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Abstract

We prove global existence of regular solutions to the full MHD system (or more precisely the Maxwell–Navier–Stokes system)
in 2D. We also provide an exponential growth estimate for the Hs norm of the solution when the time goes to infinity.
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Nous montrons l’existence globale de solutions régulières pour le système complet de la MHD (plus précisément le système de
Maxwell–Navier–Stokes) en 2D. Nous donnons aussi une estimation de croissance sur les normes Hs en temps grand.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

We consider a coupled system of equations consisting of the Navier–Stokes equations of fluid dynamics and
Maxwell’s equations of electromagnetism. The coupling comes from the Lorentz force in the fluid equation and the
electric current in the Maxwell equations. We refer to Davidson [11] and Biskamp [4] for some physical introduction
to magnetohydrodynamics.

1.1. The model

We consider the full MHD system, namely:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂v
∂t

+ v · ∇v − ν�v + ∇p = j × B in Ω × (0, T ),

∂E
∂t

− curlB = −j in Ω × (0, T ),

∂B
∂t

+ curlE = 0 in Ω × (0, T ),

divB = divv = 0 in Ω × (0, T ),

j = σ(E + v × B),

(1)
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written in the whole space Ω = R
2. We also supplement (1) with the following initial condition

v(t = 0) = v0, B(t = 0) = B0, E(t = 0) = E0. (2)

Here, v is the velocity of the fluid. The fluid is assumed to be incompressible, electrically conducting and
non-magnetic. It can be a liquid metal, a hot ionized plasma . . . . The pressure is p, ν is the viscosity, j is the electric
current which is given by Ohm’s law, σ is the electric conductivity, E is the electric field, B is the magnetic field and
j × B is the Lorentz force. For simplicity, we will take ν = σ = 1. Here, v,E,B, j are defined on Ω = R

2 and take
their values in R

3. This justifies the use of the cross product v × B and j × B .
The system (1) has the following energy identity:

1

2
∂t

[‖v‖2
L2 + ‖B‖2

L2 + ‖E‖2
L2

] + ‖j‖2
L2 + ‖∇v‖2

L2 = 0, (3)

which is similar to the energy identity for the Navier–Stokes system. It translates the dissipation of energy by the
viscosity and the electric resistivity. Hence, one can hope to extend the Leray theory of global weak solutions to this
system and prove global existence of solutions with v ∈ L∞(0, T ;L2) ∩ L2(0, T ; Ḣ 1) and (E,B) ∈ L∞(0, T ;L2).
However, due to the hyperbolic nature of the Maxwell equation, we do not get compactness of B and hence passing to
the limit in the product j ×B seems to be a difficult problem. Moreover, ideas based on the propagation of compactness
used in [24] and [25] seem not to work here. Hence, proving global existence of weak solutions to the (1) system in
the energy space seems to us a very important open problem in both 2 and 3 dimensions.

Before stating our main results, let us explain a little bit the relevance of the model. The first equation in (1) is
the Navier–Stokes equation for incompressible flows with a Lorentz force term. We recall that the Lorentz force on
a charge q which has the velocity v is given by q(E + v × B). Hence, the force on a macroscopic fluid element is
the sum of forces acting on its individual particles δqE + δj × B where δq is the net charge and δj is the electric
current carried by the fluid element. Quasi-neutrality implies that δq � 0 and hence the force terms becomes δj × B .
The second equation in (1) is the Ampere–Maxwell equation which includes here the displacement current ∂tE. In
most MHD models (see for instance the textbooks [28,11,4,14]) this term is neglected either using the quasi-neutrality
assumption or using the fact that it is much smaller than the two other terms. Moreover, most of the mathematical
works dealing with existence, uniqueness [13,30,1,2], blow-up criterion [6,20], regularity criteria [15,33,32], long
time behavior or inviscid and non-resistive limits [12] or related problems [22] also make this assumption and hence
remove the displacement current from the Ampere–Maxwell. Mathematically, this hypothesis makes the problem
easier since it transforms the Maxwell’s system which is hyperbolic into a parabolic equation for the magnetic field B .
Here, we would like to keep this term. It preserves the hyperbolic nature of the Maxwell equation. The third equation
of (1) is the Faraday’s law. The forth equation is the divergence free condition for v and B and finally, the fifth equation
is the Ohm’s law which states that the electric current is proportional to the electric field measured in a frame moving
with the local velocity of the conductor. This explains the extra term v × B .

1.2. Statement of the result

Even though, we were not able to prove the existence of global weak solutions in the energy space, we can prove,
in 2 space dimension, the global existence of solutions such that v0 ∈ L2 and E0,B0 ∈ Hs(R2) for some 0 < s < 1.
The proof uses the conservation of the energy as well as a logarithmic estimate to bound the L∞ norm of v in terms
of the H 1 norm of v and a logarithmic term involving the Hr norm of v for some r > 1, see (31). This estimate yields
an exponential growth of the Hs norms. One can compare this growth estimate with the double exponential growth
estimate of the Hs norms in the 2D incompressible Euler system. Indeed, for 2D incompressible Euler system, one
gets a double exponential growth which is due to the estimate of ‖∇v‖L∞ using ‖ curl(v)‖L∞ and a logarithmic term
involving ‖v‖Hr for some r > 2, see (35).

