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Abstract. We establish a Navier-Stokes-Fourier limit for solu-
tions of the Boltzmann equation considered over any periodic spa-
tial domain of dimension two or more. We do this for a broad
class of collision kernels that relaxes the Grad small deflection cut-
off condition for hard potentials and includes for the first time the
case of soft potentials. Appropriately scaled families of DiPerna-
Lions renormalized solutions are shown to have fluctuations that
are compact. Every limit point is governed by a weak solution of
a Navier-Stokes-Fourier system for all time.

1. Introduction

We establish a Navier-Stokes-Fourier fluid dynamical limit for the
classical Boltzmann equation considered over any periodic spatial do-
main of dimension two or more. Here the Navier-Stokes-Fourier system
governs (ρ, u, θ), the fluctuations of mass density, bulk velocity, and
temperature about their spatially homogeneous equilibrium values in
a Boussinesq regime. Specifically, after a suitable choice of units, these
fluctuations satisfy the incompressibility and Boussinesq relations

(1.1) ∇x · u = 0 , ρ+ θ = 0 ;

while their evolution is determined by the motion and heat equations

(1.2)
∂tu+ u·∇xu+∇xp = ν∆xu , u(x, 0) = uin(x) ,
D+2

2

(
∂tθ + u·∇xθ

)
= κ∆xθ , θ(x, 0) = θin(x) ,

where ν > 0 is the kinematic viscosity and κ > 0 is the thermal con-
ductivity.

This work completes the program laid out in [2, 3]. One of the cen-
tral goals of that program is to connect the DiPerna-Lions theory of
global renormalized solutions of the Boltzmann equation to the Leray
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theory of global weak solutions of the incompressible Navier-Stokes-
Fourier system (1.1–1.2). The main result of [3] for the Navier-Stokes
limit is to recover the motion equation for a discrete-time version of
the Boltzmann equation assuming the DiPerna-Lions solutions satisfy
the local conservation of momentum and with the aid of a mild com-
pactness assumption. This result falls short of the goal in a number of
aspects. First, the heat equation was not treated because the heat flux
terms could not be controlled. Second, local momentum conservation
was assumed because DiPerna-Lions solutions are not known to satisfy
the local conservation law of momentum (or energy) that one would
formally expect. Third, the discrete-time case was treated in order
to avoid having to control the time regularity of the acoustic modes.
Fourth, unnatural technical assumptions were made on the Boltzmann
collision kernel. Finally, a weak compactness assumption was required
to pass to the limit in certain nonlinear terms. The present work re-
moves all of these shortcomings. It builds upon the recent advances
found in [36], [19] and [24].

In [36] Lions and Masmoudi recover the Navier-Stokes motion equa-
tion with the aid of only the local conservation of momentum assump-
tion and the nonlinear weak compactness assumption that where made
in [3]. However, they do not recover the heat equation and they retain
the same unnatural technical assumptions made in [3] on the colli-
sion kernel. There were two key new ingredients in their work. First,
they were able to control the time regularity of the acoustic modes by
adapting an idea from [34]. Second, they were able to prove that the
contribution of the acoustic modes to the limiting motion equation is
just an extra gradient term that can be incorporated into the pressure
term. There are two reasons they do not recover the heat equation.
First, it is unknown whether or not DiPerna-Lions solutions satisfy lo-
cal energy conservation law. Second, even if local energy conservation
were assumed, the techniques they used to control the momentum flux
would fail to control the heat flux.

In [19] Golse and Levermore recover the Stokes-Fourier system (the
linearization of (1.1–1.2) about zero). There were two key new ingredi-
ents in their work. First, they control the local momentum and energy
conservation defects of the DiPerna-Lions solutions with dissipation
rate estimates that allowed them to recover these local conservation
laws in the limit. Second, they also control the heat flux with dissipa-
tion rate estimates. Because they treat the linear Stokes-Fourier case
in [19], they do not face the need either to control the acoustic modes
or for a compactness assumption, both of which are used to pass to the
limit in the nonlinear terms in [36].
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In the present work we recover the Navier-Stokes-Fourier system.
Our result goes beyond the results mentioned above by combining the
new ingredients from [36] and [19] with some new nonlinear estimates
and the new averaging lemma of [24]. More specifically, here we adapt
the control of the acoustic modes found in [36] and the dissipation rate
controls of both the heat flux and the conservation defects found in
[19]. Our new estimates allow us to treat a broader class of collision
kernels than was treated in either [36] or [19]. In particular, we treat
all hard potential cases and, for the first time in this program, soft
potential cases.

Here we do not use the fact proved in [37] that DiPerna-Lions renor-
malized solutions satisfy the formally expected local momentum con-
servation law up to the divergence of a nonnegative definite, matrix-
valued defect measure that is controlled by an entropy bound. There
are two reasons for this. First, unlike for the Stokes limit case treated in
[37], here the entropy bound does not give enough control of the defect
measure to allow us to conclude that it does not change the limiting
motion equation. Second, it is unknown whether or not DiPerna-Lions
solutions satisfy local energy conservation law up to the divergence of
a defect measure, or how to control such a measure should it exist.
In order to recover the heat equation we therefore develop estimates
that control the local energy conservation defects of DiPerna-Lions so-
lutions in the limit. These estimates do the same for the motion equa-
tion. This approach enables us to recover both the heat and motion
equation without imposing any regularity requirements on the limiting
Navier-Stokes-Fourier solution.

At the same time as this work was being carried out, Golse and
Saint-Raymond [23, 25] were able to recover the Navier-Stokes-Fourier
system without making any nonlinear weak compactness hypothesis.
In addition to building on the ideas in [36] and [19], their proof uses
the entropy dissipation rate to decompose the collision operator in a
new way and uses a new L1 averaging lemma [24] (which has its origins
in [41, 42]) to prove the compactness assumption. Their result in [23,
25] is restricted to a narrow class of bounded Boltzmann kernels that
only includes the special case of Maxwell molecules with a Grad small
deflection cut-off from among all kernels that are classically derived
from an inter-particle potential. They have recently extended their
result to the case of hard spheres. The present work is complementary
in that it introduces estimates that apply to a broad class of cut-off
kernels and especially to soft potentials.

The next section and section 4 contain preliminary material regard-
ing the Boltzmann equation, including the formal scaling that leads
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from the Boltzmann equation to the Navier-Stokes-Fourier system as
well as the formal derivation. Section 3 contains some technical as-
sumptions about the collision kernel we consider. These assumptions
are satisfied by all classical collision kernels with cutoff. Section 5 re-
views the DiPerna-Lions theory of global solutions for the Boltzmann
equation [15] and the Leray theory of global solutions for the Navier-
Stokes-Fourier system. Section 6 presents precise statements of our
results and section 7 contains the proof of the main results modulo
four estimates: one that removes the local conservation defects, one
that controls the fluxes, one that controls the spatial regularity of the
fluctuations, and one that controls the time regularity of the acoustic
modes. Sections 8 through 13 establish these four estimates, thereby
completing our proof.
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2. Boltzmann Equation Preliminaries

Our starting point is the Boltzmann equation. In this section we
collect the basic facts we will need about it. These will include its
nondimensionalization and its formal conservation and dissipation laws.

2.1. The Boltzmann Equation. Here we will introduce the Boltz-
mann equation only so far as to set our notation, which is essentially
that of [3]. More complete introductions to the Boltzmann equation
can be found in [11, 12, 17, 18].

The state of a fluid composed of identical point particles confined
to a spatial domain Ω ⊂ RD is described at the kinetic level by a
mass density F over the single-particle phase space RD × Ω. More
specifically, F (v, x, t) dv dx gives the mass of the particles that occupy
any infinitesimal volume dv dx centered at the point (v, x) ∈ RD×Ω at
the instant of time t ≥ 0. To remove complications due to boundaries,
we take Ω to be the periodic domain TD = RD/LD, where LD ⊂ RD is
any D-dimensional lattice.

If the particles interact only through a repulsive conservative inter-
particle force with finite range, then at low enough densities this range
will be much smaller than the inter-particle spacing. In that regime all
but binary collisions can be neglected when D ≥ 2, and the evolution
of F = F (v, x, t) is governed by the classical Boltzmann equation [12]:

(2.1) ∂tF + v ·∇xF = B(F, F ) , F (v, x, 0) = F in(v, x) ≥ 0 .

The Boltzmann collision operator B acts only on the v argument of F .
It is formally given by

(2.2) B(F, F ) =

∫∫
SD−1×RD

(F ′
1F

′ − F1F ) b(ω, v1 − v) dω dv1 ,

where v1 ranges over RD endowed with its Lebesgue measure dv1 while
ω ranges over the unit sphere SD−1 = {ω ∈ RD : |ω| = 1} endowed
with its rotationally invariant measure dω. The F ′

1, F
′, F1, and F ap-

pearing in the integrand designate F (·, x, t) evaluated at the velocities
v′1, v

′, v1, and v respectively, where the primed velocities are defined
by

(2.3) v′1 = v1 − ω ω ·(v1 − v) , v′ = v + ω ω ·(v1 − v) ,

for any given (ω, v1, v) ∈ SD−1× RD× RD. Quadratic operators like B
are extended by polarization to be bilinear and symmetric.

The unprimed and primed velocities are possible velocities for a pair
of particles either before and after, or after and before, they interact
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through an elastic binary collision. Conservation of momentum and
energy for particle pairs during collisions is expressed as

(2.4) v + v1 = v′ + v′1 , |v|2 + |v1|2 = |v′|2 + |v′1|2 .

Equation (2.3) represents the general nontrivial solution of these D+1
equations for the 4D unknowns v′1, v

′, v1, and v in terms of the 3D− 1
parameters (ω, v1, v).

The collision kernel b is positive almost everywhere. The Galilean
invariance of the collisional physics implies that b has the classical form

(2.5) b(ω, v1 − v) = |v1 − v|Σ(|ω ·n|, |v1 − v|) ,

where n = (v1−v)/|v1−v| and Σ is the specific differential cross-section.
Technical conditions on b will be imposed in Section 3.

2.2. Nondimensionalized Form. We will work with the nondimen-
sionalized form of the Boltzmann equation that was used in [3]. That
form is motivated by the fact that the Navier-Stokes-Fourier system can
be formally derived from the Boltzmann equation through a scaling in
which the density F is close to a spatially homogeneous Maxwellian
M = M(v) that has the same total mass, momentum, and energy as
the initial data F in. By an appropriate choice of a Galilean frame and
of mass, temperature and velocity units, it can be assumed that this
so-called absolute Maxwellian M has the form

(2.6) M(v) ≡ 1

(2π)D/2
exp(−1

2
|v|2) .

This corresponds to the spatially homogeneous fluid state with its den-
sity and temperature equal to 1 and bulk velocity equal to 0. This
state is consistent with the form of the Navier-Stokes-Fourier system
given by (1.1–1.2).

It is natural to introduce the relative kinetic density, G = G(v, x, t),
defined by F = MG. Recasting the initial-value problem (2.1) for G
yields

(2.7) ε ∂tG+ v ·∇xG =
1

ε
Q(G,G) , G(v, x, 0) = Gin(v, x) .

The positive, nondimensional parameter ε is the Knudsen number,
which is the ratio of the mean-free-path to the macroscopic length
scale determined by setting the volume of TD to unity [3]. The colli-
sion operator is now given by

(2.8) Q(G,G) =

∫∫
SD−1×RD

(G′
1G

′ −G1G) b(ω, v1 − v) dωM1dv1 .
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Under the assumptions we will make in Section 3, the nondimensional
collision kernel b can be normalized so that

(2.9)

∫∫∫
SD−1×RD×RD

b(ω, v1 − v) dωM1dv1Mdv = 1 .

Fluid dynamical regimes are those where the mean free path is small
compared to the macroscopic length scales — i.e. where the Knudsen
number ε is small. The long-time scaling in (2.7) is consistent with a
formal derivation of either the Stokes-Fourier or Navier-Stokes-Fourier
systems [2].

This nondimensionalization has the normalizations

(2.10)

∫
RD

Mdv = 1 ,

∫
TD

dx = 1 ,

associated with the domains RD and TD respectively, (2.9) associated
with the collision kernel b, and

(2.11)

∫∫
RD×TD

GinMdv dx = 1 ,

∫∫
RD×TD

v GinMdv dx = 0 ,∫∫
RD×TD

1
2
|v|2GinMdv dx = D

2
.

associated with the initial data Gin.
Because Mdv is a positive unit measure on RD, we denote by 〈ξ〉

the average over this measure of any integrable function ξ = ξ(v):

(2.12) 〈ξ〉 =

∫
RD

ξ(v)Mdv .

Because dµ = b(ω, v1− v) dωM1dv1Mdv is a positive unit measure on
SD−1× RD× RD, we denote by

〈〈
Ξ
〉〉

the average over this measure of
any integrable function Ξ = Ξ(ω, v1, v):

(2.13)
〈〈
Ξ
〉〉

=

∫∫∫
SD−1×RD×RD

Ξ(ω, v1, v) dµ .

The collisional measure dµ is invariant under the transformations

(2.14) (ω, v1, v) 7→ (ω, v, v1) , (ω, v1, v) 7→ (ω, v′1, v
′) .

These, and compositions of these, are called collisional symmetries.

2.3. Formal Conservation and Dissipation Laws. We now list
for later reference the basic conservation and entropy dissipation laws
that are formally satisfied by solutions of the Boltzmann equation.
Derivations of these laws in this nondimensional setting are outlined in
[3], and can essentially be found in [11] (Sec. II.6-7), [17] (Sec. 1.4), or
[18].
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First, if G solves the Boltzmann equation (2.7) then G satisfies local
conservation laws of mass, momentum, and energy:

(2.15)

ε ∂t〈G〉+∇x · 〈v G〉 = 0 ,

ε ∂t〈v G〉+∇x · 〈v ⊗ v G〉 = 0 ,

ε ∂t〈1
2
|v|2G〉+∇x · 〈v 1

2
|v|2G〉 = 0 .

Integrating these over space and time while recalling the normalizations
(2.11) of Gin yields the global conservation laws of mass, momentum,
and energy:

(2.16)

∫
TD

〈G(t)〉 dx =

∫
TD

〈Gin〉 dx = 1 ,∫
TD

〈v G(t)〉 dx =

∫
TD

〈v Gin〉 dx = 0 ,∫
TD

〈1
2
|v|2G(t)〉 dx =

∫
TD

〈1
2
|v|2Gin〉 dx = D

2
.

Second, if G solves the Boltzmann equation (2.7) then G satisfies the
local entropy dissipation law

(2.17)

ε ∂t〈(G log(G)−G+ 1)〉+∇x · 〈v (G log(G)−G+ 1)〉

= −1

ε

〈〈
1

4
log

(
G′

1G
′

G1G

)
(G′

1G
′ −G1G)

〉〉
≤ 0 .

Integrating this over space and time gives the global entropy equality

(2.18) H(G(t)) +
1

ε2

∫ t

0

R(G(s)) ds = H(Gin) ,

where H(G) is the relative entropy functional

(2.19) H(G) =

∫
TD

〈(G log(G)−G+ 1)〉 dx ,

and R(G) is the entropy dissipation rate functional

(2.20) R(G) =

∫
TD

〈〈
1

4
log

(
G′

1G
′

G1G

)
(G′

1G
′ −G1G)

〉〉
dx .
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3. Technical Assumptions on the Collision Kernel

In this section we state all the additional assumptions that we make
about the collision kernel b. These assumptions are satisfied by many
classical collision kernels. For example, they are satisfied by the col-
lision kernel for hard spheres of mass m and radius ro, which has the
form

(3.1) b(ω, v1 − v) = |ω ·(v1 − v)|(2ro)
D−1

2m
.

They are also satisfied by all the classical collision kernels with a small
deflection cutoff that derive from a repulsive intermolecular potential
of the form c/rk with k > 2D−1

D+1
. Specifically, these have the form

(3.2) b(ω, v1 − v) = b̂(ω ·n) |v1 − v|β with β = 1− 2D−1
k
,

where b̂(ω ·n) is positive almost everywhere, has even symmetry in ω,
and satisfies the small deflection cutoff condition

(3.3)

∫
SD−1

b̂(ω ·n) dω <∞ .

The condition k > 2D−1
D+1

is equivalent to β > −D, which insures that
b(ω, v1 − v) is locally integrable with respect to v1 − v. The cases
β > 0, β = 0, and β < 0 correspond respectively to the so-called
“hard”, “Maxwell”, and “soft” potential cases.

The works of Golse and Saint-Raymond cover the case of Maxwell
potentials with a Grad small deflection cutoff [25], and the case of
hard spheres [26]. Their machinery allows the treatment of the case
of all hard potentials with a Grad small deflection cutoff. The Grad
small deflection cutoff is much more restrictive than the cutoff (3.3)
which merely guarantees the local integrability of b. Our work therefore
relaxes their small deflection cutoff condition for hard potentials and
treats for the first time the case of soft potentials.

We have already stated that the collision kernel b is positive almost
everywhere and has the form (2.5) — assumptions clearly met by the
hard sphere and inverse power kernels given by (3.1) and (3.2). Our
additional assumptions on b are technical in nature — that is, they are
required by our mathematical argument. We therefore examine which
commonly studied physical collision kernels satisfy these assumptions.
We also give some consequences of these assumptions that will play an
important role in what follows.
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3.1. DiPerna-Lions Assumption. Our first assumption is that the
collision kernel b satisfies the requirements of the DiPerna-Lions the-
ory. That theory requires that b be locally integrable with respect to
dωM1dv1Mdv, and that it moreover satisfies

(3.4)
lim
|v|→∞

1

1 + |v|2

∫
K

b̄(v1 − v) dv1 = 0 ,

for every compact K ⊂ RD ,

where b̄ is defined by

(3.5) b̄(v1 − v) ≡
∫

SD−1

b(ω, v1 − v) dω .

Galilean symmetry (2.5) implies that b̄ is a function of |v1 − v| only.
Condition (3.4) is met by the hard sphere kernel (3.1) because in

that case b̄(v1 − v) is proportional to |v1 − v| and therefore grows like
|v| as |v| → ∞. It is also met by the inverse power kernels (3.2) because
in that case b̄(v1 − v) grows like |v|β as |v| → ∞.

It is an immediate consequence of the DiPerna-Lions assumption that
the measure b(ω, v1 − v) dωM1dv1Mdv is finite. The nondimensional
kernel b can therefore be chosen to satisfy the normalization (2.9).

3.2. Attenuation Assumption. A major role in what follows will be
played by the attenuation coefficient a, which is defined by

(3.6) a(v) ≡
∫

RD

b̄(v1 − v)M1dv1 =

∫∫
SD−1×RD

b(ω, v1 − v) dωM1dv1 .

A few facts about a are readily evident from what we have already
assumed. First, a must be positive and locally integrable. Because
(3.4) holds, one can show that

(3.7) lim
|v|→∞

a(v)

1 + |v|2
= 0 .

Next, the normalization (2.9) implies that a satisfies

(3.8)

∫
RD

aMdv = 1 .

