc(dt;w-Hs(dx)), (11.14)

where Hs(dx) denotes the sth Sobolev space. In particular, for every s > 0 and
δ > 0 the families w̃δε , ṽ

δ
ε , σ̃ δε , and π̃ δε satisfy

limε→0 w̃
δ
ε = uδ, limε→0 ṽ

δ
ε = 0,

limε→0 σ̃
δ
ε = D+2

2 θδ, limε→0 π̃
δ
ε = 0,

}
in w-L2

loc(dt;w-Hs(dx)), (11.15)

where uδ = jδ ∗ u and θδ = jδ ∗ θ . Because ũδε and θ̃ δε decompose as

ũδε = w̃δε + ṽδε ,
D+2

2 θ̃ δε = σ̃ δε + π̃ δε , (11.16)

the quadratic terms ũδε ⊗ ũδε and θ̃ δε ũδε decompose as

ũδε ⊗ ũδε = w̃δε ⊗ w̃δε + w̃δε ⊗ ṽδε + ṽδε ⊗ w̃δε + ṽδε ⊗ ṽδε ,

D+2
2 θ̃ δε ũδε = σ̃ δε w̃

δ
ε + σ̃ δε ṽ

δ
ε + π̃ δε w̃

δ
ε + π̃ δε ṽ

δ
ε . (11.17)

We will consider the limit of each term on the right-hand sides above as ε → 0.
It follows from (6.11) that w̃δε , ṽ

δ
ε , σ̃ δε , and π̃ δε satisfy the approximate conser-

vation laws

∂t w̃
δ
ε = � J̃ δε , ∂t ṽ

δ
ε + 1

ε
∇x π̃

δ
ε = �⊥ J̃ δε ,

∂t σ̃
δ
ε = K̃ δ

ε , ∂t π̃
δ
ε + 1

ε
D+2

D ∇x · π̃ δε = Ĩ δε , (11.18)
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where Ĩ δε , J̃ δε , and K̃ δ
ε are defined by

Ĩ δε = 1

ε
jδ ∗

(〈〈 1
D |v|2�′

ε(Gε) qε
〉〉 − 2

D ∇x · 〈B g̃ε〉
)
,

J̃ δε = 1

ε
jδ ∗

(〈〈
v �′

ε(Gε) qε
〉〉 − ∇x · 〈A g̃ε〉

)
,

K̃ δ
ε = 1

ε
jδ ∗

(〈〈
( 1

2 |v|2 − D+2
2 ) �′

ε(Gε) qε
〉〉 − ∇x · 〈B g̃ε〉

)
. (11.19)

Because J̃ δε and K̃ δ
ε are relatively compact in w-L1

loc(dt;w-Hs(dx)), it follows
from the first column of (11.18) that the families w̃δε and σ̃ δε are equicontinuous
in C([0,∞);w-L2(dx)). Because these ε-families are also bounded in L2(dx) at
every t � 0, the Arzela–Ascoli Theorem implies that they are relatively compact
in C([0,∞);w-L2(dx)). Because (11.15) holds for s = 0, it follows that

lim
ε→0

w̃δε = uδ, lim
ε→0

σ̃ δε = D+2
2 θδ, in C([0,∞);w-L2(dx)). (11.20)

Because for every s > 0 one has the continuous embedding

w-L2
loc(dt;w-Hs(dx)) ∩ C([0,∞);w-L2(dx)) → L2

loc(dt; L2(dx)),

the limits (11.15) for s > 0 and (11.20) imply that the families w̃δε and σ̃ δε satisfy
the strong limits

lim
ε→0

w̃δε = uδ, lim
ε→0

σ̃ δε = D+2
2 θδ, in L2

loc(dt; L2(dx)). (11.21)

When this result is combined with the weak limits for the families ṽδε and π̃ δε found
in (11.15), we obtain

limε→0 w̃
δ
ε ⊗ w̃δε = uδ ⊗ uδ,

limε→0 w̃
δ
ε ⊗ ṽδε = limε→0 ṽ

δ
ε ⊗ w̃δε = 0,

limε→0 σ̃
δ
ε w̃

δ
ε = D+2

2 θδ uδ,
limε→0 σ̃

δ
ε ṽ

δ
ε = limε→0 π̃

δ
ε w̃

δ
ε = 0,

⎫
⎪⎪⎬

⎪⎪⎭
in L1

loc(dt; L1(dx)). (11.22)

These limits treat all but the last term on the right-hand side of each decomposition
in (11.17).

It follows from the second column of (11.18) that the families ṽδε and π̃ δε satisfy
the

∇x · (ṽδε ⊗ ṽδε
) = 1

2∇x
∣∣ṽδε

∣∣2 − D
D+2∇x

(
π̃ δε

)2 − ε D
D+2 ∂t

(
π̃ δε ṽ

δ
ε

) + ε D
D+2

×(
π̃ δε �

⊥ J̃ δε + ṽδε Ĩ δε
)
,

∇x · (π̃ δε ṽδε
) = − ε ∂t

(
1
2

∣∣ṽδε
∣∣2 + 1

2
D

D+2

(
π̃ δε

)2
)

+ ε
(
ṽδε �

⊥ J̃ δε + D
D+2 π̃

δ
ε Ĩ δε

)
,

(11.23)

Because the ε-families ṽδε and π̃ δε are bounded in L∞(dt; L2(dx)) ∩ C([0,∞);
Hs(dx)), while the ε-families Ĩ δε and J̃ δε are bounded in L1

loc(dt; L2(dx)), and
because �∇x = 0, it follows from the above relations that

limε→0�∇x · (ṽδε ⊗ ṽδε
) = 0

limε→0 ∇x · (π̃ δε ṽδε
) = 0

}
in w-L1

loc(dt;D′(TD)). (11.24)
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These limits treat the last term on the right-hand side of each decomposition
in (11.17). Assertion (11.12) of the proposition follows by using decomposition
(11.17) along with the limits in (11.22) and (11.24). ��
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