One can say that the use of a logarithmic estimate is due to the failure of the embedding of H 1 in L∞ in our case,
whereas it is due to the failure of the boundedness of the Riesz transforms in L∞ for the 2D incompressible Euler.
There are two other major differences between (31) and (35). The first one is the presence of a square root in our
estimate (31). The second one is the fact that (31) is integrated in time. The combination of these two facts allows
us to get an exponential growth of the Hs norms instead of a double exponential growth as in the 2D incompressible
Euler. We prove the following global existence result.



N. Masmoudi / J. Math. Pures Appl. 93 (2010) 559–571 561
Theorem 1.1. Take 0 < s < 1, v0 ∈ L2(R2) and E0,B0 ∈ Hs(R2). Then, there exists a unique global solution
(v,E,B) of (1) such that for all T > 0, v ∈ C([0, T );L2) ∩ L2(0, T ; Ḣ 1) and E,B ∈ C([0, T );Hs). Moreover,
j ∈ L2(0, T ;L2) ∩ L1(0, T ;Hs) and v ∈ L1(0, T ;Hs′+1) for each 0 < s′ < min(2s,1). In addition, the energy iden-
tity (3) holds and we have the following double exponential growth estimate for all t > 0:

‖v‖
L1(0,t;Hs′+1)

+ ∥∥(E,B)(t)
∥∥

Hs �
(
1 + ∥∥(E0,B0)

∥∥
Hs

)
eC0(t+1), (4)

where C0 = C[‖v0‖2
L2 + ‖B0‖2

L2 + ‖E0‖2
L2 + 1] for some constant C.

Besides, we also prove propagation of regularity, namely the global existence of more regular solutions if the
initial data is more regular. Here, we still have some difference with respect to incompressible Euler. Indeed, for
incompressible Euler, one can propagate regularity by only controlling ∇v in L1

T L∞ and hence one can use the same
estimate (35) with r being the regularity one wants to propagate as long as r > 2. Hence the proof is done in one
step and yields a double exponential growth for all the Hs norms if the initial data is regular enough. In our case, this
cannot be done directly since we have also to estimate B in L1

T L∞ if we want to propagate high regularities. We can
estimate B in L1

T L∞ with a double exponential growth in time. Hence, when we put it in a Gronwall lemma it yields
a triple exponential growth of the Hs norms. Actually, we provide a different method based on some induction on the
regularity to get an exponential growth.

Theorem 1.2. Take 1 � s and 0 � s0, such that s0 � s < s0 + 2, v0 ∈ Hs0(R2) and E0,B0 ∈ Hs(R2).
Then, the solution constructed in Theorem 1.1 is such that for all T > 0, E,B ∈ C([0, T );Hs) and
v ∈ C([0, T );Hs0) ∩ L1(0, T ;Hs′

0) for each s′
0 < s0 + 2 and we have the following growth estimate:∥∥v(t)

∥∥
Hs0 + ‖v‖

L1(0,t;Hs′0 )
+ ∥∥(E,B)(t)

∥∥
Hs � DeC0t , (5)

where D = D(s,s0) is a function of ‖(E0,B0)‖Hs and ‖v0‖Hs0 .

In the next Section 1.3, we give some preliminaries about Besov spaces and some parabolic regularity estimates.
In Section 2, we prove some a priori estimate and derive the growth bound (4). In Section 3, we prove Theorem 1.1
by using a Galerkin approximation. Section 4 deals with the propagation of regularity and the proof of Theorem 1.2.

1.3. Preliminaries

We recall here the Littlewood–Paley decomposition of a function. We define C to be the ring of center 0, of
small radius 1/2 and great radius 2. There exist two nonnegative radial functions χ and ϕ belonging respectively
to D(B(0,1)) and to D(C) so that

χ(ξ) +
∑
q�0

ϕ
(
2−qξ

) = 1, (6)

|p − q| � 2 ⇒ Suppϕ
(
2−q ·) ∩ Suppϕ

(
2−p·) = ∅. (7)

For instance, one can take χ ∈ D(B(0,1)) such that χ ≡ 1 on B(0,1/2) and take,

ϕ(ξ) = χ(ξ/2) − χ(ξ).

Then, we are able to define the Littlewood–Paley decomposition. Let us denote by F the Fourier transform on R
d .

Let h, h̃, �q , Sq (q ∈ Z) be defined as follows:

h = F −1ϕ and h̃ = F −1χ,

�qu = F −1(ϕ(
2−qξ

)
F u

) = 2qd

∫
h
(
2qy

)
u(x − y)dy,

Squ = F −1(χ(
2−qξ

)
F u

) = 2qd

∫
h̃
(
2qy

)
u(x − y)dy.

We point out that Squ = ∑
q ′�q−1, q ′∈Z

�q ′u. We use the para-product decomposition of Bony [5]:

uv = Tuv + Tvu + R(u, v),
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where

Tuv =
∑
q∈Z

Sq−1u�qv and R(u, v) =
∑

|q−q ′|�1

�q ′u�qv.