Finally, Galilean symmetry (2.5) implies that a is a function of |v| only.
Our second assumption regarding the collision kernel b is that a sat-

isfies a lower bound of the form

(3.9) Ca

(
1 + |v|

)α ≤ a(v) ,

for some constants Ca > 0 and α ∈ R.
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Condition (3.9) is met by the hard sphere kernel (3.1), for which
(3.9) is satisfied with α = 1, and by all the inverse power kernels (3.2),
for which (3.9) is satisfied with α = β.

An immediate consequence of the attenuation assumption (3.9) is
that 1

a
ξ ∈ Lp(aMdv) for every p ∈ [1,∞) whenever |ξ(v)| is bounded

above by a polynomial in |v|.

3.3. Loss Operator Assumption. Another major role in what fol-
lows will be played by the linearized collision operator L, which is
defined formally by

(3.10) Lg̃ ≡ −2Q(1, g̃) =

∫∫
SD−1×RD

(
g̃ + g̃1 − g̃′ − g̃′1

)
b dωM1dv1 .

One has the decomposition

(3.11)
1

a
L = I +K− − 2K+ ,

where the integral operators K− and K+ are formally defined by

K−g̃ ≡ 1

a

∫
RD

g̃1 b̄(v1 − v)M1dv1 ,(3.12)

K+g̃ ≡ 1

2a

∫∫
SD−1×RD

(
g̃′ + g̃′1

)
b(ω, v1 − v) dωM1dv1 .(3.13)

We refer to K− as the loss operator and K+ as the gain operator. For
every p ∈ [1,∞] it can be easily shown that

(3.14)

{
K± : Lp(aMdv) → Lp(aMdv)

are bounded with ‖K±‖ ≤ 1 .

The operator 1
a
L is therefore bounded from Lp(aMdv) into itself for

every p ∈ [1,∞] with ‖ 1
a
L‖ ≤ 4.

Our third assumption regarding the collision kernel b is that there
exists s ∈ (1,∞] and Cb ∈ (0,∞) such that

(3.15)

(∫
RD

∣∣∣∣ b̄(v1 − v)

a(v1) a(v)

∣∣∣∣sa(v1)M1dv1

) 1
s

≤ Cb .

We remark that this bound is independent of v. We may therefore take
Cb to be the supremum over v of the left-hand side of (3.15).

Condition (3.15) is met by the hard sphere kernel (3.1) and by the
inverse power kernels (3.2). We remark that for hard and Maxwell
potentials (2(D − 1) ≤ k) condition (3.15) is satisfied with s = ∞,
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taking the form

(3.16)
b̄(v1 − v)

a(v1) a(v)
≤ Cb .

This is very similar to the bound assumed in [19]. For soft potentials
(2D−1

D+1
< k < 2(D − 1)) condition (3.15) is satisfied for every s in the

interval 1 < s < D/(2(D−1)
k

−1). The case s ∈ (1,∞) in (3.15) therefore
allows these soft potentials to be considered.

Our third assumption (3.15) has several immediate implications for
the loss operator K−, which we now express formally as

(3.17) K−g̃ =

∫
RD

K−(v1, v) g̃1 a1M1dv1 ,

where the kernel K− is given by

(3.18) K−(v1, v) =
b̄(v1 − v)

a(v1) a(v)
.

It is clear that K− is symmetric (K−(v1, v) = K−(v, v1)) and positive
almost everywhere. An interpolation argument shows that whenever
there exist p, q, r, t ∈ [1,∞] such that r ≤ t and

Crt ≡

(∫
RD

(∫
RD

|K−(v1, v)|r a1M1dv1

) t
r

aMdv

) 1
t

<∞ ,(3.19)

1

p
+

1

r
+

1

t
= 1 +

1

q
, p∗, q ∈ [r, t] ,(3.20)

then

(3.21)

{
K− : Lp(aMdv) → Lq(aMdv)

is bounded with ‖K−‖ ≤ Crt .

Moreover, whenever r and t in (3.19) are both finite then

(3.22) K− : Lp(aMdv) → Lq(aMdv) is compact .

Here 1
p

+ 1
p∗

= 1. Notice that assertion (3.22) follows from assertion

(3.21) because when [r, t] ⊂ [1,∞) the expression for Crt given in (3.19)
defines the norm for a Banach space of kernels in which finite-rank
kernels are dense.

Because aMdv is a unit measure, the assumed bound (3.15) clearly
implies that (3.19) holds with Crt ≤ Cb for every r ∈ [1, s] and t ∈
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[1,∞]. Three immediate consequences of this are{
K− : Lp(aMdv) → Lp(aMdv)

is compact for every p ∈ (1,∞) ,
(3.23) {

K− : Lp(aMdv) → Lp∗(aMdv)

is bounded with ‖K−‖ ≤ Cb for every p∗ ∈ [1, 2s] ,
(3.24) {

K− : Lp(aMdv) → Lp∗(aMdv)

is compact for every p∗ ∈ [1, 2s) .
(3.25)

The first of these follows from (3.22) by setting q = p in (3.20) and
choosing r ∈ (1, s] such that p, p∗ ∈ [r, r∗] and then setting t = r∗. The
second follows from (3.21) by setting q = p∗ in (3.20) and observing
that as r ranges over [1, s] while t ranges over [1,∞] then p∗ given by
1
p∗

= 1
2
(1

r
+ 1

t
) will range over [1, 2s]. The last follows from (3.22) by

excluding the cases r = ∞ and t = ∞ from the preceding consideration.

3.4. Gain Operator Assumption. Our fourth assumption regarding
the collision kernel b is that

(3.26) K+ : L2(aMdv) → L2(aMdv) is compact .

This condition is met by the hard sphere kernel (3.1) and by the cutoff
inverse power kernels (3.2) that derive from a repulsive intermolecular
potential of the form c/rk. For D = 3 this fact was demonstrated by
Hilbert [28] for hard spheres, by Grad [27] for hard potentials (k ≥ 4)
with a Grad small deflection cutoff, and by Golse and Poupaud [22]
for soft potentials with k > 2 with a Grad small deflection cutoff. For
general D this fact has recently been demonstrated by Sun [43] for
kernels (3.2) that satisfy the small deflection cutoff (3.3). Even when
D = 3 this extends the result of Golse and Poupaud for soft potentials
with Grad cutoffs to k > 1.

An immediate consequence of our fourth assumption (3.26) on the
gain operator K+ is that

(3.27)

{
K+ : Lp(aMdv) → Lp(aMdv)

is compact for every p ∈ (1,∞) ;

This assertion follows from (3.14) and (3.26) by interpolation.
When our gain operator assumption (3.26) is combined with our loss

operator assumption (3.15), we conclude that

(3.28)


1

a
L : Lp(aMdv) → Lp(aMdv)

is Fredholm for every p ∈ (1,∞) ;
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This assertion follows from the decomposition 1
a
L = I+K−−2K+ given

by (3.11) because the operators K− and K+ are compact by (3.23) and
(3.27).

3.5. Fifth assumption. Our fifth assumption regarding b will only be
used in section 9 to yield some compactness. It is stated in (3.29) :

(3.29) bH(v1 − v) ≤ C(1 + aH(v1))(1 + aH(v)) for every v1, v ∈ RD,

where aH(v) and bH(v) are defined by
(3.30)

aH(v) =

∫
RD

bH(v1 − v)M1 dv1 =

∫∫
SD−1×RD

bH(ω, v1 − v) dωM1dv1

and

(3.31)
bH(ω, v) = b(ω, v), for |v| > V0

bH(ω, v) = min{b(ω, v), C} , for |v| ≤ V0,

for some constants C and V0. We point out that for soft potential bH is
bounded and hence (3.29) holds. Also, (3.29) is a simple consequence
of (3.15) if s = ∞. This assumption is hence satisfied by all classical
collision kernel. It is only needed in section 9 (see also the remark in
subsection 3.7).

3.6. Null Spaces. Here we characterize the null space of the Fredholm
operator 1

a
L considered over Lp(aMdv) for every p ∈ (1,∞). One can

use the collisional symmetries (2.14) to show that 1
a
L is formally sym-

metric and nonnegative definite with respect to the L2(aMdv) inner
product. In particular, for every g̃ ∈ L2(aMdv) one shows that

(3.32) 〈g̃Lg̃〉 = 1
4

〈〈(
g̃ + g̃1 − g̃′ − g̃′1

)2〉〉 ≥ 0 .

It can be shown from this (see for example [11], Chapter IV.1) that the
null space of 1

a
L : L2(aMdv) → L2(aMdv) is span{1, v1 , · · · , vD

, |v|2}.
Our first, third, and fourth assumptions combine to show moreover
that for every p ∈ (1,∞)

(3.33)

 the null space of
1

a
L : Lp(aMdv) → Lp(aMdv)

is given by Null(L) ≡ span{1, v1 , · · · , vD
, |v|2} .

Indeed, because our first assumption (3.4) implies that Null(L) ⊂
Lp(aMdv) for every p ∈ [1,∞), it is clear that Null(L) is contained
in the null space of 1

a
L : Lp(aMdv) → Lp(aMdv) for every p ∈ [1,∞).

Because Lp(aMdv) ⊂ L2(aMdv) for every p ∈ [2,∞), and because
the null space of 1

a
L : L2(aMdv) → L2(aMdv) is given by Null(L), it

therefore follows that the null space of 1
a
L : Lp(aMdv) → Lp(aMdv)
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is also given by Null(L) for every p ∈ [2,∞). Now observe that the
adjoint of 1

a
L over Lp(aMdv) is 1

a
L over Lp∗(aMdv). Because by (3.28)

these operators are Fredholm, their null spaces must have the same di-
mension. In particular, when p ∈ (1, 2] the dimension of the null space
must be equal to the dimension of Null(L). It therefore follows that
the null space of 1

a
L : Lp(aMdv) → Lp(aMdv) is also given by Null(L)

for every p ∈ (1, 2].

3.7. Coercivity. We will make use of some coercivity estimates the
operator L satisfies. If we let λ > 0 be the smallest nonzero eigenvalue
of 1

a
L considered over L2(aMdv) then one has the coercivity estimate

(3.34) λ
〈
a (P⊥

a g̃)
2
〉
≤ 〈g̃Lg̃〉 for every g̃ ∈ L2(aMdv) .

Here P⊥
a = I −Pa and Pa is the orthogonal projection from L2(aMdv)

onto Null(L), which is given by

(3.35)

Pag̃ = 〈a g̃〉+
1

1
D
〈a |v|2〉

v ·〈a v g̃〉

+
|v|2 − 〈a |v|2〉

〈a |v|4〉 − 〈a |v|2〉2
〈(
|v|2 − 〈a |v|2〉

)
g̃
〉
.

This follows from the Fredholm property (3.28), the fact that 1
a
L is

symmetric, and the characterization of Null(L) given by (3.33).
One can show that for some ` > 0 the operator L satisfies the coer-

civity estimate

(3.36) `
〈
a (P⊥g̃)2

〉
≤ 〈g̃Lg̃〉 for every g̃ ∈ L2(aMdv) .

Here P⊥ = I − P and P is the orthogonal projection from L2(Mdv)
onto Null(L), which is given by

(3.37) P g̃ = 〈g̃〉+ v ·〈v g̃〉+
(

1
2
|v|2 − D

2

) 〈
( 1

D
|v|2 − 1) g̃

〉
.

Indeed, assumption (3.9) ensures that P and P⊥ are bounded as linear
operators from L2(aMdv) into itself. Because P⊥ = P⊥P⊥

a , we then
have that every g̃ ∈ L2(aMdv) satisfies∥∥P⊥g̃

∥∥
L2(aMdv)

=
∥∥P⊥P⊥

a g̃
∥∥

L2(aMdv)
≤
∥∥P⊥∥∥

L2(aMdv)

∥∥P⊥
a g̃
∥∥

L2(aMdv)
,

where
∥∥P⊥

∥∥
L2(aMdv)

denotes the operator norm of P⊥. It therefore

follows from (3.34) that we may take ` = λ/
∥∥P⊥

∥∥2

L2(aMdv)
in (3.36).

Remark We will also use the operator

(3.38)
1

aH

LH : L2(aHMdv) → L2(aHMdv)
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where we denote

(3.39) LH g̃ ≡ −2QH(1, g̃) =

∫∫
SD−1×RD

(
g̃+ g̃1− g̃′− g̃′1

)
bH dωM1dv1 .

The null space and coercivity properties also hold for the operator
LH if we take C big enough in (3.31). Indeed, since L2(aHMdv) =
L2(aMdv), we just have to observe that 1

aH
LH goes to 1

a
L in the oper-

ator norm when C goes to infinity.

3.8. Pseudo-Inverse. We use a particular pseudo inverse of L defined
as follows. The Fredholm property (3.28) implies that for every p ∈
(1,∞)

L : Lp(aMdv) → Lp(a1−pMdv) is bounded ,

and that for every ξ ∈ Lp(a1−pMdv) there exists a unique ξ̂ ∈ Lp(aMdv)
such that

Lξ̂ = P⊥ξ , P ξ̂ = 0 .

For every ξ ∈ Lp(a1−pMdv) we define L−1ξ = ξ̂ where ξ̂ is determined
above. This defines an operator L−1 such that

L−1 : Lp(a1−pMdv) → Lp(aMdv) is bounded ,

L−1L = P⊥ over Lp(aMdv) ,

LL−1 = P⊥ over Lp(a1−pMdv) ,

and Null(L−1) = Null(L). The operator L−1 is the unique pseudo
inverse of L with these properties.
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4. Formal Derivation of the Navier-Stokes-Fourier
System

The Navier-Stokes-Fourier system (1.1–1.2) can be formally derived
from the Boltzmann equation through a scaling in which the fluctua-
tions of the kinetic density F about the absolute Maxwellian M are
scaled to be on the order of ε. More precisely, we consider families of
solutions Gε to the scaled Boltzmann initial-value problem (2.7) that
are parametrized by the Knudsen number ε and that have the form

(4.1) Gin
ε = 1 + ε gin

ε , Gε = 1 + ε gε ,

One sees directly from the Boltzmann equation (2.7) satisfied by Gε

that the fluctuations gε satisfy

(4.2) ε ∂tgε + v ·∇xgε +
1

ε
Lgε = Q(gε, gε) .

We assume that gε → g formally, where g ∈ L∞(dt;L2(Mdv dx)), and
that all formally small terms vanish.

4.1. Step One. The first step shows that the limit g is an infinitesimal
Maxwellian. Upon multiplying (4.2) by ε and letting ε → 0, one finds
that Lg = 0. Because Null(L) = span{1, v1 , · · · , vD

, |v|2} and because
the limit g is assumed to belong to L∞(dt;L2(Mdv dx)), we conclude
that g has the form of a so-called infinitesimal Maxwellian — namely,
that

(4.3) g = ρ+ v ·u+
(

1
2
|v|2 − D

2

)
θ ,

for some (ρ, u, θ) in L∞(dt;L2(dx; R× RD× R)).

4.2. Step Two. The second step shows that (ρ, u, θ) satisfies the in-
compressibility and Boussinesq relations. Observe from (2.15) that the
fluctuations gε formally satisfy the local conservation laws

(4.4)

ε ∂t〈gε〉+∇x · 〈v gε〉 = 0 ,

ε ∂t〈v gε〉+∇x · 〈v ⊗ v gε〉 = 0 ,

ε ∂t〈1
2
|v|2gε〉+∇x · 〈v 1

2
|v|2gε〉 = 0 .

By letting ε→ 0 in these equations and using the infinitesimal Maxwell-
ian form of g given by (4.3), one finds that

∇x · u = 0 , ∇x(ρ+ θ) = 0 .

The first equation is the incompressibility relation, while the second
says ρ + θ is a function of time only. Upon then letting ε → 0 in the
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global energy conservation law of (2.16), one thereby concludes that

ρ+ θ =

∫
TD

(ρ+ θ) dx = 2
D

∫
TD

〈1
2
|v|2g〉 dx = 0 .

Hence, (ρ, u, θ) satisfy the incompressibility and Boussinesq relations
(1.1). The Boussinesq relation implies that the infinitesimal Maxwell-
ian form (4.3) of g reduces to

(4.5) g = v ·u+
(

1
2
|v|2 − D+2

2

)
θ ,

for some (u, θ) in L∞(dt;L2(dx; RD× R)).

4.3. The Key Idea. The next three steps show that the evolution of
(u, θ) is governed by the motion and heat equations. The difficulty here
is that when the local conservation laws (4.4) are written so that the
time derivatives are order 1, the fluxes become order 1/ε. This difficulty
is overcome by the following strategy [2]. Observe that the momentum
and a linear combination of the mass and energy local conservation
laws from (4.4) can be expressed as

(4.6)
∂t〈v gε〉+

1

ε
∇x · 〈Agε〉+

1

ε
∇x

〈
1
D
|v|2gε

〉
= 0 ,

∂t

〈
(1

2
|v|2 − D+2

2
) gε

〉
+

1

ε
∇x · 〈B gε〉 = 0 ,

where the matrix-valued function A and the vector-valued function B
are defined by

(4.7) A(v) = v ⊗ v − 1
D
|v|2I , B(v) = 1

2
|v|2v − D+2

2
v .

As is common when studying incompressible fluid dynamical limits,
the momentum equation will be integrated against divergence-free test
functions. The last term in its flux will thereby be eliminated, and one
only has to pass to the limit in the flux terms of (4.6) that involve A
and B — namely, in the terms

(4.8)
1

ε
〈Agε〉 ,

1

ε
〈B gε〉 .

There is a chance that these terms have a limit because each entry of
A and B is in Null(L)⊥ while gε converges to g, which is in Null(L).
The next two steps show that these terms indeed have a formal limit.

4.4. Step Three. The third step evaluates the limit for moments of
the form 〈Lξ̂ gε〉/ε for every ξ̂ ∈ L2(aMdv). Because L is formally
symmetric, one has

(4.9) 〈Lξ̂ gε〉 = 〈ξ̂ Lgε〉 .
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Upon multiplying (4.2) by ξ̂ and integrating, one sees that the fluctu-
ations gε formally satisfy the general moment equation

(4.10) ε ∂t〈ξ̂ gε〉+∇x · 〈v ξ̂ gε〉+
1

ε
〈ξ̂ Lgε〉 = 〈ξ̂Q(gε, gε)〉 .

Upon formally letting ε → 0 in this equation, one finds that, in the
sense of distributions,

(4.11)
1

ε
〈Lξ̂ gε〉 → 〈ξ̂Q(g, g)〉 − 〈ξ̂ v ·∇xg〉 .

Because g has the infinitesimal Maxwellian form given by (4.5), one
can show [2] that

(4.12) 〈ξ̂Q(g, g)〉 = 1
2
〈ξ̂ L(g2)〉 = 1

2
〈Lξ̂ P⊥(g2)〉 ,

where P⊥ = I − P and P is the orthogonal projection from L2(Mdv)
onto Null(L), which is given by (3.37).