We define the inhomogeneous and homogeneous Besov spaces by

Definition 1.3. Let s be a real number, p and r two real numbers greater than 1. Then we define the following norm,

‖u‖Bs
p,r

def= ‖S0u‖Lp + ∥∥(
2qs‖�qu‖Lp

)
q∈N

∥∥
�r (N)

,

and the following semi-norm

‖u‖Ḃs
p,r

def= ∥∥(
2qs‖�qu‖Lp

)
q∈Z

∥∥
�r (Z)

.

Definition 1.4.

• Let s be a real number, p and r two real numbers greater than 1. We denote by Bs
p,r the space of tempered

distributions u such that ‖u‖Bs
p,r

is finite.

• If s < d/p or s = d/p and r = 1 we define the homogeneous Besov space Ḃs
p,r as the closure of compactly

supported smooth functions for the norm ‖ · ‖Ḃs
p,r

.

We refer to [7,9] for the proof of the following results and for the multiplication law in Besov spaces.

Lemma 1.5.

‖�qu‖Lb � 2d( 1
a
− 1

b
)q‖�qu‖La for b � a � 1,∥∥et��qu

∥∥
Lb � C2−ct22q ‖�qu‖Lb for t � 0.

The following corollary is straightforward.

Corollary 1.6. If b � a � 1, then, we have the following continuous embeddings:

Bs
a,r ⊂ B

s−d( 1
a
− 1

b
)

b,r .

When a = r = 2, we denote Ḣ s = Ḃs
2,2 and Hs = Bs

2,2 the classical homogeneous and inhomogeneous Sobolev
spaces. In the sequel, we will mostly deal with the Sobolev space Hs . We have the following product estimates:

Corollary 1.7. For 0 < s < 1, we have:

‖jF‖Ḣ s−1 � C‖j‖L2‖F‖Hs , (8)

‖uF‖Hs � C
(‖u‖L∞ + ‖u‖H 1

)‖F‖Hs , (9)

‖uv‖H 2s−1 � C‖u‖Hs ‖v‖Hs . (10)

For the proof of this corollary, we use the para-product decomposition of Bony [5] and write for instance
jF = TjF + R(j,F ) + TF j and then we use standard estimate for T and R (we refer for instance to Chemin [7]).

When dealing with functions which depend on t and x, the Littlewood–Paley decomposition will only apply to the
x variable. We will also use the notation L

p
T (Bs

a,r ) to denote the space Lp(0, T ;Bs
a,r ) of functions f such that for

almost all t ∈ (0, T ), f (t) ∈ Bs
a,r and ‖f (t)‖Bs

a,r
∈ Lp(0, T ). We will also sometimes drop the T and denote it LpBs

a,r

if no ambiguity can occur. We also define the following spaces.
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Definition 1.8. Let p, r and a be in [1,∞] and s in R; the space L̃
p
T (Ḃs

a,r ) is the space of distributions u such that

‖u‖
L̃p(0,T ;Ḃs

a,r )

def= ∥∥2qs‖�qu‖L
p
T (La)

∥∥
�r (Z)

< ∞,

and L̃
p
T (Bs

a,r ) is the space of distributions u such that

‖u‖
L̃p(0,T ;Bs

a,r )

def= ‖S0u‖L
p
T La + ∥∥2qs‖�qu‖L

p
T (La)

∥∥
�r (N)

< ∞.

Notice here that the integration in time is taken before the summation in �r . This type of spaces where used by
Chemin and Lerner [8]. We recall that for p � r , we have:

‖u‖Lp(0,T ;Bs
a,r )

� C‖u‖
L̃p(0,T ;Bs

a,r )
, (11)

and that if p � r , then the opposite inequality holds, namely

‖u‖
L̃p(0,T ;Bs

a,r )
� C‖u‖Lp(0,T ;Bs

a,r )
. (12)

Moreover, if p � r and s′ < s, then we can lose some regularity and get:

‖u‖
Lp(0,T ;Bs′

a,r )
� C‖u‖

L̃p(0,T ;Bs
a,r )

. (13)

We will use this space mostly with p = 1. Also, in the sequel, C will denote any constant which may change from
one line to the other and we will use the notation A � B for A � CB for some constant C.

We will use the following lemma giving parabolic regularity:

Lemma 1.9. If u solves {
∂tu − �u + ∇p = f,

u(t = 0) = u0,
(14)

on some time interval (0, T ) then for p � r � 1 and s ∈ R, s > −1, we have:

‖u‖
C([0,T );Ḣ s+2− 2

r )∩L̃
p
T Ḣ

s+2+ 2
p − 2

r
� C

(‖f ‖
L̃r

T Ḣ s + ‖u0‖
Ḣ s+2− 2

r

)
. (15)

In particular, if f = 0, we have:

‖u‖
L̃∞

T Ḣ s∩L̃1
T Ḣ s+2 � C‖u0‖Ḣ s . (16)

We also have a similar result in the inhomogeneous case with a constant CT which may depend on T , namely

‖u‖
L̃

p
T H

s+2+ 2
p − 2

r
� CT

(‖f ‖
L̃r

T Hs + ‖u0‖
Hs+2− 2

r

)
. (17)

Actually, one can take CT = C max(1, T ).

We only give a sketch of the proof. Applying �q to (14), taking the L2 norm and applying Lemma 1.5, we get:

‖�qu‖L2(t) � ‖�qu0‖L2e
−c22q t +

t∫
0

e−c22q (t−s)‖�qf ‖L2 ds. (18)

Taking the Lp norm in time and using convolution estimates, we get

‖�qu‖L
p
T L2 � 2

2q
p ‖�qu0‖L2 + ∥∥e−22q t1t>0

∥∥
Lα‖�qf ‖LrL2

� 2
−2q
p ‖�qu0‖L2 + C2

−2q
α ‖�qf ‖LrL2 ,

where 1
p

+ 1 = 1
α

+ 1
r
. Hence, multiplying by 2q(s+2+ 2

p
− 2

r
) and taking the �2 norm over q ∈ Z, we get the result in

the homogeneous case.
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The proof in the inhomogeneous case follows the same lines and is left to the reader. One has to sum for q � 1
and deal with low frequency separately. We only mention that the reason we get a constant CT which depends on T

comes from the low frequencies. One can check that, for the inhomogeneous spaces, the only case where the constant
CT can be taken independent of T is when p = ∞ and r = 1. We also point out that the results stated in this lemma
also holds in Besov spaces, namely replacing Ḣ s by Ḃs

a,r for a, r ∈ [1,∞].
The next lemma gives a regularity result for the Maxwell equation.

Lemma 1.10. If (E,B) solves ⎧⎨
⎩

∂tE − curlB = −j,

∂tB + curlE = 0,

E(t = 0) = E0, B(t = 0) = B0,

(19)

on some time interval (0, T ) then for s in R, we have:∥∥(E,B)
∥∥

C([0,T );Hs)
�

∥∥(E0,B0)
∥∥

Hs + ‖j‖L1(0,T ;Hs). (20)

The proof is very simple, we can use the Duhamel formula and write F = etLF0 + ∫ t

0 e(t−s)Lf (s) ds where F =
(E,B), L is the operator define by L(E,B) = (curlB,− curlE) and f (s) = (j (s),0). It is then clear that etL defines
an isometry on Hs and hence the claim follows.

Remark 1.11. One can get some decay from the Maxwell equation if we split the electric current and include the
−E coming from Ohm’s law in the definition of the operator L, namely if we take,⎧⎨

⎩
∂tE − curlB + E = j1,

∂tB + curlE = 0,

E(t = 0) = E0, B(t = 0) = B0,

(21)

then (20) still holds with j replaced by j1. Moreover one can prove that etL′
where L′(E,B) = (curlB −E,− curlE)

satisfies some decay estimate for t > 0. We will come back to this in a forthcoming work to prove global existence for
small data and to study long time behavior. In particular, (20) can be improved by replacing ‖j‖L1

T Hs by ‖j1‖L1
T Hs on

the left-hand side.

2. A priori estimates

Multiplying the first equation of (1) by v, the second one by E and the third one by B and integrating by parts, the
energy estimate reads

1

2
∂t

[‖v‖2
L2 + ‖B‖2

L2 + ‖E‖2
L2

] + ‖j‖2
L2 + ‖∇v‖2

L2 = 0,

and hence

1

2

[‖v‖2
L2 + ‖B‖2

L2 + ‖E‖2
L2

]
(t) +

t∫
0

‖j‖2
L2 + ‖∇v‖2

L2

= 1

2

[‖v0‖2
L2 + ‖B0‖2

L2 + ‖E0‖2
L2

] = C0. (22)

This, formally, yields the bounds v ∈ L∞(0, T ;L2)∩L2(0, T ; Ḣ 1),E,B ∈ L∞(0, T ;L2) and j ∈ L2(0, T ;L2). Here
and below C0 will denote any constant of the form C[‖v0‖2

L2 + ‖B0‖2
L2 + ‖E0‖2

L2 + 1], where C may change from
one line to the other.

Moreover, applying �q to the Navier–Stokes equation and denoting vq = �qv, we get:

∂tvq + �q(v.∇v) − ν�vq + ∇pq = �q(j × B). (23)

We also denote vH = v − S1(v) the high frequency part of v. From Lemma 1.9, we deduce that
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‖vH ‖
L̃1

T Ḣ s+1 � C min(1, T )
∥∥v(0)

∥∥
L2 + C

∥∥(j × B)
∥∥

L̃1
T Ḣ s−1 + C

∥∥(v.∇v)
∥∥

L̃1
T Ḣ s−1

� C min(1, T )
∥∥v(0)

∥∥
L2 + C

∥∥(j × B)
∥∥

L1
T Ḣ s−1 + C‖v‖L2H 1‖∇v‖L2

T L2, (24)

where we used Corollary 1.7 and the fact that 0 < s < 1. We remark here that we could have used v instead of vH

in (24) modulo replacing L̃1
T Ḣ s+1 by L̃1

T (Ḣ s+1 + Ḣ 2) to take into account the bad decay of the low frequency part.
Since, we only need (24) for high frequency, we elect to use vH here.