Given (4.12), one can again use the infinitesimal Maxwellian form
given by (4.5) to show moreover that (4.11) becomes

(4.13)

1

ε
〈Lξ̂ gε〉 → 1

2
〈Lξ̂ A〉 :u⊗ u+ 〈Lξ̂ B〉·u θ + 1

2
〈Lξ̂ C〉 θ2

− 〈ξ̂ A〉 :∇xu− 〈ξ̂ B〉·∇xθ .

where the matrix-valued function A and the vector-valued function B
are defined by (4.7), while the scalar-valued function C is defined by

(4.14) C(v) = 1
4
|v|4 − D+2

2
|v|2 + D(D+2)

4
.

One has that C is in Null(L)⊥.

4.5. Step Four. The fourth step determines the limit of the flux terms

(4.8). Because each entry of A and B is in L2(a−1Mdv), we let Â ∈
L2(aMdv; RD×D) and B̂ ∈ L2(aMdv; RD) be given by

(4.15) Â = L−1A , and B̂ = L−1B .

Because PA = 0 and PB = 0, these are the unique solutions of

(4.16)
LÂ = A , PÂ = 0 ,

LB̂ = B , PB̂ = 0 .

Because each entry of A and B is in Lp(a1−pMdv) for every p ∈ (1,∞),

each entry of Â and B̂ is therefore in Lp(aMdv) for every p ∈ (1,∞).
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By letting ξ̂ in (4.13) be the entries of Â and B̂ and using the facts

A and Â are even, B and B̂ are odd, and 〈AC〉 = 0, one finds that

(4.17)

1

ε
〈Agε〉 → 1

2
〈A⊗ A〉 : (u⊗ u)− 〈Â⊗ A〉 :∇xu

= u⊗ u− 1
D
|u|2I − ν

(
∇xu+ (∇xu)

T
)
,

1

ε
〈B gε〉 → 〈B ⊗B〉·u θ − 〈B̂ ⊗B〉·∇xθ

= D+2
2
u θ − κ∇xθ ,

where kinematic viscosity ν and thermal conductivity κ are given by

(4.18) ν = 1
(D−1)(D+2)

〈Â :LÂ〉 , κ = 1
D
〈B̂ ·LB̂〉 .

4.6. Step Five. The fifth step shows that the evolution of (u, θ) is
governed by the motion and heat equations (1.2). The fluctuations gε

formally satisfy the local conservation laws (4.6). Hence, when letting
ε→ 0 in these equations, we use the infinitesimal Maxwellian form of g
given by (4.5) to evaluate the limiting densities while we use (4.17) to
evaluate the limiting fluxes. We find that (u, θ) satisfies the weak form
of the incompressible Navier-Stokes-Fourier dynamics (1.2). If we let Π
denote the orthogonal projection from L2(dx; RD) onto divergence-free
vector fields, then by the formal continuity in time of the densities in
(4.6), one sees that

(4.19)
(
uin, θin

)
= lim

ε→0

(
Π〈v gin

ε 〉, 〈( 1
D+2

|v|2 − 1) gin
ε 〉
)
,

provided we assume that the limit on the right-hand side exists in the
sense of distributions for some (uin, θin) ∈ L2(dx; RD× R).

4.7. Step Six. The sixth step determines the limit of the difference
of gε from its infinitesimal Maxwellian, Pgε. The Fredholm alternative
implies that for every ξ ∈ L2(a−1Mdv) there is a unique ξ̂ ∈ L2(aMdv)

that solves Lξ̂ = P⊥ξ with P ξ̂ = 0. Hence, for every ξ ∈ L2(Mdv) one
has

〈ξ P⊥gε〉 = 〈gεP⊥ξ 〉 = 〈gε LL−1ξ 〉 = 〈gε Lξ̂〉 ,
One thereby sees from (4.13) that as ε→ 0 one has

(4.20)

1

ε
〈ξ P⊥gε〉 → 1

2
〈Lξ̂ A〉 :u⊗ u+ 〈Lξ̂ B〉·u θ + 1

2
〈Lξ̂ C〉 θ2

− 〈ξ̂ A〉 :∇xu− 〈ξ̂ B〉·∇xθ

= 1
2
〈ξ A〉 :u⊗ u+ 〈ξ B〉·u θ + 1

2
〈ξ C〉 θ2

− 〈ξ Â〉 :∇xu− 〈ξ B̂〉·∇xθ .
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Hence, as ε→ 0 one has the distribution limit

(4.21)

1

ε
P⊥gε →1

2
A :u⊗ u+B ·u θ + 1

2
C θ2

− Â :∇xu− B̂ ·∇xθ .

The right-hand side is exactly the first correction to the infinitesimal
Maxwellian that one obtains from the Chapman-Enskog expansion with
the incompressible Navier-Stokes-Fourier scaling.

4.8. Formal Navier-Stokes-Fourier Limit Theorem. The above
formal derivation can be stated more precisely as follows.

Theorem 4.1. (Formal Theorem) Let b be a collision kernel that sat-
isfies the assumptions of Section 3.

Let Gε be a family of distribution solutions of the scaled Boltzmann
initial-value problem (2.7) with initial data Gin

ε that satisfy the normal-
izations (2.11). Let Gin

ε and Gε have fluctuations gin
ε and gε given by

(4.1). Also:

(1) Assume that in the sense of distributions the family gin
ε satisfies

(4.22) lim
ε→0

(
Π〈v gin

ε 〉, 〈( 1
D+2

|v|2 − 1) gin
ε 〉
)

= (uin, θin) ,

for some (uin, θin) ∈ L2(dx; RD× R).

(2) Assume that for every gε and every ξ̂ ∈ L2(aMdv) the moment
equation (4.10) is also satisfied in the sense of distributions.

(3) Assume that gε converges in the sense of distributions as ε→ 0
to g ∈ L∞(dt;L2(Mdv dx)). Assume moreover that Lgε → Lg,
that for every ξ̂ ∈ L2(aMdv) the moments

〈ξ̂ gε〉 , 〈v ξ̂ gε〉 , 〈ξ̂Q(gε, gε)〉
converge respectively to

〈ξ̂ g〉 , 〈v ξ̂ g〉 , 〈ξ̂Q(g, g)〉 ,
and that every formally small term vanishes, all in the sense of
distributions as ε→ 0.

Then g is a local infinitesimal Maxwellian (4.5) where (u, θ) is a weak
solution of the Navier-Stokes-Fourier system (1.1–1.2) with ν and κ
given by (4.18) and with initial data (uin, θin) given by (4.22). More-
over, the family P⊥gε of the deviations of gε from the infinitesimal
Maxwellians satisfies the limit (4.21) in the sense of distributions.
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5. Global Solutions

In order to mathematically justify the formal fluid dynamical limit
described in the last section, we must make precise: (1) the notion of
solution for the Boltzmann equation, and (2) the notion of solution
for the Navier-Stokes-Fourier system. Ideally, these solutions should
be global while the bounds should be physically natural. We there-
fore work in the setting of DiPerna-Lions renormalized solutions for
the Boltzmann equation, and in the setting of Leray solutions for the
Navier-Stokes-Fourier system. These theories have the virtues of con-
sidering physically natural classes of initial data, and consequently, of
yielding global solutions.

5.1. DiPerna-Lions Solutions. DiPerna and Lions [15] proved the
global existence of a type of weak solution to the Boltzmann equation
over the whole space RD for any initial data satisfying natural physi-
cal bounds. As they pointed out, with only slight modifications their
theory can be extended to the periodic box TD. Their original theory
has been strengthened, most notably in [31] and [37]. Here we give a
version of their theory relevant to this paper.

The DiPerna-Lions theory does not yield solutions that are known to
solve the Boltzmann equation in the usual weak sense. Rather, it gives
the existence of a global weak solution to a class of formally equivalent
initial-value problems that are obtained by multiplying the Boltzmann
equation in (2.7) by Γ′(G), where Γ′ is the derivative of an admissible
function Γ:

(5.1)

(
ε ∂t + v ·∇x

)
Γ(G) =

1

ε
Γ′(G)Q(G,G) ,

G(v, x, 0) = Gin(v, x) ≥ 0 .

A function Γ : [0,∞) → R is called admissible if it is continuously
differentiable and for some constant CΓ <∞ its derivative satisfies

(5.2)
∣∣Γ′(Z)

∣∣ ≤ CΓ√
1 + Z

for every Z ≥ 0 .

The solutions lie in C([0,∞);w-L1(Mdv dx)), where the prefix “w-”
on a space indicates that the space is endowed with its weak topology.
We say that G ≥ 0 is a weak solution of (5.1) provided that it is
initially equal to Gin, and that it satisfies (5.1) in the sense that for
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every Y ∈ L∞(dv;C1(TD)) and every [t1, t2] ⊂ [0,∞) it satisfies

(5.3)

ε

∫
TD

〈Γ(G(t2))Y 〉 dx− ε

∫
TD

〈Γ(G(t1))Y 〉 dx

−
∫ t2

t1

∫
TD

〈Γ(G) v ·∇xY 〉 dx dt

=
1

ε

∫ t2

t1

∫
TD

〈
Γ′(G)Q(G,G)Y

〉
dx dt .

If G is a weak solution of (5.1) for one such Γ with Γ′ > 0, and if G
satisfies certain bounds, then it is a weak solution of (5.1) for every
admissible Γ. Such solutions are called renormalized solutions of the
Boltzmann equation (2.7).

Specifically, cast in our setting, the theory of renormalized solutions
yields the following.

Theorem 5.1. (DiPerna-Lions Renormalized Solutions) Let b satisfy

(5.4)
lim
|v|→∞

1

1 + |v|2

∫
SD−1×K

b(ω, v1 − v) dω dv1 = 0 ,

for every compact K ⊂ RD .

Given any initial data Gin in the entropy class

(5.5) E(Mdv dx) =
{
Gin ≥ 0 : H(Gin) <∞

}
,

there exists at least one G ≥ 0 in C([0,∞);w-L1(Mdv dx)) that for
every admissible function Γ is a weak solution of (5.1). This solution
satisfies a weak form of the local conservation law of mass

(5.6) ε ∂t〈G〉+∇x · 〈v G〉 = 0 .

Moreover, there exists a matrix-valued distribution W such that W dx
is nonnegative definite measure and G and W satisfy a weak form of
the local conservation law of momentum

(5.7) ε ∂t〈v G〉+∇x · 〈v ⊗ v G〉+∇x ·W = 0 ,

and for every t > 0, the global energy equality

(5.8)

∫
TD

〈1
2
|v|2G(t)〉 dx+

∫
TD

1
2
tr(W (t)) dx =

∫
TD

〈1
2
|v|2Gin〉 dx ,

and the global entropy inequality

(5.9) H(G(t)) +

∫
TD

1
2
tr(W (t)) dx+

1

ε2

∫ t

0

R(G(s)) ds ≤ H(Gin) .
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DiPerna-Lions renormalized solutions are not known to satisfy many
properties that one would formally expect to be satisfied by solutions
of the Boltzmann equation. In particular, the theory does not assert
either the local conservation of momentum in (2.15), the global conser-
vation of energy in (2.16), the global entropy equality (2.18), or even
a local entropy inequality; nor does it assert the uniqueness of the so-
lution. Nevertheless, as shown in [25], it provides enough control to
establish a Navier-Stokes-Fourier limit theorem for bounded collision
kernels and, as shown here, to do so for a much larger class of collision
kernels.

5.2. Leray Solutions. The DiPerna-Lions theory has many similari-
ties with the Leray theory of global weak solutions of the initial-value
problem for Navier-Stokes type systems [29]. For the Navier-Stokes-
Fourier system (1.1–1.2) with mean zero initial data, we set the Leray
theory in the following Hilbert spaces of vector- and scalar-valued func-
tions:

(5.10)

Hv =
{
w ∈ L2(dx; RD) : ∇x · w = 0 ,

∫
w dx = 0

}
,

Hs =
{
χ ∈ L2(dx; R) :

∫
χ dx = 0

}
,

Vv =
{
w ∈ Hv :

∫
|∇xw|2 dx <∞

}
,

Vs =
{
χ ∈ Hs :

∫
|∇xχ|2 dx <∞

}
.

Let H = Hv ⊕Hs and V = Vv ⊕ Vs .
Specifically, cast in our setting, the Leray theory yields the following.

Theorem 5.2. (Leray Solutions) Given any initial data (uin, θin) ∈ H,
there exists at least one (u, θ) ∈ C([0,∞);w-H) ∩ L2(dt; V) that is
a weak solution of the Navier-Stokes-Fourier system (1.1–1.2) in the
sense that for every (w, χ) ∈ H ∩ C1(TD) and every [t1, t2] ⊂ [0,∞) it



BOLTZMANN TO INCOMPRESSIBLE NAVIER-STOKES-FOURIER 25

satisfies ∫
w·u(t2) dx−

∫
w·u(t1) dx−

∫ t2

t1

∫
∇xw : (u⊗ u) dx dt

= −ν
∫ t2

t1

∫
∇xw :∇xu dx dt ,

(5.11)

∫
χ θ(t2) dx−

∫
χ θ(t1) dx−

∫ t2

t1

∫
∇xχ·(u θ) dx dt

= − 2
D+2

κ

∫ t2

t1

∫
∇xχ·∇xθ dx dt .

(5.12)

Moreover, for every t > 0, (u, θ) satisfies the dissipation inequalities∫
1
2
|u(t)|2dx+

∫ t

0

∫
ν|∇xu|2dx ds ≤

∫
1
2
|uin|2dx ,(5.13) ∫

D+2
4
|θ(t)|2dx+

∫ t

0

∫
κ|∇xθ|2dx ds ≤

∫
D+2

4
|θin|2dx .(5.14)

By arguing formally from the Navier-Stokes-Fourier system (1.1–
1.2), one would expect these inequalities to be equalities. However,
that is not asserted by the Leray theory. Also, as was the case for the
DiPerna-Lions theory, the Leray theory does not assert uniqueness of
the solution.

Because the role of the dissipation inequalities (5.13) and (5.14) is to
provide a-priori estimates, the existence theory also works if they are
replaced by the single dissipation inequality

(5.15)

∫
1
2
|u(t)|2 + D+2

4
|θ(t)|2dx+

∫ t

0

∫
ν|∇xu|2 + κ|∇xθ|2dx ds

≤
∫

1
2
|uin|2 + D+2

4
|θin|2dx .

It is this version of the Leray theory that we will obtain in the limit.
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6. Main Result

In this section we state our main result, but first we recall the notion
of entropic convergence, which is used in the statement of our main
theorem.

6.1. Entropic Convergence. The notion of entropic convergence, in-
troduced in [3], was used in earlier studies as a natural tool for ob-
taining strong convergence results for fluctuations about an absolute
Maxwellian [4, 5, 18, 19, 25, 30, 34, 35]. With it, the relative entropy
can be used to measure the distance of the fluctuations from their limit.

Definition 6.1. Let Gε be a family in the entropy class E(Mdv dx)
given by (5.5) and let gε be the associated family of fluctuations given
by

(6.1) gε =
Gε − 1

ε
.

The family gε is said to converge entropically at order ε to some g ∈
L2(Mdv dx) if and only if

(6.2)

gε → g in w-L1(Mdv dx) ,

and

lim
ε→0

1

ε2
H(Gε) =

∫
TD

1
2
〈g2〉 dx .

Proposition 4.11 of [3] showed that entropic convergence is stronger
than norm convergence in L1(σMdv dx)), where σ = 1 + |v|2.

6.2. Statement of the Main Theorem. Our main result is the fol-
lowing.

Theorem 6.1. (Main Theorem.) Let the collision kernel b satisfy
(3.7), (3.9), (3.15), (3.26), and (3.29).

Let (uin, θin) ∈ H and let gin be the local infinitesimal Maxwellian
given by

(6.3) gin = v ·uin +
(

1
2
|v|2 − D+2

2

)
θin .

Let Gin
ε be any family in the entropy class E(Mdv dx) given by (5.5)

that satisfies the normalizations (2.11). Let gin
ε be the associated family

of fluctuations given by

(6.4) gin
ε =

Gin
ε − 1

ε
.

Assume that the family gin
ε satisfies

(6.5) gin
ε → gin entropically at order ε as ε→ 0 .
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Let Gε be any family of DiPerna-Lions renormalized solutions of the
Boltzmann equation (2.7) that have Gin

ε as initial values. Let gε be the
associated family of fluctuations given by (6.1).

Then the family gε is relatively compact in w-L1
loc(dt;w-L1(σMdv dx)).

Every limit point g of gε in w-L1
loc(dt;w-L1(σMdv dx)) has the infini-

tesimal Maxwellian form

(6.6) g = v ·u+
(

1
2
|v|2 − D+2

2

)
θ ,

where (u, θ) ∈ C([0,∞);w-H)∩L2(dt; V) is a Leray solution with initial
data (uin, θin) of the Navier-Stokes-Fourier system (1.1–1.2) with ν and
κ given by (4.18). More specifically, (u, θ) satisfies the weak form of the
Navier-Stokes-Fourier system given by (5.11–5.12) and the dissipation
inequality (5.15).

Moreover, every subsequence gεk
of gε that converges to g as εk → 0

also satisfies

Π〈v gεk
〉 → u in C([0,∞);D′(TD; RD)) ,(6.7)

〈( 1
D+2

|v|2 − 1) gεk
〉 → θ in C([0,∞);w-L1(dx; R)) .(6.8)

where Π is the orthogonal projection from L2(dx; RD) onto divergence-
free vector fields.

Remark. For every (uin, θin) ∈ H there are families Gin
ε in the entropy

class E(Mdv dx) that satisfy the normalizations (2.11) such that the
associated family of fluctuations gin

ε converges to gin entropically at
order ε as ε→ 0. This follows from Proposition 3.4 of [5].

The above theorem still holds if we only have weak convergence ini-
tially

Corollary 6.1. Let the collision kernel b satisfy (3.7), (3.9), (3.15),
(3.26), and (3.29). Let Gin

ε be any family in the entropy class E(Mdv dx)
given by (5.5) that satisfies the normalizations (2.11). Let gin

ε be the
associated family of fluctuations. Assume that

(6.9)

H(Gε) ≤ Cε2 ,

and

lim
ε→0

(
Π〈v gin

ε 〉, 〈( 1
D+2

|v|2 − 1) gin
ε 〉
)

= (uin, θin) ,

for some (uin, θin) ∈ L2(dx; RD× R).

Let Gε be any family of DiPerna-Lions renormalized solutions of the
Boltzmann equation (2.7) that have Gin

ε as initial values. Let gε be the
associated family of fluctuations given by (6.1).



28 C.D. LEVERMORE AND N. MASMOUDI

Then, the same conclusions of the Main theorem hold a part from the
convergences (6.7) and (6.8) which only hold in w-L1

loc(dt;w-L1(σMdv dx))
. Moreover, the right hand side of the dissipation inequality (5.15)
should be replaced by C.
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7. Proof of Main Theorem

Our proof of the Main Theorem (Theorem 6.1) closely follows that
of the Formal Theorem (Theorem 4.1). That proof has six steps:

(1) showing that limiting fluctuations are infinitesimal Maxwellians,
(2) establishing the incompressibility and Boussinesq relations (1.1),
(3) evaluating the limit for moments of the form 〈Lξ gε〉/ε for every

ξ ∈ Dom(L) ∩ Null(L)⊥,
(4) determining the limit of the flux terms in (4.6) that involve A

and B,
(5) showing that the limiting dynamics is governed by the Navier-

Stokes-Fourier motion and heat equations (1.2),
(6) determining the limit of the deviation of gε from its infinitesimal

Maxwellian.