Using (8), we deduce that for T > 0, we have:∥∥(j × B)
∥∥

Ḣ s−1 � C‖j‖L2‖B‖Hs . (25)

Hence, we deduce for 0 < s1 < s, that we have:

‖vH ‖L1
T Ḣ s1+1 � ‖vH ‖

L̃1
T Ḣ s+1 � C min(1, T )

∥∥v(0)
∥∥

L2 + C0
(
1 + T 1/2) + C

1/2
0 T 1/2‖B‖L∞Hs , (26)

where we have used that

‖v‖L2H 1 � T 1/2‖v‖L∞L2 + ‖∇v‖L2L2 � C
1/2
0

(
T 1/2 + 1

)
. (27)

This yields a bound for v ∈ L1L∞. If we denote F = (E,B), then we get from Lemma 1.10 (see also Remark 1.11)
that for t > 0:

‖F‖L∞
t H s � ‖F0‖Hs + ‖v × B‖L1

t H
s . (28)

Moreover, using that

‖v × B‖Hs � C
(‖v‖L∞‖F‖Hs + ‖v‖H 1‖F‖Hs

)
, (29)

we deduce from Gronwall lemma that∥∥F(t)
∥∥

Hs � ‖F0‖Hs eC0(T
1/2+T )+C

∫ t
0 ‖v‖L∞ , (30)

for 0 < t < T . Since the Sobolev embedding of H 1 in L∞ fails in dimension 2, we estimate ‖u‖L∞ using H 1 and a
logarithmic correction in Ḣ s+1. Indeed, we have:

v = S1v +
N∑

q=1

�qv +
∑
q>N

�qv,

where N is an integer that will be fixed later. We consider s2 and s1 such that 0 < s2 < s1 < s. Applying Lemma 1.5
we deduce that

T∫
0

‖v‖L∞ � C

T∫
0

‖v‖L2 +
N∑

q=1

2q‖�qv‖L2 + 2−Ns2
∑
q>N

2q(s2+1)‖�qv‖L2

� C‖v‖L1L2 + CN1/2‖v‖L1Ḣ 1 + C2−Ns2‖vH ‖
L1Ḃ

s2+1
2,1

� C‖v‖L1L2 + CN1/2T 1/2‖v‖L2Ḣ 1 + C2−Ns2‖vH ‖L1Ḣ s1+1 .

We optimize in N , by taking N of the order 1
s2 log(2)

log(e + ‖v‖
L1Hs1+1

T 1/2‖v‖
L2Ḣ1

). Hence,

‖v‖L1L∞ � C
1/2
0 T + CT 1/2‖v‖L2Ḣ 1 log1/2

(
e + ‖v‖L1Ḣ s1+1

T 1/2‖v‖L2Ḣ 1

)
. (31)

Hence, we have:

log
(
e + ‖F‖L∞Hs

)
� log

(
e + ‖F0‖Hs

) + C
1/2
0

(
T 1/2 + T

) + C‖v‖L1L∞

� log
(
e + ‖F0‖Hs

) + C
1/2
0

(
T 1/2 + T

) + CT 1/2‖v‖L2Ḣ 1 log1/2
(

e + ‖v‖L1Ḣ s1+1

T 1/2‖v‖L2Ḣ 1

)

� log
(
e + ‖F0‖Hs

) + C
1/2
0

(
T 1/2 + T

)
+ CT 1/2‖v‖L2Ḣ 1 log1/2

(
e + C0(min(1, T ) + T 1/2) + C0T

1/2‖B‖L∞Hs

T 1/2‖v‖
)

.

L2Ḣ 1
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Then, we use that the function a → a log(e + C
a
) is increasing in a to deduce that there exists a C0 such that for all

T > 0, we have:

sup
0�t�T

log1/2(e + ‖F‖L∞Hs

)
� log1/2(e + ‖F0‖Hs

) + C
1/2
0 T 1/2. (32)

Therefore, there exists a constant D0 = C‖F0‖Hs and constant C0 such that for all T > 0, we have:

log1/2(e + ∥∥F(T )
∥∥

L∞Hs

)
� C log

(
e + ‖F0‖Hs

) + C0T , (33)

which yields the desired bound, ∥∥F(T )
∥∥

Hs � C
(
e + ‖F0‖Hs

)
eC0T . (34)

Remark 2.1. (1) The a priori estimate given here is reminiscent of the growth estimate of the Hs norms in the
incompressible Euler system in 2D. There, the following estimate is used

‖∇v‖L∞ � C
∥∥curl(v)

∥∥
L∞ log

(
e + ‖v‖Hs

‖ curl(v)‖L∞

)
(35)

for s > 2 and is combined with the conservation of the L∞ norm of the vorticity curl(v). Here we are only interested
in an estimate of v in L1

T L∞ since it is needed to control v × B in Hs . This is done using (31) combined with the
energy inequality to control L2

T Ḣ 1. Also, (35) is used by Beale, Kato and Majda [3] to give a non-blow up criterion
of 3D incompressible Euler (see also [18,29]).

(2) In the previous argument and in particular in (31), it was important to have the T 1/2 and the log1/2 to prove the
exponential growth. Actually, if instead of log1/2, we had a log in (31), we would have gotten a double exponential
growth as in the incompressible Euler system in 2D.

(3) There are also similarities with an other logarithmic estimate, namely

‖∇v‖L1(t1,t2;L∞) � C‖v‖L1(t1,t2;L2) + C‖∇v‖
L̃1(t1,t2;L∞)

log
(
e + ‖v‖L1(t1,t2;C1+α)

)
, (36)

for α > 0. This estimate (and similar ones) were used extensively in many mathematical results about Oldroyd B
model and polymeric flows in 2D (see [27,10,26,21,19]). In particular in [27] a double exponential growth of Hs

norms was proved for some 2D polymeric fluid models.
(4) The inequality (31) was also used in [17,16] to deal with the Klein–Gordon equation in 2D with exponential

nonlinearity. The problem there was also the fact that H 1 is not embedded in L∞. There, it was important to get a
sharp constant in the inequality.

3. Proof of Theorem 1.1

In this section, we prove the existence and uniqueness of Theorem 1.1.

3.1. Existence of solutions

The existence of a solution (u,E,B) which solves (1) follows from the a priori estimates proved in the last section.
We shall use the very classical Friedrich’s method (also called Galerkin method in the periodic case) which consists
in approximating the system (1) by a cutoff in the frequency system. For this, let us define the operator Jn by:

Jna
def= F −1(1B(0,n)(ξ)û(ξ)

)
,

where F denotes the Fourier transform in the space variables. Let us consider the approximate system:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tvn + Jn(Jnvn · ∇Jnvn) − ν�Jnvn + ∇pn = Jn(jn × JnBn) in Ω × (0, T ),

∂tEn − curlJnBn = −jn in Ω × (0, T ),

∂tBn + curlJnEn = 0 in Ω × (0, T ),

divBn = divvn = 0 in Ω × (0, T ),

(37)
jn = σJn(En + Jnvn × JnBn)
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with the initial data,

vn(t = 0) = Jn(v0), Bn(t = 0) = Jn(B0), En(t = 0) = Jn(E0). (38)

The above system appears as a system of ordinary differential equations on L2. So, the usual Cauchy–Lipschitz
theorem implies the existence of a strictly positive maximal time Tn such that a unique solution exists which is
continuous in time with value in L2. But, as J 2

n = Jn, we claim that Jn(vn,Bn,En) is also a solution, so uniqueness
implies that Jn(vn,Bn,En) = (vn,Bn,En) and hence, one can remove all the Jn in front of vn,Bn and En keeping
only those in front of nonlinear terms:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tvn + Jn(vn · ∇vn) − ν�vn + ∇pn = Jn(jn × Bn) in Ω × (0, T ),

∂tEn − curlBn = −jn in Ω × (0, T ),

∂tBn + curlEn = 0 in Ω × (0, T ),

divBn = divvn = 0 in Ω × (0, T ),

jn = σJn(En + vn × Bn).

(39)

The main goal is to prove that Tn can be taken to be equal to +∞ and that we have some local in time estimate
which are uniform in n. Then, one can pass to the limit and recover a solution of the initial system (1).

As Jn is a Fourier multiplier, it commutes with constant coefficient differentiations and hence, the energy estimate
(22) still holds:

1

2

[‖vn‖2
L2 + ‖Bn‖2

L2 + ‖En‖2
L2

]
(t) +

t∫
0

‖jn‖2
L2 + ‖∇vn‖2

L2

= 1

2

[∥∥Jn(v0)
∥∥2

L2 + ∥∥Jn(B0)
∥∥2

L2 + ∥∥Jn(E0)
∥∥2

L2

]
� C0. (40)

This implies that the L2 norm of (vn,Bn,En) is controlled and hence, Tn = +∞. Moreover, the estimates performed
in the previous section apply in the same way to the system (39) and hence the a priori estimates derived there still
hold (with bounds which are independent of n), namely we have:∥∥Fn(t)

∥∥
Hs � C

(
e + ‖F0‖Hs

)
eC0t , (41)

and

‖vn‖L1
T Hs1+1 � C

(
e + ‖F0‖Hs

)
eC0T . (42)

Moreover, we also have that for all T > 0, there exists a constant CT such that

‖∂tvn‖L2(0,T ;H−1) � CT and ‖∂tFn‖L2(0,T ;H−1) � CT . (43)

Hence, extracting a subsequence, standard compactness arguments allow us to pass to the limit in (39). This yields
the existence of a solution (v,B,E) to (1) (see for instance [31,23]) with the initial data (2).