The analogs of the steps 2–5 are not easy to realize because DiPerna-
Lions solutions are not known to satisfy most of the conservation laws
that were used extensively in the proof of the Formal Theorem. We
therefore have to recover these conservation laws in the limit. This is
done by taking the velocity moments of the renormalized Boltzmann
equation with respect to v and |v|2 and showing that the resulting
conservation defects vanish as ε → 0. The most difficult aspect of
the proof is to gain enough control of the fluctuations so that in the
analogs of steps 3 and 4 we can justify passing to the limit in the
nonlinear terms.

In order to clarify the structure the proof, we defer the proofs of
many technical details to later sections.

7.1. Fluctuations. Assertion (a) of the Fluctuations Lemma 8.1 will
state the family gε is relatively compact in w-L1

loc(dt;w-L1(σMdv dx)).
We will show that every limit point of the family gε is governed by a
Leray solution of the Navier-Stokes system.

Consider any convergent subsequence of the family gε, still abusively
denoted gε. Let g be the w-L1

loc(dt;w-L1(σMdv dx)) limit point of the
sequence gε. Assertion (f) of the Fluctuations Lemma 8.1 will state
that g is an infinitesimal Maxwellian given by

(7.1) g = ρ+ v ·u+ (1
2
|v|2 − D

2
)θ ,

for some (ρ, u, θ) ∈ L∞(dt;L2(dx; R× RD× R)). By the analogs of
steps 2 through 5 in the formal derivation, we will show that (ρ, u, θ)
is a Leray solution of the Navier-Stokes-Fourier system (1.1–1.2) with
initial data (uin, θin).
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7.2. Nonlinear Compactness by Averaging. Key to our proof is
the fact the sequence gε satisfies

(7.2)
g 2

ε

nε

is relatively compact in w-L1
loc(dt;w-L1(aMdv dx)) ,

where nε = 1 + 1
3
ε gε. We establish this fact in Section 9 by employing

the L1 velocity averaging theorem of Golse and Saint-Raymond [24].
They used this averaging theory to prove analogous compactness results
while establishing Navier-Stokes-Fourier limits for collision kernels with
a Grad cutoff that derive from Maxwell [25] and hard potentials [26].

7.3. Approximate Local Conservation Laws. In order to prove
our main theorem we have to pass to the limit in approximate lo-
cal conservation laws built from the renormalized Boltzmann equation
(5.1). We choose to use the normalization of that equation given by

(7.3) Γ(Z) =
Z − 1

1 + (Z − 1)2
.

After dividing by ε, equation (5.1) becomes

(7.4) ε ∂tg̃ε + v ·∇xg̃ε =
1

ε2
Γ′(Gε)Q(Gε, Gε) ,

where g̃ε = Γ(Gε)/ε. By introducing Nε = 1 + ε2g 2
ε , we can write

(7.5) g̃ε =
gε

Nε

, Γ′(Gε) =
2

N 2
ε

− 1

Nε

.

When the moment of the renormalized Boltzmann equation (7.4) is
formally taken with respect to any ζ ∈ span{1, v1 , · · · , vD

, |v|2}, one
obtains

(7.6) ∂t〈ζ g̃ε〉+
1

ε
∇x · 〈v ζ g̃ε〉 =

1

ε

〈〈
ζ Γ′(Gε) qε

〉〉
.

This fails to be a local conservation law because the so-called conser-
vation defect on the right-hand side is generally nonzero.

It can be shown from (5.3) that every DiPerna-Lions solution satisfies
(7.6) in the sense that for every χ ∈ C1(TD) and every [t1, t2] ⊂ [0,∞)
it satisfies

(7.7)

∫
χ 〈ζ g̃ε(t2)〉 dx−

∫
χ 〈ζ g̃ε(t1)〉 dx

=

∫ t2

t1

∫
1

ε
∇xχ·〈v ζ g̃ε〉 dx dt

+

∫ t2

t1

∫
χ

1

ε

〈〈
ζ Γ′(Gε) qε

〉〉
dx dt .
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This is the sense in which we understand (7.6) is satisfied. Approximate
global conservation laws are obtained by setting χ = 1 above.

The fact that the conservation defect term on the right-hand side of
(7.7) vanishes as ε → 0 follows from the fact χ is bounded, the fact ζ
is a collision invariant, and the compactness result (7.2). Specifically,
we show that

(7.8)
1

ε

〈〈
ζ Γ′(Gε) qε

〉〉
→ 0 in L1

loc(dt;L
1(dx)) as ε→ 0 .

This fact is established by Theorem 10.1, which is stated and proved
in Section 10.

7.4. Approximate Dynamical Equations. The difficulty in passing
to the limit in (7.6) is that the fluxes are order 1/ε. This difficulty is
overcome by following the same strategy as in our formal derivation.
First, we pass to the limit when ζ = v

i
for i = 1, . . . , D or when ζ =

(1
2
|v|2 − D+2

2
). In other words, we pass to the limit in the approximate

motion and heat equations

∂t〈v g̃ε〉+
1

ε
∇x · 〈A g̃ε〉+

1

ε
∇x〈 1

D
|v|2g̃ε〉 =

1

ε

〈〈
v Γ′(Gε) qε

〉〉
,(7.9)

∂t〈(1
2
|v|2 − D+2

2
) g̃ε〉+

1

ε
∇x · 〈B g̃ε〉 =

1

ε

〈〈
(1

2
|v|2 − D+2

2
) Γ′(Gε) qε

〉〉
.

(7.10)

Also as in the formal derivation, the approximate momentum equation
(7.9) will be integrated against divergence-free test functions. The last
term in its flux will thereby be eliminated, and we only have to pass
to the limit in the flux terms above that involve A and B — namely,
in the terms

(7.11)
1

ε
〈A g̃ε〉 ,

1

ε
〈B g̃ε〉 .

Recall that A = LÂ and B = LB̂ where Â and B̂ are defined by (4.15)

and that each entry of Â and B̂ is in Lp(aMdv) for every p ∈ [1,∞).

7.4.1. Compactness of the Flux Terms. Let s ∈ (1,∞] be from the
assumed bound (3.15) on b. Let p = 2 + 1

s−1
, so that p = 2 when

s = ∞. Let ξ̂ ∈ Lp(aMdv) such that P ξ̂ = 0 and set ξ = Lξ̂. We
claim that the sequence of moments

(7.12)
1

ε
〈ξ g̃ε〉 is relatively compact in w-L1

loc(dt;w-L1(dx)) .
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Because each entry of the flux terms (7.11) has this form, it follows
that

(7.13)
the entries of

1

ε
〈A g̃ε〉 and

1

ε
〈B g̃ε〉 are

relatively compact in w-L1
loc(dt;w-L1(dx)) .

The claim (7.12) is proved as follows. First, observe that

(7.14) 〈ξ g̃ε〉 = 〈(Lξ̂) g̃ε〉 = 〈ξ̂ Lg̃ε〉 =
〈〈
ξ̂
(
g̃ε + g̃ε1 − g̃′ε − g̃′ε1

)〉〉
.

Next, introduce the symmetrically normalized collision integrand q̃ε by

(7.15) q̃ε =
qε

N ′
ε1N

′
εNε1Nε

=
1

ε2
G′

ε1G
′
ε −Gε1Gε

N ′
ε1N

′
εNε1Nε

,

and define Tε by

(7.16)
1

ε

(
g̃ε + g̃ε1 − g̃′ε − g̃′ε1

)
= g̃′ε1g̃

′
ε − g̃ε1g̃ε − q̃ε + Tε .

Upon placing (7.16) into the right-hand side of (7.14), the moments
(7.12) decompose as

(7.17)
1

ε
〈ξ g̃ε〉 =

〈〈
(ξ̂′ − ξ̂) g̃ε1g̃ε

〉〉
−
〈〈
ξ̂ q̃ε
〉〉

+
〈〈
ξ̂ Tε

〉〉
.

The first term in this decomposition is quadratic in g̃ε, the second is
linear in q̃ε, while the last is a remainder. We control each of these
terms separately.

The compactness result (7.2) combined with Lemma 11.2 implies〈〈
(ξ̂′ − ξ̂) g̃ε1g̃ε

〉〉
is relatively compact in w-L1

loc(dt;w-L1(dx)) .

This controls the quadratic term in (7.17).
Assertion (c) of the Fluctuations Lemma 8.2 implies that as ε → 0

one has

(7.18)
〈〈
ξ̂ q̃ε
〉〉
→ 〈ξ̂ A〉 :∇xu+ 〈ξ̂ B〉·∇xθ in w-L2

loc(dt;w-L2(dx)) .

This controls the linear term in (7.17). In particular, we see that as
ε→ 0 one has〈〈

Â q̃ε
〉〉
→ ν

[
∇xu+ (∇xu)

T
]

in w-L2
loc(dt;w-L2(dx; RD×D)) ,〈〈

B̂ q̃ε
〉〉
→ κ∇xθ in w-L2

loc(dt;w-L2(dx; RD)) ,

where ν and κ are given by (4.18).
The compactness result (7.2) combined with Lemma 11.2 and the

Remainder Theorem 12.1 implies that

(7.19)
〈〈
ξ̂ Tε

〉〉
→ 0 in L1

loc(dt;L
1(dx)) as ε→ 0 .

This controls the last term in (7.17), thereby proving claim (7.12).
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7.4.2. Convergence of the Density Terms. The densities term corre-
sponding to (7.9) and (7.10) are

(7.20) Π〈v g̃ε〉 and 〈(1
2
|v|2 − D+2

2
) g̃ε〉 .

Here Π is the Leray projection onto divergence-free vector fields in
L2(dx; RD). The sequences (7.20) are convergent in w-L2

loc(dt;w-L2(dx)).
We use the Arzela-Ascoli Theorem to establish that these sequences

are convergent in C([0,∞);w-L2(dx)). Indeed, it is easy to show that

〈g̃ 2
ε (t)〉 ≤ 3Cin for every t ≥ 0 .

It then follows from the Cauchy-Schwarz inequality that the sequences
(7.20) are equibounded. That they are also equicontinuous follows from
the weak forms (7.7) of the approximate motion and heat equations
(7.9–7.10) upon noting that the flux terms are relatively compact in
w-L1

loc(dt;w-L1(dx)) by (7.13) while the conservation defects vanish
by (7.8). The Arzela-Ascoli Theorem then implies that the sequences
(7.20) are relatively compact in C([0,∞);w-L2(dx)). Because they are
convergent in the weaker topology of w-L2

loc(dt;w-L2(dx)), they must
be convergent in C([0,∞);w-L2(dx)). We thereby conclude that as
ε→ 0 one has

(7.21)
Π〈v g̃ε〉 → u in C([0,∞);w-L2(dx; RD)) ,

〈(1
2
|v|2 − D+2

2
) g̃ε〉 → D+2

2
θ in C([0,∞);w-L2(dx)) .

7.5. Recovering the Strong Boussinesq Relation. By assertion
(b) of the Fluctuations Lemma, g is of the form of a local infinitesi-
mal Maxwellian (8.10) parametrized by its associated (fluctuation of)
velocity field u, macroscopic density ρ and temperature θ. Choosing
t1 = 0, ζ = |v|2 and χ = 1 in (7.7) shows that∫

〈|v|2g̃ε(t2)〉 dx−
∫
〈|v|2g̃in

ε 〉 dx =

∫ t2

0

∫
1

ε

〈〈
|v|2Γ′(Gε) qε

〉〉
dx dt .

By the Conservation Defect Theorem (Proposition 10.1 below), the
right-hand side of this equality vanishes with ε uniformly as t2 run
through any bounded interval of time. Further, the arguments in the
last three paragraphs show that the second term in the left-hand side
of this equality converges to∫

〈|v|2gin〉 dx = 0

because of (2.16). Hence, the sequence∫
〈|v|2g̃ε〉 dx→ 0 in Cloc([0,∞)) .
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Because g̃ε → g in C([0,∞);w-L2(Mdv dx)),∫
〈|v|2g̃ε〉 dx→

∫
〈|v|2g〉 dx in Cloc([0,∞)) .

Hence,

(7.22)

∫
〈 1

D
|v|2g(t)〉 dx =

∫
(ρ+ θ)(t) dx = 0

for every t ≥ 0.
We see from (7.22) that for every t ≥ 0 the function (ρ + θ)( · , t) is

an element of L2(dx) that is orthogonal to the constants. On the other
hand, by (8.15), this function also satisfies

∇x(ρ+ θ) = 0 .

Then, a classical argument based on Fourier series shows that

(7.23) ρ+ θ = 0 for almost every (x, t) ∈ TD × [0,∞) .

By assertion (f) of the Fluctuations Lemma 8.1, this implies that g is
in fact of the form (6.6) as stated by the Main Theorem 6.1.

7.6. Convergence of the Quadratic Terms. Now, we concentrate
on the passage to the limit in the quadratic term in the decomposition
(7.17). This term has the equivalent forms

(7.24)
〈〈
(ξ̂′ − ξ̂) g̃ε1g̃ε

〉〉
=
〈〈
ξ̂
(
g̃′ε1g̃

′
ε − g̃ε1g̃ε

)〉〉
=
〈
ξ̂Q(g̃ε, g̃ε)

〉
.

This passage to the limit is the most difficult part of the proof.

7.6.1. Approximation by Infinitesimal Maxwellians. We decompose g̃ε

into its infinitesimal Maxwellian P g̃ε and its deviation P⊥g̃ε as

(7.25) g̃ε = P g̃ε + P⊥g̃ε .

We now show that g̃ε is approximated by its infinitesimal Maxwellian.
Specifically, we claim that

(7.26) P⊥g̃ε → 0 in L2
loc(dt;L

2(aMdvdx)) .

Indeed, multiply (7.16) by ε g̃ε and integrate to obtain

(7.27) 〈g̃ε Lg̃ε〉 = ε
〈〈
g̃ε

(
g̃′ε1g̃

′
ε − g̃ε1g̃ε

)〉〉
− ε
〈〈
g̃ε q̃ε

〉〉
+ ε
〈〈
g̃ε Tε

〉〉
.

We treat each term on the right-hand side above separately and show
they each vanish as ε→ 0.

First, because |g̃ε1g̃ε| ≤ g̃ 2
ε1 + g̃ 2

ε , the compactness result (7.2) implies
g̃ε1g̃ε and g̃′ε1g̃

′
ε are relatively compact in w-L1

loc(dt;w-L1(dµ dx)). The
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fact ε g̃ε is bounded and vanishes almost everywhere as ε → 0 then
implies

(7.28) lim
ε→0

ε
〈〈
g̃ε

(
g̃′ε1g̃

′
ε − g̃ε1g̃ε

)〉〉
= 0 in L1

loc(dt;L
1(dx)) .

Hence, the first term on the right-hand side of (7.27) vanishes as ε→ 0.
Next, assertions (d), (e) and (g) of the First Fluctuations Lemma

8.1 imply that g̃ε = O(| log(ε)|) in L∞(dt;L2(aMdv dx)) and that q̃ε is
bounded in L2

loc(dt;L
2(dµ dx)). It follows that

(7.29) lim
ε→0

ε
〈〈
g̃ε q̃ε

〉〉
= 0 in L1

loc(dt;L
1(dx)) .

The second term on the right-hand side of (7.27) thereby vanishes as
ε→ 0.

Finally, because ε g̃ε is bounded, the compactness result (7.2) com-
bined with Lemma 11.2 and the Remainder Theorem 12.1 implies that

(7.30) lim
ε→0

ε
〈〈
g̃ε Tε

〉〉
= 0 in L1

loc(dt;L
1(dx)) .

The third term on the right-hand side of (7.27) thereby vanishes as
ε→ 0.

Upon combining (7.28–7.30) with (7.27), we conclude that

lim
ε→0

〈g̃ε Lg̃ε〉 = 0 in L1
loc(dt;L

1(dx)) .

The coercivity bound (3.36) then immediately implies

lim
ε→0

〈
a
(
P⊥g̃ε

)2〉
= 0 in L1

loc(dt;L
1(dx)) ,

which establishes claim (7.26).

7.6.2. Quadratic Approximation by Infinitesimal Maxwellians. When
decomposition (7.25) is placed into the quadratic term (7.24), it yields

(7.31)

〈
ξ̂Q(g̃ε, g̃ε)

〉
=
〈
ξ̂Q(P g̃ε,P g̃ε)

〉
+ 2

〈
ξ̂Q(P g̃ε,P⊥g̃ε)

〉
+
〈
ξ̂Q(P⊥g̃ε,P⊥g̃ε)

〉
.

Here we show the last two terms above vanish as ε→ 0.
Recall that the collision kernel b satisfies assumption (3.15) for some

Cb < ∞ and s ∈ (1,∞]. Let p = 2 + 1
s−1

, so p = 2 when s = ∞.
Lemma 11.1 of Section 11 then combines with (7.24) to yield the basic
quadratic estimate

(7.32)
∣∣〈ξ̂Q(g̃, h̃)

〉∣∣ ≤ 2C
1

p∗

b 〈a |ξ̂|p〉
1
p 〈a g̃2〉

1
2 〈a h̃2〉

1
2 ,

where 1
p

+ 1
p∗

= 1 and g̃, h̃ ∈ L2(aMdv).
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It follows from (7.26) and the basic estimate (7.32) that〈
ξ̂Q(P g̃ε,P⊥g̃ε)

〉
→ 0〈

ξ̂Q(P⊥g̃ε,P⊥g̃ε)
〉
→ 0

}
in L1

loc(dt;L
1(dx)) .

So all that remains to be done is to pass to the limit in the first term
on the right-hand side of (7.31) — the one that is quadratic in P g̃ε.

7.6.3. Passing to the Limit. The infinitesimal Maxwellian P g̃ε has the
form

(7.33) P g̃ε = ρ̃ε + v ·ũε + (1
2
|v|2 − D

2
)θ̃ε ,

where ρ̃ε, ũε, and θ̃ε are defined by

(7.34) ρ̃ε = 〈g̃ε〉 , ũε = 〈v g̃ε〉 , θ̃ε = 〈( 1
D
|v|2 − 1) g̃ε〉 .

Because P g̃ε is an infinitesimal Maxwellian, we can use the identity
(4.12) to express the first term on the right-hand side of (7.31) as

(7.35)

〈
ξ̂Q(P g̃ε,P g̃ε)

〉
= 1

2

〈
ξ P⊥(P g̃ε

)2〉
= 1

2
〈ξ A〉 : (ũε ⊗ ũε) + 〈ξ B〉·ũεθ̃ε + 1

2
〈ξ C〉 θ̃ 2

ε ,

where C is defined by (4.14). We thereby have reduced the problem to
passing to the limit in the terms

(7.36) ũε ⊗ ũε , ũεθ̃ε , θ̃ 2
ε .