3.2. Uniqueness of solutions

Here, we prove the uniqueness of solutions to (1) in L∞(0, T ;L2)∩L2(0, T ; Ḣ 1)×L∞(0, T ;Hs)×L∞(0, T ;Hs).
Actually, we prove here a uniqueness result slightly stronger than the one stated in the theorem since we do not re-
quire the continuity in time. This actually is a very small improvement since one can get the continuity just from the
fact that (vi,Ei,Bi) solves the system. Take (v1,E1,B1) and (v2,E2,B2) two solutions of (1) with the same initial
condition (2) and such that for i = 1,2, we have vi ∈ L∞(0, T ;L2) ∩ L2(0, T ; Ḣ 1) and Ei,Bi ∈ L∞(0, T ;Hs).

We start by applying the regularity theory for the Navier–Stokes system. Indeed, vi solves the Navier–Stokes
system: {

∂v
∂t

+ v · ∇v − ν�v + ∇p = fi in Ω × (0, T ),
(44)
divv = 0 in Ω × (0, T ),
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with the initial data vi(t = 0) = v0 and the force fi = (Ei + vi × Bi) × Bi . Product rules in Sobolev spaces show
that fi ∈ L2Hs′−1 for each s′ < 2s. Moreover, the Navier–Stokes equation (44) has a unique solution vi in the energy
space L∞([0, T );L2) ∩ L2([0, T ); Ḣ 1) and this solution also satisfies the fact that vi ∈ C([0, T );L2) ∩ L1Hs′+1 for
s′ < min(2s,1).

We denote v = v2 − v1, E = E2 − E1, j = j2 − j1 and B = B2 − B1. We have:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂v
∂t

+ v2 · ∇v + v · ∇v1 − ν�v + ∇p = j × B2 + j1 × B in Ω × (0, T ),

∂E
∂t

− curlB = j in Ω × (0, T ),

∂B
∂t

+ curlE = 0 in Ω × (0, T ),

divB = divv = 0 in Ω × (0, T ),

j = E + v1 × B + v × B2.

(45)

We notice that due to the fact that we do not have the energy estimate for the difference of two solutions, we need
slightly different spaces for the uniqueness proof. We denote X = L∞(0, T ;L2) ∩ L2(0, T ;H 1) ∩ Lq(0, T ;H 1+ s

4 )

where 1
q

= 1
2 (1 + s

2 ). We also denote Y = X × L∞(0, T ;Hs) × L∞(0, T ;Hs).

We will also use that X ⊂ L2q1(0, T ;H 1+s
2 ) 1

2q1
= 1+s

4 .

Applying Lemma 1.9, we get:

‖v‖X �
∥∥j × B2 + j1 × B − ∇(v2 ⊗ v + v ⊗ v1)

∥∥
Lq1Hs−1 (46)

� C‖v2‖
L2q1 H

1
2 (s+1)

‖v‖
L2q1H

1
2 (s+1)

+ ‖v‖
L2q1H

1
2 (s+1)

‖v1‖
L2q1 H

1
2 (s+1)

(47)

+ T
1
q1

− 1
2 ‖j1‖L2L2‖B‖L∞Hs + T

1
q1

− 1
q ‖v1‖

LqH
1+ s

4
‖B‖L∞Hs ‖B2‖L∞Hs (48)

+ T
1
q1

− 1
q ‖v‖

LqH
1+ s

4
‖B2‖L∞Hs ‖B2‖L∞Hs + T

1
q1 ‖E‖L∞Hs ‖B2‖L∞Hs , (49)

where we have used that s − 1 + 2 − 2
q1

= 0, that q1 < q < 2 and that s − 1 + 2 + 2
q

− 2
q1

= 1 + s
2 < 1 + s

4 .

Moreover, we have:

‖F‖L∞Hs � C‖j‖L1Hs (50)

� CT ‖E‖L∞Hs + CT
1− 1

q1 ‖v × B2 + v1 × B‖Lq1Hs (51)

� CT ‖E‖L∞Hs + CT
1− 1

q1
(‖v‖

Lq1H
1+ s

4
‖B2‖L∞Hs + ‖v1‖

Lq1 H
1+ s

4
‖B‖L∞Hs

)
. (52)

Choosing T small enough, we get that

‖F‖L∞Hs + ‖v‖X � 1

2

(‖F‖L∞Hs + ‖v‖X

)
, (53)

hence, v = 0 and F = 0 which yields the uniqueness of the solution on a small time interval. One can then repeat the
argument and get the uniqueness on the whole real line.

4. Propagation of regularity

In this section, we prove Theorem 1.2. We will only present the a priori estimate since the existence of solutions
satisfying these estimates can be proved using the same proof as in the previous section. Recall that usually, this can
be done if we have an estimate of ∇u in L1L∞. Notice that the solutions constructed in Theorem 1.1 do not necessary
satisfy this estimate.

Since, 1 < s, we can apply the result of Theorem 1.1 with some s′ < 1 close from 1. It is enough to take s′ > 3/4
for instance. Hence, we get a solution (v,E,B) ∈ X × L∞(0, T ;Hs′

) × L∞(0, T ;Hs′
).

Therefore, v solves the Navier–Stokes system with an initial data v0 ∈ Hs0 and a force term j × B in Lq1H 2s′−1.
Regularity results for the Navier–Stokes system yield that v ∈ L1Hmin(s′

0,5/2) ∩ L∞Hmin(s0,1/2) where s′
0 satisfies

max(s,2) < s′ < s0 + 2.
0
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In the sequel, we will only present a priori estimates on (v,E,B), namely in the next calculations, we will assume
that (v,E,B) are regular enough to perform the multiplications and estimates. Of course, one has to write these
estimate on the approximate system (39) and then pass to the limit to deduce that the solution satisfies these bounds.

We first give a simple proof of propagation of regularity but with a triple exponential growth. Then, we modify the
argument to get the exponential bound (4).

First, we take s′′ such that 1 < s′′ < min(s,3/2) and we use that ‖v × B‖
Hs′′ � ‖v‖

Hs′′ ‖B‖
Hs′′ to deduce from

Lemma 1.10 that

∥∥F(t)
∥∥

Hs′′ � ‖F0‖Hs′′ + C

t∫
0

‖v‖
Hs′′ ‖F‖

Hs′′ . (54)

Hence, by Gronwall lemma and Sobolev embedding, we have:∥∥F(t)
∥∥

L∞ �
∥∥F(t)

∥∥
Hs′′ � ‖F0‖Hs′′ e

C‖v‖
L1

t Hs′′
. (55)

This gives a double exponential growth for ‖F(t)‖
Hs′′ and for ‖F(t)‖L∞ .

Then, we use the following rough estimates for the Maxwell and Navier–Stokes equations:

∥∥F(t)
∥∥

Hs � ‖F0‖Hs + C

t∫
0

‖v‖L∞‖F‖Hs + ‖v‖Hs ‖F‖L∞, (56)

∥∥v(t)
∥∥

Hs � ‖v0‖Hs + C

t∫
0

‖F‖L∞‖F‖Hs + ‖v‖L∞‖F‖L∞‖F‖Hs + ‖v‖Hs

(‖F‖2
L∞ + ‖v‖L∞

)
. (57)

Hence, if we denote g(t) = ‖F(t)‖Hs + ‖v(t)‖Hs , we get:

g(t) � g(0) + C

t∫
0

(
1 + ‖v‖L∞ + ‖F‖L∞

)2
g(τ)τ (58)

and by Gronwall lemma, we get that

g(t) � g(0)e
∫ t

0 (1+‖v‖L∞+‖F‖L∞ )2 dτ (59)

which gives a triple exponential growth since ‖F(t)‖L∞ has a double exponential growth.
Now, we want to modify this argument to get an exponential growth of the Hs norm of F . We have to argue by

induction on the regularity. From the previous estimates, we see that if s′ < 1, then the exponential growth follows
from (34). We make the following induction assumption. We denote α = s − s0. Hence 0 � α < 2. Let ε > 0 be such
that α + 2ε < 2. For k � s, the property (Pk) stands for the following bounds:

(Pk)

{‖F(t)‖Hk � Dk eCkt ,

‖v(t)‖H(k−α)+ + ‖v(t)‖L1
t H

k+2ε � Dk eCkt ,
(60)

where Dk is a function of ‖F0‖Hk and ‖v0‖H(k−α)+ and (k −α)+ = max(k −α,0) and Ck depends only on the energy
C0 and on k.

It is clear that (Pk) holds for k = s′ for any s′ < 1. Indeed, (34) yields the first bound of (60). Moreover, regularity
results for the Navier–Stokes system give the second estimate of (Pk). Indeed, j × B can be estimated in L1H 2s′−1.
Hence, one has to take s′ close to 1 to get the regularity in (Pk). In the sequel, we start the induction from some k = s′
close to one such that k + ε > 1.

Now, we would like to prove that (Pk) yields (Pk+ε) as long as k + ε � s. We have:

∥∥F(t)
∥∥

Hk+ε � ‖F0‖Hk+ε + C

t∫
0

‖v‖L∞‖F‖Hk+ε + ‖v‖Hk+2ε‖F‖H 1−ε , (61)

where we have used that ‖vF‖Hk+ε � C‖v‖L∞‖F‖Hk+ε + C‖F‖H 1−ε‖v‖Hk+2ε .
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Hence, by Gronwall lemma, we get that

∥∥F(t)
∥∥

Hk+ε �
(

‖F0‖Hk+ε +
t∫

0

‖v‖Hk+2ε‖F‖H 1−ε

)
eC

∫ t
0 ‖v‖L∞

� Dk+εe
Ck+εt .

Moreover, Lemma 1.9 yields that∥∥v(t)
∥∥

H(k−α+ε)+ + ∥∥v(t)
∥∥

L1
t H

k+3ε

� C
(‖v0‖H(k−α+ε)+ + ∥∥(E + v × B) × B

∥∥
L1H(k−α+ε)+ + ∥∥∇(v ⊗ v)

∥∥
L1H(k−α+ε)+

)
� C‖v0‖H(k−α+ε)+ + C

t∫
0

‖F‖2
H(k+ε)

(
1 + ‖v‖Hk+2ε

) + ‖v‖H(k−α)+ ‖v‖Hk+2ε

� Dk+εe
Ck+εt .

This ends the proof of Theorem 1.2.
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