We are unable to pass to the limit in the above terms in full gener-
ality. Rather, the Quadratic Limit Theorem 13.1 of Section 13 yields
that

lim
ε→0

Π∇x ·
(
ũε ⊗ ũε

)
= Π∇x · (u⊗ u)

lim
ε→0

∇x ·
(
θ̃ε ũε

)
= ∇x · (θ u)

 in w-L1
loc(dt;D′(TD)) ,

where Π is the Leray projection onto divergence-free vector fields in
L2(dx; RD). It follows that

lim
ε→0

Π∇x ·
〈
ÂQ(P g̃ε,P g̃ε)

〉
= Π∇x · (u⊗ u)

lim
ε→0

∇x ·
〈
B̂Q(P g̃ε,P g̃ε)

〉
= D+2

2
∇x · (θ u)

 in w-L1
loc(dt;D′(TD)) .

We thereby obtain the limiting fluxes for the Navier-Stokes-Fourier
motion and heat equations. �
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8. Control of the Fluctuations

In order to establish fluid dynamical equations from the Boltzmann
equation for regimes near an absolute Maxwellian M , one must con-
trol the fluctuations of the relative kinetic density G about 1 with the
DiPerna-Lions entropy inequality (5.9) and with the weak form of the
Boltzmann equation (5.3). In this section we collect some such esti-
mates from [3] and [19] that help in this task.

8.1. Controls from the Entropy Inequality. From (6.2) of the Def-
inition 6.1 of entropic convergence, it follows that Gin

ε satisfies the en-
tropy bound

(8.1) H(Gin
ε ) ≤ Cinε2 , for some Cin <∞ .

The DiPerna-Lions entropy inequality (5.9) then implies that the family
Gε of DiPerna-Lions renormalized solutions satisfies the bound

(8.2) H(Gε(t)) +
1

ε2

∫ t

0

R(Gε(s)) ds ≤ H(Gin
ε ) ≤ Cinε2 .

In this subsection we give controls on the fluctuations that follow only
from the fact that Gε satisfies (8.2).

The relative entropy functional H given by (2.19) has an integrand
that is a nonnegative strictly convex function of G with a minimum
value of 0 at G = 1. It thereby provides a natural measure of the
proximity of G to that equilibrium. For the families of fluctuations gin

ε

and gε given by (6.4) and (6.1), one easily sees that H asymptotically
behaves like half the square of the L2(Mdv)-norm of these fluctuations
as ε→ 0. Hence, the bound (8.2) is consistent with these fluctuations
being order one.

Just as the relative entropy H controls the fluctuations gε, the dis-
sipation rate R given by (2.20) controls the scaled collision integrands
defined by

(8.3) qε =
G′

ε1G
′
ε −Gε1Gε

ε2
.

Once again, the bound (8.2) is consistent with these scaled integrands
being order one.

The following shows that more is true.

Lemma 8.1. (First Fluctuations Lemma) Let b be a collision kernel
that satisfies conditions (3.7), (3.9), and (3.15).

Let Gε ≥ 0 be a family of functions in C([0,∞);w-L1(Mdv dx) that
satisfies the bound (8.2) with Gin

ε = Gε(0) for some Cin <∞. Let gin
ε ,
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gε, and qε be given by (6.4), (6.1) and (8.3). Define nε by

(8.4) nε = 2
3

+ 1
3
Gε = 1 + 1

3
ε gε .

Then, adopting the notation σ = 1 + |v|2, we have the following.

(a) The family gε is bounded in L∞(dt;L1(σMdv dx)),
relatively compact in w-L1

loc(dt;w-L1(σMdv dx)),
and relatively compact in w-L1(σMdv dx) pointwise over t ≥ 0.

(b) The family qε/
√
nε is relatively compact in

w-L1
loc(dt;w-L1(σdµ dx)).

(c) If gin is a w-L1(σMdv dx) limit point of the family gin
ε as ε→ 0

then gin ∈ L2(Mdv dx) and one has

(8.5) 1
2

∫
TD

〈gin 2〉 dx ≤ lim inf
ε→0

1

ε2
H(Gin

ε ) ≤ Cin .

(d) If g is a w-L1
loc(dt;w-L1(σMdv dx)) limit point of the family

gε and q is jointly a w-L1
loc(dt;w-L1(σdµ dx)) limit point of the

family qε/
√
nε as ε → 0 then g ∈ L∞(dt;L2(Mdv dx)), q ∈

L2(dµ dx dt), and q inherits the symmetries of qε. Moreover,
for almost every t ≥ 0 one has

(8.6) 1
2

∫
TD

〈g(t)2〉 dx ≤ lim inf
ε→0

1

ε2
H(Gε(t)) ≤ Cin ,

while for every t ≥ 0 one has

(8.7) 1
4

∫ t

0

∫
TD

〈〈
q(s)2

〉〉
dx ds ≤ lim inf

ε→0

1

ε4

∫ t

0

R(Gε(s)) ds ≤ Cin .

(e) The family gε satisfies the nonlinear estimates

g 2
ε

nε

(t) is bounded in L1(Mdv dx) uniformly over t ≥ 0 ,(8.8)

σ
g 2

ε

nε

= O(| log(ε)|) in L∞(dt;L1(Mdv dx)) as ε→ 0 .(8.9)

(f) Let g be as in (d) above. Then g has the form of an infinitesimal
Maxwellian,

(8.10) g = ρ+ v ·u+ (1
2
|v|2 − D

2
) θ ,

for some (ρ, u, θ) ∈ L∞(dt;L2(dx; R× RD× R).
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(g) The family qε satisfies the nonlinear estimates

q 2
ε

n′ε1n
′
εnε1nε

is bounded in L1(dµ dx dt) ,(8.11)

σ
q 2
ε

n′ε1n
′
εnε1nε

= O(| log(ε)|) in L1
loc(dt;L

1(dµ dx)) as ε→ 0.(8.12)

Assertion (a) is essentially Proposition 3.1 (1) of [3]. Assertion (b)
is Proposition 3.4 (1) of [3]. Assertion (c) is essentially contained in
Proposition 3.1 (2) of [3]. Assertion (d) consolidates Proposition 3.1 (2)
and Proposition 3.4 (2) of [3]. Assertion (e) consolidates Proposition
3.2 (3) and Proposition 3.3 of [3]. Estimate (8.9) is the key nonlin-
ear estimate from [3]. Assertion (f) is Proposition 3.8 of [3]. It is a
consequence of assertions (a), (b) and (e). Assertion (g) consolidates
Lemmas 10.1 and 9.3 of [19].

8.2. Controls from the Boltzmann Equation. The following are
amplifications of Proposition 8.1 that result because Gε are renormal-
ized solutions of the Boltzmann equation.

Lemma 8.2. (Second Fluctuations Lemma) Let b be a collision kernel
that satisfies assumptions (3.7), (3.9), (3.15), and (3.26).

Let Gε ≥ 0 be a family of renormalized solutions of the scaled initial-
value problem (2.7) with initial data Gin

ε that satisfy the entropy bound
(8.1) for some Cin <∞. Let gε and qε be the corresponding fluctuations
(6.1) and scaled collision integrands (8.3). Let nε be given by (8.4).

(a) For every [t1, t2] ⊂ [0,∞) and every ξ = ξ(v) such that |ξ|/σ is
bounded, the family gε, uniformly in ε, satisfies

(8.13)∫ t2

t1

∫
TD

∣∣∣∣〈ξ gε

nε

〉
(x− y, t)−

〈
ξ
gε

nε

〉
(x, t)

∣∣∣∣ dx dt→ 0 as y → 0 .

(b) Let g be a w-L1
loc(dt;w-L1(σMdv dx)) limit point of the family

gε and q be jointly a w-L1
loc(dt;w-L1(σdµ dx)) limit point of the

family qε/
√
nε as ε → 0. Then g ∈ L∞(dt;L2(Mdv dx)) and

q ∈ L2(dµ dx dt) satisfy

(8.14) v ·∇xg =

∫∫
SD−1×RD

q b(ω, v1 − v) dωM1dv1 ;

(c) Let g and q be as in (b). Then g is an infinitesimal Maxwellian
of the form (8.10) where (ρ, u, θ) ∈ L∞(dt;L2(dx))∩L2(dt;H1(dx))
satisfies

(8.15) ∇x · u = 0 , ∇x(ρ+ θ) = 0 ,
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while q satisfies the relations

(8.16)
〈〈
Â q
〉〉

= ν
(
∇xu+ (∇xu)

T
)
,

〈〈
B̂ q
〉〉

= κ∇xθ ,

and the inequality

(8.17)

∫ t

0

∫
TD

ν |∇xu|2 + κ |∇xθ|2dx ds ≤ 1
4

∫ t

0

∫
TD

〈〈
q2
〉〉

dx ds

for every t ≥ 0, where Â and B̂ are given by (4.15) while ν and
κ are given by (4.18).

Assertion (a) follows from assertions (a) and (b) of the First Fluctu-
ations Lemma (Lemma 8.1) by an application of the L1-velocity av-
eraging result of [20]. Assertion (b) is essentially Proposition 4.1 of
[3]. Assertion (c) strengthens assertion (f) of Lemma 8.1. It consoli-
dates Propositions 4.2, 4.3, and 4.6 of [3]. The proofs of the last two
assertions each rest on the key nonlinear estimate (8.9).
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9. Compactness from Averaging

In this section, we want to prove the following Proposition

Proposition 9.1. Under the hypotheses of the main theorem 6.1, we
have
(9.1)

(1 + a(v))
g 2

ε

nε

is relatively compact in w-L1
loc(dt;w-L1(Mdv dx)) .

Proof of Proposition 9.1. The Proposition is a simple consequence of
the following two lemmas.

Lemma 9.1. Under the hypotheses of the main theorem, for all R > 0,
we have

(9.2) 1{|v|<R}
g 2

ε

nε

is relatively compact in w-L1
loc(dt;w-L1(Mdv dx)) .

Lemma 9.2. Under the hypotheses of the main theorem,

(9.3) lim
R→∞

sup
ε

∥∥∥∥1{|v|>R}
g 2

ε

nε

∥∥∥∥
L1((0,T );L1((1+a(v))Mdv dx))

= 0 .

�

Now, we concentrate on the proof of the two lemmas. We start with
lemma 9.2.

Proof of Lemma 9.2. To explain the idea, we will start with the case
we assume that bH(v) is bounded. We recall the definition of aH(v)
and bH(v),
(9.4)

aH(v) =

∫
RD

bH(v1 − v)M1 dv1 =

∫∫
SD−1×RD

bH(ω, v1 − v) dωM1dv1 ,

where

(9.5)
bH(ω, v) = b(ω, v), for |v| > V0 ,
bH(ω, v) = min{b(ω, v), C} , for |v| ≤ V0 .

Since bH(v) is bounded, aH(v) is also bounded. Moreover, because b
and bH differ only on the set |v| < V0, we deduce that aH(v) also satisfies
the same bound from below as a(v), namely that aH(v) ≥ Ca(1 + |v|)α

for some α ∈ R. Actually, for this section we only need a weaker lower
bound aH(v) ≥ cM(v)α for some 0 < α < 1. We define LH and QH

by replacing b by bH in the definition of L and Q. We also denote√
Gε = 1 + ε φε. We notice that φ 2

ε and g 2
ε

nε
behave in the same way for
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small and for large values of φε, so it is enough to prove the estimates

for φ 2
ε instead of g 2

ε

nε
. We have

(9.6) LHφε = εQH(φε, φε)− 1
ε
QH

(√
Gε,
√
Gε

)
,

and for almost every x and t, we have

(9.7)

‖P⊥φε‖2
L2(aH(v)Mdv) ≤ C〈(P⊥φε)LHφε〉

≤ C

∫
εQH(φε, φε)P⊥φεMdv

−
∫

1
ε
QH

(√
Gε,
√
Gε

)
P⊥φεMdv

since LH satisfies the coercivity property (3.34). Now, we can estimate
each term in the following way
(9.8)∫

QH

(√
Gε,
√
Gε

)
P⊥φεMdv ≤

(∫∫∫
(P⊥φε)

2dµH

) 1
2

(∫∫∫ (√
G′

ε1G
′
ε −
√
Gε1Gε

)2
dµH

) 1
2

,

where dµH = bH(ω, v1−v) dωM1dv1Mdv and we can see that the sec-
ond term in the right-hand side is controlled by the entropy dissipation.
Recall that (

√
x−√y)2 ≤ 1

4
(x− y) log(x/y).

Moreover, using the assumption that b̄H is bounded, we have
(9.9)∫

QH(φε, φε)P⊥φεMdv

≤
(∫∫∫

(P⊥φε)
2 dµH

)1/2(∫∫∫
(φ′ε1φ

′
ε)

2 + (φε1φε)
2 dµH

)1/2

≤ C

(∫
(P⊥φε)

2 aH(v)Mdv

)1/2(∫∫
(φε1φε)

2bH(v1 − v)M1dv1Mdv

)1/2

≤ ‖φε‖2
L2(Mdv)‖P⊥φε‖L2(aH(v)Mdv) .

Finally, we deduce that
(9.10)

‖P⊥φε‖L2(aH(v)Mdv) ≤
C

ε

〈〈
log

(
G′

1G
′

G1G

)
(G′

1G
′−G1G)

〉〉1/2

+Cε‖φε‖2
L2(Mdv)

Integrating in x and t, we see that ‖P⊥φε‖L1
loc(dt;L1(dx;L2(aH(v)Mdv))) ≤

Cε.
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Now, take A > 1. We can write

1{|v|>R}φ
2
ε = 1{|v|>R}1{Gε>A}φ

2
ε + 1{|v|>R}1{Gε<A}(φεPφε + φεP⊥φε) .

Upon integrating this over RD×TD × (0, T ), we observe that the
first term on the right-hand side can be estimated using the entropy
inequality and is of order 1

log A
in L∞(dt;L1(Mdv dx)). The second

term is bounded in L∞(dt;L1(dx;Lq(Mdv)) for every 1 ≤ q < 2 and
hence
(9.11)∫∫∫

(0,T )×TD×RD

1{|v|>R}1Gε<A|φεPφε|dtdxMdv ≤ (

∫
{|v|>R}

Mdv)1/3

where we took q = 3/2. The third term is of order
√
A in L1(dx dt;L2(aHMdv))

since ‖1Gε<Aφε‖L∞ ≤
√

A
ε

. Hence
(9.12)∫∫∫

RD×TD×(0,T )

1{|v|>R}1{Gε<A}
∣∣φεP⊥φε

∣∣Mdv dx dt ≤ C
√
A

(∫
{|v|>R}

M1−αdv

)1/2

.

where we have used that aH(v) ≥ cMα for some 0 ≤ α < 1. Hence,
taking A big and then R big, we see that (9.3) holds. This completes
the proof of the lemma for the case when bH(v) is bounded.

Next, we consider the general case, namely bH(v1 − v) ≤ C(1 +
aH(v1))(1 + aH(v)) for every v and v1. As in the previous case we
consider the collision kernel bH . It is easy to see that (9.7), and (9.8)
still hold. Besides, (9.9) should be replaced by
(9.13)∫

Qr(φε, φε)P⊥φεMdv

≤ C(

∫
(P⊥φε)

2aH(v)Mdv)1/2(

∫∫
(φε1φε)

2bH(v − v1)M1dv1Mdv)1/2

≤ C‖φε‖2
L2((1+aH(v))Mdv)‖P⊥φε‖L2(aH(v)Mdv) .

Moreover, for almost every x and t, we have

‖φε‖L2((1+aH(v))Mdv) ≤ ‖φε‖L2(Mdv) + ‖Pφε‖L2(aH(v)Mdv) + ‖P⊥φε‖L2(aH(v)Mdv)

≤ C‖φε‖L2(Mdv) + ‖P⊥φε‖L2(aH(v)Mdv) .(9.14)

Hence, we obtain
(9.15)

‖P⊥φε‖L2(aH(v)Mdv) ≤
C

ε

〈〈
log

(
G′

1G
′

G1G

)
(G′

1G
′ −G1G)

〉〉1/2

+ Cε
[
‖φε‖2

L2(Mdv) + ‖P⊥φε‖2
L2(aH(v)Mdv)

]
.
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This inequality gives us an estimate for ‖P⊥φε‖L2(aH(v)Mdv) only if we
know a priori that ‖P⊥φε‖L2(aH(v)Mdv) is not very big.

Let us introduce the macroscopic cut-off given by

(9.16) Aλ =

{
(x, t)|

∫
(Gε log(Gε)−Gε + 1)Mdv ≤ λ

}
Using the following elementary inequality, 1

3
x2 ≤ (1+x)2 log[(1+x)2]−

(1 + x)2 + 1, we deduce that for every (x, t) ∈ Aλ, we have
∫
φ2

ε <
Cλ
ε2

.
Moreover, gε = 2φε + εφ2

ε . Hence

φ2
ε(1 + a(v)) ≤ C

ε
(gε − 2φε)(1 + a(v)) ≤ 2C

ε
(1 + a(v))|gε| .

We recall the definition of h(z) = (1 + z) log(1 + z)− z. Using Young
inequality, we get for all α > 0

|gε|
(1 + |v|2)

4
≤ α

ε2
h(εgε) +

α

ε2
h∗(

ε

α

(1 + |v|2)
4

).(9.17)

By taking α = ε√
λ

and using the superquadratic homogeneity of h∗, we

deduce that

|gε||v|2 ≤ 1

ε
√
λ
h(εgε) +

√
λ

ε
h∗(

(1 + |v|2)
4

) .(9.18)

Integrating in v, we deduce that

1Aλ

∫
|gε|(1 + |v|2)Mdv ≤ C

√
λ

ε
.(9.19)

Hence, for every (x, t) ∈ Aλ, we have

(9.20) ‖P⊥φε‖L2(aH(v)Mdv) ≤ C

(∫
φ2

ε(1 + a(v))Mdv

)1/2

≤ Cλ1/4

ε
.

Using this estimate in the right hand side of (9.15) and using that λ is
small enough, we deduce that

(9.21)
∥∥1Aλ

P⊥φε

∥∥
L1

loc(dt;L1(dx;L2(aH(v)Mdv)))
≤ Cε .

Now, we want to compute
∫ T

0

∫
TD

∫
1{|v|>R}(1 + a(v))φ2

εdtdxMdv.
Let us use that

(9.22)
1{|v|>R}(1 + a(v))φ2

ε =(1− 1Aλ
)1{|v|>R}(1 + a(v))φ2

ε

+ 1Aλ
1{|v|>R}(1 + a(v))φ2

ε .

We start by computing the integral of the first term. Notice first that,
by the entropy inequality, we deduce that for all t,

∫
(1−1Aλ

)dxMdv ≤
Cε2

λ
. Using Young inequality, we get
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1

ε
(1− 1Aλ

)1{|v|>R}
(1 + a(v))

8
gε

≤ α

ε3

[
h(εgε) + (1− 1Aλ

)1{|v|>R}h
∗(
ε

α

(1 + a(v))

8
)

]
≤ α

ε3

[
h(εgε) + (1− 1Aλ

)1{|v|>R}h
∗(
ε

α
βR

(1 + |v|2)
4

)

]
≤ α

ε3
h(εgε) +

β2
R

εα
(1− 1Aλ

)h∗(
(1 + |v|2)

4
)

≤ CβR√
λ

[
1

ε2
h(εgε) +

λ

ε2
(1− 1Aλ

)h∗(
(1 + |v|2)

4
)

]
where βR = sup|v|≥R

1+|a(v)|
1+|v|2 goes to zero when R goes to infinity and

we have taken α = εβR√
λ

and used the superquadratic homogeneity of

h∗. Upon integrating over v and x, we get that for every t,

(9.23)

∫
TD

∫
(1− 1Aλ

)1{|v|>R}(1 + a(v))φ 2
ε Mdvdx ≤ CβR√

λ
.

On the other hand, we have
(9.24)∫

1{|v|>R}(1+a(v))(Pφε)
2Mdv dx ≤ C‖φε‖2

L2(Mdv)

∫
{|v|>R}

(1+|v|6)Mdv ,

and

(9.25)

∥∥1Aλ
(P⊥φε)

2
∥∥

L1
x,t(L

1(1+a(v))Mdv)

≤
∥∥1Aλ

P⊥φε

∥∥
L∞x,t(L

2(1+a(v))Mdv)

∥∥1Aλ
P⊥φε

∥∥
L1

x,t(L
2(1+a(v))Mdv)

≤ C
λ1/4

ε
ε = Cλ1/4 .

By combining (9.23), (9.24) and (9.25), we complete the proof of the
lemma.

�

Proof of Lemma 9.1. To prove the first statement, we will use the av-
eraging lemma of Golse and Saint-Raymond [24].

Let γ be a C∞ cut-off function that satisfies γ(s) = 1 for 0 ≤ s ≤ 1,
0 ≤ γ ≤ 1 and γ(s) = 0 for s ≥ 2. Using the entropy inequality, we see
that for all δ > 0, we have∥∥∥∥g 2

ε

nε

− g 2
ε

nε

γ

(
δ
ε2g 2

ε

nε

)∥∥∥∥
L∞(dt;L1(Mdvdx))

≤ C

| log(δ)|
.
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Indeed,

g 2
ε

nε

− g 2
ε

nε

γ

(
δ
ε2g 2

ε

nε

)
≤ g 2

ε

nε

1{δεgε≥1} ≤
1

ε2
Gε1{Gε≥ 1

δ
} .

Hence, we only need to prove that 1{|v|<R}ψε = 1{|v|<R}
g 2

ε

nε
γ(δ ε 2g 2

ε

nε
) is

equi-integrable.
Using the averaging lemma [24], we see that this is a consequence of

the fact that 1{|v|<R}ψε is equi-integrable in v (see the definition below)
and satisfies

(9.26) ε ∂tψε + v ·∇xψε =
Q(Gε, Gε)

ε2
√
nε

gε√
nε

γε ,

where γε = 1+nε

nε
[γ(δ ε 2g 2

ε

nε
) + δ ε 2g 2

ε

nε
γ′(δ ε 2g 2

ε

nε
)] and the right-hand side is

bounded in L1
loc(dt;L

1(Mdvdx)).

In the next two steps we prove that 1{|v|<R}
g 2

ε

nε
is equi-integrable in v

and that the right-hand side of (9.26) is bounded in L1
loc(dt;L

1(Mdv dx)).
Step 1: Let us recall the following definition.

Definition 9.1. Take ψε a sequence of L1(Mdv dx dt). The sequence
is said to be equi-integrable in v, if and only if for every δ > 0 there
exists an η > 0 such that for every Ω ⊂ RD×RD×R, Ω has a compact
support in x, t and

∫
RD 1ΩMdv ≤ η for every (x, t) ∈ RD× R, we have∫

Ω

|ψε|Mdv dx dt ≤ Cδ .

In the sequel, we will denote such a domain Ω by

Ω = {(v, x, t) | (x, t) ∈ Ω, v ∈ Ωt,x} ,

where Ω is bounded in RD× R and for every (x, t) ∈ Ω,
∫

Ωx,t
Mdv ≤ η.

We would like to prove that ‖P⊥φε‖L1
loc(dt;L1(dx;L2(aH(v)Mdv))) ≤ Cε.

This will follow from the proof of lemma 9.2. Indeed, writing (9.22)
without the cutoff in R and choosing λ = 1, we deduce that
‖φε‖L2((1+aH(v))dtdxMdv) ≤ C. Hence, integrating (9.15) in x and t,

we see that ‖P⊥φε‖L1
loc(dt;L1(dx;L2(ar(v)Mdv))) ≤ Cε.

We want to deduce from this that 1{|v|<R}φ
2
ε is equi-integrable in v.

Take A > 1, we write

1{|v|<R}φ
2
ε = 1{|v|<R}1Gε>Aφ

2
ε + 1{|v|<R}1Gε<A(φεPφε + φεP⊥φε).

The first term on the right-hand side can be estimated using the entropy
inequality and is of order 1

log A
in L∞(dt;L1(Mdvdx)). The second term
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is bounded in L∞(dt;L1(dx;Lq(Mdv)) for all 1 ≤ q < 2. The third

term is bounded by
√
A in L1(dx dt;L2(Mdv)). Indeed,

‖1Gε<Aφε‖L∞ ≤
√
A

ε
and ‖1{|v|<R}P⊥φε‖L1

x,tL
2(Mdv) ≤ Cε .

To prove that 1{|v|<R}φ
2
ε is equi-integrable in v, we take a δ > 0, then

we take A such that 1
log A

< δ and η such that η < Cδ3 and C
√
Aη1/2 <

δ. Then, if Ω satisfies
∫

RD 1ΩMdv ≤ η for every (x, t) ∈ TD × (0, T ),
we have

(9.27)

∫
Ω̄

∫
Ωx,t

1{|v|<R}1Gε<A|φεPφε|Mdvdxdt

≤ C

∫
Ω̄

(

∫
Ωx,t

|φεPφε|3/2Mdv)2/3(

∫
Ωx,t

Mdv)1/3dxdt

≤ Cη1/3 ≤ δ .

(9.28)∫
Ω̄

∫
Ωx,t

1{|v|<R}1Gε<A|φεP⊥φε|Mdvdxdt

≤ C

∫
Ω̄

(

∫
Ωx,t

1{|v|<R}1Gε<A|φεP⊥φε|2Mdv)1/2(

∫
Ωx,t

Mdv)1/2dxdt

≤ C
√
Aη1/2 ≤ δ .

Hence, we deduce that 1{|v|<R}φ
2
ε is equi-integrable in v and that

1{|v|<R}
g 2

ε

nε
is equi-integrable in v since they have the same growth.

Step 2: Now, we want to prove that the right hand side of (9.26) is
bounded in L1

loc(dt;L
1(Mdvdx)). Using that

G′
ε1G

′
ε−GεGε1 = (

√
G′

ε1G
′
ε−
√
GεGε1)

2+2(
√
G′

ε1G
′
ε−
√
GεGε1)

√
GεGε1 ,

we deduce that

ε ∂tψε + v ·∇xψε

=
1

ε2

∫ ∫
(
√
G′

ε1G
′
ε −
√
GεGε1)

2b dωM1dv1
gε

nε

γε

+
2

ε2

∫∫
(
√
G′

ε1G
′
ε −
√
GεGε1)b dωM1dv1

√
Gε√
nε

gε√
nε

γε(9.29)

+
2

ε2

∫ ∫
(
√
G′

ε1G
′
ε −
√
GεGε1)

√
Gε1 − 1

ε
b dωM1dv1

√
Gε√
nε

εgε√
nε

γε

Then, we use that
∫∫

(
√
G′

ε1G
′
ε−
√
GεGε1)

2b dωM1dv1 ∈ ε4L1
loc(dt;L

1(Mdvdx))
and εgε

nε
∈ L∞(Mdvdxdt) to bound the first term on the right-hand side.
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For the second term, we also use that gε√
nε
∈ L2(Mdv dx dt). For the

third term, we use that ε gε√
nε
γε ∈ L∞(Mdv dx dt).

�
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10. Removal of the Conservation Defects

The conservation defects have the form

1

ε

〈〈
ζ Γ′ε(Gε) qε

〉〉
=

1

ε

〈〈
ζ

(
2

N 2
ε

− 1

Nε

)
qε

〉〉
,

where ζ ∈ span{1, v1 , . . . , vD
, |v|2} and Nε = 1 + ε2g 2

ε . In order to es-
tablish momentum and energy conservation laws from the scaled Boltz-
mann equation we must show that these defects vanish as ε→ 0. This
is done with the following proposition.

Proposition 10.1. (Conservation Defect Theorem.) Let b be a col-
lision kernel that satisfies the assumptions of Section 3. Let Gε ≥ 0
be a family of functions in C([0,∞);w-L1(Mdv dx)) that satisfies the
entropy bound (8.2). Let gε and qε be given by (6.1) and (8.3). Let
Nε = 1 + ε2g 2

ε . Assume that the family gε satisfies

(10.1)
g 2

ε√
Nε

is relatively compact in w-L1
loc(dt;w-L1(aMdv dx)) .

Then for n = 1 and n = 2 and for every ζ ∈ span{1, v1 , . . . , vD
, |v|2}

one has

(10.2)
1

ε

〈〈
ζ
qε
N n

ε

〉〉
→ 0 in w-L1

loc(dt;w-L1(dx)) as ε→ 0 .

10.1. Proof of the Conservation Defect Theorem. The case n =
1 is treated first. The proof simply exploits the collisional symmetries
(2.14) and the fact ζ is a collision invariant to decompose the defect
into three parts, each of which is dominated by a function that is
then shown to vanish as ε → 0. The case n = 2 proceeds similarly,
with each part being dominated by the same function that dominates
the corresponding part for the n = 1 case. The estimates on these
dominating functions are obtained from the entropy inequality (8.2)
through the bound on the dissipation rate and from the compactness
hypothesis (10.1).

For the case n = 1, begin with the elementary decomposition

(10.3)

〈〈
ζ
qε
Nε

〉〉
=

〈〈
ζ
ε2g 2

ε1qε
Nε1Nε

〉〉
+

〈〈
ζ

qε
Nε1Nε

〉〉
.
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Because ζ is a collision invariant, the collisional symmetries (2.14) can
be used to rewrite the second term on the right-hand side of (10.3) as

(10.4)

〈〈
ζ

qε
Nε1Nε

〉〉
= 1

2

〈〈
(ζ + ζ1)

qε
Nε1Nε

〉〉
= 1

4

〈〈
(ζ + ζ1)

N ′
ε1N

′
ε −Nε1Nε

N ′
ε1N

′
εNε1Nε

qε

〉〉
.

We now observe that
(10.5)

N ′
ε1N

′
ε −Nε1Nε = ε2

(
g′ 2ε1 + g′ 2ε − g 2

ε1 − g 2
ε

)
+ ε4

(
g′ 2ε1g

′ 2
ε − g 2

ε1g
2
ε

)
= ε2

(
(g′ε1 + g′ε)

2 − (gε1 + gε)
2
)

− 2ε2
(
g′ε1g

′
ε − gε1gε

)
+ ε4

(
g′ 2ε1g

′ 2
ε − g 2

ε1g
2
ε

)
= ε3qε

(
g′ε1 + g′ε + gε1 + gε

)
− ε2

(
g′ε1g

′
ε − gε1gε

)
Jε ,

where Jε is given by

(10.6) Jε = 2 + ε (g′ε1 + g′ε + gε1 + gε)− ε2(g′ε1g
′
ε + gε1gε) .

Upon placing (10.5) into (10.4), using collisional symmetries and the
fact ζ is a collision invariant, and placing the result into (10.3), we
obtain the decomposition

(10.7)

1

ε

〈〈
ζ
qε
Nε

〉〉
=

〈〈
ζ
ε g 2

ε1qε
Nε1Nε

〉〉
+

〈〈
ζ
ε2(gε1 + gε) q

2
ε

N ′
ε1N

′
εNε1Nε

〉〉
−
〈〈
ζ ′

ε g′ε1g
′
ε qε

N ′
ε1N

′
εNε1Nε

Jε

〉〉
.

This decomposition is derived in the same spirit as was decomposition
(9.12) in [19]. The difference in the two arises because the role played
by Nε = 1 + ε2g 2

ε here was played by nε = 1 + 1
3
ε gε there.

We now dominate the integrands of the three terms on the right-
hand side of (10.7). Because for every ζ ∈ span{1, v1 , . . . , vD

, |v|2} there
exists a constant C <∞ such that |ζ| ≤ Cσ where σ(v) ≡ 1+ |v|2, the
integrand of the first term is dominated by

(10.8) σ
ε g 2

ε1|qε|
Nε1Nε

.

Because
ε |gε1 + gε|√
N ′

ε1N
′
εNε1Nε

≤ 2 ,
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the integrand of the second term is dominated by

(10.9) σ
ε q 2

ε√
N ′

ε1N
′
εNε1Nε

.

Finally, because
|Jε|√

N ′
ε1N

′
εNε1Nε

≤ 8 ,

the integrand of the third term is dominated by

(10.10) σ′
ε |g′ε1g′ε| |qε|√
N ′

ε1N
′
εNε1Nε

.

Hence, the result (10.2) for the case n = 1 will follow once we establish
that the terms (10.8), (10.9), and (10.10) vanish as ε→ 0.

The term (10.9) can be treated easily. By the elementary inequality

(10.11) n′ε1n
′
εnε1nε ≤ 2

√
N ′

ε1N
′
εNε1Nε ,

it follows directly from estimate (8.12) that

σ
ε q 2

ε√
N ′

ε1N
′
εNε1Nε

= O
(
ε | log(ε)|

)
in L1

loc(dt;L
1(dµ dx)) as ε→ 0 .

The terms (10.8) and (10.10) require much more work. Lemmas 10.2
and 10.3 respectively will yield the limits

σ
ε g 2

ε1qε
Nε1Nε

→ 0 in L1
loc(dt;L

1(dµ dx)) as ε→ 0 ,(10.12)

σ′
ε g′ε1g

′
ε qε√

N ′
ε1N

′
εNε1Nε

→ 0 in L1
loc(dt;L

1(dµ dx)) as ε→ 0 ,(10.13)

These lemmas are stated and proved in the next subsection, thereby
establishing the result (10.2) for the case n = 1.

The case n = 2 follows similarly. Begin with the elementary decom-
position

(10.14)

〈〈
ζ
qε
N 2

ε

〉〉
=

〈〈
ζ
ε2g 2

ε1qε
Nε1Nε

(
1 +

1

Nε1

)〉〉
+

〈〈
ζ

qε
N 2

ε1N
2

ε

〉〉
.

Because ζ is a collision invariant, the collisional symmetries (2.14) can
be used to rewrite the second term on the right-hand side of (10.14) as
(10.15)〈〈

ζ
qε

N 2
ε1N

2
ε

〉〉
= 1

2

〈〈
(ζ + ζ1)

qε
N 2

ε1N
2

ε

〉〉
= 1

4

〈〈
(ζ + ζ1)

N ′
ε1N

′
ε −Nε1Nε

N ′
ε1N

′
εNε1Nε

N ′
ε1N

′
ε +Nε1Nε

N ′
ε1N

′
εNε1Nε

qε

〉〉
.
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Upon placing (10.5) into (10.15), using collisional symmetries and the
fact ζ is a collision invariant, and placing the result into (10.14), we
obtain the decomposition

(10.16)

1

ε

〈〈
ζ
qε
N 2

ε

〉〉
=

〈〈
ζ
ε g 2

ε1qε
Nε1Nε

(
1 +

1

Nε1

)〉〉
+

〈〈
ζ
ε2(gε1 + gε) q

2
ε

N ′
ε1N

′
εNε1Nε

(
1

N ′
ε1N

′
ε

+
1

Nε1Nε

)〉〉
−
〈〈
ζ ′

ε g′ε1g
′
ε qε

N ′
ε1N

′
εNε1Nε

Jε

(
1

N ′
ε1N

′
ε

+
1

Nε1Nε

)〉〉
,

where Jε is given by (10.6). Because the factors in parentheses above
are each bounded by 2, by arguing as was done for the case n = 1, the
result for the case n = 2 will also follow upon establishing (10.12) and
(10.13). The proof of Proposition 10.1 will therefore be complete upon
proving Lemmas 10.2 and 10.3. �

10.2. Defect Limit Lemmas. The proofs of Lemmas 10.2 and 10.3
use the compactness hypothesis (10.1) of Proposition 10.1 through the
following lemma.

Lemma 10.1. Let b, gε, and Nε be as in Proposition 10.1. Let s∗ ∈
[1,∞) be given by 1

s
+ 1

s∗
= 1 where s ∈ (1,∞] is from the assumed

bound (3.15) on b. Then for every w ∈ Ls∗(aMdv) one has that

(10.17)
w(v1) g

2
ε√

Nε

is relatively compact in w-L1
loc(dt;w-L1(dµ dx)) .

Proof. By hypothesis (10.1) we can pass to a subsequence such that

g 2
ε√
Nε

is convergent in w-L1
loc(dt;w-L1(aMdv dx)) .

It is then straightforward to show that the corresponding subsequence

w(v1) g
2
ε√

Nε

is convergent in w-L1
loc(dt;w-L1(dµ dx)) .

Indeed, one simply uses the fact that for every Y ∈ L∞loc(dt;L
∞(dµ dx))∫∫∫

SD−1×RD×RD

Y
w1 g

2
ε√

Nε

dµ =

∫
RD

y
g 2

ε√
Nε

aMdv ,

where y ∈ L∞loc(dt;L
∞(aMdv dx)) is given almost everywhere by

y(v, x, t) =
1

a(v)

∫∫
SD−1×RD

Y (ω, v1, v, x, t)w(v1) b(ω, v1 − v) dωM1dv1 .
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The L∞ bound on y follows because for almost every (v, x, t) one sees
from the Hölder inequality and from the bound (3.15) on b that

|y(v, x, t)| ≤ ‖Y ‖∞
∫

RD

w(v1)
b̄(v1 − v)

a(v1)a(v)
a(v1)M1dv1

≤ ‖Y ‖∞
(∫

RD

|w(v1)|s
∗
a(v1)M1dv1

) 1
s∗

(∫
RD

∣∣∣∣ b̄(v1 − v)

a(v1)a(v)

∣∣∣∣sa(v1)M1dv1

) 1
s

≤ ‖Y ‖∞
∥∥w∥∥

Ls∗ (aMdv)
Cb .

The compactness result (10.17) then follows. �

The proofs of Lemmas 10.2 and 10.3 also crucially use the fact that
the entropy inequality (8.2) implies that the dissipation rate R satisfies
the bound

1

ε4

∫ ∞

0

R(Gε) dt ≤ Cin .

More specifically, following [3], these proofs use the definition of R
(2.20) and of qε (8.3) to re-express this bound as

(10.18)
1

ε4

∫ ∞

0

∫ 〈〈
1

4
r

(
ε2qε
Gε1Gε

)
Gε1Gε

〉〉
dx dt ≤ Cin ,

where the function r is defined over z > −1 by

(10.19) r(z) = z log(1 + z) .

The function r is strictly convex over z > −1.
The proofs of Lemmas 10.2 and 10.3 are each based on a delicate use

of the classical Young inequality satisfied by r and its Legendre dual,
r∗ — namely, the inequality

pz ≤ r∗(p) + r(z) , for every p ∈ R and z > −1 .

Upon choosing

p =
ε2y

α
, and z =

ε2|qε|
Gε1Gε

,

and noticing that r(|z|) ≤ r(z) for every z > −1, for every positive α
and y one obtains

(10.20) y|qε| ≤
α

ε4
r∗
(
ε2y

α

)
Gε1Gε +

α

ε4
r

(
ε2qε
Gε1Gε

)
Gε1Gε .

This inequality will be the starting point for the proofs of Lemmas 10.2
and 10.3.
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These proofs also use the facts, recalled from [3], that r∗ is superquad-
ratic in the sense

(10.21) r∗(λp) ≤ λ2r∗(p) , for every p > 0 and λ ∈ [0, 1] ,

and that r∗ has the exponential asymptotics r∗(p) ∼ exp(p) as p→∞.

Lemma 10.2. Let b, gε, qε, and Nε be as in Proposition 10.1. Then

σ
ε g 2

ε1 qε
Nε1Nε

−→ 0 in L1
loc(dt;L

1(dµ dx)) as ε→ 0 .

Proof. For the proof of this lemma we use inequality (10.20) with

y =
σ

4s∗
ε g 2

ε1

Nε1Nε

.

where s∗ ∈ [1,∞) is as in Lemma 10.1. We then apply the su-
perquadratic property (10.21) with

λ =
ε3g 2

ε1

αNε1Nε

and p =
σ

4s∗
,

where we note that λ ≤ 1 whenever ε ≤ α. This leads to

(10.22)

σ

4s∗
ε g 2

ε1 |qε|
Nε1Nε

≤ 1

α

ε2g 4
ε1

N 2
ε1N

2
ε

r∗
( σ

4s∗

)
Gε1Gε

+
α

ε4
r

(
ε2qε
Gε1Gε

)
Gε1Gε .

Because Gε1Gε ≤ 2
√
Nε1Nε while 1 ≤ Nε, the first term on the right-

hand side above is bounded by

2 ε2g 2
ε1

αNε1

g 2
ε1√
Nε1

r∗
( σ

4s∗

)
.

The first factor above is bounded by 2/α and tends to zero almost
everywhere as ε → 0. Because r∗(p) ∼ exp(p) as p → ∞ one sees
that r∗(σ/4s∗) ∈ Ls∗(aMdv). We can then use the compactness re-
sult (10.17) of Lemma 10.1 with w = r∗(σ/4s∗) to conclude that the
remaining factors satisfy

g 2
ε1√
Nε1

r∗
( σ

4s∗

)
is relatively compact in w-L1

loc(dt;w-L1(dµ dx)) .

The first term on the right-hand side of (10.22) will thereby converge to
zero in L1

loc(dt;L
1(dµ dx)) as ε→ 0 by the Product Limit Theorem of

[3]. On the other hand, the dissipation bound (10.18) implies that the
integral of the second term on the right-hand side of (10.22) is bounded
by 4αCin. The Lemma therefore follows from the arbitrariness of α.

�
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Lemma 10.3. Let b, gε, qε, and Nε be as in Proposition 10.1. Then

σ
ε gε1gε qε√
N ′

ε1N
′
εNε1Nε

−→ 0 in L1
loc(dt;L

1(dµ dx)) as ε→ 0 .

Proof. For the proof of this lemma we use inequality (10.20) with

y =
σ′

4s∗
ε |g′ε1g′ε|√
N ′

ε1N
′
εNε1Nε

.

where s∗ ∈ [1,∞) is as in Lemma 10.1. We then apply the su-
perquadratic property (10.21) with

λ =
ε3|g′ε1g′ε|

α
√
N ′

ε1N
′
εNε1Nε

, and p =
σ′

4s∗
.

where we note that λ ≤ 1 whenever ε ≤ α. This leads to

(10.23)

σ′

4s∗
ε |g′ε1g′ε| |qε|√
N ′

ε1N
′
εNε1Nε

≤ 1

α

ε2g′ 2ε1g
′ 2
ε

N ′
ε1N

′
εNε1Nε

r∗
(
σ′

4s∗

)
Gε1Gε

+
α

ε4
r

(
ε2qε
Gε1Gε

)
Gε1Gε .

Because Gε1Gε ≤ 2
√
Nε1Nε while 1 ≤ Nε, the first term on the right-

hand side above is bounded by

2 ε2g′ 2ε

αN ′
ε

g′ 2ε1

N ′
ε1

r∗
(
σ′

4s∗

)
The first factor above is bounded by 2/α and tends to zero almost
everywhere as ε → 0. The compactness result (10.17) of Lemma 10.1
with w = r∗(σ/4s∗) implies that the remaining factors satisfy

g′ 2ε1√
N ′

ε1

r∗
(
σ′

4s∗

)
is relatively compact in w-L1

loc(dt;w-L1(dµ dx)) .

The first term on the right-hand side of (10.23) will thereby converge to
zero in L1

loc(dt;L
1(dµ dx)) as ε→ 0 by the Product Limit Theorem of

[3]. On the other hand, the dissipation bound (10.18) implies that the
integral of the second term on the right-hand side of (10.23) is bounded
by 4αCin. The Lemma therefore follows from the arbitrariness of α.

�
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11. Bilinear Estimates

Key tools in our work are the following two lemmas dedicated to
controlling terms that are quadratic in g̃ε. The first lemma provides a
direct L1 bound on such terms.

Lemma 11.1. Let the collision kernel b satisfy assumption (3.15) for
some Cb <∞ and s ∈ (1,∞]. Let p = 2 + 1

s−1
, so p = 2 when s = ∞.

Let Ξ = Ξ(ω, v1, v) be in Lp(dµ) and let g̃ and h̃ be in L2(aMdv).

Then Ξ g̃1 h̃ is in L1(dµ) and satisfies the L1 bound

(11.1)
〈〈
|Ξ g̃1 h̃|

〉〉
≤ C

1
p∗

b

〈〈
|Ξ|p

〉〉 1
p 〈a g̃2〉

1
2 〈a h̃2〉

1
2 ,

where 1
p

+ 1
p∗

= 1 and g̃1 denotes g̃(v1).

Proof. The Hölder inequality yields

(11.2)
〈〈∣∣Ξ g̃1 h̃

∣∣〉〉 ≤ 〈〈|Ξ|p〉〉 1
p
〈〈∣∣g̃1 h̃

∣∣p∗〉〉 1
p∗ .

In order to bound the last factor on the left-hand side above, we first
observe that

(11.3)

〈〈∣∣g̃1 h̃
∣∣p∗〉〉 =

∫∫ ∣∣g̃1 h̃
∣∣p∗ b̄(v1 − v)M1dv1Mdv

=

∫∫
K−(v1, v) |g̃1|p

∗|h̃|p∗ a1M1dv1 aMdv

=
〈
a
(
K−|g̃|p∗

)
|h̃|p∗

〉
,

where the integral operator K− and its kernel K− are given by (3.17)
and (3.18).

Next, let r = 2
p∗
∈ (1, 2) and 1

r
+ 1

r∗
= 1. Observe that because

1
r

+ 1
s

= 1 + 1
r∗

, by (3.24) the operator K− : Lr(aMdv) → Lr∗(aMdv)
is bounded with ‖K−‖ ≤ Cb. Use this fact after another application of
the Hölder inequality to find〈

a
(
K−|g̃|p∗

)
|h̃|p∗

〉
=
〈
a
(
K−|g̃|

2
r

)
|h̃|

2
r

〉
≤
∥∥K−|g̃|

2
r

∥∥
Lr∗ (aMdv)

∥∥ |h̃| 2r∥∥
Lr(aMdv)

≤ Cb〈a g̃2〉
1
r 〈a h̃2〉

1
r .

When the above bound is combined with (11.3) we obtain the key
bound

(11.4)
〈〈∣∣g̃1 h̃

∣∣p∗〉〉 ≤ Cb〈a g̃2〉
p∗
2 〈a h̃2〉

p∗
2 .

The L1 bound (11.1) then follows when the above inequality is applied
to the last factor on the left-hand side of (11.2). �
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The next lemma provides w-L1 compactness of certain terms qua-
dratic in fluctuations, provided those fluctuations satisfy a weaker com-
pactness hypothesis.

Lemma 11.2. Let the collision kernel b satisfy assumption (3.15) for
some Cb <∞ and s ∈ (1,∞]. Let p = 2 + 1

s−1
, so p = 2 when s = ∞.

Let Ξ = Ξ(ω, v1, v) be in Lp(dµ) and let g̃ε = g̃ε(v, x, t) and h̃ε =

h̃ε(v, x, t) be families that are bounded in L2
loc(dt;L

2(aMdv dx)). If the
family

(11.5) 〈ag̃ 2
ε 〉 is relatively compact in w-L1

loc(dt;w-L1(dx)) ,

then the family

(11.6) Ξ g̃ε1 h̃ε is relatively compact in w-L1
loc(dt;w-L1(dµ dx)) .

Here g̃ε1 denotes g̃ε(v1, x, t).

Proof. To establish the w-L1 compactness assertion (11.6) we must

show that the family Ξ g̃ε1 h̃ε is equi-integrable. Begin with the classical
Young’s inequality, which for every η > 0 yields∣∣Ξ g̃ε1 h̃ε

∣∣ ≤ ηp

p
|Ξ|p +

1

p∗ ηp∗

∣∣g̃ε1h̃ε

∣∣p∗ .
Now let α > 0 be arbitrary and set η = 〈ag̃ 2

ε 〉
1
p/α above to obtain

(11.7)
∣∣Ξ g̃ε1 h̃ε

∣∣ ≤ 1

pαp
|Ξ|p 〈a g̃ 2

ε 〉+
αp∗

p∗

∣∣g̃ε1h̃ε

∣∣p∗
〈ag̃ 2

ε 〉
p∗
p

.

The last term on the right-hand side above is a bounded family in
L1

loc(dt;L
1(dµ dx)) because by the key bound (11.4) of Lemma 11.1

one has

(11.8)

〈〈∣∣g̃ε1h̃ε

∣∣p∗〉〉
〈ag̃ 2

ε 〉
p∗
p

≤ Cb〈a g̃ 2
ε 〉

p∗
2
− p∗

p 〈a h̃ 2
ε 〉

p∗
2

= Cb〈a g̃ 2
ε 〉

1
r∗ 〈a h̃ 2

ε 〉
1
r

≤ Cb

[
1

r∗
〈a g̃ 2

ε 〉+
1

r
〈a h̃ 2

ε 〉
]
.

Because g̃ε and h̃ε are bounded families in L2
loc(dt;L

2(aMdv dx)), the
last expression above is clearly bounded in L1

loc(dt;L
1(dx)).
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Next, we integrate inequality (11.7) over an arbitrary measurable set
Ω ⊂ SD−1× RD× RD×TD×[0, T ] and use (11.8) to obtain∫∫∫

Ω

∣∣Ξ g̃ε1g̃ε

∣∣ dµ dx dt ≤ 1

pαp

∫∫∫
Ω

|Ξ|p 〈a g̃ 2
ε 〉 dµ dx dt

+
αp∗

p∗
Cb

∫ T

0

∫
TD

[
1

r∗
〈a g̃ 2

ε 〉+
1

r
〈a h̃ 2

ε 〉
]

dx dt .

We now use this inequality to argue that the left-hand side above can
be made arbitrarily small uniformly in ε by picking the measure of Ω
sufficiently small. To begin, because g̃ε and h̃ε are bounded families
in L2

loc(dt;L
2(aMdv dx)), the terms on the second line above can be

made arbitrarily small uniformly in ε by a suitable choice of α. Next,
by hypothesis (11.5), 〈a g̃ 2

ε 〉 is equi-integrable with respect to dx dt over
TD× [0, T ] while, because Ξ ∈ Lp(dµ), |Ξ|p is integrable with respect
to dµ over SD−1× RD× RD, one thereby sees that |Ξ|p〈a g̃ 2

ε 〉 is equi-
integrable with respect to dµ dx dt over SD−1× RD× RD× TD×[0, T ].
The first term on the right-hand side above can therefore be made
arbitrarily small uniformly in ε by picking the measure of Ω sufficiently
small. We conclude that the family Ξ g̃ε1 h̃ε is equi-integrable with
respect to dµ dx dt, whereby the w-L1 compactness assertion (11.6) is
established. �
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12. Removal of the Flux Remainders

The flux remainders have the form〈〈
ξ̂ Tε

〉〉
,

where ξ̂ is an entry of either Â or B̂ and where Tε is defined by

(12.1) Tε =
qε

N ′
ε1N

′
εNε1Nε

− 1

ε

(
g̃′ε1 + g̃′ε − g̃ε1 − g̃ε

)
−
(
g̃′ε1g̃

′
ε − g̃ε1g̃ε

)
.

In order to establish momentum and energy conservation laws from the
scaled Boltzmann equation we must show that these remainders vanish
as ε→ 0. This is done with the following proposition.

Proposition 12.1. Flux Remainder Theorem. Let b be a collision
kernel that satisfies the assumptions of Section 3. Let s ∈ (1,∞] be as
in the assumed bound (3.15) on b. Let p = 2 + 1/(s− 1), so that p = 2
when s = ∞.

Let Gε ≥ 0 be a family of functions in C([0,∞);w-L1(Mdv dx)) that
satisfies the entropy bound (8.2). Let gε and qε be given by (6.1) and
(8.3). Let Nε = 1+ε2g 2

ε , g̃ε = gε/Nε, and Tε be given by (12.1). Assume
that the family gε satisfies

(12.2)

〈
a
g 2

ε

Nε

〉
is relatively compact in w-L1

loc(dt;w-L1(dx)) .

Then for every Ξ ∈ Lp(dµ) one has that Tε given by (12.1) satisfies

(12.3) ΞTε−→ 0 in L1
loc(dt;L

1(dµ dx)) as ε→ 0 .

Proof. The key to the argument is to find a decomposition of Tε for
which each component can be bounded by one of the sequences

(12.4)
|gε1gε|√
Nε1Nε

,
|g′ε1g′ε|√
N ′

ε1N
′
ε

,
|qε|√

N ′
ε1N

′
εNε1Nε

,

times a bounded sequence that vanishes almost everywhere as ε → 0.
Assertion (12.3) will then follow from the Product Limit Theorem of
[3] upon showing that |Ξ| times each of the sequences in (12.4) is rela-
tively compact in w-L1

loc(dt;w-L1(dx)). For the first two sequences in
(12.4) this relative compactness follows from assertion (11.6) of Lemma
11.2 and the compactness hypothesis (12.2). For the last sequence in
(12.4) this relative compactness follows directly from the fact that it is
bounded in L2(dµ dx dt) by (8.11).
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We begin by decomposing Tε given by (12.1) as

(12.5)

Tε =
1

ε2
G′

ε1G
′
ε −Gε1Gε

N ′
ε1N

′
εNε1Nε

− 1

ε

(
g′ε1
N ′

ε1

+
g′ε
N ′

ε

− gε1

Nε1

− gε

Nε

)
−
(
g′ε1
N ′

ε1

g′ε
N ′

ε

− gε1

Nε1

gε

Nε

)
= T1ε − T ′1ε + T2ε − T ′2ε + T3ε − T ′3ε ,

where T1ε, T2ε, and T3ε are defined by

T1ε =
1

ε

(
gε1

Nε1

+
gε

Nε

− gε1 + gε

Nε1Nε

)
,

T2ε =
1

ε

(
gε1 + gε

Nε1Nε

− gε1 + gε

N ′
ε1N

′
εNε1Nε

)
,

T3ε =

(
gε1gε

Nε1Nε

− gε1gε

N ′
ε1N

′
εNε1Nε

)
,

and where T ′1ε, T
′
2ε, and T ′3ε are defined by simply exchanging the roles

of the primed and unprimed quantities in the respective definitions of
T1ε, T2ε, and T3ε.

It is easy to obtain the desired bounds for T1ε, T
′
1ε, T3ε, and T ′3ε. For

T1ε we have

|T1ε| =
ε |gε1 + gε| |gε1gε|

Nε1Nε

=
|gε1gε|√
Nε1Nε

ε |gε1 + gε|√
Nε1Nε

.

The last factor above is a sequence that is bounded by 2 and that
vanishes almost everywhere as ε→ 0. For T3ε we have

|T3ε| =
|gε1gε|
Nε1Nε

(
1− 1

N ′
ε1N

′
ε

)
.

The last factor above is a sequence that is bounded by 1 and that
vanishes almost everywhere as ε → 0. The bounds for T ′1ε and T ′3ε are
obtained by simply exchanging the roles of the primed and unprimed
quantities in the respective bounds of T1ε and T3ε.

To treat T2ε and T ′2ε we need the further decompositions

(12.6)

T2ε =
ε (gε1 + gε)

(
g′ 2ε1 + g′ 2ε + ε2(g′ε1g

′
ε)

2
)

N ′
ε1N

′
εNε1Nε

= T4ε − T5ε + T6ε ,

T ′2ε =
ε (g′ε1 + g′ε)

(
g 2

ε1 + g 2
ε + ε2(gε1gε)

2
)

N ′
ε1N

′
εNε1Nε

= T ′4ε − T ′5ε + T ′6ε ,
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where T4ε, T5ε, and T6ε are defined by

T4ε =
ε (gε1 + gε) (g′ε1 + g′ε)

2

N ′
ε1N

′
εNε1Nε

,

T5ε =
ε (gε1 + gε) (2g′ε1g

′
ε)

N ′
ε1N

′
εNε1Nε

,

T6ε =
ε3(gε1 + gε) (g′ε1g

′
ε)

2

N ′
ε1N

′
εNε1Nε

,

and where T ′4ε, T
′
5ε, and T ′6ε are defined by simply exchanging the roles

of the primed and unprimed quantities in the respective definitions of
T4ε, T5ε, and T6ε.

It is easy to obtain the desired bounds for T5ε, T
′
5ε, T6ε, and T ′6ε. For

T5ε we have

|T5ε| =
ε |gε1 + gε| |2g′ε1g′ε|
N ′

ε1N
′
εNε1Nε

=
|g′ε1g′ε|
N ′

ε1N
′
ε

ε 2 |gε1 + gε|
Nε1Nε

.

The last factor above is a sequence that is bounded by 2 and that
vanishes almost everywhere as ε→ 0. For T6ε we have

|T6ε| =
|g′ε1g′ε|√
N ′

ε1N
′
ε

(
|g′ε1g′ε|√
N ′

ε1N
′
ε

ε |gε1 + gε|
Nε1Nε

)
.

The factor in parenthesis above is a sequence that is bounded by 1
and that vanishes almost everywhere as ε → 0. The bounds for T ′5ε

and T ′6ε are obtained by simply exchanging the roles of the primed and
unprimed quantities in the respective bounds of T5ε and T6ε.

The trick now is to not treat T4ε and T ′4ε separately. Rather, we use
the decomposition

(12.7)
T4ε − T ′4ε =

ε (gε1 + gε) (g′ε1 + g′ε) (g′ε1 + g′ε − gε1 − gε)

N ′
ε1N

′
εNε1Nε

= T7ε + T8ε − T ′8ε ,

where T7ε, and T8ε are defined by

T7ε =
ε2(gε1 + gε) (g′ε1 + g′ε) qε

N ′
ε1N

′
εNε1Nε

,

T8ε =
ε2(gε1 + gε) (g′ε1 + g′ε) gε1gε

N ′
ε1N

′
εNε1Nε

,

and where T ′8ε is defined by simply exchanging the roles of the primed
and unprimed quantities in the definition of T8ε.
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Finally, it is easy to obtain the desired bounds for T7ε, T8ε, and T ′8ε.
For T7ε we have

|T7ε| =
|qε|√

N ′
ε1N

′
εNε1Nε

ε2|gε1 + gε| |g′ε1 + g′ε|√
N ′

ε1N
′
εNε1Nε

.

The last factor above is a sequence that is bounded by 4 and that
vanishes almost everywhere as ε→ 0. For T8ε we have

|T8ε| =
|gε1gε|√
Nε1Nε

(
ε |gε1 + gε|√
Nε1Nε

ε |g′ε1 + g′ε|
N ′

ε1N
′
ε

)
.

The factor in parenthesis above is a sequence that is bounded by 2
and that vanishes almost everywhere as ε → 0. The bound for T ′8ε is
obtained by simply exchanging the roles of the primed and unprimed
quantities in the bound of T8ε.

We therefore obtain from (12.5), (12.6), and (12.7) the decomposition

Tε = T1ε − T ′1ε + T3ε − T ′3ε − T5ε + T ′5ε + T6ε − T ′6ε + T7ε + T8ε − T ′8ε ,

with the desired bounds on each component. This proves the Proposi-
tion.

�
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13. Quadratic Limits

In order to establish our main result, Theorem 6.1, we have to prove
some compactness of our sequence g̃ε. More specifically, we need to
pass to the limit in certain of the quadratic terms containing

(13.1) ũε ⊗ ũε , ũε θ̃ε , θ̃ 2
ε .

Recall that we have the weak limits

(13.2)
ũε → u

θ̃ε → θ

}
in w-L2

loc(dt;w-L2(dx)) as ε→ 0 .

These limits have to be strengthened in order to pass to the limit in
any of the quadratic terms (13.1). We follow [36], which adapted to
the kinetic setting an idea introduced in [34] to pass to an incompress-
ible Navier-Stokes-Fourier limit from the compressible Navier-Stokes-
Fourier system. The main result of this section is the following.

Proposition 13.1. Quadratic Limits Theorem.

(13.3)
lim
ε→0

Π∇x ·
(
ũε ⊗ ũε

)
= Π∇x · (u⊗ u)

lim
ε→0

∇x ·
(
θ̃ε ũε

)
= ∇x · (θ u)

 in w-L1
loc(dt;D′(TD)) ,

where Π is the Leray projection onto divergence-free vector fields in
L2(dx; RD).

Proof. We employ a mollifier over the periodic space variable. Recall
that TD = RD/LD, where LD ⊂ RD is some D-dimensional lattice.
Let j ∈ C∞(RD) be such that j ≥ 0,

∫
RD j(x) dx = 1, and j(x) = 0 for

|x| > 1. We then define jδ ∈ C∞(TD) by

jδ(x) =
1

δD

∑
l∈LD

j

(
x+ l

δ

)
.

In this section all convolutions are taken only in the x variable.
Define ũδ

ε = jδ ∗ ũε and θ̃δ
ε = jδ ∗ θ̃ε. It will follow from Proposition

13.2 that

(13.4)
lim
δ→0

ũδ
ε = ũε

lim
δ→0

θ̃δ
ε = θ̃ε

 in L2
loc(dt;L

2(dx)) uniformly in ε .
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It will follow from Proposition 13.3 that for every δ > 0
(13.5)

lim
ε→0

Π∇x ·
(
ũδ

ε ⊗ ũδ
ε

)
= Π∇x ·

(
uδ ⊗ uδ

)
lim
ε→0

∇x ·
(
θ̃δ

ε ũ
δ
ε

)
= ∇x ·

(
θδ uδ

)
 in w-L1

loc(dt;D′(TD)) ,

where uδ = jδ ∗ u and uδ = jδ ∗ u.
By first using the uniformity of the L2 limits in (13.4) to commute

limits and then using the limits (13.5), we obtain

lim
ε→0

Π∇x ·
(
ũε ⊗ ũε

)
= lim

ε→0
lim
δ→0

Π∇x ·
(
ũδ

ε ⊗ ũδ
ε

)
= lim

δ→0
lim
ε→0

Π∇x ·
(
ũδ

ε ⊗ ũδ
ε

)
= lim

δ→0
Π∇x ·

(
uδ ⊗ uδ

)
= Π∇x · (u⊗ u) in w-L1

loc(dt;D′(TD)) ,

and

lim
ε→0

∇x ·
(
θ̃ε ũε

)
= lim

ε→0
lim
δ→0

∇x ·
(
θ̃δ

ε ũ
δ
ε

)
= lim

δ→0
lim
ε→0

∇x ·
(
θ̃δ

ε ũ
δ
ε

)
= lim

δ→0
∇x ·

(
θδ uδ

)
= ∇x · (θ u) in w-L1

loc(dt;D′(TD)) .

This proves assertion (13.3) and thereby establishes the proposition
modulo the proofs of Propositions 13.2 and 13.3, which are given in
the subsequent subsections.

�

13.1. Uniformity of Mollification Limits. Now define g̃δ
ε = jδ ∗ g̃ε

and gδ = jδ ∗g. By basic properties of mollifiers we know that for every
ξ ∈ L2(Mdv) one has the L2 limits

(13.6) .
lim
δ→0

〈ξ g̃δ
ε 〉 = 〈ξ g̃ε〉

lim
δ→0

〈ξ gδ〉 = 〈ξ g〉

 in L2
loc(dt;L

2(dx)) .

The main result of this subsection is the following assertion that for
certain ξ the first mollification limit above is uniform in ε.

Proposition 13.2. For every ζ ∈ span{1, v1 , . . . , vD
, |v|2} one has

(13.7) lim
δ→0

〈ζ g̃δ
ε 〉 = 〈ζ g̃ε〉 in L2

loc(dt;L
2(dx)) uniformly in ε .
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Proof. Assertion (a) of Lemma 8.2, which is a consequence of velocity
averaging, implies that for every T ∈ (0,∞) one has

lim
y→0

∫∫
TD×[0,T ]

∣∣〈ζ g̃ε〉(x− y, t)− 〈ζ g̃ε〉(x, t)
∣∣ dx dt = 0 uniformly in ε .

Because∫∫
TD×[0,T ]

∣∣〈ζ g̃δ
ε 〉 − 〈ζ g̃ε〉

∣∣ dx dt

≤
∫∫∫

TD×TD×[0,T ]

∣∣〈ζ g̃ε〉(x− y, t)− 〈ζ g̃ε〉(x, t)
∣∣ jδ(y) dy dx dt ,

it therefore follows that

(13.8) lim
δ→0

〈ζ g̃δ
ε 〉 = 〈ζ g̃ε〉 in L1

loc(dt;L
1(dx)) uniformly in ε .

This is the L1 analog of assertion (13.7).
In order to replace L1 by L2 in (13.8) we now use the fact that 〈a g̃ 2

ε 〉
is relatively compact in w-L1

loc(dt;w-L1(dx)) to establish the fact that

(13.9) 〈ζ g̃δ
ε 〉2 is relatively compact in w-L1

loc(dt;w-L1(dx)) .

Indeed, for almost every (x, t) one has the pointwise bound

〈ζ g̃δ
ε 〉2(x, t) =

∫∫
TD×TD

〈ζ g̃ε〉(y1, t) 〈ζ g̃ε〉(y2, t) j
δ(x− y1) j

δ(x− y2) dy1 dy2

≤
∫∫

TD×TD

1
2
〈ζ g̃ε〉2(y1, t)j

δ(x− y1) j
δ(x− y2) dy1 dy2

+

∫∫
TD×TD

1
2
〈ζ g̃ε〉2(y2, t)j

δ(x− y1) j
δ(x− y2) dy1 dy2

= jδ ∗
(
〈ζ g̃ε〉2

)
(x, t)

≤
〈

1

a
ζ2

〉
jδ ∗ 〈a g̃ 2

ε 〉(x, t) .

Because the family 〈a g̃ 2
ε 〉 is relatively compact in w-L1

loc(dt;w-L1(dx)),
if follows easily that the doubly indexed family jδ ∗ 〈a g̃ 2

ε 〉 is as well,
whereby the above inequality implies that (13.9) holds.

Assertion (13.7) follows from (13.8) and (13.9) upon applying the
following lemma to the doubly indexed family 〈ζ g̃δ

ε 〉 − 〈ζ g̃ε〉.
�

The above proof of Proposition 13.2 required the following lemma.
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Lemma 13.1. Let ψδ
ε be a family in L2

loc(dt;C
∞(TD)) doubly indexed

by ε > 0 and δ > 0 such that

(ψδ
ε )

2 is relatively compact in w-L1
loc(dt;w-L1(dx)) ,(13.10)

lim
δ→0

ψδ
ε = 0 in L1

loc(dt;L
1(dx)) uniformly in ε .(13.11)

Then

(13.12) lim
δ→0

ψδ
ε = 0 in L2

loc(dt;L
2(dx)) uniformly in ε .

Proof. Let T ∈ (0,∞). Because the family (ψδ
ε )

2 is relatively compact
in w-L1

loc(dt;w-L1(dx)) one has that

M = sup

{(∫∫
TD×[0,T ]

∣∣ψδ
ε

∣∣2 dx dt

) 1
2

}
<∞ .

For every λ > 0 define

Ωδ
ε(λ) =

{
(x, t) ∈ TD × [0, T ] : |ψδ

ε (x, t)| > λ
}
.

The Chebychev inequality then yields

meas
{
Ωδ

ε(λ)
}
≤ M2

λ2
.

Now let η > 0 be arbitrary. Because (ψδ
ε )

2 is relatively compact in
w-L1

loc(dt;w-L1(dx)), by the above inequality we may pick λ large
enough to insure that∫∫

Ωδ
ε(λ)

∣∣ψδ
ε

∣∣2dx dt <
η

2
for every ε and δ .

The assumed uniform L1-limit (13.11) implies we may pick δo > 0 small
enough to insure that δ < δo implies∫∫

TD×[0,T ]

∣∣ψδ
ε

∣∣ dx dt <
η

2λ
for every ε .

The above two inequalities show that δ < δo implies∫∫
TD×[0,T ]

∣∣ψδ
ε

∣∣2dx dt ≤
∫∫

Ωδ
ε(λ)

∣∣ψδ
ε

∣∣2dx dt

+ λ

∫∫
TD×[0,T ]

∣∣ψδ
ε

∣∣ dx dt

≤ η

2
+ λ

η

2λ
= η for every ε .

Because η was arbitrary while δo was independent of ε, the assertion
(13.12) follows.

�
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13.2. Mollified Quadratic Limits. The main result of this section
is the following proposition taken from [36] (also see [35, 37]).

Proposition 13.3. For every δ > 0 one has
(13.13)

lim
ε→0

Π∇x ·
(
ũδ

ε ⊗ ũδ
ε

)
= Π∇x ·

(
uδ ⊗ uδ

)
lim
ε→0

∇x ·
(
θ̃δ

ε ũ
δ
ε

)
= ∇x ·

(
θδ uδ

)
 in w-L1

loc(dt;D′(TD)) .

Proof. Introduce the new fluid variables

(13.14)
w̃δ

ε = Πũδ
ε , ṽδ

ε = Π⊥ũδ
ε ,

σ̃δ
ε = D

2
θ̃δ

ε − ρ̃δ
ε , π̃δ

ε = ρ̃δ
ε + θ̃δ

ε ,

where Π is the Leray projection onto divergence-free vector-fields in
L2(dx; RD). Here w̃δ

ε and ṽδ
ε are respectively the divergence-free and

gradient components of ũδ
ε , while σ̃δ

ε and π̃δ
ε are the infinitesimal entropy

and pressure fluctuations associated with g̃δ
ε .

Because for every ζ ∈ span{1, v1 , . . . , vD
, |v|2} one has 〈ζ g̃ε〉 → 〈ζ g〉

in w-L2
loc(dt;w-L2(dx)) as ε→ 0, it can be easily shown that for every

s ≥ 0 and δ > 0 one has

(13.15) lim
ε→0
〈ζ g̃δ

ε 〉 = 〈ζ gδ〉 in w-L2
loc(dt;w-Hs(dx)) ,

where Hs(dx) denotes the sth Sobolev space. In particular, for every
s > 0 and δ > 0 the families w̃δ

ε , ṽ
δ
ε , σ̃

δ
ε , and π̃δ

ε satisfy

(13.16)
lim
ε→0

w̃δ
ε = uδ , lim

ε→0
ṽδ

ε = 0 ,

lim
ε→0

σ̃δ
ε = D+2

2
θδ , lim

ε→0
π̃δ

ε = 0 ,

 in w-L2
loc(dt;w-Hs(dx)) ,

where uδ = jδ ∗ u and θδ = jδ ∗ θ.
Because ũδ

ε and θ̃δ
ε decompose as

(13.17) ũδ
ε = w̃δ

ε + ṽδ
ε ,

D+2
2
θ̃δ

ε = σ̃δ
ε + π̃δ

ε ,

the quadratic terms ũδ
ε ⊗ ũδ

ε and θ̃δ
ε ũ

δ
ε decompose as

(13.18)
ũδ

ε ⊗ ũδ
ε = w̃δ

ε ⊗ w̃δ
ε + w̃δ

ε ⊗ ṽδ
ε + ṽδ

ε ⊗ w̃δ
ε + ṽδ

ε ⊗ ṽδ
ε ,

D+2
2
θ̃δ

ε ũ
δ
ε = σ̃δ

ε w̃
δ
ε + σ̃δ

ε ṽ
δ
ε + π̃δ

ε w̃
δ
ε + π̃δ

ε ṽ
δ
ε .

We will consider the limit of each term on the right-hand sides above
as ε→ 0.



68 C.D. LEVERMORE AND N. MASMOUDI

It follows from (7.6) that w̃δ
ε , ṽ

δ
ε , σ̃

δ
ε , and π̃δ

ε satisfy the approximate
conservation laws

(13.19)
∂tw̃

δ
ε = ΠJ̃δ

ε , ∂tṽ
δ
ε +

1

ε
∇xπ̃

δ
ε = Π⊥J̃δ

ε ,

∂tσ̃
δ
ε = K̃δ

ε , ∂tπ̃
δ
ε +

1

ε
D+2

D
∇x · π̃δ

ε = Ĩδ
ε ,

where Ĩδ
ε , J̃

δ
ε , and K̃δ

ε are defined by

(13.20)

Ĩδ
ε =

1

ε
jδ ∗

(〈〈
1
D
|v|2Γ′ε(Gε) qε

〉〉
− 2

D
∇x · 〈B g̃ε〉

)
,

J̃δ
ε =

1

ε
jδ ∗

(〈〈
v Γ′ε(Gε) qε

〉〉
−∇x · 〈A g̃ε〉

)
,

K̃δ
ε =

1

ε
jδ ∗

(〈〈
(1

2
|v|2 − D+2

2
) Γ′ε(Gε) qε

〉〉
−∇x · 〈B g̃ε〉

)
.

Because J̃δ
ε and K̃δ

ε are relatively compact in w-L1
loc(dt;w-Hs(dx)), it

follows from the first column of (13.19) that the families w̃δ
ε and σ̃δ

ε are
equicontinuous in C([0,∞);w-L2(dx)). Because these ε-families are
also equibounded in L2(dx), the Arzela-Ascoli Theorem implies that
they are relatively compact in C([0,∞);w-L2(dx)). Because (13.16)
holds for s = 0, it follows that

(13.21) lim
ε→0

w̃δ
ε = uδ , lim

ε→0
σ̃δ

ε = D+2
2
θδ , in C([0,∞);w-L2(dx)) .

Because for every s > 0 one has the continuous embedding

w-L2
loc(dt;w-Hs(dx)) ∩ C([0,∞);w-L2(dx)) → L2

loc(dt;L
2(dx)) ,

the limits (13.16) for s > 0 and (13.21) imply that the families w̃δ
ε and

σ̃δ
ε satisfy the strong limits

(13.22) lim
ε→0

w̃δ
ε = uδ , lim

ε→0
σ̃δ

ε = D+2
2
θδ , in L2

loc(dt;L
2(dx)) .

When this result is combined with the weak limits for the families ṽδ
ε

and π̃δ
ε found in (13.16), we obtain

(13.23)

lim
ε→0

w̃δ
ε ⊗ w̃δ

ε = uδ ⊗ uδ ,

lim
ε→0

w̃δ
ε ⊗ ṽδ

ε = lim
ε→0

ṽδ
ε ⊗ w̃δ

ε = 0 ,

lim
ε→0

σ̃δ
ε w̃

δ
ε = D+2

2
θδ uδ ,

lim
ε→0

σ̃δ
ε ṽ

δ
ε = lim

ε→0
π̃δ

ε w̃
δ
ε = 0 ,


in L1

loc(dt;L
1(dx)) .

These limits treat all but the last term on the right-hand side of each
decomposition in (13.18).
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It follows from the second column of (13.19) that the families ṽδ
ε and

π̃δ
ε satisfy

(13.24)

∇x ·
(
ṽδ

ε ⊗ ṽδ
ε

)
= 1

2
∇x

∣∣ṽδ
ε

∣∣2 − D
D+2

∇x

(
π̃δ

ε

)2 − ε D
D+2

∂t

(
π̃δ

ε ṽ
δ
ε

)
+ ε D

D+2

(
π̃δ

ε Π⊥J̃δ
ε + ṽδ

ε Ĩ
δ
ε

)
,

∇x ·
(
π̃δ

ε ṽ
δ
ε

)
= − ε ∂t

(
1
2

∣∣ṽδ
ε

∣∣2 + 1
2

D
D+2

(
π̃δ

ε

)2)
+ ε
(
ṽδ

ε Π⊥J̃δ
ε + D

D+2
π̃δ

ε Ĩ
δ
ε

)
,

Because Π∇x = 0 and the ε-families ṽδ
ε and π̃δ

ε are bounded in L∞(dt;L2(dx))∩
C([0,∞);Hs(dx)), while the ε-families Ĩδ

ε and J̃δ
ε are bounded in L1

loc(dt;L
2(dx)),

it follows from the above relations that

(13.25)
lim
ε→0

Π∇x ·
(
ṽδ

ε ⊗ ṽδ
ε

)
= 0

lim
ε→0

∇x ·
(
π̃δ

ε ṽ
δ
ε

)
= 0

 in w-L1
loc(dt;D′(TD)) .

These limits treat the last term on the right-hand side of each decompo-
sition in (13.18). Assertion (13.13) of the proposition follows by using
decomposition (13.18) along with the limits in (13.23) and (13.25).

�
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